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ZUSAMMENFASSUNG

Quasikristalle sind faszinierende und in vielerlei Hinsicht paradoxe Strukturen, die
sich durch ungewöhnliche Eigenschaften von gewöhnlichen, periodischen Kristallen
unterscheiden. Obwohl sich die Abstände zwischen den Atomen nicht periodisch wie-
derholen, besitzen Quasikristalle doch eine perfekte Fernordnung. Bis in die frühen
1980er Jahre wurde angenommen, geordnete Materie sei immer periodisch, woraus
sich ableiten läßt, dass Rotationssymmetrien im realen Raum auf n = 2,3,4 und 6 bes-
chränkt sind. Heutzutage sind jedoch mehr als hundert komplexe Metall-Legierungen
bekannt, die diese kristallographischen Regeln verletzen. Ikosaedrische AlPdMn oder
dekagonale AlNiCo Kristalle mit ihren diskreten Beugungsspektren sind prominente
Beispiele für Quasikristalle. Die Mehrheit der bekannten Quasikristalle sind kom-
plexe Metall-Legierungen. In neuere Experimenten konnte jedoch gezeigt werden,
dass quasiperiodische Ordnung nicht auf Metalllegierungen beschränkt ist. Wie bei
Mizellensystemen, Block-copolymeren und sogar Kristallen aus bidispersen Nanopar-
tikeln beobachtet, kann Materie auch auf größeren Längenskalen selbstorganisiert
eine quasikristalline Struktur annehmen. Aus der besonderen Struktur resultieren
viele interessante makroskopische Eigenschaften, die hohes technologisches Poten-
tial z.B. als Oberflächenbeschichtungen, thermische Barrieren, Katalysatoren oder
photonische Kristalle bieten. Um dieses Potenzial in Zukunft besser ausnutzen zu
können, ist es nötig, die Bedingungen, unter denen sich Quasikristalle bilden, genauer
zu untersuchen.
Quasikristalline Strukturen wurden auch in Systemen mit einem einzigen Typ von

Teilchen theoretisch vorhergesagt. Ihre spontane Bildung wurde jedoch nur in binä-
ren, ternären oder sogar noch komplexeren Legierungen experimentell beobachtet.
Dementsprechend zeigen quasikristalline Oberflächen eine hohe strukturelle und che-
mische Komplexität. Um den Ursprung dieser Merkmale zu verstehen, ist es hilfreich,
die strukturellen und chemischen Aspekte zu trennen. Dies kann durch Aufbringen
von nur aus einem Element bestehenden Adsorbatschichten auf Quasikristallen er-
reicht werden. Nur wenige Elemente zeigen dabei pseudomorphes Wachstum, bei
dem sich die quasikristalline Symmetrie auf die Adsorbatschicht überträgt. Bei der
Heteroepitaxie auf dekagonalen und ikosaedrischen Oberflächen konnten Pb, Sb und
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Bi Monoschichten mit einem hohen Maß an quasikristalliner Ordnung hergestellt und
durch LEED (low-energy electron diffraction) sowie HAS (elastische Heliumstreuung)
nachgewiesen werden. Im Vergleich zu Studien im reziproken Raum, wurden erst vor
kurzem atomar aufgelöste Rastertunnelmikroskopie-Untersuchungen der Adsorbate
möglich. Selbst damit ist es schwierig, die Struktur des Adsorbats und die Struktur
des unterliegenden Substrats miteinander in Bezug zu bringen.
In diesem Zusammenhang kann die hier durchgeführte Studie des Phasenverhal-

tens von kolloidalen Partikeln unter dem Einfluss von quasiperiodischen Laserfeldern
neues Licht auf diese grundlegenden Fragestellungen im Bereich der Quasikristalle
und Festkörperphysik werden. Ausgenutzt wird dazu, dass sich Kolloidale Systeme
hervorragende Modellsysteme für das Verhalten atomarer Festkörper sind. Die me-
soskopische Größe (nm-µm) und die typischen Zeitskalen (ms-s) ermöglichen ferner
die videomikroskopische Beobachtung der Systeme und die Verfolgung der einzelnen
Trajektorien aller Partikel direkt im Ortsraum. So erhält man deutlich mehr In-
formation über die Entwicklung des Systems als es z.B. in Beugungsexperimenten
möglich ist, die über einen größeren Probenbereich mitteln. Die Technik der Video-
mikroskopie hat sich insbesondere bei der Untersuchung zweidimensionaler Systeme
als vorteilhaft erwiesen. Diese können zusätzlich durch optische Pinzetten beeinflusst
werden, so dass z.B. eine Monolage kolloidaler Partikel mit einem als Potentialland-
schaft wirkenden Lichtgitter wechselwirkt. Das so generierte und in seiner Stärke
über die Laserintensität einstellbare Potential kann als Analogie zum Substratpoten-
tial einer Festkörperoberfläche betrachtet werden.
In dieser Arbeit wird das Phasenverhalten von geladenen kolloidalen Monolagen,

unter dem Einfluss von dekagonalen und tetradekagonalen quasikristallinen Lichtgit-
tern, die durch Interferenz von fünf bzw. sieben Laserstrahlen erzeugt werden, un-
tersucht. Verschiedene Ausgangskonfigurationen, wie z. B. dichte Flüssigkeiten und
triangulare Kristalle mit unterschiedlichen Dichten, wurden präpariert. Bei niedrigen
Intensitäten des Lichtgitters und hoher Teilchendichte dominiert die elektrostatische
Abstoßung der Kolloide untereinander über die Kolloid-Substrat-Wechselwirkungen
und die kristalline Struktur bleibt im Wesentlichen intakt. Bei sehr hohen Inten-
sitäten dominieren - wie zu erwarten - die Kolloid-Substrat-Wechselwirkungen und
eine quasiperiodische Ordnung wird beobachtet. Der interessante Parameterbereich
liegt bei mittleren Laserintensitäten. Hier beobachten wir zunächst die Ausrichtung
von kristallinen Bereichen entlang der 5 Richtungen des quasikristallinen Substrates.
Dies ist in Übereinstimmung mit Beobachtungen von Xenon-Atomen adsorbiert auf
einer dekagonalen Al-Ni-Co-Oberfläche und der numerischen Simulation von schwach
adsorbierten atomaren Systemen. Für stärkere Kolloid-Substrat-Wechselwirkungen
ergibt sich eine interessante Zwischenphase, bei der Reihen des triangulären Kristalls
in Reihen mit quadratischen Kacheln umgewandelt werden. Überraschenderweise,
kann diese Phase für bestimmte Teilchendichten (bei denen die Kolloid-Substrat-
Wechselwirkungen minimiert sind) mit einer neuartigen pseudomorphen Ordnung
identifiziert werden. Diese Zwischenphase, die kristalline und quasikristalline struk-
turelle Aspekte in sich vereinigt, kann durch eine archimedische Kachelung mit cha-
rakteristischen Defekten beschrieben werden. Die berechneten Beugungsmuster die-
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ser Phase sind in Übereinstimmung mit den neuesten Beobachtungen von Kupfer
adsorbiert auf ikosaedrischen AlPdMn Oberflächen. Interessanterweise haben wir die
Bildung einer ähnlichen Phase auch für tetradekagonale Substratpotentiale beobach-
tet. Auch für diese wird die potentielle Energie des kolloidalen Systems minimiert,
indem sich Reihen quadratischer Kacheln bilden. Allerdings sind hier große Gebiete
mit nahezu periodischer Anordnung zu finden. Wir zeigen, dass dieses Verhalten
in engem Zusammenhang mit der geringen Dichte von hoch symmetrischen lokalen
Motiven in dem Substratpotential verbunden ist. Dies kann Hinweise darauf geben,
welche atomaren Quasikristalle gebildet werden können.
Im zweiten teil dieser Arbeit wird untersucht unter welchen bedingungen sich Qua-

sikristalle ausbilden. Derzeit ist nicht klar, warum die meisten Quasikristalle 5-
oder 10-zählige Symmetrie besitzen, aber kein einziges Beispiel mit 7 oder 9-zähliger
Symmetrie beobachtet wurde. Da die Eigenschaften von Quasikristallen stark von
ihrer atomaren Struktur abhängen, ist ein besseres Verständnis der Mechanismen
unter denen sie wachsen, von großer Bedeutung. Im Gegensatz zu Kristallen, die in
allen drei Dimensionen periodisch sind, ist Quasiperiodizität immer (außer ikosae-
drischen Quasikristalle) auf zwei Dimensionen beschränkt. Dementsprechend sind
diese dreidimensionale Quasikristalle als ein periodischer Stapel von quasiperiodi-
schen Schichten zu verstehen. Jede Hürde bei der Bildung von quasiperiodischer
Ordnung innerhalb einer einzelnen Schicht wird schließlich ein Kristallwachstum ent-
lang der periodischen Richtung verbieten. Daher diskutieren wir in dieser Arbeit
auch die geometrischen Beschränkung, die die Bildung von Quasikristallen mit bes-
timmten Symmetrien behindern und verifizieren dies exemplarich durch Experimente
mit entsprechenden kolloidalen Modellsystemen. Unsere Ergebnisse zeigen eindeutig,
dass sich quasikristalline Ordnung für n = 5 im Vergleich zu n = 7 um vieles leichter
auf die nächste Adsorbatebene übertragen lässt. Mit zunehmender Intensität des
Substratpotentials beobachten wir, dass die Kolloide die aufgeprägte quasikristal-
line Ordnung zunächst in lokalen Bereichen annehmen, die durch hochsymmetrische
Motive des Substrats gegeben sind, und dass diese Bereiche dann lateral wachsen,
bis eine zusammenhängende quasikristalline Schicht entsteht. Die Dichte der hoch-
symmetrischen Motive variiert stark mit der 5,7,8,9,10,11 oder 12-fachen Symmetrie
von idealen Quasikristallen und ist gerade für die Quasikristalle, die nie in atomaren
Systemen beobachtet wurden, am kleinsten. Es liegt die Vermutung nahe, dass das
Fehlen der hochsymmetrischen Motive der Grund für die nicht-Existenz dieser z.B.
7-zähligen Quasikristalle ist.
Schließlich wird ein anwendungsorentierter Aspekt behandelt. Da Quasikristalle

höhere Punktsymmetrie besitzen als gewöhnliche Kristalle wird erwartet, dass quasi-
kristalline Materialien isotrope photonische Bandlücken aufweisen und dass diese für
kolloidale Quasikristalle im sichtbaren Wellenlängenbereich liegen. Deshalb wurde
in dieser Arbeit versucht, ausgedehnte quasiperiodische kolloidale Schichten in eine
Polymer-Hydrogel-Matrix einzubetten. Dabei wurden die durch die Laserinterfe-
renzgitter erzeugten kolloidalen Quasikristalle durch UV-induzierte Polymerisation
in der Matrix festgehalten. Die so erhaltenen mehrere Millimeter großen Strukturen
zeichnen sich durch eine gute optische Homogenität und klare Beugungsmuster aus.
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Zudem können wegen der Elastizität der Polymermatrix die Längenskalen auch in
situ variiert werden.
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INTRODUCTION

Quasicrystals are somewhat paradoxical structures which exhibit many amazing pro-
perties distinguishing them from ordinary crystals. Although the atoms are not lo-
calized at periodic positions, quasicrystals posses perfect long-range order. Until the
early 1980s it was unanimously established that ordered matter is always periodic.
Accordingly, the rotational symmetry in real space was thought to be limited to
n=2,3,4 and 6. However more than a hundred complex metal alloys, for instance the
discretely diffracting icosahedral AlPdMn or decagonal AlNiCo, have defied these
crystallographic rules and self-organized into quasicrystals. Although the majority
of the identified quasicrystals are complex metal alloys synthesized in the laboratory,
recent experimental results proved that quasiperiodic order is not limited to metals.
Matter also organizes itself aperiodically at larger length scales where thermal fluc-
tuations play an important role. Recent experiments have shown that quasiperiodic
order is also oberved in soft matter systems, such as micellars, polymers, and binary
nanoparticles. Quasicrystals show many interesting properties which are quite dif-
ferent from that of periodic crystals. Accordingly, they are considered as materials
with high technological potential e.g. as surface coatings, thermal barriers, catalysts
or photonic materials.
Quasicrystalline structures have been theoretically predicted also in systems with

a single type of particles. Nevertheless, experimentally their spontaneous formation
has been only observed in binary, ternary or even more complex alloys. Accordin-
gly, their surfaces exhibit a high degree of structural and chemical complexity and
show intriguing properties. In order to understand the origin of those characteris-
tics it would be helpful to disentangle structural and chemical aspects which can be
achieved by growing single-element monolayers to quasicrystalline surfaces. Apart
from understanding how quasicrystalline properties can be transferred to such mo-
nolayers, this approach might allow fabrication of materials with novel properties.
First heteroepitatic growth experiments on decagonal and icosahedral surfaces in-
deed demonstrate the formation of Pb, Bi and Sb monolayers with a high degree
of quasicrystalline order as determined by low-energy electron diffraction and elas-
tic helium atom scattering experiments. Compared to reciprocal space studies, only
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recently atomically resolved scanning tunneling microscopy investigations of the ad-
sorbate morphology became possible. Even then, however, it is difficult to relate the
structure of the adsorbate to that of the underlying substrate.
In that respect, the study of the phase behaviour of colloidal particles interacting

with quasiperiodic laser fields can throw new light on fundamental problems of broad
interest in the physics of quasicrystals and in condensed matter physics. In fact
colloidal systems are meanwhile established as excellent model for atomic systems
and colloidal physics have demonstrated that such systems can give answers to many
basic physics questions. Depending on the pair-interaction and the concentration,
colloidal systems show analogues of all the states of atomic systems: gas, liquid and
solid states. The mesoscopic size (nm-µm), the time scales (ms-s) and the tunability
of the pair interaction in colloidal systems make them a convenient model system
for experimental and theoretical studies. As a consequence, real space analysis by
means of video microscopy allows tracking the trajectories of the individual particles
and makes the time evolution of the system accessible in detail. Such information
is inaccessible in systems investigated by diffraction experiments, as the scattering
information is available only averaged over the scattering area. Because in a colloidal
system there is direct access to real space information, the strength and nature of the
different interactions, the origins of the complex phase behavior could be in different
examples identified. In conclusion, the study of the rich phase behavior of colloidal
suspensions provides ideal conditions for experimental and theoretical studies.
In this Thesis, we report on a real-space investigation of the phase behaviour of

charged colloidal monolayers interacting with quasicrystalline decagonal or tetrade-
cagonal substrates created by interfering five or seven laser beams. Different starting
configurations, such as dense fluid and triangular crystals with different densities, are
prepared. At low intensities and high particle densities, the electrostatic colloidal re-
pulsion dominates over the colloid-substrate interaction and the crystalline structure
remains mainly intact. As expected, at very high intensities the colloid-substrate
interaction dominates and a quasiperiodic ordering is observed. Interestingly, at in-
termediate intensities we observe the alignment of crystalline domains along the 5
directions of the quasicrystalline substrate. This is in agreement with observations
of Xenon atoms adsorbed on the ten-fold decagonal Al-Ni-Co surface and numerical
simulations of weakly adsorbed atomic systems. Intermediate phases are observed for
colloid-substrate interactions strong enough to produce defects in the crystal. These
defects adapt the form of rows of quadratic tiles. Surprisingly, for specific particle
densities (at which the colloid-substrate interaction is minimized) we identify a novel
pseudomorphic ordering. This intermediate phase which exhibits likewise crystalline
and quasicrystalline structural properties can be described by an Archimedean-like
tiling consisting of alternating rows of quadratic and triangular tiles. The calculated
diffraction pattern of this phase is in agreement with recent observations of copper
adsorbed on icosahedral AlPdMn surfaces. Interestingly, we also observe the forma-
tion of the same phase on tetradecagonal substrates also at densities for which the
potential energy of the colloidal system is minimized. Although the structure can
also be described by rows of triangles and rows of squares, a closer analysis reveals
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substantial differences. Here, large domains with almost periodic ordering are found.
We show that this behavior is closely related to the low density of highly symmetric
local motifs in the substrate potential.
In the second part of this Thesis the conditions under which quasicrystals form

are investigated. Currently, it is not clear why most quasicrystals hold 5- or 10-fold
symmetry but no single example with 7 or 9-fold symmetry has ever been observed.
Since the properties of quasicrystals are strongly connected to their atomic struc-
ture, a better understanding of their growth mechanisms is of great importance. In
contrast to crystals which are periodic in all three dimensions, quasiperiodicity is al-
ways (except for icosahedral quasicrystals) restricted to two dimensions. Accordingly,
three-dimensional quasicrystals are comprised of a periodic stacking of quasiperiodic
layers and any hurdle in the formation of quasiperiodic order within a single layer
will eventually prohibit their growth along the periodic direction. In this Thesis, we
also report on geometrical constraints which impede the formation of quasicrystals
with certain symmetries in a colloidal model system. This is achieved by subjecting
a colloidal monolayer to N=5- and 7-beam quasiperiodic potential landscapes. Our
results clearly demonstrate that quasicrystalline order is much easier established for
N = 5 compared to N = 7. With increasing laser intensity we observe that the
colloids first adopt quasiperiodic order at local areas which then laterally grow until
an extended quasicrystalline layer forms. As nucleation sites where quasiperiodicity
originates, we identify highly symmetric motifs in the laser pattern. We find that
their density strongly varies with n and surprisingly is smallest exactly for those qua-
sicrystalline symmetries which have never been observed in atomic systems. Since
such high symmetry motifs also exist in atomic quasicrystals where they act as pre-
ferential adsorption sites, this suggests that it is indeed the deficiency of such motifs
which accounts for the absence of e.g. materials with 7-fold symmetry.
In addition to the fundamental aspects, we report in this Thesis on the fabrication

of large colloidal quasiperiodic layers incorporated in a polymer hydrogel matrix.
Because quasicrystals have higher point group symmetry than ordinary crystals,
micrometer-scale quasicrystalline materials are expected to exhibit large and isotropic
photonic bandgaps in the visible range. In our case, the quasiperiodic symmetries
are induced using extended light fields. The reported gelled colloidal quasicrystals
are unique in that they have large sizes as well as good optical uniformity. With
laser diffraction the in situ variable length scale of such materials is demonstrated.
In conclusion, we have studied the phase behavior of charged colloidal particles

interacting with quasiperiodic laser fields. We showed that novel pseudomorphic
growth can lead to the formation of a phase which exhibits likewise crystalline and
quasicrystalline structural properties. We also performed unconventional measure-
ments in order to understand why the formation of quasicrystals is limited to specific
rotational symmetries. We have found that geometrical hurdles play a crucial role
in the proliferation of quasiperiodicity and that such hurdles can hindered or even
prohibited the formation of e.g. 7- or 9-fold symmetry. And finally, we have shown
that the combination of extended light fields and hydrogel matrices leads to the for-
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mation of large quasiperiodically ordered colloidal materials.
Parts of this work have been published elsewhere:

• J. Mikhael, J. Roth, L. Helden C. Bechinger. Archimedean-like tiling on
decagonal quasicrystalline surfaces. Nature (2008) 454: 501-504.

• J. Mikhael, M. Schmiedeberg, S. Rausch, J. Roth, H. Stark C. Bechinger.
Proliferation of anomalous symmetries in colloidal monolayers subjected to
quasiperiodic light fields. PNAS (2010) doi: 10.1073/pnas.0913051107.

• M. Schmiedeberg, J. Mikhael, S. Rausch, J. Roth, L. Helden, C. Bechinger
H. Stark. Archimedean-like colloidal tilings on substrates with decagonal and
tetradecagonal symmetry. Submitted to EPJ E (2010).
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CHAPTER 1

INSIGHT INTO QUASIPERIODIC ORDER

The discretely diffracting quasicrystals, discovered in the early 1980s, have led to an
interdisciplinary activity involving crystallography, mathematics, materials science,
surface science, and lately soft condensed matter. The first part of this chapter is
intended to give an overview on the discovery of quasiperiodic order, its mathema-
tical description in higher dimensional space, the characteristics of the orientational
order for different tilings and its manifestation in the Fourier space. We also consider
the origins of phonon and phason-strain fields leading to different types of disorder
in quasiperiodic lattices. The new understanding of the surface structure of quasi-
periodic metals and how adsorbed atoms can arrange pseudomorphically on it are
considered. Finally, the exciting discoveries of dodecagonal order in mesoscopical sys-
tems are presented and the difficulties obstructing the formation of colloidal crystals
with quasiperiodic order are discussed.

1.1 Historical overview on quasicrystals
Conventional crystals are ordered structures constructed by periodically repeating
unit cells. Their macroscopical symmetry, i.e. external shape, is the result of this
periodic internal order. These well established ideas were developed back in the 17th
and 18th century, and are considered as the basis of modern crystallography. In
1619, Johannes Kepler wrote his famous book ’Harmonices Mundi’ and discussed
the congruence of regular figures. He showed that there are only three ways in which
a plane could be filled perfectly without gaps or overlaps using one type of regular
polygons. Accordingly each point or vertex could be surrounded by only six triangles
or four squares or three hexagons [1]. This means that periodicity is only compatible
with 2-, 3-, 4- and 6-fold rotational symmetries (figure 1.1). Based on this, the French
mineralogist René Just de Haüy started in 1801 formulating the mathematical theory
of crystallography in the ’Traité de minéralogie’. He described the construction of
regularly shaped crystals out of smaller symmetric units, i.e. cubes, octahedra, te-
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16 CHAPTER 1. INSIGHT INTO QUASIPERIODIC ORDER

trahedra, and he omitted the icosahedra since it was widely believed that crystals
can not have the five-fold symmetry. Later, Bravais, then Schoenflies and Fedorov
developed independently the mathematical theory of periodic patterns on the ba-
sis of purely geometrical reasoning. Only with the discovery of X-ray diffraction in
1912 by Max von Laue, the existence of the atomic periodicity was experimentally
proved by X-ray diffraction. In the following years, the internal structure of many
crystals was determined based on the work of Bragg. At that time it was a common
belief that the ground state of ordered matter was a periodic arrangement and as a
consequence each crystal structure can be described by one of the 230 space groups
resulting from 14 Bravais lattices and 32 point groups.

Figure 1.1: Different structures each based on one type of regular polygons. Using tri-
angles, squares, and hexagons, a uniform periodic tiling is achieved. On the
contrary, the use of pentagons leads to the occurrence of gaps (in green) and
using heptagons leads to overlaps (in orange). This illustrates the incompati-
bility between periodicity and rotational symmetries like five-fold, seven-fold
or higher.

In the sixties, this conviction started to weaken with the discovery of some ma-
terials with diffraction patterns indicating the presence of aperiodicity. In 1972, de
Wolf developed a description of such incommensurate modulated phases. For these
aperiodic crystals, the positions of the atoms deviates in a aperiodic way from the
positions of a conventional periodic crystal (figure 1.2).

In 1982, Dan Shechtman made a revolutionary and controversially discussed disco-
very. While investigating the structure of an alloy of AlMn produced by rapid quen-
ching, he observed an electron diffraction pattern showing the non-crystallographic
five-fold symmetry. The first reactions of the most eminent metallurgists and phy-
sicists were negative. Among them, the double Nobel prize Laureate Linus Pauling
who kept believing that this is only an apparent icosahedral symmetry and it is due
to multiple twinning of periodic cubic crystals. Nevertheless, Shechtman and co-
authors were able to show that the symmetry is indeed a real property of the solid
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Figure 1.2: Periodic chain of atoms (a) transforming into another periodic chain with
larger period due to a commensurate modulation (b) and transforming into
an aperiodic chain due to an incommensurate modulation (c).

and published their result two years after the discovery [2]. Only six weeks later,
Levine and Steinhardt published the first theory of these quasicrystals, i.e. solids
having long range order without periodicity. In 1992, the International Union of
Crystallography abandoned the old definition of a crystal which was based on the
lattice periodicity and adapted a new definition where a crystal is any solid having
essentially discrete diffraction diagram, i.e. including quasicrystals. To conclude, the
discovery of quasicrystals showed that the microscopic periodicity is a sufficient but
not a necessary condition for giving sharp diffraction spots meaning that crystals
could have long range order without periodicity. Nowadays, hundreds of materials
synthesized in the labs are known to be quasiperiodic and other non-crystallographic
symmetries have been found such as the eight-, ten- and twelve-fold [3]. Moreover,
quasicrystals can also form under geological conditions. Lately, Bindi et al. have
reported the discovery of a natural mineral (alloy of aluminum, copper, and iron)
occurring as micrometer-sized grains with several fivefold symmetry axis [4].

It is true that quasicrystals were discovered only in 1982, but in fact quasipe-
riodicity was known and unfortunately overseen even before. In fact, it was lately
reported that Islamic tilings made in the 15th century and used as decoration show
nearly perfect quasiperiodicity [5]. Even Johannes Kepler in the 16th century was
very close in discovering quasiperiodicity when he presented well-ordered tilings of
a plane consisting of pentagons and decagons. This same tiling, which will be later
discussed in details, was then rediscovered by Sir Roger Penrose in 1974 and this
time using only two rhombus tiles. Yet even the mathematical description of qua-
siperiodic functions did not emerge after the discovery of Dan Shechtman. Back in
the 30’s, the mathematician Harald Bohr (brother of Niels Bohr) introduced in his
book ’Almost Periodic Functions’ a very important concept, called the hyperspace,
for quasiperiodicity. Since this concept is very useful in capturing many features of
quasicrystals, we will dedicate the next section to its description.
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Figure 1.3: First diffraction pattern observed by Shechtman in 1982 and later published
in 1984 with the non-crystallographic icosahedral symmetry. The solid is a
complex metal alloy including Al and Mn [2].

1.2 Mathematical description

1.2.1 Crystallographic restriction
In order to understand the impact of the discovery of materials having long range or-
der without periodicity one should recall what non-crystallographic symmetries are.
A perfect crystal is a periodic structure possessing a translation symmetry meaning
that there is a group of atoms that can build up the whole crystal simply by transla-
tions. The smallest of such groups is called the elementary cell. Mathematically this
translational symmetry is described by means of vectors ai (i = 1, ..., D) where D
is the number of space dimensions, such that the structure remains invariant under
translations by any vector which is the sum of integral multiples of these vectors.
The vectors Ri with nij integers are called lattice vectors and define a Bravais lattice,
while ai are the basis vectors.

Ri =
∑

nijai, (j = 1, ..., D, ) (1.1)

Apart from translational symmetry, there are other structural symmetries that
transform a crystal into itself. These are point group symmetries; i.e. all operations
that transform the lattice into itself and leave a given point invariant. These opera-
tions are rotations, reflections and inversions. The space group symmetries are the
point group operations plus the translations.
The possible rotation symmetries of a periodic set of points, also called the crystal-

lographic set of points, are not infinite. This obstruction is called the crystallographic
restriction [6]. Consider two nearest neighbor atoms A and B, with the distance in
between the unit of length. By performing a rotation by 2π/n, of the line joining
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both atoms around A (figure 1.4 (a)), the distance between the new position B’ and
the atom nearest neighbor B, becomes:

L = 2 sin π/n (1.2)

Figure 1.4: Illustration of the crystallographic restriction in two dimensions. (a) Assu-
ming that A and B are nearest neighbors atoms, L is then the distance between
B and B’ after a rotation of 2π/n. (b) L’ is the distance between A’ and B’
after a rotation of 2π/n around A and B in different directions.

Since by definition, L must be larger than the unit length (L > 1), a contradiction
results for n ≥ 7, as sin(π/n) < 1/2 for n ≥ 7. On the other hand, if one considers
the case where n = 5 and performs the rotation around one point in one direction and
around the other point in the other direction (figure 1.4 (b)), the distance between
the new points becomes:

L′ = 1− 2 cos 2π/5 (1.3)

This means that L′ is also smaller than unity, leading again to a contradiction.
The crystallographic restriction illustrated above in two dimensions, also holds

for three dimensions. In three dimensions a rotation of angle 2π/n is a symmetry
operation with a transformation consisting of an orthogonal matrix. Due to the
discreteness of the lattice, the trace of this matrix given by ±(1 + 2 cos (2π/n)) must
be an integer [6]. This implies that 2 cos (2π/n) must also be an integer and n is
restricted to 2, 3, 4 and 6.

1.2.2 Higher dimension crystallography
The most outstanding features of the experimentally observed quasicrystals are the
observation of crystallographically forbidden symmetries in their diffraction pattern
and the absence of any translation symmetry. This means that the picture in which
the crystal structure is recovered by a simple translation of its unit cell breaks down.
In order to theoretically construct such structures, an elegant method was developed
based on the fact that quasiperiodic functions, e.g. mass density of a quasicrystal,
could be derived from periodic functions embedded in a higher dimension space. This
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Figure 1.5: Construction by the cut and projection method. Two dimensional square
lattice projection on a one dimensional subspace E‖ at different angles α
with the horizontal. E‖ and E⊥ are the two axis embedding the hyperspace.
For a rational slope ((a) and (b)) the projected structure is a periodic set
of sites with a repeating unit L in the first case and LS in the second. For
an irrational slope the projected structure is an aperiodic Fibonacci sequence
with an infinitely repeating unit (c).

rather hard to visualize description is best illustrated by producing a 1D quasiperiodic
sequence by slicing a two dimensional square lattice. Consider the following function:

ρ(x, y) =
∑
n,m

δ(x− na) + δ(y −ma), (1.4)

ρ is the distribution of lattice sites at the vertices of a square lattice with a lattice
constant a. This structure is embedded in a two dimensional space, also called the
hyperspace, with axes E‖ (physical space) and E⊥ (perpendicular space). α is the
angle between the horizontal rows of the square lattice and E‖. When α is rational,
E‖ passes repeatedly through lattice sites of the square lattice and the resulting
projected structure is then periodic where almost every site has the same global
environment (figure 1.5 (a) and (b)). For tanα = 1, the sequence is represented
by LLLLL..., consisting of just one segment L which is the repeating unit. For
tanα = 1/2, the resulting structure turns into a high density of projected points. In
order to overcome this problem, a projection window should be defined limiting the
number of projected lattice sites to those belonging to a strip with a certain width
(in red). In this case, the periodicity is not lost but the size of the repeating unit
becomes larger and consists of two segments, a short one called S and a long one
called L. For tanα = 1/τ (τ = (1 +

√
5)/2 the golden ratio), the resulting structure

becomes aperiodic. It is then characterized by two length scales L = a cosα and
S = a sinα with L/S = τ . Contrary to the periodic case, here no sites have the same
global environment although there is an infinite number of sites with the same local
environment. This is called local indistinguishability or also known as isomorphism.
Using this same method, one can also explain the idea of a rational approximant.

As shown in table 1.1 the slope of E‖ can be defined as the ratio of two successive
Fibonacci numbers Fn/Fn+1, with Fn = Fn−2 +Fn−1 and F0 = 0 and F1 = 1. In this
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case the value of tanα is given by the increasing rational approximants of inverse
of the golden ratio τ . In the limit of n → ∞, the rational approximant approaches
the irrational value of 1/τ and the basic unit becomes the infinite quasiperiodic
Fibonacci sequence. In practice, many intermetallic alloys like, the Al-Pd-Mn for
example, adapt structures which are very similar to quasiperiodic structures but still
periodic. Small adjustments in the chemical composition or temperature lead to such
periodic approximants with unit cells including hundreds of atoms.

Table 1.1: Sequence of long and short segments produced by the cut and projection me-
thod from two dimensions to one dimension for cut angles whose tangent is
the ratio of successive Fibonacci numbers Fn/Fn+1.

n tanα = Fn/Fn+1 basic unit Unit length
1 1/1 L 1
2 1/2 LS 2
3 2/3 LSL 3
4 3/5 LSLLS 5
5 5/8 LSLLSLSL 8
6 8/13 LSLLSLSLLSLLS 13
7 13/21 LSLLSLSLLSLLSLSLLSLSL 21

The concept of cut and projection is not only valid for projections from two dimen-
sional to one dimensional. It can be generalized in a way to produce two dimensional
or three dimensional quasiperiodic structures. Icosahedral quasicrystals are struc-
tures which are quasiperiodic in three dimensions. They can be interpretated as a
three dimensional slice through a periodic mass density function at least of dimension
six. For planar quasicrystals, i.e. periodically stacked quasiperiodic layers, the mini-
mal dimension of the embedding space is easily predicted using the so called Euler′s
totient function φ(n) [7]. This statement is a direct consequence of the structure
of the so-called cyclotomic polynomials. For creating a planar quasiperiodic point
set with n-fold symmetry, a lattice of at least dimension φ(n) is needed (figure 1.6).
φ(n) is Euler′s totient function defined as the number of positive integers less than
n which are coprime to n. Two integers are coprime if their greatest common divisor
is 1. The number 1 is coprime to every integer.

1.2.3 Quasiperiodic tilings and orientational order
Quasiperiodic structures do not have a finite unit cell. They are spatially ordered, and
comprise more than one building block. These building blocks are called tiles, and
the patterns that they form are called tilings. The most famous aperiodic tilings were
discovered by Roger Penrose in 1973 and 1974. The P3-Penrose tiling consists of just
two rhombus tiles. It is built out of a skinny rhombus with angles of 36◦and 144◦, and
a fat rhombus with angles of 72◦and 108◦(figure 1.7). These two tiles are not placed
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Figure 1.6: Euler’s totient function φ(n). φ(n) is the number of positive integers less than
n which are coprime to n.

Figure 1.7: Perfect Penrose tiling consisting in two rhombus tiles: skinny and fat with
characteristic angles 36◦and 72◦, respectively. The arrows on the edges are
required to match each other in the tiling in order to ensure the quasiperiodic
order.
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randomly next to each other. In order to ensure a perfect long range quasiperiodic
order without gaps or stacking faults, matching rules are applied. Exemplary, we
show here in figure 1.7 a perfect tiling with matching rules represented by arrows.
The edges of the tiles that are allowed to touch each other are those decorated with
the same arrows.

Figure 1.8: P1 Penrose tiling consisting in four different tiles: pentagonal stars, crowns,
rhombuses and pentagons. Due to the matching rules one can distinguish
three different pentagons. Here the matching rules are labeled by numbers (0,
1, 2,..). On adjacent tiles numbers without the bar must fit against numbers
with the bar, e.g. 1 must fit with 1̄. For clarity numbers other than 0 and 2
are omitted.

Another important and widely used tiling also discovered by Penrose is the P1-
Penrose tiling (figure 1.8). High resolution scanning tunneling microscopy (STM)
of the fivefold surface of the icosahedral AlPdMn, the most studied quasicrystal,
can be tiled with this tiling [8, 9]. As shown in figure 1.8, it consists of pentagonal
stars, crowns, rhombuses and pentagons. The edges are labeled by 0, 1, 2 and 0̄, 1̄,
2̄ corresponding to the matching rules. On adjacent tiles numbers without the bar
must fit against numbers with the bar.
As stated in the previous subsection, any quasiperiodic structure could be unders-

tood as periodic but in a higher dimensional space including an orthogonal space
(parallel space). For the Penrose tilings, Bruijn showed in 1981 that they can be
derived by a projection from a five dimensional cubic lattice.
By now other methods for constructing quasiperiodic tilings have been developed.

Among them the substitution method based on the inflation and deflation of the tiles
or the dual grid method [11]. The latter has the advantage of being able to create
tilings with arbitrary real space orientational symmetries. The method is based on
rotating equidistant parallel lines by angles of 2πk/n with k = 0, 1, ..., n − 1 where
n is a positive integer. The yield is a n-fold grid which dualization gives an n-fold
tiling. Each vertex of the tiling corresponds to a polygon in the grid.
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Figure 1.9: n-fold grids created by the dual grid method with n= 5, 6, 7, 8, 9 and 10.
The construction principle is based on overlapping a n-set of equidistantly
spaced lines, whereby every other grid is rotated by an angle of 2πk/n with
k = 0, 1, ..., n− 1. The rhombic tiles are generated by a dual transformation.
The tiles are colored randomly. A shift of the individual grids with respect
to the origin will result in different tilings [10].
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1.2.4 Two dimensional structure factor
The two dimensional structure factor, or diffraction pattern, of a set of atoms contains
many valuable information not only on the structure and symmetry but also on the
different types of disorder that can occur [12, 13]. Diffraction on periodically ordered
crystals gives sharp periodically spaced Bragg peaks, but diffraction on liquids gives
only diffuse scattering because of the lack of long range order. The question is how
the absence of periodicity in quasicrystals would affect the diffraction pattern.
Although it might be not very intuitive, quasicrystalline structures can have dif-

fraction patterns with discrete and dense Bragg peaks. Experimentally, many high
quality quasiperiodic diffraction patterns have shown sharp Bragg peaks, sometimes
better than those emerging from perfect conventional periodic crystals such as si-
licon. The mathematical clue to understand this is based on the high dimensional
crystallography approach with the difference that it should be carried out in the
reciprocal space. The idea is also clarified if we simply consider once again the one
dimensional Fibonacci sequence and look at its diffraction pattern using simple in-
tuitive arguments. Because of its aperiodicity, the sequence can be understood as a
sum of two periodic functions with two incommensurate periods. Thus, in reciprocal
space the full pattern consists of two sets of Bragg peaks corresponding to two func-
tions and their linear combinations. Because of the incommensurability, the peaks
will fill densely the reciprocal space. Even though the structure is one dimensional,
the diffraction peaks are indexed with two integers and this is due to the fact that
the Fibonacci sequence is periodic in a two dimensional space.

Figure 1.10: (a) X-ray diffraction pattern from a icosahedral quasicrystal oriented along
the fivefold axis. The white lines connecting the spots show the aperiodic
spacing. (b) Electron diffraction pattern from a Fe3O4 sample oriented
along the (111) surface. The spacing between the spots is periodic.

Figure 3.4 shows a diffraction pattern taken from a quasicrystal oriented along the
fivefold surface and a diffraction pattern from a periodic crystal (Fe3O4) oriented
along the (111) surface. In (a) the spacing between the discrete diffraction spots
along a radial is related to the golden ration τ and the diffraction pattern has a 10-
fold rotational symmetry. In (b) the spacing is periodic and the diffraction pattern
has a 6-fold symmetry. Since a quasiperiodic reciprocal lattice includes a dense set
of peaks, one can observe in (a) the high and dominant peaks and in between an
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infinite number of smaller ones. Such a feature does not occur in periodic reciprocal
lattices. Experimental diffraction patterns have usually a finite number of peaks due
to the finite resolution of the detectors.
Crystals are typically characterized by the minimum number ∆ of incommensurate

wave vectors, called the rank, which is required to span the reciprocal space with
spatial dimension D. The rank of two dimensional lattices is given by the Euler totient
function introduced in section (1.2.2). As a consequence, periodic structures have
∆ = D and quasiperiodic ones ∆ > D. Accordingly, two dimensional periodic lattices
have rank ∆ = 2. Interestingly, for all experimentally observed axial quasicrystals
∆ = 4. In contrast, structures with ∆ = 6, e.g. 7-fold tilings, or with ∆ > 6 have
not yet been found.

1.2.5 Symmetry of quasiperiodic structures
The symmetry nomenclature of quasicrystals is not unified in the literature. A two-
dimensional periodic crystal contains more than a single point about which an n-fold
rotation brings it into perfect coincidence with itself. For quasicrystals the real
space orientational order is defined by the unique n-fold star of vectors located at
the center of the tiling (figure 1.9). For most experimental studies, the symmetry
is only accessible by diffraction (Laue symmetry). But the point group symmetry
of the diffraction pattern is not neccessary the same as the real space symmetry.
The diffraction patterns, can exhibit n- or 2n-fold symmetry. All n-fold symmetric
two-dimensional structures have in fact 2n-fold diffraction patterns for n odd, and
n-fold for n even [14]. The two-dimensional Penrose tiling, for instance, is pentagonal
(5-fold) because in real space it includes only one vertex of exact 5-fold symmetry
and its diffraction pattern is decagonal (10-fold).

1.2.6 Phonons and phasons
The structure of periodic or quasiperiodic crystals is not simply consisting of atoms
resting at their lattice sites without dynamic or even static defects. Due to thermal
energy, atoms oscillate around the equilibrium position and can also jump from one
position to another. Such effects have of course a major importance on many proper-
ties of materials such as mechanical, optical, thermal, acoustic, or other. The legitime
question that we are interested in discussing here is whether the special features of
quasiperiodic symmetry have any influence on the nature of static defects or the low
energy excitations independently from the details of the interatomic interactions.
As shown previously, even if a solid structure is quasiperiodic in the D dimensional

real space (parallel space) one can always lift it to a higher dimension space (d
dimensional) in which the aperiodic structure becomes periodic (refer to section
1.2.2). The mass density ρ(r) at a position r can be expressed by a Fourier series

ρ(r) =
∑
G

ρG exp(iG.r), (1.5)
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Figure 1.11: Uniform phason shift produced by a translation of E‖ (black full and red
dashed lines). The black dots represent the atom positions on the square
lattice, the blue lines (δ) define the projection window, the green squares
form the first projected structure and the red triangles the projection after
translation of E‖.

where G represents the reciprocal lattice vectors. ρG is the Fourier component of the
ordered structure and is a complex number with an amplitude |ρG| and a phase φG.
When the atoms are at their equilibrium positions, the phase φG has a specific value
φ0
G. If the atoms are displaced from their equilibrium positions by a vector u, the

phase φG becomes:
φG = φ0

G +G.u, (1.6)

For periodic crystals, the d dimensional space is nothing but the parallel space [15],
i.e. d=D. A spatial variation in u leads to phononic excitations. For quasicrystals, d
is larger than D. The mass density description written above only corresponds to the
periodic structure embedded in the high dimension space. The physics that occurs in
the parallel space should be derived from the high dimension space. One can refer to
the cut-projection theorem [16], which states that a cut in the real space corresponds
to a projection in the reciprocal space. As a result, the Fourier component ρG‖ of the
density in the parallel space is then equal to ρG with G‖ the component of G in the
parallel reciprocal space. Since amplitudes and phases are preserved in a projection
procedure, the density wave can be written in the parallel space as

ρ(r‖) =
∑
G‖

ρG‖ exp(iG‖.r‖), (1.7)

and the displacement vector u describing the shift of the atoms from their equilibrium
positions has now two components, u‖ and u⊥. As a consequence the phase can be
written as

φG‖ = φ0
G +G‖.u‖ +G⊥.u⊥. (1.8)



28 CHAPTER 1. INSIGHT INTO QUASIPERIODIC ORDER

As in the case of periodic crystals, the vector field u‖ leads to atomic displace-
ments in the parallel space. One speaks here about propagating phononic modes.
The u⊥ vector field leads to modes only characteristic to quasicrystals. Since the
displacements take place in the complementary space, the corresponding strain field
exclusive to quasicrystals is called phason-strain field.
Although it may sound non-intuitive, the mathematical cut and projection method

allows us to look at such diffusive modes [13]. A uniform translation of the cut space
to a different position leads to structural changes in the quasicrystal without any
change in the total free energy of the system. The effect of a spatially varying u⊥
vector field is shown in figure 1.11. As in figure 1.5(c), we perform here a projection
of a two dimensional square lattice but this time followed by a translation of E‖
which corresponds to the uniform translation of u⊥. Although the resulting projected
structure remains a part of the Fibonacci sequence, one can notice that many atom
positions have vanished while others were created. In fact, (S, L) or (L, S) bound
pairs were reversed.
At low temperatures, spatially varying vector fields can lead to two types of frozen

disorder in quasicrystals. In the conventional periodic crystals the u‖ field leads to a
distortion in the unit cell. In quasicrystals this is translated into a distortion in the
tiles by a continuous displacement of the lattice sites without any rearrangement.
A spatially varying u‖ field has a different effect on the quasilattice. It leads to
rearrangements of the tiles and consequently a disruption of the quasiperiodic order.
These effects are observed in figure 1.12 on the Penrose tiling. The distortion due
to the phonon-strain can be exemplarily seen in figure 1.12(b) on the red decagonal
tile. The dots in (c), point out the positions in the Penrose tiling where the matching
rules are isolated. It is important to mention that these violations are localized and
do not affect the surroundings. Since such strain fields depend only on the symmetry
and not the specific interatomic interactions, in a later section their relevance and
occurrence in quasiperiodic light lattices will be discussed.

Figure 1.12: (a) Perfect Penrose tiling. (b) Tiling with phonon-strain. The red tiles
give an example on the distortion due to the strain field. (c) Tiling with
phason-strain. The red dots point the positions where the matching rules
are violated [17].
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1.3 Surfaces and interfaces

Figure 1.13: Scanning electron microscopy micrographs of a large single grain of icosahe-
dral (a) and decagonal (b) quasicrystals. The arrows in (b) correspond to
the high symmetry axes [18].

More than a hundred quasicrystalline systems have been identified since the disco-
very of quasiperiodic materials. They are mostly Aluminum based and are composed
out of three or in rare cases two chemical elements with specific stoichiometry (ter-
nary or binary alloys) [19]. Due to the structure complexity and the elaborated
chemical composition of quasicrystals, the exact bulk structure is still not perfectly
known. Nevertheless, the growth techniques and the quality of the samples have im-
proved a lot and large single-grain samples are now available. These advances have
opened the way for a large and interesting research field which is the study of the
surfaces of these materials as well as the adsorption of atomic overlayers.

1.3.1 Surface structure

Table 1.2: List of available quasicrystal samples and their most studied surfaces by va-
rious techniques. ”i − ” stands for icosahedral and ”d − ” for decagonal. The
nomenclature of the surfaces refers to the high symmetry axis of the bulk to
which the corresponding surface is orthogonal [18].

Sample i− AlPdMn i− AlCuFe i− AlCuRu d− AlNiCo d− AlCuCo
Surfaces 5f, 2f, 3f 5f 5f 10f, 2f 10f, 2f

To date, a limited number of clean and flat quasiperiodic surfaces are available
for surface studies. Table 1.2 lists the most common ones [18]. The structures
were characterized using different diffraction techniques such as: LEED (low energy
electron diffraction), XPD (X-ray photoelectron diffraction) and HAS (helium atom
scattering). The long range order and the symmetry were identified using the first
two techniques while XPD gives information on the short range order. But due to the
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lack of periodicity and information about the phase, the diffraction techniques are
not enough to reveal the exact atomic ordering. Usually in addition to diffraction, a
combination of TEM (transmission electron microscopy), STM (scanning tunneling
microscopy) and ab-initio calculations are required.

Figure 1.14: Fivefold rotation axis in a dodecahedron and tiling of the high resolution
STM pictures of the corresponding surface of an i-Al-Pd-Mn sample. The
tiling is a P1-Penrose tiling [8].

The icosahedral quasicrystals (like i-AlPdMn) lack periodicity along any direction.
They posses three types of high symmetry axes: fivefold, threefold and twofold axes.
The symmetry is also reflected on the macroscopic scale by the dodecahedral shape
and the fivefold facets of the samples. The orthogonal surface to the fivefold axis,
called fivefold surface (5f-surface), is the most studied quasiperiodic surface because
of its high stability. STM studies of this surface showed large and flat terraces
in the order of several hundreds of nanometers separated by stair-like steps. The
step heights were often found to be related by the golden ratio τ and appear in a
Fibonacci sequence (LSLLSLSL...). From the first atomic resolution STM pictures,
fivefold stars with two orientations were identified [20]. Later, using Fourier transform
pass filters two features of the surface were highlighted: the dark pentagonal stars
and the white flowers (figure 1.15). The pentagonal stars correspond to truncated
building blocks of the bulk called Bergman clusters and in some cases they are created
by surface vacancies. The white flowers correspond to a central truncated pseudo-
Mackay cluster surrounded by five Bergman clusters [21]. Ledieu et al. were also
successful in tiling this surface with the P1- Penrose tiling consisting of four different
tiles: pentagon, star, crown and a rhombus [8]. It is very important to mention that
this surface do not show reconstruction [22] therefore it can be considered as a cut
of the bulk and each atomic layer can be a termination layer.
Decagonal quasicrystals are different than the icosahedral ones. They lack perio-

dicity only in one direction. The samples have the shape of a decagonal rod with a
unique tenfold high symmetry axis and two twofold axes (figure 1.13). It consists of
quasiperiodic layers stacked periodically along the third dimension (axial symmetry).
Because this sample has both periodic and quasiperiodic surfaces with the same che-
mical composition, it was used in many studies in order to investigate whether the
physical properties are more influenced by the structure or the chemistry [23, 24].
Depending on the composition and temperature, different phases of the decagonal
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Figure 1.15: (a) Experimental STM picture of the fivefold surface of the i-AlPdMn sho-
wing two typical features: "White Flower" and "Dark Star" highlighted with
circles. (b-c) Zoomed STM pictures showing a white flower. (b) is taken
from (a) and (c) is calculated using ab initio density functional methods.
(d-e) same as (b-c) but for the dark star [21].

AlNiCo were observed. The atomic structure of the surface differs in details from
one phase to the other. However, there are many common features. Each plane has
a pentagonal symmetry and is rotated by an angle of 36◦ with respect to the next
neighboring plane. Characteristic pentagonal-star shaped motifs were identified, all
of which have the same orientation within a terrace layer and the opposite orientation
in adjacent terraces in agreement with bulk structure models. Since the diffraction
techniques (as LEED) average over several planes, the global or overall symmetry is
then decagonal. The tiling is also different for different phases. STM studies have
shown that also this surface has a step-like morphology, with rough steps. Also
pentagonal features are to be observed in the high resolution STM pictures. Here all
the pentagons have the same orientation.

1.3.2 Growth of atomic overlayers
Monolayers on crystalline surfaces often form complex structures having physical
and chemical properties strongly differing from those of their bulk phases [25]. Such
hetero-epitactic overlayers are currently used in nanotechnology and understanding
their growth mechanism is important for the development of novel materials and de-
vices. Compared to crystals, quasicrystalline surfaces exhibit much larger structural
and chemical complexity leading to e.g. unusual frictional [23], catalytical [26] or
optical properties [27]. Accordingly, deposition of thin films onto such substrates can
lead to novel structures which may even exhibit typical quasicrystalline properties.
Because quasicrystalline order does not occur in single element systems but only

in binary [28] or even more complex ternary metal compounds, their surfaces exhibit
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a high degree of structural and chemical complexity and show intriguing mechanical,
electrical and optical properties [29]. In order to understand the origin of those cha-
racteristics it would be helpful to disentangle structural and chemical aspects which
can be achieved by growing single-element monolayers to quasicrystalline surfaces
[30, 31]. Apart from understanding how quasicrystalline properties can be transfer-
red to such monolayers, this approach might allow fabrication of materials with novel
properties.

Figure 1.16: Molecular dynamics calculations of adatoms on quasiperiodic substrate po-
tentials [32]. (a) Voronoi construction of the real space configuration of
the adatoms. The hexagons have been color coded with respect to their
orientation relative to the x axis. The sharp boundaries consist of topologi-
cal defects. One can also see continuous transitions between domains whose
orientation differs by 12◦. (b) The corresponding diffraction pattern showing
30 peaks attributed to the five different spacial orientations of hexagonal do-
mains.

Now that the surface structure is well understood [33], a number of hetero-epitaxial
growth experiments on quasicrystalline substrates are performed and mainly common
crystalline adsorbate structures were observed [30, 34]. Shimoda et al. investigated
the adsorption of two transition metals, Gold (Au) and Platinum (Pt), on the fivefold
i-AlPdMn and the tenfold d-AlNiCo [35]. A two dimensional growth of several face-
centered cubic (fcc) AuAl2 domains, multiply twinned, was observed. However, the
directional order of the adsorbate proved to be in accordance with the directional
order of the substrate. Similar phenomena have been also observed for Silver (Ag) on
different substrates [30]. Here the hexagonal islands were observed to grow vertically
at higher coverage while keeping five different orientations, rotated by 2π/5, thus
reflecting the symmetry of the substrate. Maybe it is more astonishing to know
that even the noble gas Xenon (Xe) did not adapt at high coverages the surface’s
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quasiperiodic ordering. Instead, an fcc structure was reported in both experiments
and simulations [36, 31].
Bilki et al. investigated these phenomena by performing molecular dynamics cal-

culations [32, 37]. They modeled the multilayer adsorbate configuration by a single
layer with an adjustable relative strength of interactions between adatoms. Des-
pite the simplifications, their results captured many of the features mentioned above
(figure 1.16).

Figure 1.17: Epitaxial growth of lead (Pb) atoms on the fivefold i-AlPdMn. (a) STM
image of the surface after deposition. (b) LEED pattern after deposition.
The spot positions are related by a τ scaling within experimental error [38,
39].

Long range ordered quasicrystalline monolayers of Silicon (Si), Bismuth (Bi), An-
timony (Sb), Tin (Sn) or Lead (Pb) were also studied by LEED, HAS and STM
[40, 41, 42, 38, 39]. However, atomic resolution STM images were not always achie-
ved thus the structural relationship between the substrate and the adsorbate was
not accessible. For some of these experiments structural models based on ab ini-
tio calculations were developed calculating the preferred adsorption sites within the
pentagonal tiles on the quasicrystal surface [43]. The proliferation of the quasipe-
riodic order in the overlayers showed to be depending on the preferential absorption
sites. Depending on the specific interactions between the adsorbate and the quasi-
crystalline surface, two preferential adsorption sites have been identified. In the case
of Si, Bi and Pb, which showed an epitaxial growth, it is the white flowers corres-
ponding to a truncated pseudo-Mackay cluster [39, 44, 45]. While Al, Ag, Sn and
for e.g. C60, which preferably adsorbed at the dark stars did not show any epitaxial
growth at monolayer coverages [18].
The reduced chemical complexity of the lead monolayer which adapted the struc-

ture of the quasiperiodic surface showed an electronic behavior that could be only
assigned to the quasiperiodic structure. Measurements of the electronic structure
of the system using scanning tunneling spectroscopy and ultraviolet photoemission
spectroscopy revealed that the Pb monolayer displays a pseudogap at the Fermi level
which is directly related to its quasiperiodic structure.
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1.4 Quasiperiodicity in the mesoscopic scale
To date, the majority of identified quasicrystals are metal alloys synthesized in the
laboratory under controlled conditions mostly with icosahedral or decagonal point-
group symmetry. Lately, one example of naturally occurring icosahedral AlCuFe was
reported [4]. This finding suggests that metallic quasicrystals can form and remain
stable even under geologic conditions. But is quasiperiodic order exclusive to metals?

1.4.1 Self-assembled quasicrystals

Figure 1.18: Transmission electron micrographs of ABC star polymers. (a) Triangle-
square tiling superimposed on the micrograph image showing the formation
of a periodic (3.3.4.3.4) Archimedean tiling. (b) Here a different polymer
ratio is used and no periodicity is observed in the arrangement of the square-
triangle tiling [46].

Matter organizes itself also at larger length scales [47]. In soft condensed mat-
ter, characterized by weak interactions and important thermal fluctuations, a rich
range of mesoscopical structural behaviors is observed. In these systems, the thermal
energy kBT is defining the energy scale (kB is the Boltzmann’s constant and T the
absolute temperature), and the structure and symmetry emerge from the interplay
between interactions and geometry. Quasiperiodic order is indeed found in several
soft systems. Micellelar systems, polymers, and even binary nanoparticles violate
the crystallographic rules and form quasicrystals with long-range positional order
but lack periodicity [48, 46, 49]. In the first case, dendrimers having a conical shape
self-assemble into micelles and form a perfect dodecagonal quasicrystal (12-fold).
In the other case, three arm block copolymers made of polyisoprene, polystyrene
and poly(2-vinylpyridine) mixed with a polystyrene homopolymer assemble into a
two dimensional columnar structures with dodecagonal symmetry. Previously this
system has been shown to form a periodic (3.3.4.3.4) Archimedean tiling structure,
with every vertex surrounded by three triangles and four squares (figure 1.18). The
transition from periodicity to quasiperiodicity was achieved upon changing the ra-
tio of the three constituents, i.e. change in the ratio of triangles to squares, which
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shifted the structure from the Archimedian tiling to a dodecagonal quasicrystal. Nu-
merically, Dotera et al. reproduced this phase using Monte Carlo simulations [50].
The characteristic length in these systems ranges from 10nm to 50nm, i.e. seve-
ral orders of magnitude greater than the atomic length scales found in metal alloys
quasicrystals. Only lately, binary mixtures of inorganic nanoparticles were shown to
self-assemble into binary dodecagonal superlattices. These experiments suggest that
the formation of quasiperiodicity does not require a unique combination of interpar-
ticle interactions, but is a general sphere packing phenomena governed by entropy
and simple interparticles phenomena. These results confirm the universal nature of
dodecagonal quasicrystals over several hierarchical length scales. The route to the
formation of dodecagonal quasicrystals is definitely simplified by the existence of
equilateral triangles and squares within a structure but also the existence of two na-
tural length-scales along with three-body interactions may constitute the underlying
source of their stability [51].

1.4.2 Artificial quasicrystals
The interest in investigating quasiperiodic order in artificial materials originates from
two important features distinguishing them from periodic crystals. The first feature
is the ability of producing arbitrarily high rotational symmetries; for periodic crystals
the 6-fold symmetry is the maximum achievable. The second feature is the relaxation
of any constraints on the positions of Bragg peaks in their diffraction diagrams, a
prior condition for the construction of isotropic band gaps in photonic materials [52,
53]. In addition, artificial systems can provide useful information regarding different
fundamental aspects in quasiperiodicity such as dynamics of defects or phasons.
In order to measure the photonic properties of icosahedral quasicrystals, Man et

al. constructed a photonic quasicrystal with centimetre-scale cells and performed
microwave transmission measurements [53]. Although the lattice points in their
sample were connected with thin rods, it turned out that such a three dimensional
icosahedral quasicrystal exhibits sizable stop gaps and such structures are excellent
candidates for photonic bandgap materials.
An example of an artificial system which is used as a model system is the optically

induced nonlinear photonic quasicrystal [54, 13]. In this system a certain number
of laser beams interact nonlinearly by changing the index of refraction of a photore-
fractive material. The typical distance between crystal sites is 15µm to 30µm. Here,
the dynamics are governed by the so-called nonlinear Schroedinger equation. Taking
advantage of the fact that internal wave dynamics can be locally excited and directly
imaged, Freedman et al. observed directly dislocation dynamics such as creation and
healing as well as structural rearrangements due to phason flips [13].

1.4.3 Feasibility of colloidal quasicrystals
Colloids are micron-scale particles suspended in a liquid. Due to the tunability of the
interactions in such systems, a topic that we will discuss in details in the next chapter,
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Figure 1.19: Stability of colloidal quasicrystals using thermodynamic perturbation theory.
(a) Effective pair potential combining electrostatic repulsion with depletion
interaction. (b) Phase diagram of polymer osmotic pressure vs macroion
density showing the region where quasiperiodic ordering is predicted. The
horizontal lines connect corresponding points on coexistence curves [55].

a rich variety of phases (gas, liquid, crystal, and glass) has been experimentally
observed [56]. The quasicrystalline phase was found in a binary mixture of nanometer
sized organic particles [49]. Nevertheless, in large micron sized systems, aperiodicity
seems to be an exception, since to date it has not yet been experimentally reported.
Colloidal quasicrystals, if created, could be used not only as a model system to study
fundamental properties of the quasicrystalline phase but also they have a number of
potential applications, e.g. photonics since typical length scales are comparable with
the wavelength of visible light.

Figure 1.20: Self-Assembly of two dimensional monatomic quasicrystals using double-
well interaction potential. (a) Lennard-Jones-Gauss (LJG) potentials for
different positions of the second well (r0). (b) Phase diagram showing the
occurrence of four approximants, the decagonal approximant (Xi) and three
dodecagonal approximants (sigma phases) [57].

Denton et al. have investigated a one-component colloidal system using thermo-
dynamic perturbation theory and have identified the occurrence and stability of a
quasiperiodic phase at certain ranges of packing fractions and polymer osmotic pres-
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sures [55]. In their work they have considered an effective pair potential combining
electrostatic repulsion with depletion interaction induced in the system by adding
non-adsorbing depletion polymers (figure 1.19).
Independently, Engel et al. investigated the occurrence of complex phases, like

periodic structures with large unit cells or also approximants [58]. In their two
dimensional simulation, they have considered a double well interaction potential
between monoatomic particles and observed the self assembly of many phases among
them a decagonal, and a dodecagonal quasicrystal (figure 1.20).
Experimentally, such pair-potentials seem to be hard to achieve. Typical depletion

potentials usually have for high depletant concentrations a deep first potential well
followed by an oscillating part. In order to achieve for instance a decagonal quasipe-
riodic ordering, it is crucial to set a length scale in the systems related to the golden
ratio τ . But, the depth of this first potential cannot be tuned independently from
the length scale. That forces the occurrence of a deep well followed by a repulsion
barrier leading to rare escapes out of the first minimum. The existence of such a
deep well always favors the occurrence of hexagonal crystals with a lattice constant
given by the first potential well or glass states rather than aperiodic structures.





CHAPTER 2

COLLOIDS: INTERACTIONS AND PHASE BEHAVIOR

Particles suspended in a liquid are considered to belong to the colloidal domain if
their size ranges between several nm and several µm. Because such particles are
large enough, the solvent can be described as a continuous and homogeneous back-
ground yet they are still small enough that the incessant bombardment of the solvent
molecules is sufficient to keep them in motion. Colloids and colloidal principles are
widespread in daily life, in nature and technical applications. They have a long
history of importance in a broad range of applications in technology and material
processing. Used as building blocks for engineering new materials, they found ap-
plication in high precision filters, controlled porosity substrates or photonic devices
[59]. Less well known is that they can illuminate basic physics questions.
Motivated by their potential use as models for atomic systems due to the thermo-

dynamic analogy, the study of colloids is throwing new light on fundamental problems
of broad interest in condensed matter physics, statistical physics and other fields of
research [60]. Depending on the pair-interaction and the concentration, colloidal
systems show analogues of all the states of atomic systems: gas, liquid and solid
states. The mesoscopic size (nm-µm), the time scales (ms-s) and the tunability of
the pair interaction in colloidal systems make them a convenient model system for
experimental and theoretical studies.
Important advances in different experimental techniques, for example, optical vi-

deo microscopy and confocal scanning microscopy that enable direct observation of
individual colloidal particles and also scattering of X-rays, neutrons and light, allow
improved measurements and increased understanding of the structure, properties and
behavior of colloidal suspensions [61].
In this chapter a short introduction to the basic principles of colloidal physics is

given. The fundamental properties of a particle suspended in a fluid is introduced,
its motion is characterized and the relevant time scales are defined. Since the focus
of this work is the phase behavior of highly charged particles interacting with quasi-
periodic light fields in two dimensions, the mechanism of particle-light interactions is

39
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presented. The pair interaction between charged colloids in a solvent is also discussed
and the principles of charge screening is introduced. The melting in two-dimensional
systems and a brief sketch of the KTHNY-theory are also discussed. Finally, several
examples illustrating the rich phase behaviour of colloidal monolayers interacting
with strong light field are presented.

2.1 Colloids as model system
Colloidal systems mimic the thermodynamics of atomic crystals [60]. The control
of interparticle interactions in colloids gives rise to rich phase behaviours as well
as crystal structures with nanoscale and micron-scale lattice spacings [62]. This
provides model systems for studying fundamental problems in condensed matter
physics, such as the dynamics of crystal nucleation, the nature of the glass transition,
melting, and many other examples. The main advantages of such model systems
are the experimental accessibility of lengthscales and timescales, and the tunability
and control of the interactions. This allows quantitative investigations of phase
transitions as well as the creation of advanced materials with novel functionalities
and properties.

2.2 Brownian motion, energy distribution and
timescales

Colloids are small particles dispersed in a solvent exerting a permanent random
motion called Brownian motion. The colloidal thermodynamic analogy with atoms
is based on the importance of the Brownian motion which is attributed to the kinetic
energy of the fluid molecules. Brownian motion forces the colloidal particles to sample
the configuration space efficiently and leads to a velocity distribution obeying the
Boltzmann distribution:

p(Ekin) ∝ exp [−Ekin
kBT

] (2.1)

with kB = 1.38 · 10−23J/K the Boltzmann constant and T the temperature in units
of Kelvin.
In the presence of an external potential V(x) the positional distribution becomes

(due to equipartition theorem or virial theorem):

p(x) ∝ exp [−V (x)
kBT

] (2.2)

The thermal motion makes an important contribution to the total free energy,
therefore all energies involved are usually measured in units of thermal energy kBT
rather then in Joule. At room temperature T = 25◦C = 298◦K, therefore 1kBT is
equal to 4.115× 10−21J.
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At timescales longer than the decay time of the velocity autocorrelation function
(ensemble average of the product of the velocity at time zero and at time t), the
particle’s motion is in equilibrium with the solvent and its displacement changes on
average proportional to

√
t. This introduces a characteristic timescale called self

diffusion time τD = σ2/6D which is the time it takes for a particle to diffuse over
its own diameter (σ) in a fluid with a diffusion coefficient D. In our experiments we
typically use polystyrene particles with σ = 3µm in water leading to τD ≈ 0.33s
much larger than the self diffusion time of atoms (≈ 1ps). From these large time
scales one can infer that non-equilibrium behavior is accessible in experiments. In
order to avoid it, we always made sure to give the system enough time to reach its
equilibrium state.
As a consequence, real space analysis by means of video microscopy allows tra-

cking the trajectories of the individual particles and makes the time evolution of the
system accessible in detail. Such information is inaccessible in systems investigated
by diffraction experiments, as the scattering information is available only averaged
over the scattering area.

2.3 Interactions in colloidal systems

Colloidal particles can interact with each other via many types of interaction, for
example, long-range electrostatic interactions controlled by the number of charges
on the spheres, short-ranged van der Waals interaction and dipole-dipole interaction
[62]. And they also interact with external fields such as electromagnetic fields and
gravitational field. In the presence of only the steric interaction, i.e. absence of all
others, colloids behave like perfect "hard spheres".
The ability of controlling and tuning the interactions gives a major advantage

of colloidal systems compared to atomic systems. Most of the interactions stated
above can be varied continuously. Magnetic interactions for example can be tuned
by applying an external magnetic field which induces magnetic dipoles within the
paramagnetic colloids, and the strength of the interaction is proportional to the
external magnetic field [63].
In our experiments we use aqueous suspensions of polystyrene spheres with 3µm

diameter. They are confined between two horizontally aligned parallel glass surfaces
with a spacing of 200 µm. Due to sulfate-terminated surface groups which partially
dissociate when they are in contact with water, the suspended particles are negatively
charged and experience a partially screened electrostatic repulsion. These dielectric
colloids also interact with strong light fields which can be generated by using highly
focused laser beams. Accordingly, in the following subsections the colloid-colloid
interaction and the colloid-light interaction are presented.
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2.3.1 Van-der-Waals Interaction
Especially at small distances (< 100nm), the van der Waals (vdW) interaction plays
an important role in colloidal systems. The origin of this induced dipole-dipole
interaction lies in the instantaneous dipole moment generated by the fluctuation
of the electron cloud surrounding the nucleus of electrically neutral atoms. In our
experiments these forces can emerge among the colloids or between single particles
and the substrate. For different geometries, different analytical expressions for the
potential of this interaction were derived by integrating the atomic dipole-dipole
interaction [64]. In the case of two spherical particles it is given by:

VvdW (r) = −Aa6

(
2a2

r2 − 4a2 + 2a2

r2

)
− A

6 ln
(
r2 + 4ra2

r2

)
, (2.3)

where a (a = σ/2) is the radius of the sphere, r the center-to-center distance of the
particles and A the Hamaker constant. For particle-wall geometry:

VvdW (r) = −Aa6

(1
r
− 1
r + h

)
− A

6 ln
(

r

r + h

)
, (2.4)

with h the thickness of the wall and r the particle-wall distance. The Hamaker
constant is given by:

A = 3kBT
4
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√
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] ,
(2.5)

where n1, n2 and n3 are the refractive indices of the particle, substrate, solvent
respectively and ε1, ε2 and ε3 are the corresponding dielectric constants. υe is an
effective resonance frequency for electronic excitations. Some values for the Hamaker
constant for typical material combinations are listed in [65].
This equation shows that when the refractive indices of the substrate (or particle)

and the solvent have the same value, the vdW forces vanish because n2
2− n2

3 = 0. In
our system (described later) the Hamaker constant will always be positive and the
vdW interaction will always be attractive.
In order to avoid any aggregation of particles or irreversible sticking on the sub-

strate our suspensions are almost always stabilized by means of a repulsive interac-
tion, i.e. typical distances between the particles and the substrate and also among
the particles are always much larger than 200 nm. This repulsive pair interaction
arises in charged colloidal suspensions and will be described in the next section.

2.3.2 Electrostatic Interaction
In contact with a polar solvent (e.g., water, DMF,...), polystyrene particles and glass
surfaces acquire a negative surface charge density. The principle mechanism for that
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is the dissociation of surface groups. In the case of sulfonate end-groups, typical for
the polystyrene particles, a proton is transferred between the colloid and the solution:

X − SO4H → X − SO−4 +H+

Whereas for glass surfaces, the ionization process is established through the disso-
ciation of terminal silanol groups:

X − SiOH → X − SiO− +H+

X symbolizes the rest part of the colloid matrix.
The degree of these processes is related to the H+ ions present in the solvent gi-

ven by the pH value. As a consequence, the electrostatic interaction in our system
among the particles and between a particle and the substrate is repulsive. Further-
more, counterions left from the dissociation process form an electrical cloud near the
surfaces of the particle and the substrate. This charged zone is called double layer.
The double layer consists of an inner region of counterions strongly attached to the
surface and a diffuse region containing the excess of counterions. The double layer
leads to a damping in the electrical field known as electrostatic screening. In fact,
free ions reduce the overall amplitude of the Coulomb interactions and change the
shape of the potential energy, making it decay exponentially to zero with a charac-
teristic distance called the Debye screening length. A rough derivation of this will
be given in the following.
Assuming that the surface charge is continuous and uniform and that the ions in

the solution can be treated as point charges we can express the ion concentration
using the Boltzmann distribution function:

ni = ni0 exp

(
−Zieφ(r)

kBT

)
, (2.6)

where ni is the concentration of ions of kind i at a point where the electrical
potential is φ(r); ni0 is the concentration in the bulk of the solution; Zi is the valency
for cations and anions. The sum of both charge density distributions of the cations
and anions in the solution is then given by:

ρ(r) =
∑

Zi e ni =
∑

Zi e ni0 exp

(
−Zieφ(r)

kBT

)
, (2.7)

The electrostatic potential φ(−→r ) is related to the charge density distribution ρ(r)
by the Poisson equation:

∇2 [φ(r)] = ρ(r)
εkBT

, (2.8)

where ε is the dielectric constant of the solvent.
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Combining 2.7 and 2.8 gives the Poisson-Boltzmann equation which is a differential
equation for the potential as a function of the coordinates:

∇2 [φ(r)] = 1
εkBT

∑
Zi e ni0 exp

(
−Zi eφ(r)

kBT

)
, (2.9)

Equation 2.9 has no exact analytical solution. To simplify the problem one would
consider the special cases:

• small surface potential → Ziexp
[
φ(r)
kBT

]
� 1, allowing linearization of equation

2.9

• a symmetrical electrolyte

In the so-called Debye-Hückel approximation the exponential is expanded and,
only the second term of the series is retained which leads to the linear equation:

∇2 [φ(r)] = κ2φ(r), (2.10)

where

κ =
√

e2

εkBT

∑
ni0Z2

i , (2.11)

The associated length κ−1 is the Debye length. In our experiments it varies from
about 1 to 300 nm. The summation in equation 2.11 is proportional to the ionic
strength of the solution. The solution φ(r) of equation 2.10 describes the potential
for the point charges and through equation 2.8 the ions distribution. Based on the
knowledge of φ(r) the particle-particle potential V(r) can be calculated and yields
the following expression:

U(r) = (Z∗e)2

4πε0εw

(
exp (κa)
1 + κa

)2 exp (−κr)
r

, (2.12)

The pair interaction is the electrostatic part of the Derjaguin-Landau-Vervey-
Overbeek (DLVO) theory [66] called screened Coulomb potential. It is proportional
to the square of the charge of the particle and decreases exponentially with distance
exp (−κr)

r
. The prefactor depends on the radius of the particle a, the effective surface

charge Z*, the vacuum permittivity ε0 = 8.85 · 10−12As/V m, and the permittivity
of water εW = 81. e is the elementary charge (e = 1.6 · 10−19C) and r the center to
center distance.
Experimentally, the Debye screening length is a tunable parameter because it

depends on the molarity of the aqueous solution in the sample cell (figure 2.1).
The range of electrostatic interaction is different for different salt concentrations.
The increase in ion concentration leads to a screening of the electrostatic repulsion
which brings the particle closer to each other. The slope of the repulsive part of the
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Figure 2.1: Electrostatic part of the interaction potential measured with TIRM between
a colloidal particle (a = 1, 8µm) and a plain substrate for salt concentrations
(ions) up to 100 mM. Solid lines are first order exponential decay fits [67].

potential increases and the decay length, which corresponds to the Debye screening
length, becomes smaller indicating screening on a shorter length scale.
A direct measurement of U(r) is possible by measuring the distance probability

distribution of two colloidal particles using digital video microscopy [68]. For dense
and highly charged colloidal systems many-body effects are encountered [69]. The
pair interaction is directly related to the overlap of the double layers which can
extend over large distances. Once, more than two particles are close enough to be
within the range of the double layer, many-body interactions arise and deviations
from pairwise additive interaction energies are expected. In such a case, the effective
colloid − colloid pair potentials can be extracted by means of inversion routines
based on the Ornstein−Zernike equation or the inverse Monte Carlo method [70].
These standard inversion procedures determine U(r) by inverting the pair distribution
function g(r) of semi-dilute suspensions.

2.3.3 Gradient forces and light pressure
Optical tweezers is a powerful and yet quite useful technique to move and control
mesoscopic particles. Using light forces one can trap and levitate micron sized col-
loidal particles without the prerequisite that they are charged or magnetic. The only
necessity is that the particles should have a refractive index different than the index
of refraction of the embedding fluid and that they are transparent at the wavelength
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Figure 2.2: Illustration of the origin of the light forces acting on a microsphere in the
vicinity of a focused gaussian laser beam. (a) For a particle located near
the focus, both axial (scattering force) and radial (gradiant force) forces take
place. (b) Once the particle reaches the focus, the radial force cancels and
only the axial force acts on it.

of the laser light to avoid thermal effects. This tool was introduced in the early 70s
by Arthur Ashkin and his co-workers [71].
Optical traps have found application in many fields of physics and biology. In

addition to their use in colloid science, scientist have found that with optical tweezers
one can cool neutral atoms [72, 73] or manipulate biological systems. The strength
of these light forces acting on typical colloidal probe particles is in the range of some
femto to pico Newton.
A three dimensional optical trap is formed when a laser beam is tightly focused

with an objective lens of high numerical aperture (NA). The forces acting on the
particle that is trapped in the focus, are due to the momentum transfer from the
scattering incident photons. These forces are decomposed into two components,
a gradient force, acting in the direction of the light gradient (radial force) and a
scattering force acting in the direction of the light propagation (axial force). In the
following, the origin of the gradient force and the radiation pressure are discussed.

Gradient forces

For particles, with size much smaller than the wavelength of the used monochromatic
source (σ � λ), the operation of optical tweezers can be explained by using an
electromagnetic approach. For σ � λ it can be explained by a momentum transfer
associated with the reflection and refraction of light. In the electromagnetic approach
the electric field of the incident laser beam polarizes the particle and induces a dipole
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moment ~P . ~P is proportional to the electric field ~E and the total energy of the
induced dipole in the field is:

U = −~P ~E ∝ − ~E ~E ∝ −I (2.13)

where I is the intensity. The energy of the particle is minimized where the intensity
is a maximum. For a focused light beam with a gaussian intensity distribution the
intensity maximum is at the focus. The particles are then attracted into the region
with the highest electric field, i.e. highest laser intensity. Since the potential is
proportional to -I, the associated force is proportional to ∇I. This is the gradient
force which is responsible for the trapping.
For very large particles, the calculations are based on a vectorial summation of

the contributions of single rays which are reflected and refracted by the particle.
For a dielectric sphere with refractive index greater than the surrounding medium,
one should consider the momentum change between two incident rays and their first
reflected and refracted rays, respectively. This results in a force dragging the particle
towards the focus of the rays. The predicted force is independent of the particle size,
and usually agrees with experimental results for σ ≥ 10λ [74].
The theoretical calculations applicable for σ = 3µm and λ = 532nm (interme-

diate regime corresponding to our experiments) were developed by Tlusty et al. who
showed that the dipole approximation is valid for any particle size [75]. In the electro-
magnetic approach, one decomposes the fields into plane waves and the interaction is
determined by a sum over the entire volume of the particle. They used an approach
based on the strong localization of the fields where the main contribution to the in-
teraction arises from the steep variations in the amplitude of the fields. This strongly
reduces interference effects and renders this approach applicable to particles of any
size. The force is expressed as the change in the dipole interaction with respect to
the change of the particle’s coordinates. The dipole interaction energy of the particle
is given by [75]:

U = −α
∫
IdV (2.14)

with α = εp
ε0
− 1, accounting for the relative difference of the dielectric constants of

the particle (εp) and the surrounding medium (ε0) and V the volume of the particle.
The optical gradient force is then given by the change of U in response to a change
of the particle’s coordinates.

Light pressure

The scattering of light by the particle results in another force usually referred to as
radiation pressure which drives the particle along the direction of propagation of the
light. This radiation pressure is due to the momentum transfer between scattered
photons and scattering particle. The momentum of a propagating laser beam G
is proportional to the energy E and inverse proportional to the velocity of light v
(G = E/v). When the beam hits the interface between the medium and the particle
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(optically different media), a reflected and transmitted beam will be produced. The
combined momentum of these two beams will differ from that of the incident beam
and to satisfy the conservation of momentum a force is exerted on the interface.
The magnitude of the radiation pressure depends on the sizes of the beam and the
particle, the wavelength of incident light, and the refractive indices of both the sphere
and surrounding medium and it scales like [75]:

Fscat ∼= 2πα2Iw2 (2.15)

where w is the beam waist.

Figure 2.3: (a) Potential energy profiles measured from a 10 µm polystyrene sphere in a
aqueous solution at three different levels of radiation pressure acting against
gravity. (b) Net weight of the particle as a function of output power of the
laser beam [76].

Walz et al. used a highly sensitive technique, Total Internal Reflection Microscopy
(TIRM), to measure the radiation force acting on a single microscopic sphere suspen-
ded in an aqueous solution next to a wall. Due to Brownian motion the sphere diffuses
around an equilibrium position. By monitoring the separation distances between the
particle and the wall, a histogram of elevations is measured and a probability density
is deduced. This is then converted to a potential energy profile using Boltzmann’s
equation. Typical potential energy profiles show a repulsive part due to an electro-
static interaction and an attractive part resulting from the gravitational force (figure
2.3). Using a radiation pressure acting on the particle from below, the net weight of
the particle can be changed. Here, a 50 mW argon ion laser (λ = 514.5nm) was used
to form the radiation pressure beam striking the particle from below and by that
reducing the net weight of the particle. At various laser output levels, the potential
profiles were measured and by subtracting the real weight of the particle the radiation
pressure was measured. Typical values range between fN to pN. In the experiments
that will be described later, a broadened laser beam (λ = 514nm) is adjusted to
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be vertically incident on the sample cell from above pushing the colloids towards
the negatively charged substrate and reducing the vertical particle fluctuations to
less than 5% of the particle radius. This increases the two dimensional confinement
without playing any other role.

2.4 Melting of colloidal crystals in two-dimensional
systems

Melting is an active research field in solid-state physics and in numerous domains.
Three dimensional melting occurs via a first order transition when the thermal vibra-
tions of atoms make them collide with each other. In contrast the two dimensional
counterpart is predicted by the theory developed by Kosterlitz, Thouless, Halperin,
Nelson, and Young (KTHNY) to occur via two sequential defect-driven continuous
phase transitions [77, 78]. The origin of this fundamental difference lies in the fact
that two dimensional lattices do not display true long range translational order at
finite temperatures (Mermin-Wagner theorem) [79]. This is also reflected by the
density-density correlation function which decays algebraically to zero with distance
in a two dimensional crystal, and reaches a finite value in the three dimensional case.
The KTHNY theory is based on fundamental properties of a two dimensional crys-

tals and do not depend on the specific pair-interactions. Therefore it is expected to
hold for any two dimensional system. There are several experimental systems such
as liquid crystals and Langmuir-Blodgett films which allow the investigations of the
two dimensional melting. Nevertheless, thin colloidal suspensions are better suited
because they allow direct observation of topological defects [80, 81]. Uniform para-
magnetic colloidal microspheres dispersed at a water-air interface proved to be an
excellent model system to test the KTHNY theory. Such particles have a Fe2O3
core and the presence of an external magnetic field H perpendicular to the interface
induces a magnetic moment M proportional to H. This leads to a repulsive dipole-
dipole interaction proportional to M2/r3, where r is the particle-particle distance.
The strength of the interaction could be considered as inverse the effective tempe-
rature. By varying the strength of the magnetic field the effective temperature is
changed and the phase behavior of the particles is monitored in real space by means
of video microscopy.
These experiments showed that a monocrystalline system melts in two stages (fi-

gure 2.4). Near the melting temperature, dislocation pairs disturbing the local orde-
ring are observed by looking at the number of nearest neighbors of each particle by
means of Delauney-triangulation. Four particles lose their six-fold coordination and
instead two five- and seven- fold coordinated pairs appear. This pair is called a dis-
location which disturbs the translational order but not the orientational order. Such
defects are usually described by means of the Burger vector. At higher temperatures,
the dislocation pairs can dissociate, diffuse in the crystal and form an intermediate
hexatic phase characterized by a discrete orientational symmetry. Increasing the
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Figure 2.4: Melting of a two dimensional colloidal crystal. (a) Hexagonal crystal with a
dislocation pair at low temperature. Particles with five nearest neighbors are
colored in green, with seven in orange. (b) At high temperatures the pair can
dissociate. (c) Increasing the temperature furthermore, leads to the formation
of disclination and consequently to a transition to the isotropic fluid phase
[82].

temperature once again can lead to a second transition to the isotropic liquid phase.
In this transition the orientational order is disturbed. This is due to the forma-
tion of a second type of defects called disclinations. The thermal energy divides the
dislocation in a isolated five- and seven- coordinated particles diffusing away from
each other. Both first and second transitions are supposed to be continuous phase
transitions.
Similar phase behavior was lately reported for an out-of-equilibrium two dimen-

sional crystal of Ferrofluid Spikes [83]. Here also an intermediate hexatic-like phase
between the solid and isotropic liquid phases is reported with a melting transition
occurring for a critical spike displacement called the Lindemann criterion (10% of
the interatomic distance). This and other examples (liquid films, vibrated granu-
lar monolayers and vortex lattices in superconductors) give an indication that such
behavior is universal.

2.5 Phase transitions on light substrates
In the previous section only the pair-interactions within the system where taken
into account. But, two dimensional real systems are usually subjected to potential
landscapes. This confinement can be for example a solid crystalline substrate. Accor-
dingly, the phase behavior depends on many properties of the underlying substrate
potential. In the case of a crystal, the substrate atoms provide a laterally modulated
potential for two dimensional adsorbates. The interplay between the particle-particle
interactions and the particle-substrate interactions leads to more complex behavior
[25].
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Figure 2.5: Phase behavior of colloidal trimers on a triangular light lattice. (a) Spatially
resolved average particle density ρ(x, y) in the absence of the lattice (0kBT )
showing the occurrence of a liquid state. (b) At 40kBT the particles start to
interact with the substrate potential and the density distribution is no longer
homogeneous. (c) Localization of the particles is observed at 60kBT . (d)
Melting of the orientational order at 110kBT [84].

Highly charged trimers on a triangular substrate potential, for example, have a
different phase behavior compared to similar systems interacting with homogeneous
substrate potentials. Brunner et al. investigated the phase behavior of such systems
by creating an extended triangular interference pattern and adjusted the particle
density to three particles per minima by means of optical tweezers [84]. In addition
to the postional order, these trimers possess a high degree of orientational order. At a
laser power corresponding to a potential depth of 60kBT , crystallization and regions
with two main orientations were observed (figure 2.5). Increasing the power leads
to the growth of one orientation at the expense of the other. When the substrate
strength was increased to 110kBT , an enhanced positional order occurred. Howe-
ver, the orientational order of the trimers became much weaker. This orientational
melting is due to the increase of the radial pressure on the trimers and therefore
reduces their mean extent and the lateral fluctuations leading to a reduction of the
trimer-trimer interaction.

Figure 2.6: Phase behavior of colloidal particles in a triangular light field with potential
strength 6.9kBT for filling factors η = 0.34 (a), 0.48 (b), 0.59 (c) and 0.69
(d). The snapshots are artificially defocused to enhance the visibility of the
domain walls [85].
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Colloidal monolayers on periodic light substrates have shown to be a good model
system for adsorbed atoms on highly ordered surfaces. For instance, the same phase
behavior of Xe atoms adsorbed on graphite surfaces was also observed in colloidal
monolayers subjected to a triangular substrate [85, 86]. Upon variation of the particle
number density a transition from a homogeneous phase to a network of pronounced
domain structures was observed (figure 2.6). Because in a colloidal system there
is direct access to real space information, the strength and nature of the different
interactions, the origins of the transition which is the elastic strain between the
adsorbate and the substrate could be identified.
Lately, due to the high interest in investigating quasiperiodic systems Schmie-

deberg et al. used Monte Carlo simulations and the Landau-Alexander-McTague
theory to study the freezing and melting of a colloidal adsorbate on one dimensional
quasiperiodic substrates [87]. They have found that in this case, colloids order in tri-
angular and rhombic periodic phases at low potential strength. By an increase of the
strength of the potential, a new type of light-induced melting is observed having its
origin in the aperiodicity of the substrate potential. The quasicrystalline substrate
melts the crystalline phases even when they already exist at zero potential.
In conclusion, these examples are presented to demonstrate the rich phase behavior

of colloidal suspensions interacting with two-dimensional substrate potentials. This
proves that colloids provide ideal conditions for experimental and theoretical studies
and serve as good model system to investigate the structural behavior of adsorbates
in the presence of structured substrates.



CHAPTER 3

EXPERIMENTAL REALIZATION OF
TWO-DIMENSIONAL COLLOIDAL QUASICRYSTALS

Colloidal monolayers exposed to periodic light fields show a phase behavior totally
different from that of two-dimensional systems on homogeneous substrates. In this
chapter we show how colloidal quasicrystals with different symmetries can be created
in the lab (Fig. 3.1). By overlapping five or seven coherent laser beams, quasipe-
rodic potential substrates with decagonal or tetradecagonal symmetry are created.
Highly charged colloidal suspensions are prepared by appropriate deionization of
the aqueous suspension. Using scanned laser tweezers and thermophoretic effects,
two-dimensional colloidal monolayers are created with highly precise density control.
Digital video microscopy and image processing techniques are implemented in order
to track in real space the particle position relative to the substrate potential land-
scape. The length scales, the potential depth distributions, and the strain fields of
the substrate potential are characterized. Finally, the ordering of charged colloidal
particles on such substrates is presented.

3.1 Sample cell and deionization circuit
The amount of dissolved ions in the water suspension is a crucial parameter influen-
cing the electrostatic interaction acting on charged stabilized colloidal particles. At
very high salt concentrations, the pair-potential is hard-sphere like and the particles
can come very close to each other. In this case, the van-der-Waals interaction can
lead to irreversible sticking. Therefore, it is necessary to keep the ion concentration
in the sample cell as low as possible. The Debye screening length κ−1 depends on
the concentration of all dissolved ions ni0:

κ =
√

e2

εkBT

∑
ni0Z2

i (3.1)
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Figure 3.1: Pictures of the experimental setup taken from two different perspectives (a-
b). The different optical elements and the lasers are set on a optical table.
The spatial ordering is highlighted using three colors: green, blue and red.
The optical components belonging to the interferometer are located below
the green box. The scanned optical tweezers are highlighted in blue and the
red path corresponds to the optical components of the video microscopy. In
addition, a fiber coupled infrared laser (seen in b) is focused in the sample cell
from above (yellow fiber) and the optical path of the pressing down tweezers
is set next to the interferometer.

For increasing κ−1, the range of the interaction also increases. In order to reach
high values of κ−1, we inject the colloidal particles in the experiments in a silica
cuvette (Fig.3.2). In such a sample cell highly deionized dense colloidal systems can
be prepared. The cuvette is commercially available and has an inner height of 200 µm
(QS-137, Hellma, Germany). Therefore the flow resistance is low, and the cuvette
can be connected to a closed circuit for continuous deionization of the water solvent
[88].

Figure 3.2: Silica cuvette used in the experiments as sample cell. It is commercially
available from Hellma with a inner height of 200 µm.

The deionizing circuit consists of vessels and tubes made of Plexiglas, Teflon,
and Tygon, materials that poorly contaminate the solvent with additional ions. As
described in Fig. (3.3), the sample cell is connected to a water reservoir connected to
a stream of nitrogen. This stream ensures that the dominant ionic contamination of
the circuit, CO−2 ions, are not dissolved into the water of the reservoir. The tubing
connecting the cuvette to a conductivity measuring vessel is attached to a peristaltic
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pump. In the measuring vessel an electrode is inserted to monitor the conductivity of
the water σ. After twenty to thirty minutes of continuous deionization a conductivity
of 0.06 µS/cm can be reached. Due to the self dissociation of water the lowest possible
value is σwater = 0.55 µS/cm (3.2).

2H2O 
 H3O
+ +OH− (3.2)

The water is then pumped through a container filled with ion-exchange resin which
promotes the desalination of the system. Two small and fine nets prevent the inflow or
outflow from the vessel of the resin granules into the circuit. The colloidal suspension
is also deionized before pumping it into the sample cell. This procedure consisted in
mixing the suspension with highly deionized water, centrifuging, removing the water
above the sedimented particles, and replacing it once again by highly deionized water.
It can be repeated several times. Then the colloids are injected into the circuit
via the water reservoir and pumped into the sample. The sample cell is finally
sealed with clamps. The high quality of such sample cells is previously checked
by measuring the increase of the inverse Debye screening length. It showed that κ
increases by approximately 17 nm−1hour−1. This corresponds to a small diffusion
rate of 6.5 nMol/hour [89]. The screening length for dilute systems is determined by
inversion of the pair correlation function g(r) and evaluation of the pair interaction
u(r) using a closure relation [90].

3.2 Density adjustment
For phase transitions in general and the experiments that will be described later,
a precise control of the density of the colloidal system is crucial. Before applying
the quasiperiodic potential (described later), the density of the particles in the field
of view has to be adjusted. In order to avoid high concentrations of counterions,
the amount of particles pumped in the sample cell is much lower than the amount
needed for the required high densities in the field of view. The latter is increased
in the field of view by inducing convection flows in the sample cell using a fiber
coupled infrared laser with a wavelength of λ = 1070 nm and maximum output
power Pmax = 5 W (IPG). The combination of the toroidal convection flow lines and
a laser tweezer suppressing the vertical fluctuations (later described in details) leads
to the formation of a circular monolayer in the field of view on the lower surface
with a diameter of about 500 µm (Fig. 3.4). After reaching the desired particle
density, the infrared laser is turned off and the water temperature cooled down until
it reached the lab temperature (about 300 K).
The high particle density is kept constant using a scanned optical tweezer (λ =

488 nm, Pmax = 7 W). Around the central region of the system, the laser is set to
form a boundary box. This also allows to create well defined boundary conditions
for our measurements. A focused laser spot is deflected by a galvanometer scanner
to draw a circular corral in the sample cell.
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Figure 3.3: Scheme of the deionization circuit. The water is pumped through a vessel filled
with ion-exchange resin and the conductivity σ is monitored via a conductivity
meter.

Figure 3.4: Theoretically predicted flow lines in a vertical cross section due to temperature
gradients. In combination with pressing down tweezers, this leads to very high
particle concentrations in the field of view at the lower surface of the sample
cell [91].
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Figure 3.5: Two-dimensional scan system. It includes two galvoscanned mirrors set per-
pendicular to each other deflecting the laser beam.

The beam of an Argon-Ion laser (Innova 90, λ = 514 nm, Coherent, USA) is
deflected by a two axis galvanostatic driven mirror system (SCANcube, Scanlabs,
Germany) (Fig. 3.5). It is able to deflect the outgoing beam within a range of
±0.35 rad, with frequencies up to 200 Hz, and has a very small long-time drift.
The control of the scanning velocity, step size, and scan shape is executed using a
home written program. It allows drawing patterns with different shapes, such as
circles, ellipses, rectangles and triangles. After the scanning system, the deflected
beam is collimated by a beam expander and projected onto the back aperture of
a long-distance microscope objective (Nikon, 20x, NA=0.4, WD=24mm)(Fig. 3.6).
Scanning the beam leads to a fast motion of the focus (trap) in the focal plane
which is adjusted to be in the sample cell. The focused beam is coupled to the
sample cell by a dichroic mirror (BSP488/514) to enter the sample cell from the
top and without blocking the lattice-forming laser beams. The spot size of the laser
tweezers inside the sample cell is comparable to the size of the used particles (about
3 µm). The repetition rate of the pattern is much faster that the relaxation time
of the particles, and the trap is considered to be quasi-static. Its potential depth
is increased (> 20 kBT) until the particles cannot escape from the trap. Another
feature is also implemented in the controlling program, allowing a continuous and
slow change of the size of the corral. With this feature very precise real time control
of the density is possible.
In addition to the scanned-tweezer manually controlled tweezers are also imple-

mented. This provides a convenient method for dragging out of the field of view
coagulated or large particles.

3.3 Two-dimensional confinement
Using the above discussed scanned optical tweezers, it is possible to increase the
system density and, it is also possible to define the system boundaries (Fig. 3.7).
However, this does not lead necessarily to two-dimensional confinement of the system.
One way to reduce the out of plane thermal fluctuations is the use of thin sample cells.



58
CHAPTER 3. EXPERIMENTAL REALIZATION OF TWO-DIMENSIONAL

COLLOIDAL QUASICRYSTALS

Figure 3.6: Scanned laser-tweezers setup. The beam is deflected by a scanning system.
The change in the incident angle on the rear aperture of the microscope
objective leads to a motion of the focus inside the sample cell, and creates
a corral keeping the density of the particles in the field of view constant. In
addition, in front of the scanning system a polarizing beam splitter is placed
in order to create manually controlled tweezers.

In this case the confinement of the colloidal system is achieved geometrically; i.e. the
spacing between the two glass plates of the cell should be slightly larger than the
particle’s diameter. Nonetheless, in such thin sample cells high levels of deionization
of the suspension cannot be reached and strong pair interactions cannot be achieved.
Instead, we use the light pressure of an incident laser beam to confine the particles.
The system is regarded two-dimensional, when the out of plane fluctuations of the
particles are orders of magnitude smaller than their in plane movement.
Due to the difference between the density of the polystyrene particles (ρPS =

1.05g/c) and the aqueous suspension (ρH2O = 0.998g/cm3), the particles sediment to
the bottom plate of the cell due to gravity,

FG = 4
3πr

3
Kg(ρPS − ρH2O). (3.3)

For the particles used in the experiments this force is estimated to be about 30 fN.
Near the wall, the repulsive electrostatic force acting on the particles arises from the
overlapping double layers. The gravitational force alone is not enough to suppress
the out of plane fluctuations. Due to the thermal energy, the particle fluctuations
perpendicular to the wall are in the order of their diameter (about 3 µm). Therefore,
this motion must be suppressed by the radiation pressure of a laser beam.
In this setup, we use the vertical light pressure of an incident Argon-Ion beam

to confine the particles into a two-dimensional plane. For high laser intensities, the
light pressure is in the order of hundred picoNewton and the out of plane fluctua-
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Figure 3.7: An optical tweezers is scanned along a circle in the sample plane trapping the
colloidal particles (red). It serves as a boundary box for the system. With
the help of manual optical tweezers coagulated particles can be removed from
the region of interest.

tions become smaller than 200 nm, which is less than 2 % of the particle radius.
Consequently, the system can be regarded as two-dimensional.

3.4 Digital video microscopy and data acquisition
The typical size of the colloids used in this experiment is in the micrometer range.
The time which it takes for a particle to diffuse over its own diameter (self diffusion
time) is in the order of a second. For such large size and time scales, it is possible
to directly observe the system using digital video microscopy. To image the colloidal
particles and simultaneously the interference pattern, we use a long working distance
(WD) microscope objective from the company Nikon (WD = 24 mm). The objective
has a magnification of 20x, and its numerical aperture is 0.4. In combination with a
f = 250 mm tubus lens, the dimensions of the field of view become 356× 264 µm2;
large enough to contain up to 4000 particles. The microscope is used in the transmit-
ted light bright-field mode, with the sample cell illuminated by a red light emitting
diode (λ ≈ 650 nm) from above (Fig. 3.8). The red light is collected with a lens and
focused on the sample cell. It homogeneously illuminates an area whith a diameter of
6 mm, about 15 times larger than the region of interest. As seen in Fig. (3.8), using
a reflecting mirror and a dichroic mirror only the image of the particles is projected
onto the chip of the first charge-coupled device camera (CCD). The chip size is 8.8
mm x 6.6 mm including 752 x 582 pixels (Tokyo Electronic Industry). 99 % of the
intensity of the laser beams with wavelengths λ = 532 nm, 488 nm, and 514 nm used
to produce the substrate potential, the boundary box, and the pressing down twee-
zers are back-reflected by a dichroic filter infront of the microscope objective to avoid
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any damage. The remaining intensity of the λ = 532 nm beams is used to image
the substrate potential using a dichroic mirror deflecting the image to a second CCD
camera. In front of the first camera, filters are placed to absorbe any remaining light
intensities with wavelengths smaller then 600 nm and infront of second camera an
interference filter allows only the imaging of intensities with wavelength 532 nm.

Figure 3.8: Scheme of the video microscopy setup. It includes two CCD cameras and se-
veral optical components, allowing the simultaneous detection of the particles
and the substrate potential.

To observe the colloidal system and the substrate potential, the CCD cameras are
connected to two monitors. In addition, the camera’s signals are digitalized using
a frame grabber and saved on a computer hard disk. These images are considered
as raw data and to extract the coordinates of each particle a program called "IPS"
developped by the company "Visiometrics" is used.
The software is based on an algorithm which analyses the brightness of each pixel

in the image and relates it to the particle coordinates. For a typical snapshot, a pixel
intensity histogram is calculated. These intensities are usually spread over a wide
range (Fig. 3.9). The high values are associated to the bright white background
and the low values are associated to the dark particles. With two markers an upper
and lower thresholds are adjusted in order to set the pixel brightness belonging to
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Figure 3.9: (a) Intensity histogram of a typical snapshot. With two markers (green and
red lines) an upper and lower threshold are adjusted in order to set the pixel
brightness belonging to a particle (object). (b) Picture of two particles in
the raw image. (c) Identification of the particles as objects after setting the
thresholds. (d) The center of mass of the object is then calculated and marked
with a cross. This gives the coordinates of the object.

a particle. The center of mass of the object is then calculated and the particle is
traced over all the snapshots.
The accuracy of the method depends on the magnification of the objects and the

size of a pixel on the chip of the CCD camera. The more pixels the CCD chip has,
the more pixels a single object obtains. The number of pixels per object is higher for
increasing magnification. However, by increasing the magnification the size of the
region where the system can be studied decreases. A compromise between a large
viewing area and a good accuracy should be achieved. For the colloids used in the
experiments about 9 pixels are detected for each particle. This leads to a resolution
of about 150 nm.

3.4.1 Particle tracing and phase identification

The particle coordinates registered for a sequence of snapshots are used to evaluate
the temporal evolution of the particles. In this thesis, we mainly used an algorithm
developed by Neser and Bubeck (Visiometrics Trace) which allows tracing the par-
ticles and calculating different quantifiers. In Fig. (3.10), an illustrative example of
the data evaluation is shown. The trajectory of every single particle can be construc-
ted if the time interval between two recorded images is small (Fig. 3.10b). A careful
analysis of the trajectories shows whether the system (particles) is drifting along any
preferential direction or not. The density distribution of the particles ρ(x, y) calcu-
lated for a measurement shows the spatial distribution of the particles (Fig. 3.10c).
ρ(x, y) is a matrix whose z-values are the probability to find a particle at the posi-
tion (x,y). The matrix is averaged over all images. It is also possible to monitor the
particle number density during a measurement, an important parameter that needs
to be controlled while investigating phase transitions in such systems (Fig. 3.10d).
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Figure 3.10: Illustrative example of temporal tracing of the particle coordinates. (a) Par-
ticle coordinates as registered over 500 seconds. The color coding, increasing
from red to green, is associated to the time evolution. (b) Particle trajecto-
ries constructed using (a). (c) The density distribution of the particles over
the whole period of the measurement. (d) Particle number-density plotted
with respect to time.

Other physical quantities are used to identify the phase of a colloidal configuration.
S(qx, qy) calculates the two-dimensional structure factor of the particle coordinates.
It is given by the following expression:

S(qx, qy) = 1
N

N∑
j,k=1

exp(iqrjk) (3.4)

with N the total number of particles. The pair correlation function G(x, y) is an
averaging over all particles and all images. It is related to the probability of finding
the center of a particle at a given distance from the center of another particle. For
short distances, this is connected to how the particles are packed together.
For identifying the bonds connecting two neighboring particles we use a method

called Delaunay triangulation which constructs a network of non-overlapping tri-
angles. The Delaunay triangulation of a point set is a collection of edges satisfying
the "empty circle" property, i.e. for each edge one can find a circle containing the
edge’s endpoints but not containing any other points. We also use Voronoi diagrams
which are the dual graphs of the Delaunay triangulation.
Since translational order parameters are not suitable for quasiperiodic structures,

we use the bond orientational order parameter Ψm given by the following expression
[92]:

Ψm =
〈∣∣∣∣∣∣ 1
N

N∑
j=1

1
nj

nj∑
k=1

eimΘjk

∣∣∣∣∣∣
〉

(3.5)
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where the inner sum is over all nj nearest neighbors of colloid j, N is the total
number of particles, and θjk is the angle of the bond connecting colloids j and k given
with respect to some arbitrary reference direction. In the next chapters, Ψm will be
calculated for m = 6, 10, or 14, in order to characterize the different phases with
nearest neighbor bonds that point, respectively, along 6, 10, or 14 equally distributed
directions around the central particle. Ψm is a measure of the prevailing rotational
symmetry.

3.4.2 Tiling algorithm
In the experiments described in the next chapters, particle positions are observed
in real space with digital video microscopy. This allows the determination of their
positions relative to the substrate potential with a high precision.

Figure 3.11: Illustrative example of the Voronoi tessellation and the Delaunay triangu-
lation. (a) Coordinates of 10 random particles. (b) Voronoi tessellation
dividing the plane into adjacent cells. (c) Connecting all the adjacent pairs
of points leads to the Delaunay triangulation which consists of triangular
tiles.

For the identification of the local particle configurations we have developed a tiling
algorithm which can identify triangular, quadratic, pentagonal and higher order po-
lygonal tiles. It is based on the Voronoi tessellation and the Delaunay triangulation
which are widely used routines for the identification of the neighbors of a point in a
point set (Fig. 3.11). The Voronoi tessellation in two-dimension is the division of a
plane into cells. The cells contain the part of the plane which is closer to that point
than any other. Thus every Voronoi cell contains precisely one point. The cells fit
side by side without overlaps and without unfilled space. A boundary is shared by
the adjacent cells thus one can define adjacent points by saying that points x and y
are adjacent precisely if their Voronoi cells share a common edge. Connecting all the
adjacent pairs of points one derives the dual or Delaunay triangulation. The vertices
of one tile in a Delaunay triangulation are those points whose Voronoi tiles share a
common vertex. This vertex is the center of the excircle of the Delaunay tile.
In the colloidal systems investigated in this thesis, the particles (even at high laser

intensities) are not fixed at one point. Due to the thermal energy, they fluctuate
around their equilibrium position. For the determination of the stable local configu-
rations, i.e. stable tiles, we remove the bonds in the Delaunay triangulation which
are not stable against these fluctuations. This is achieved by eliminating the short
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Figure 3.12: Principle of the tiling algorithm. (a) Voronoi tessellation of a set of points.
(b) Detection of the short edges (in red) in the Voronoi tessellation. (c) Re-
moving the short edges and consequently the corresponding bonds from the
Delaunay triangulation leads to a tiling with pentagonal (red) and triangular
(green) tiles.

edges from the Voronoi tessellation. Figure 3.12a shows the Voronoi tessellation of
Fig. 3.11b, and Fig. 3.12b is a zoom on one of its vertices. It shows that the boun-
dary of the Voronoi cells include short edges (highlighted in red). If these short edges
are removed from the Voronoi tessellation and consequently the corresponding bonds
in the Delaunay triangulation, a tiling consisting of different stable polygonal tiles is
acquired. Accordingly, the local particle configurations are obtained independently
from the thermal fluctuation effects. Fig. 3.12c is an example showing the Delaunay
triangulation tiling after removing the bonds corresponding to the short edges in
the Voronoi tessellation. This tiling shows the occurrence of a pentagonal (red) and
several triangular tiles (green).
Within this tiling method, two tiles are considered distinct if their vertex number

is different. Tiles of different size or orientation are not considered distinct. The
cutoff value ac, set for the Voronoi edge length, is a parameter that we have fixed for
all measurement. ac is set to be 0.39A in the following measurements (with A the
mean particle distance). For a quantitative analysis, the density of the tiles with n
vertices ρTn is calculated.
It should be noted that this tiling algorithm cannot produce a quasiperiodic tiling

with matching rules, such as the Penrose P3 tiling which is the appropriate tiling
for the decagonal quasiperiodic interference patterns used in this thesis 1.2.3. This
is due to the fact that tiles which are not convex, e.g. crown, are not detected with
the routine. However, the Penrose P3 tiling includes pentagonal tiles oriented along
two directions and such tiles can be identified with the algorithm described here.
Accordingly, the occurrence of such tiles in the particle configuration is a strong
indication of quasiperiodic ordering.

3.5 Quasiperiodic interference patterns
A multi-beam interferometer is used for the creation of spatially extended and highly
stable substrate potentials (Fig. 3.13). By overlapping five or seven laser beams,
interference patterns with decagonal or tetradecagonal symmetry are constructed.
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Several parameters, such as the intensity, the polarization, the phase, and the angles
of incidence have to be very precisely adjusted. In the following we describe the
functionality of the interferometer and the control of the different parameters.

Figure 3.13: Scheme of the setup creating the optical substrate potentials. It basically
consists of a modified Mach-Zehnder interferometer. The laser beams inter-
fere inside the sample cell (not shown here), creating a well-defined quasipe-
riodic intensity distribution. The prisms P1 to P7 are mounted on translatio-
nal stages for easy adjustment of the length scales of the interference pattern.
Lh1-7 are lambda-half plates, Bs1-6 are polarizing and non-polarizing beam
splitters, L1 and L2 are two achromatic lenses, and Gp refers to different
glass plates.

A schematic representation of the setup is shown in Fig. (3.13). As a coherent
light source we used a frequency-doubled and continuous-wavelength Nd : Y V O4
laser with a maximum power output of 18W (Verdi λ = 532 nm, Coherent, USA).
According to the manufacturer, the beam divergence is less than 0, 5 mrad. First,
the beam going out of the cavity (with a diameter of ≈ 2.25mm) is broadened by a
beam expander (BX). This Keplerian telescope consists of two convex lenses (L1 and
L2) with focal lengths f1 = 80 mm and f2 = 200 mm. The lenses are set in a way
to have in between a distance equal to f1 + f2, magnifying the beam diameter 2.5
times (f1/f2 = 2.5). At this position, a small deviation of the second lens from its
optimal position, makes the beam slightly convergent. This leads to a variation of
the size of the light pattern in the sample cell (Fig. 3.15). The large beam is divided
by a set of polarizing and non-polarizing beam splitters (BS) in order to create up to
seven coherent laser beams. To ensure that the scattering forces in the sample cell
act on the particles only in the vertical direction, the intensities of all the beams are
required to be equal. For that purpose, nine lambda-half plates are inserted in the
path of the beams in combination with a polarizing beam splitter (BS7) placed at the
output of the interferometer. This allows a precise tuning of each individual beam
intensity using a power meter (fieldmaster, Coherent). The height of each beam,
relative to the optical table, is adjusted by making them pass through several 1cm
thick and tilted glass plates (GP). The tilt of the GP defines the height of the beams.
The resulting beams are aligned parallel to each other using seven prisms (P1 to P7)
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mounted on micrometer translational stages and Piezo nanopositioners (P-753 LISA,
PhysikInstrumente). Using the nanopositioners the relative phases of the beams can
also be controlled. The effect of the phase shifting on the interference patterns will
be discussed later in detail. Accordingly, the lateral and vertical positions of the laser
beams are easily adjustable and different geometrical configurations can be realized.
For the decagonal patterns, the last two beams are blocked and the rest are set on
the edges of a regular pentagon (Fig. 3.14). For the tetradecagonal patterns, a
regular heptagon is used instead. With an achromatic lens (L3) the parallel beams
are overlapped in the focus plane of the lens, thus creating the desired intensity
pattern (Fig. 3.14). The position of the lens is chosen such that the focus (f3) is
inside the sample cell. All the incident angles of the laser beams have to be equal.
This ensures that all the components of the wave vectors inside the sample plane are
balanced. A non-vanishing net component of the wave vector in the sample plane
leads to a lateral light pressure on the particles. This results in a drift motion of the
particles along a preferential direction.
In contrast to periodic structures which are characterized by a single length scale,

their quasiperiodic homologues have two or more. In this setup, these length scales
depend only on the vertical angle of intersection of the laser beams. This angle can
be varied by controlling their distance s towards the center of the lens (L3) and
an appropriate choice of the focal length f3. For different polarizations, different
types of patterns are obtained [93, 94, 95]. Nevertheless, the global symmetry is
not affected. In our experiments the polarizing beam splitter (BS7) ensures that the
linear polarizations of the interfering beams have all the same direction.
In general, the interference of n beams in the sample plane form a periodic or

a quasiperiodic pattern with a m-fold rotational symmetry. m is equal to n if the
number of beams is even. If the number of beams is odd, m is then equal to 2n.
The intensity field is calculated by summing up the electric fields of all beams, and
taking the square of the total electric field to get the intensity. The corresponding
optical trapping potential is then given by the following expression:

V (r) = −V0

n2

n−1∑
j=0

n−1∑
k=0

cos [(Gk −Gj).r + φk − φj], (3.6)

where V0 is the potential depth of the unique perfect symmetry center, G the wave
vectors projected onto the sample plane, r the position, and φi the phase of the ith
beam.
The opening angle θ between the laser beams and the orthogonal to the sample

plane depends on s (Fig. 3.14), and on the focal length of the achromatic lens f3.

tan θ2 = s

2f3
, (3.7)
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Figure 3.14: (a) Five linearly polarized parallel laser beams (polarization indicated by
arrows), forming a regular pentagon, are focused with an achromatic lens
(L3) into a thin sample cell. The opening angle θ between the laser beams
and the orthogonal to the sample plane is chosen to be very small. (b) The
ordering of the beams in the plane of the lens is shown for both decagonal
and tetradecagonal patterns.

For the experiments performed θ is typically a few degrees, i.e. θ = 4◦ for s =
11mm and f3 = 160mm. The projected wave vector in the sample plane is given
by:

Gj = 2πs
λf3

(3.8)

Gj = 8.12 µm−1 for the above given parameters.

3.5.1 Extended patterns
If the laser beams are collimated in front of L3, the foci are located in the sample
cell with typical diameter of approximately 5 µm. Therefore, no lateral extension of
the light pattern can be created. To extend the light lattice, the distance between L1
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and L2 (first BX) must be changed in order not to match the sum of the respective
focal lengths (Fig. 3.15). By increasing the distance by ∆l the collimated beams
become slightly convergent after the beam expander, focused close to the last beam
splitter, and slightly divergent in front of L3. The foci are not located anymore in
the sample cell, instead they are shifted up. The size of the beams in the sample
cell increases by increasing ∆l. Accordingly, the area where the beams overlap and
interfere becomes larger.

(a) (b) (c)

Figure 3.15: Intensity distribution of a tetradecagonal interference pattern depending on
the distance between the two lenses of the beam expander. (a) L2 displaced
by ∆l = 10 mm from collimation, (b) ∆l = 15 mm, and (c) ∆l = 41 mm.
The gaussian distribution seen in (a) and (b) vanishes by appropriate ex-
pansion on the pattern as seen in (c).

It should be noted that because the intensity of the laser beams has a gaussian
distribution, the resulting potential landscape will always have a Gaussian profile,
i.e. a decrease in the intensity distribution along the radial. This leads to non desi-
red effects, such as a spatially dependent interaction strength between the colloidal
particles and the substrate potential. In our experiments we have reached an almost
constant intensity distribution over the whole field of view (the region where the
measurements are performed) for ∆l3 = 41 mm. This expansion leads to a circular
pattern with a diameter of about 1.5 mm, almost five times larger than the field of
view. Even larger patterns can be created using this technique, but the intensity
density and the potential strength decrease rapidly.

3.5.2 Decagonal and tetradecagonal potential substrates
The intensity patterns are regarded in our experiments as substrate potentials for
the colloidal particles. Therefore, their properties must be characterized. The sym-
metry and the length scales are controlled by the construction of the interference
pattern. Using digital video microscopy both parameters can be directly measured.
Quasiperiodic interference patterns, in contrast to their periodic homologues, are not
characterized by one potential depth. They consist of many potential wells with a
specific potential depth distribution. These intensity patterns possess only one center
of perfect rotational symmetry where all the phases φi of the beams are the same.
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This center is also characterized by being the deepest potential well with a potential
depth (V0). However, other wells resemble to a large extend to the perfect symmetry
center. They also enclose locally the global symmetry of the pattern and the corres-
ponding potential depth is typically larger than 0.95V0. Therefore, the uniqueness of
the perfect center will be in our experiments neglected.

Figure 3.16: Snapshot of a quasiperiodic decagonal light substrate (356× 264 µm2) crea-
ted by overlapping five laser beams. The pattern is characterized by five high
symmetry axes (green lines). The potential wells (or intensity maxima) are
arranged in pentagons of different size whose side lengths and heights are re-
lated by the golden ratio τ leading to two characteristic length scales (Large
and Short) related by τ . Pentagons pointing up are colored in orange and
those pointing down are colored in red. Another important feature is the
occurrence of flowers (blue circle) having locally the global symmetry of the
pattern (10-fold). The inset is a Fast Fourier Transform elucidating the
decagonal (10-fold) symmetry.

Figure (3.16) shows the light intensity distribution in the sample plane which dis-
plays maxima arranged in pentagons of different size whose side lengths and heights
are related by the golden ratio. Accordingly, the pattern has two intrinsic length
scales a large one L and a short one S with a ratio equal to τ . The pattern is charac-
terized by five high symmetry axes (green). Another important topological feature is
the occurrence of flowers (blue circle) having locally the global 10-fold symmetry of
the patterns. A Fast Fourier Transform of the figure leads to a lattice in the recipro-
cal space with decagonal symmetry (10-fold). For this decagonal pattern, one can
always find translations which leave the potential almost (!) unchanged although
strictly speaking the pattern has no translation symmetry (Fig. 3.17). This is a
property of certain quasiperiodic structures, and it is called "local isomorphism" or
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sometimes "indistinguishability". The reason for this is that the interference pattern
contains substructures that repeat often and two parts of the pattern may contain
the same statistical distribution of these substructures. Another remarkable structu-
ral property, is the self-similarity of the pattern. If the pattern is locally inflated or
deflated by the golden ratio the original local structure is recovered. Similar inflation
rules are known for octagonal and dodecagonal quasilattices [96].

Figure 3.17: Local isomorphism and self-similarity of a decagonal substrate potential. (a)
Mismatch between two identical cuts of the pattern for a random translation.
The pattern with the blue contour is set to be transparent and translated by
some amount relative to the pattern with the red contour. (b) The pattern
is translated until regions of high intensity coincide. (c) Illustration of the
self similarity of the pattern. The same cut of the pattern is up scaled by
the golden ratio and placed on top of the original one. The matching regions
are identified by the bright white color.

Figure (3.18) shows the light intensity distribution in the sample plane for 7-beam
patterns. The maxima are arranged in heptagons of different size whose side lengths
and heights are related by two irrational numbers (cos( π14) and cos(3π

14 )) leading to
three length scales. This pattern is characterized by seven high symmetry axes (green
lines). The flowers here (blue circle) enclose the 14-fold symmetry. A Fast Fourier
Transform of the figure leads to a lattice in the reciprocal space with tetradecagonal
symmetry.

3.5.3 Potential depth distribution
As previously mentioned, the patterns consist of minima with different potential
depth. Schmiedeberg and Stark calculated the probability to find a well of a certain
depth for both decagonal and tetradecagonal patterns [97]. The probability density
ρ(Vm/V0) for a minimum to have a potential value Vm is plotted in Fig. (3.19a-b).
Both distributions are continuous, nevertheless for the decagonal pattern, minima
with depths below Vm/V0 < 0.25 do not exist. This indicates that the potential
has no shallow minima and it mainly consists of deep wells since the distribution
converges to a finite probability for Vm = V0. In contrast, the tetradecagonal pattern
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Figure 3.18: Snapshot of a quasiperiodic tetradecagonal potential substrate
(356× 264 µm2) created by overlapping seven laser beams. The pat-
tern is characterized by seven high symmetry axes (green). The potential
wells (or intensity maxima) are arranged in heptagons of different size
whose side lengths and heights are related by two irrational number leading
to three length scales. Heptagons pointing up are colored in orange and
those pointing down are colored in red. Another important feature is the
occurrence of flowers (blue) having locally the global symmetry of the
patterns (14-fold). The inset is a Fast Fourier Transform elucidating the
tetradecagonal (14-fold) symmetry.

includes minima with Vm/V0 < 0.25 and the distribution practically goes to zero for
Vm = V0.
In Fig. (3.19c-d) calculated patterns are plotted with decagonal and tetradecagonal

symmetries, respectively. In order to illustrate the ordering of the deep potential
minima, the plots are color coded in accordance with the depth. For Vm > 0.75V0,
the minima are colored in blue and they mainly correspond to the center of the high
symmetry stars.
In the experiment, the potential strength and the intensity of the laser beams (P )

are linearly related. The relationship between V0 and P can be measured using an
interference pattern of three laser beams as potential substrate. In this case, the
periodic pattern is characterized by one potential depth V0. Since the probability
distribution of the particles inside an external potential is governed by the Boltzmann
distribution, the strength of the external laser potential is determined by measuring
the averaged density distribution of a dilute suspension of particles (Fig. 3.20). Using
this calibration of the laser intensity, V0 can be extrapolated for the decagonal and
tetradecagonal patterns.
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Figure 3.19: Distribution of the probability density ρ(Vm/V0) for a minimum to have a
potential depth Vm in a decagonal (a) and tetradecagonal potential (b) [92].
V0 is the deepest minima. (c-d) Numerically calculated patterns with false
color coding corresponding to the distribution in (a) and (b).

3.5.4 Static strain fields

As shown in chapter one, quasicrystalline structures have physical characteristics that
cannot exist in periodic structures. For example, in a periodic crystal, translations
that vary slowly as a function of position define a phonon-strain field which slightly
increases the free energy of the system. The strain field is described in terms of
phonon collective excitations [13]. In contrast, in quasiperiodic crystals, one obtains
phason-strain fields, described in terms of phason low-energy collective excitations
[13].
Such static strain fields also exist in quasiperiodic interference patterns. When the

relative phase of a lattice-forming laser beam varies with a constant gradient (position
dependent change), a phason-strain field is created. As a result, characteristic lines
of low intensity (infinitely extended in a perfect pattern) acquire a finite length (see
blue lines in Fig. 3.21a,d). Experimentally, this occurs when the tilt angle of a
laser beam is altered compared to the tilt angle of the other beams. This means
that laser beams not perfectly adjusted relative to the vertical, lead to a substrate
potential with phasonic jaggs which density is usually orientation dependent. In our
experiments, we identify and control the phason-strain along each direction by means
of Fourier filtering [13]. In fact, one of the signatures of a phason-strain field is the
appearance of anisotropic shifts in the positions of Bragg peaks in the diffraction
pattern. A back-Fourier transform of the shifted peaks leads to a real space image
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Figure 3.20: Potential strengths V0 (dots) for different laser power P measured for a dilute
system of particles interacting with a triangular lattice. The straight line is
a linear regression for the data points.

with jaggs. These jaggs are the "finger print" of the existence of the phason-strain
fields.
Figure (3.21) illustrates the procedure in numerically calculated interference pat-

terns. A perfect decagonal pattern contains characteristic low intensity lines (blue
lines), infinitely extended and oriented along five different directions (Fig. 3.21a). Its
Fourier transform results in a pattern with characteristic Bragg peaks (Fig. 3.21b).
When two pairs of Bragg peaks at τ related wavevectors are filtered out (green
circles), the back-transform (as seen in Fig. 3.21c) results in an intensity distribu-
tion image formed out of stripes which distance follow the Fibonacci sequence. When
the same procedure is applied to an interference pattern including phason-strain, in-
duced by changing the tilt angle of one of the laser beams, the back transformed
image shows jaggs in the pattern of stripes indicating the existence of local rearran-
gements with respect to the perfect pattern. The phason-strain is already seen in
Fig. 3.21e by the existence of Bragg peaks shifted with respect to the radial (red
dashed line).

3.5.5 Substrate potential reconstruction
One of the major advantages of this system, compared to atomic systems, is the
particle tracing in real space which allows to determine their positions. More impor-
tant is the determination of the particle positions relative to the interference pattern.
That is why we included in the setup two CCD cameras to monitor simultaneously
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Figure 3.21: Numerically constructed interference patterns, with and without a static
linear phason-strain field. (a) A perfect decagonal pattern. (b) Fourier
transform of the real-space image. The white spots are the Bragg peaks of
the quasicrystal and the green circles highlight the spots used for the back
transformation in (c). (c) Real space image obtained by filtering only the
four spots within the green circles shown in (b). (d-f) The same as (a-c)
after adding a static linear phason-strain field. This is achieved by slightly
changing the angle of incidence of one of the lattice-forming laser beams.
The phason-strain is visible as "jaggs" in (f).

the particles and the substrate potential. Since the colloidal particles are in the same
optical plane as the interference pattern, the image of the pattern also contains the
green light scattered on the particles (Fig. 3.22a).
The contribution of these colloidal particles to the image could be considered as

noise. A particularly useful method for isolating noise in an image is the Fourier
filtering. This method belongs to a class of digital image processing algorithms utili-
zed to transform an image into the frequency domain. After an image is transformed
and described as a series of spatial frequencies, a variety of filtering algorithms can
be applied, followed by a back-transformation of the filtered image to the spatial
domain. This method is useful for performing a variety of filtering operations that
are otherwise very difficult to perform with a spatial convolution.
There are three basic steps to frequency domain filtering. First, the image must

be transformed from the spatial domain into the frequency domain using a Fast
Fourier transform. Second, the resulting complex image must be multiplied by a
filter. Third, the filtered image must be transformed back to the spatial domain. We
have implemented these steps in an IDL (programming language) program using a
Fast Fourier transform function FFT.
The low frequency terms usually represent the general shape of the image and the

high frequency terms are needed to sharpen the edges and provide the details. Instead
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Figure 3.22: Image processing with Fourier filtering. (a) Snapshot of the substrate poten-
tial in the presence of a dense layer of colloidal particles. (b) Fast Fourier
transform of the image in (a) showing the 14-fold symmetry and a noisy
background . (c) The transform in (b) after filtering of the background (de-
tails in the text). (d) Back-Fourier transform showing an image which is
almost identical to an image of the laser intensity distribution taken in the
abscence of the particles.
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of just analyzing the frequency domain image, we calculate its power spectrum. The
power spectrum is a plot of the magnitude of the various components of the frequency
domain image. Different frequencies are represented at different distances from the
center of the image. The power spectrum shows how much of a frequency is present
in the image. It is particularly useful for isolating the quasiperiodic structure or the
noise in the image.
As a next step we apply a filter to the frequency domain image. A variety of

adjustable filter masks, such as high-pass, low-pass, or free-hand filter, can be su-
perimposed on the power spectrum image in order to filter desired frequencies. For
removing the noise we set a lower threshold value for the magnitudes in the power
spectrum. A reconstructed image displaying only the interference pattern is obtai-
ned through a back-Fourier transformation of the filtered Fourier transform image.
Figure (3.22d) shows the dramatical improvement of the quality of the image.

3.6 Light induced quasiperiodic ordering
In the following, we show how the combination of all the above discussed experimental
tools leads to the formation of a two-dimensional colloidal quasicrystal. The latter is
illustrated by investigating the phase behavior of a fluid system with a mean particle
distance A = 5.7 µm in the presence of a decagonal substrate potential characterized
by two length scales S ≈ 5.4 µm (short) and L ≈ 8.8 µm (long).

3.6.1 Experimental procedures
In these experiments, we use an aqueous suspensions of highly charged sulphate-
terminated polystyrene particles with a radius of R = 1.45µm from Interfacial Dyna-
mics Corporation with an average polydispersity below 4 %, a solid content of 8.1 %,
and a surface charge density of 9.8 µC/cm2. Their refractive index is nPS = 1.59.
The beginning of the measurement consists in the preparation of the colloidal

suspension. First, 30 to 50 µl are taken from the main suspension. In order to reduce
the amount of dissolved ions from this suspension, we mix it with about 200 µl of
highly deionized water. The deionization of the water is performed as described in
section 3.1. The mixture is later centrifuged, which forces the colloidal particles
to sediment at the bottom of the sample container. The excess of water, which
contains the largest amount of counterions, is then removed. Since this process
strongly increases the interaction strength, it is repeated up to three times. Finally,
the sealed vial containing the suspension is inserted in an ultrasonic bath for 10 to
15 minutes in order to separate any coagulated particles.
The highly deionized suspension is injected using a micro-pipette into the water

reservoir of the deionizing circuit described in Fig. 3.3. With a very slow pumping
rate, the suspension is homogeneously pumped into the sample cell which is then
sealed with clamps. In this way, the suspension in the sample cell is isolated from
the rest of the circuit and ions are prevented from diffusion into the cell.
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Due to the gravitational force the colloidal particles sediment and form a monolayer
on the lower surface of the sample cell. Before applying the quasiperiodic potential,
the density of the particles in the field of view is adjusted using thermophoretic
and optical forces (see section 3.2). The vertical fluctuations of the particles are
suppressed by applying the pressing down laser beam (section 3.3). The particle
density is kept constant using the optical fence (Fig. 3.6).
The linearly polarized laser beams creating the interference pattern are then cou-

pled to the sample cell. Due to optical gradient forces, this interference pattern acts
as an external potential on the particles with the potential amplitude scaling linearly
with the laser power.

3.6.2 Strong decagonal light fields as substrate potentials

When a colloidal monolayer is exposed to a patterned light field, considerable changes
in its structure are observed. Figure (3.23) shows how the particle density distribu-
tion ρ(x, y) and the two-dimensional pair correlation function G(x, y) of a colloidal
monolayer change upon increasing the substrate strength of the decagonal substrate.
G(x, y) gives the relative probability of a particle to have a neighbor at a distance
r(x,y). In absence of a substrate potential (I0 = 0) the system adapts the structure
of an isotropic fluid phase (data not shown). A very weak substrate potential of
I0 = 0.63 µWµm−2 is not capable to make any considerable changes in the isotropic
structure of the fluid (Fig. 3.23a-b). This is confirmed by both ρ(x, y) and G(x, y).
The latter shows that the correlation in the positional order of the particles is only
short ranged and decays fast at large distances. For I0 > 2.54 µWµm−2, the isotropy
is broken. Already at such low substrate strength, ρ(x, y) shows a density modula-
tion, i.e. specific positions of the substrate potential are sampled often (red color).
Obviously, the deep substrate potentials are already exerting a relatively strong at-
tractive force on the neighboring particles. This can also be seen in the corresponding
correlation function in Fig. 3.23d. Locally an almost isotropic positional correlation
can be observed while at larger distances a long range order is present.
By increasing the potential to I0 = 3.82 µWµm−2, the formation of pentagonal

motives in ρ(x, y) is observed. Since these motives are characteristic to the underlying
substrate potential, their formation indicates that the potential strength is strong
enough to attract the particles at potential wells which are less deep. This is also seen
in G(x, y) which shows a stronger positional correlation. Only at I0 = 5.73 µWµm−2,
most of the particles are trapped on lattice sites and laterally fluctuate only around
the equilibrium position. A high number of pentagonal motives is observed in the
density distribution and the positional correlation function shows a short and long
range decagonal order.
Similar to any phase transition, this light induced quasicrystal occurs if the qua-

sicrystalline ordering of the particles minimizes the free energy of the system. This
indeed corresponds to the situation here, since the interaction energy among the
particles is weak, and the potential energy of the substrate potential dominates.
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Figure 3.23: Contour plots of the density distribution ρ(x, y) (left) and the pair correla-
tion function G(x, y) (right) for four different laser potential strengths. (a,
b) I0 = 0.63 µWµm−2, (c, d) I0 = 2.54 µWµm−2, (e, f) I0 = 3.82 µWµm−2

and (g, h) I0 = 5.73 µWµm−2. The length scales are in µm.
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Figure 3.24: Bond-length histogram calculated for the particle configurations at different
potential strength.

The change in the particle configuration and the assignment of the different phases
is also evident by looking at the bond-length histogram. First, a Delaunay triangu-
lation is performed to identify the next neighbor bonds and a histogram of the bond
length is constructed. As seen in Fig. 3.24, the distribution sensitively depends
on the different phases. At low laser intensities, a broad monomodal distribution
with peak located at mean particle distance A = 5.7 µm is observed, indicating an
isotropic fluid phase. By increasing the laser intensity, the peak gradually shifts to
lower distances and simultaneously another peak starts to form at larger distances.
For I0 = 3.82 µWµm−2 the distribution becomes bimodal with the ratio of the two
peak positions close to τ . The peaks positions are in fact located at S = 5.4 µm and
L = 8.8 µm which ratio is close to τ indicating the occurrence of the quasiperiodic
phase.
More evidence for the assignment of the different phases mentioned above is de-

rived from the two-dimensional structure factor S(qx, qy) (Fig. 3.25). As expected,
S(qx, qy) calculated for the fluid phase shows no occurrence of Bragg peaks and only
diffuse background is present (Fig. 3.25a). At low potential strengths the external
laser potential leads to a spontaneous symmetry breaking. This symmetry breaking
destroys the isotropy of the fluid phase and leads to a density modulation which
is rather quasiperiodic. For a numerically calculated pattern, 20 Bragg peaks are
expected. Here, S(qx, qy) displays a number of Bragg peaks which is still less than
20 (Fig. 3.25b). This indicates that the system is still not deep in the quasiperiodic
phase. S(qx, qy) calculated for the laser intensity I0 = 5.73 µWµm−2 is the closest to
the diffraction pattern of quasiperiodic patterns (Fig. 3.25c). The structure factor
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of this quasicrystalline decagonal phase displays a dense set of delta-function Bragg
peaks with higher harmonics and its symmetry is 10-fold.

Figure 3.25: Two-dimensional structure factor S(qx, qy) of the experimental data pre-
sented in 3.23(a,c,g). The axis are in units of q = 2π/r where r repre-
sents the distance. (a) For the fluid at I0 = 0.63 µWµm−2, (b) the inter-
mediate phase at I0 = 2.54 µWµm−2 and (c) the quasiperiodic phase at
I0 = 5.73 µWµm−2.

3.6.3 Strong tetradecagonal light fields as substrate potentials
Also when a colloidal monolayer is exposed to a tetradecagonal light field, conside-
rable changes in the structure are observed. In this experiment, polystyrene colloidal
particles with radius R = 1.45 µm are used. The system is prepared so that, the
density is φ = 0.020 µm−2 and A = 5.98 µm. The sample is later exposed to a
14-fold interference pattern and the laser intensity I0 is stepwise increased .

Figure 3.26: Bond-length histogram calculated for particles interacting with a tetradeca-
gonal substrate potential at different laser power.

The change in the particle configuration upon increasing the laser power I0 can
be clearly seen in the change of the bond length histogram shown in Fig.3.26. At
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I0 = 0 µWµm−2, a monomodal distribution with a peak located at the mean particle
distance A = 5.98 µm is obtained, indicating an isotropic fluid phase. The fluid
structure is confirmed by the calculated structure factor in Fig.3.27a. By increasing
the laser intensity, the peak shifts to lower distances and simultaneously another
two peaks start to form at larger distances. For I0 = 1.48 µWµm−2 the distribution
clearly becomes three-modal. The position of the peaks coincides well with the length
scales of the underlying pattern. The colloid-substrate interaction is strong enough
to overcome the colloid-colloid repulsion resulting in a change in the structure of the
system.

Figure 3.27: (a,b) Two-dimensional structure factor S(qx, qy) calculated for I0 =
0 µWµm−2 (a) and I0 = 1.23 µWµm−2 (b). (c) Snapshot of polystyrene
colloids at I0 = 1.23 µWµm−2. Typical motifs of the light pattern, i.e.
flower (in red) and heptagon (in blue), are adapted by particles.

In Fig.3.27c a snapshot revealing the spatial distribution of the colloids is showed.
A comparison with the intensity distribution of substrate potential (Fig.3.18) shows
that the particles already at I0 = 1.23 µWµm−2 have adapted some of the typical
characteristics of the light field. Exemplary, a flower (red) and a heptagon (blue) are
highlighted. The structure factor calculated for this snapshot is shown in Fig.3.27b.
It has the expected 14-fold symmetry.





CHAPTER 4

STRUCTURAL PHASE TRANSITION OF DENSE
MONOLAYERS ON DECAGONAL SUBSTRATE

POTENTIALS

Measurements of the complex phase behavior of dense colloidal monolayers interac-
ting with a quasicrystalline decagonal substrate created by interfering five laser beams
are presented. Different starting configurations, such as dense fluid and triangular
crystals with different densities, are prepared. At low intensities and high particle
densities, the electrostatic colloidal repulsion dominates over the colloid-substrate
interaction and the crystalline structure remains mainly intact. As expected, at very
high intensities the colloid-substrate interaction dominates and a quasiperiodic orde-
ring is observed. Interestingly, at intermediate intensities we observe the alignment
of crystalline domains along the 5 directions of the quasicrystalline substrate. This is
in agreement with observations of Xenon atoms adsorbed on the ten-fold decagonal
Al-Ni-Co surface [98] and numerical simulations of weakly adsorbed atomic systems
[32]. Intermediate phases are observed for colloid-substrate interactions strong en-
ough to produce defects in the crystal. These defects adapt the form of rows of
quadratic tiles.

Surprisingly, for specific particle densities (at which the colloid-substrate interac-
tion is minimized) we identify a novel pseudomorphic ordering. This intermediate
phase which exhibits likewise crystalline and quasicrystalline structural properties
can be described by an Archimedean-like tiling [99, 100, 101] consisting of alterna-
ting rows of quadratic and triangular tiles. The calculated diffraction pattern of this
phase is in agreement with recent observations of copper adsorbed on icosahedral
Al70Pd21Mn9 surfaces [102]. In addition to establishing a link between Archime-
dean tilings and quasicrystals our experiments allow to investigate in real space how
single-element monolayers can form locally commensurate structures on quasicrys-
talline surfaces.

83
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4.1 Motivation and introduction
As stated in the first chapter, deposition of thin films onto quasiperiodic substrates
can lead to novel structures which may exhibit unusual properties. This approach
might allow fabrication of materials with novel properties. Apart from understanding
how quasicrystalline properties can be transferred to such adlayers, a pseudomorphic
growth can help to understand the origin of many of the quasicrystals properties. In
fact, because quasicrystallinity does not occur in single element systems but only in
binary [28, 49] or even more complex ternary metal compounds [29], their surfaces
exhibit a high degree of structural and chemical complexity. The disentanglement
of the structural and chemical aspects can be achieved by growing single-element
monolayers [30, 31]. The heteroepitactic growth experiments on decagonal and ico-
sahedral surfaces shown in 1.3.2 indeed demonstrate the formation of Bi, Sb and Pb
monolayers with a high degree of quasicrystalline order as determined by low-energy
electron diffraction and elastic helium atom scattering experiments [40, 18, 38]. Com-
pared to reciprocal space studies, only recently atomically resolved scanning tunne-
ling microscopy investigations of the adsorbate morphology became possible [41, 39].
Even then, however, it is difficult to relate the structure of the adsorbate with that
of the underlying substrate.

Figure 4.1: Expected phase diagram for dense colloidal systems interacting with a de-
cagonal substrate potential for increasing laser intensity I0. The system is
charaterized by the density A/av, where A is the mean particle distance at
I0 = 0 and av the potential characteristic length scale. The white arrows
indicate three regions of interest at which the measurements are performed.

In this respect, the study of the phase behavior of two-dimensional colloidal sys-
tems interacting with quasiperiodic potential substrates can bring new knowledge.
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Instead of using topologically patterned substrates [103], we insert the colloidal par-
ticles into a sample cell with a flat glass surface (as described in the previous chapter)
and create an external quasiperiodic laser field, which acts via light forces as an ex-
ternal potential. In this way, the colloidal structures can be classified at different
regions in the phase diagram. In Fig. 4.1, an illustrative phase diagram is plotted.
In the absence of the laser field (I0 = 0), different starting phases can be prepa-
red. For increasing particle densities (A/av), transition from a fluid phase (in blue),
characterized by the short range order, to a triangular phase (in green) with long
range order is expected. Independent from the density, at very high laser intensi-
ties the colloid-substrate interaction dominates and a quasiperiodic phase (in red)
is expected. Our experiments help to understand the phase behavior especially at
intermediate regions (in yellow) where both the electrostatic colloidal repulsion and
colloid-substrate interaction play an important role. The white arrows indicate three
possible paths at which the measurements are performed and which will be discussed
in the following.

4.2 Transition from a dense-fluid phase to a
decagonal phase

In this experiment colloids with radius R = 1.45µm and density φ = 0.0273 µm−2

are used. This density was chosen to be slightly below the density required for
spontaneous crystallization. In the absence of the quasiperiodic light potential, the
particles form a dense fluid with mean particle distance given by:

A =
√

2
φ
√

3
(4.1)

thus A = 6.51 µm. The sample is later exposed to an interference pattern with
characteristic length scale av = 8.53 µm. The ratio of the particle mean distance
A to the substrate length scale av, here A/av = 0.763, will be used to compare the
densities of the different measurements. The laser intensity I0 is increased at a rate
much smaller than the typical relaxation time of the colloidal system which allows
to establish equilibrium conditions.
Figs. 4.2 and 4.3 show the ordering of the tiles in real space and how the tilings

and the corresponding S(qx, qy) of the colloidal monolayer change when the substrate
strength of the decagonal substrate is increased. In absence of a substrate potential,
Fig. 4.2a, the tiling consists of triangular (green), quadratic (blue) and pentagonal
(red) tiles. Because the system is close to crystallization, small regions or domains
with different orientations and containing only triangular tiles can be observed. These
domains are separated by defects making the local particle configuration quadratic or
pentagonal. The structure of this phase is confirmed by the diffraction pattern in Fig.
4.2b, which mainly consists of isotropic rings. In the presence of a quasicrystalline
light field, the particles also interact with the corresponding surface potential. The
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formation of pentagonal tiles, having the same orientations as those occurring in the
substrate potential, is expected. This is obviously not the case at I0 = 0.35 µWµm−2.
As seen in the tiling of Fig. 4.2c, the orientations of the pentagonal tiles are still
random. This is also confirmed by the corresponding S(qx, qy) in Fig. 4.2d which
shows isotropic rings.

Figure 4.2: Real and reciprocal space structure of the adsorbate. (a) Tiling of the dense-
fluid phase (I0 = 0). (b) S(qx, qy) calculated for data shown in (a). The scale
is exponential. (c,d) Same as (a,b) for I0 = 0.35 µWµm−2. The scale bar is
50 µm.

For I0 = 1.4 µWµm−2, however, we observe a clear increase in the number of
pentagonal tiles which become more localized. These tiles adapt the same orienta-
tions of the pentagonal structures of the underlying substrate potential (Fig. 4.3a).
The arrangement of these tiles leads to the formation of 20 Bragg peaks with 10-
fold symmetry in the corresponding diffraction pattern (Fig. 4.3b). This is a clear
indication that the particles have partially adapted the symmetry of the substrate.
For I0 = 2.8 µWµm−2, the particle configuration seen in Fig. 4.3c changes greatly

in comparison with Fig. 4.3a. The tiling here consists of a large number of pentagonal
tiles arranged on circles and which have two orientations (pointing up and down).
This ordering is typical to the underlying substrate potential. The corresponding
diffraction pattern also shows perfect quasicrystalline order and thus mimics the
geometry of the underlying light potential (Fig. 4.3d).
The increase observed for the pentagonal tiles is quantitatively confirmed in Fig.

4.4. Here, the number density of the local particle configurations (or tiles) ρTn is
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Figure 4.3: Real and reciprocal space structure of the adsorbate. (a) Tiling of the fluid-
decagonal phase for I0 = 1.4 µWµm−2. (b) S(qx, qy) calculated for data
shown in (a). (c) Tiling of the decagonal phase for I0 = 2.8 µWµm−2. (d)
S(qx, qy) calculated for data shown in (c). The scale bar is 50 µm.



88
CHAPTER 4. STRUCTURAL PHASE TRANSITION OF DENSE
MONOLAYERS ON DECAGONAL SUBSTRATE POTENTIALS

calculated for different I0. At low intensities, 76% of the tiles are triangular (ρT3 ),
22% are quadratic (ρT4 ) and only 1% are pentagonal (ρT5 ). Since the underlying
substrate potential does not support the triangular tiles, an increase in the laser
intensity I0 is accompanied by a decrease of ρT3 . Even at high intensities, at which
ρT5 increases, ρT4 stays constant.

Figure 4.4: Number density of the tiles. n is the edge number, i.e. n=3 for triangular
tiles, n=4 for quadratic tiles and n=5 for pentagonal tiles.

One can then deduce that the structural phase transition from a dense-fluid phase
to a decagonal quasiperiodic phase involves the formation of pentagonal tiles which
leads to a destruction of only the triangular tiles while the quadratic tiles number
density stays intact.

Figure 4.5: Tilings for different laser intensities superimposed on the laser intensity dis-
tribution of the decagonal interference pattern. (a) I0 = 0.35 µWµm−2. (b)
I0 = 1.4 µWµm−2. (c) I0 = 2.8 µWµm−2. The scale bar is 20 µm.

To understand how the observed phases form on the quasicrystalline substrate, we
plot in Fig. 4.5 the contours of the tiles taken from Fig. 4.2 and 4.3 (black lines) on
top of the decagonal intensity distribution of the laser field. At low intensities (Fig.
4.5a), only few particles coincide with deep potential wells. However almost none of
the observed tiles are supported by the substrate potential. At higher laser power
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(Fig. 4.5b), the deepest potential wells of the substrate coincide with vertices. The
pentagonal tiles are clearly supported by the underlying substrate potential especially
around the high symmetry star (HSS). The HSS corresponds to a deep potential
minimum that is surrounded by 10 shallower potential wells. For I0 = 2.8 µWµm−2

(Fig. 4.5c), almost all the vertices coincide with potential wells and thus show
quasicrystalline order.

4.3 Transition from a triangular crystalline phase to a
decagonal phase

In this experiment the colloid density φ = 0.0324 µm−2 is increased compared to the
measurement in section 4.2. At this density spontaneous crystallization is observed.
In the absence of the quasiperiodic light potential, the particles thus adapt a triangu-
lar structure with long range order and a mean particle distance A = 5.97 µm. The
sample is later exposed to an interference pattern with characteristic length scale
av = 8.53 µm thus A/av = 0.70. The laser intensity I0 is stepwise increased.
For laser intensities below I0 = 2.0 µWµm−2, the tiling of the colloidal crystal

consists only of triangular tiles (data not shown). The pair-interaction is much
stronger than the particle-substrate interaction and the crystal remains intact. The
first defects occur at I0 = 2.45 µWµm−2. Apart from few pentagonal and hexagonal
tiles, Fig. 4.6a shows the formation of many quadratic tiles. The crystalline structure
is confirmed by the diffraction pattern, which has 6-fold coordinated spots (Fig.
4.6b). The broadening of the peaks is due to the quadratic defects. The intensity of
the peaks decreases with increasing diffraction order, reflecting the thermal motion of
particles. By increasing the intensity of the quasicrystalline light field, the particle-
substrate interaction becomes stronger, and the equilibrium structure will change.
Fig. 4.6c shows the situation for I0 = 3.15 µWµm−2. Surprisingly, a high number
of quadratic tiles is observed while the number of pentagonal tiles remains almost
constant. Many of these quadratic tiles arrange in chain-like structures (rows) whose
orientation is given by one of the three high symmetry directions of the crystal.
One can also notice the alignment of crystalline domains along specific directions
corresponding to the high symmetry directions of the quasicrystalline substrate (red
lines). This is in agreement with observations of Xenon atoms adsorbed on the ten-
fold decagonal Al-Ni-Co surface [98] and numerical simulations of weakly adsorbed
atomic systems where the colloidal repulsion dominates over the colloid-substrate
interaction [32]. In addition to the 6-fold coordinated spots, the structure factor in
Fig. 4.6d shows the formation of 10-fold coordinated spots with different intensities.
Interestingly, the spots corresponding to the high symmetry directions of the crystal
are more pronounced (red arrows).
Only at I0 = 4.55 µWµm−2, we observe a clear increase in the number of pentago-

nal tiles having two orientations as expected from the underlying substrate potential
(Fig. 4.7a). The formation of these tiles destroys the quadratic rows and leads to the
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Figure 4.6: Real and reciprocal space structure of the adsorbate. (a) Tiling of the crys-
talline phase for I0 = 2.45 µWµm−2. The scale bar is 50 µm. (b) Plot of
S(qx, qy) calculated for data shown in (a). The green arrows point at the
6-fold coordinated spots, typical for a triangular crystalline phase. The scale
is exponential. (c) Tiling of the particle configuration at I0 = 3.15 µWµm−2.
The lines indicate the orientations of the underlying lattice. The red lines in-
dicate the direction adapted by the crystal. (d) S(qx, qy) calculated for data
shown in (c). The red and violet arrows point at 10-fold coordinated spots
with different intensities.
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increase observed for Ψ10. The corresponding diffraction pattern (Fig. 4.7b) shows
at this stage the formation of 10-folded Bragg peaks. Even the highest available laser
intensity, I0 = 6.475 µWµm−2, is obviously not enough to destroy all triangular tiles.
Fig. 4.7c shows the tiling for this intensity, which consists of triangular, quadratic,
and pentagonal tiles. Nevertheless, the diffraction pattern in Fig. 4.7d shows a hi-
gher order of quasicrystallinity indicating that a large number of the particles has
adapted the symmetry of the substrate.

Figure 4.7: Real and reciprocal space structure of the adsorbate. (a) Tiling of the crystal-
decagonal phase for I0 = 4.55 µWµm−2. (b) S(qx, qy) calculated for data
shown in (a). (c) Tiling of the decagonal phase for I0 = 6.475 µWµm−2. (d)
S(qx, qy) calculated for data shown in (c). The scale bar is 50 µm.

In Fig. 4.8, the number density of the tiles ρTn is calculated for different I0. With
increasing intensity, the number density of triangular tiles decreases. This leads to
the destruction of the 6-fold symmetry. While first ρT5 stays almost constant below
0.1, the number density of the quadratic tiles ρT4 increases and reaches a saturation
value for I0 = 3.85 µWµm−2. This obviously corresponds to a first stage in the phase
transition. Only for I0 = 4.55 µWµm−2, ρT5 starts to increases suggesting a second
stage.
These data show that the structural phase transition of a triangular crystal interac-

ting with a decagonal light pattern is different compared to the previous case. Here,
two stages in the phase transition are involved. At low laser intensities, quadratic
tiles mainly arranged in rows along the high symmetry axis of the crystal are formed.
The positional order of the particles perpendicular to these rows is disturbed and a
one-dimensional periodic ordering along the rows is conserved. At a second stage,
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Figure 4.8: Number density of the tiles. n is the edge number, i.e. n=3 for triangular
tiles, n=4 for quadratic tiles and n=5 for pentagonal tiles.

many of the local particle configurations become pentagonal and the crystalline order
is destroyed. This leads to the proliferation of the quasicrystalline order.

Figure 4.9: Tilings for different laser intensities superimposed on the laser intensity dis-
tribution of the decagonal interference pattern. (a) I0 = 2.45 µWµm−2. (b)
I0 = 3.15 µWµm−2. (c) I0 = 4.55 µWµm−2. (d) I0 = 6.475 µWµm−2. The
scale bar is 20 µm.

To understand how the observed phases form on the decagonal potential, we plot
in Fig. 4.9 the contours of the tiles taken from Fig. 4.6 and 4.7 (black lines) on top of
the decagonal intensity distribution of the laser field. At low intensities (Fig. 4.6a),
most of the vertices do not coincide with potential wells. For I0 = 3.15 µWµm−2,
the tiling shows many rows of quadratic tiles. These rows, as seen in Fig. 4.6c, form
due to the electrostatic repulsion between the colloids. At higher intensities (Fig.
4.7), a high number of the particles is trapped by the deep potential wells leading to
the formation of the pentagonal tiles.
In Fig. 4.10 an illustrative scheme for the formation of the quadratic rows is

presented. Only at a critical laser intensities, colloids start to be attracted to deep
potential wells and individual particles are displaced from their initial position in the
crystalline structure (Fig. 4.10a). This displacement leads to a local formation of a
defect, and the surrounding colloids adjust their position in order to maximize the
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Figure 4.10: Scheme illustrating the formation of quadratic rows. (a) A particle (black
point) is pushed towards a potential well (vertex of a red pentagons). (b)
Due to the electrostatic repulsion the neighboring particles form quadratic
tiles to maximize the inter-particle distances. (c) If the same phenomena
happens for another particle on the same line a row of quadratic tiles is
formed. (d,e) Here the ordering propagates perpendicular to the rows and
pentagonal tiles are formed.

interaction energy (Fig. 4.10b). This leads to the formation of two adjacent quadratic
tiles (in blue). The formation of such defects in the crystalline structure will lead to
a particle rearrangement, and deep potential wells attract other neighboring particles
(Fig. 4.10c). Through this mechanism the quadratic rows increase their length. At a
higher critical laser intensity, the potential wells are deep enough to create pentagonal
tiles and destroy the crystalline ordering perpendicular to the rows (Fig. 4.10d,e).
One can then deduce, that the structural phase transition from a periodic trian-

gular phase to a decagonal quasiperiodic phase involves two stages. First quadratic
local configurations forming rows along the high symmetry axis of the crystal are
formed. At a later stage, characterized by a critical laser intensity, pentagonal tiles
starts to nucleate and the quasiperiodic order proliferates. In the next section, we
check whether this phase behavior is conserved for even higher densities.

4.4 Intermediate archimedean-like tiling phase
In this experiment a colloidal system with a higher density φ = 0.038 µm−2 is pre-
pared (particle radius R = 1.95 µm). As before, in the absence of the quasiperiodic
light potential the system crystallizes thus the particles adapt a triangular structure.
Although the measurement procedures are not altered, we observe a progressive in-
crease of the particle density in the field of view at low laser intensities. As seen
in Fig. 4.11, the increase is about 8% and the density stays almost constant for
I0 > 1.25 µWµm−2 with a value of φ = 0.0406 µm−2± 1.5%. The reason of the den-
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sity change will be explained later. For φ = 0.0406 µm−2, the mean particle distance
is A = 5.29 µm thus A/av = 0.62. The laser intensity I0 is stepwise increased.

Figure 4.11: Increase in the particle density in the field of view at low laser intensities. For
I0 > 1.25 µWµm−2 the density variation stays below 1.5% with an average
value of φ = 0.0406 µm−2 (dashed line).

4.4.1 Identification of the phases
Fig. 4.12 and 4.13 show how the particle configuration and the structure factor
change when the substrate strength of the decagonal substrate is increased. The
periodic crystal shown in Fig. 4.12a can be described by a triangular lattice (green
triangular tiles). The electrostatic colloidal repulsion dominates over the colloid-
substrate interaction and the crystalline structure remains mainly intact. Also here,
we observe the alignment of the crystalline domain along one of the 5-fold directions
of the quasicrystalline substrate. Apart from some defects, each vertex is surrounded
by six triangular tiles forming a (36)-vertex type where 3 represents a triangle and
6 is the number of triangles surrounding the vertex. The crystalline structure is
confirmed by the diffraction pattern, which has 6-fold coordinated spots leading to
periodically spaced peaks in the projected diffraction pattern S̄(qx). The intensity of
the peaks decreases with increasing diffraction order, reflecting the thermal motion
of particles.
When I0 is increased to I0 = 2.5 µWµm−2, the particles also strongly interact

with the corresponding surface potential, and the equilibrium structure changes. As
shown in Fig. 4.6c, the tiling of the colloidal system does not only consist of trian-
gular tiles. The particle-substrate interaction is strong enough to create geometrical
defects in the crystal. The observed structure shows neither a triangular nor a deca-
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Figure 4.12: Real and reciprocal space structure of the adsorbate. (a) Tiling of the crys-
talline phase for I0 = 1.5 µWµm−2. The scale bar is 50 µm. (b) S(qx, qy)
calculated for data shown in (a) and projection S̄(qx). The green arrows
point at the 6-fold coordinated spots, typical for a triangular crystalline
phase. The scale is exponential. (c) Tiling of the particle configuration at
I0 = 2.5 µWµm−2. (d) S(qx, qy) and S̄(qx) calculated for data shown in (c).
The blue arrows indicate the peaks occurring due to the quadratic rows.
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gonal symmetry. In contrast with the triangular structure which consists of mainly
triangular tiles, here long rows of quadratic tiles start to form. These rows are mainly
aligned along the horizontal which is a high symmetry axis for the crystalline struc-
ture and the underlying substrate potential. The structure factor in Fig. 4.7d shows
strong peaks (blue arrows) aligned along the qy direction. The position of these peaks
coincides with positions of peaks expected for the decagonal phase.

Figure 4.13: Real and reciprocal space structure of the adsorbate. (a) Tiling of the inter-
mediate phase for I0 = 3 µWµm−2. (b) S(qx, qy) and S̄(qx) calculated for
data shown in (a). (c) Tiling of the intermediate phase for I0 = 4 µWµm−2.
(d) S(qx, qy) and S̄(qx) calculated for data shown in (c). The scale bar is
50 µm.

As seen in Fig. 4.13, the increase of the laser intensity leads to an elongation in the
length of the quadratic rows, and an almost perfect ordering along the horizontal with
some intrusions at an angle of 72◦. The structure in fig. 4.13c is well characterized
by a tiling composed of squares (blue) and triangles (green). The peaks in the
corresponding S(qx, qy) are periodically spaced along the qx direction (as clearly
seen in the projection S̄(qx)), whereas in the qy direction their distance is close to
the golden ratio τ . This is a clear signature of quasicrystalline order along the y
direction. Obviously, the competition between the colloid-colloid repulsion and their
interaction with the quasicrystalline substrate leads at these particle densities to an
ordered phase that has both periodic and quasicrystalline structural properties.
In Fig. 4.15, the number density of the tiles ρTn is calculated for different I0.

The global behavior is rather similar to what has been observed in the previous
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Figure 4.14: Real and reciprocal space structure of the adsorbate with screened elec-
trostatic interaction (φ = 0.046 µm−2, I0 = 2 µWµm−2, κ ≈ 10nm,
R = 1.45µm). (a) Particle density distribution and tiling composed of
pentagons (yellow), rhombuses (pink), crowns (violet) and pentagonal stars
(brown). I0 = 4.55 µWµm−2. (b) S(qx, qy) with 10-fold symmetry calcula-
ted for data shown in (a) and the projection S̄(qx). The scale bar is 20 µm

measurement. With increasing intensity, the number density of triangular tiles de-
creases. Almost no pentagonal tiles are formed along the whole measurement. Ins-
tead, the number density of quadratic tiles (ρT4 ) increases and reaches a value of 27%
at I0 = 4 µWµm−2.

Figure 4.15: Number density of the tiles. n is the edge number, i.e. n=3 for triangular
tiles, n=4 for quadratic tiles and n=5 for pentagonal tiles.

Also in this situation, one can then deduce that the structural phase transition
involves the occurrence of an intermediate phase. And the question is whether the
spatial ordering of the quadratic tiles is different than the one observed at lower
densities.
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Before analyzing this new intermediate phase in more detail, we discuss the obser-
vation when the colloid-substrate interaction dominates even at high particle densities
(Fig. 4.14). This is achieved by preparing a colloidal system with particle density
φ = 0.046 µm−2 and a high ionic strength (κ ≈ 10nm) which greatly reduces the
repulsion between the colloids. For I0 = 2 µWµm−2, the particle density distribu-
tion ρ(x, y) follows a tiling consisting of prototiles shaped like rhombuses, pentagons,
crowns and stars. Such tiles are known from the P1 Penrose tiling and have also been
applied successfully to the 5-fold surface of AlPdMn [8]. The corresponding diffrac-
tion pattern shows perfect quasicrystalline order and thus mimics the geometry of
the underlying light potential. As expected, S̄(qx) consists of peaks whose distances
are not equal but are given by τ .

4.4.2 Orientation of the intermediate phase
The direction of the quadratic rows varied between different experiments but always
corresponded to one of the five orientations given by the substrate potential. The
analysis of the static phason strain occurring in the underlying substrate (for details
see 3.5.4) has shown that this orientation is correlated with the density of jaggs which
varies for the five directions of the pattern.

Figure 4.16: (a-e) Back Fourier transforms of two pairs of Bragg peaks at τ related wa-
vevectors for the five directions of the patterns (for details refer to 3.5.4).
The resulting intensity distribution image is formed out of stripes without
jaggs (a) and with jaggs (b-e) indicated by green circles. This is due to the
existence of local rearrangements with respect to a perfect pattern.

The density of the jaggs can be seen in the back-Fourier transforms of two pairs
of Bragg peaks at τ related wavevectors (for details refer to 3.5.4). The resulting
intensity distribution images are formed out of stripes with jaggs (green circles)
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indicating the existence of local rearrangements with respect to a perfect pattern.
As shown in Fig. 4.16, along the horizontal direction the bright lines are continuous
without any jaggs, in contrast to the other 4 directions.

4.4.3 Macroscopic description

Figure 4.17: The eleven archimedean tiling structures. The tilings are composed of re-
gular convex polygons that are not necessarily identical, but identically ar-
ranged around each vertex. The archimedean tilings include the traditional
Bravais lattices. The tilings are denoted by a set of integers and superscripts
(np1

1 .n
p2
2 ...) referring to the vertex type (p n-gons meet on each vertex).

The structure of the intermediate phase is remarkably similar to one of the 11
archimedean tilings first introduced by Kepler in 1619 [1]. Currently, there is renewed
interest in archimedean tilings as candidates for photonic crystals [100]. In contrast
to the five two-dimensional Bravais lattices each described by identical tiles (being
the corresponding unit cell), archimedean tilings may be composed of more than one,
but regular, tile. Those tiles are arranged in such a way that only one vertex type
exists (Fig. 4.17). Fig. 4.18a shows an example of an archimedean tiling consisting of
alternating rows of triangular and quadratic tiles. Because each vertex is surrounded
by three triangles and two squares, this leads to a (33.42)-vertex type. Although
the structure is strictly periodic, it has marked similarities with quasicrystals. First,
every vertex has five nearest neighbors at equal distances that form an irregular
pentagon. Second, the structure of the archimedean tiling is equivalent to an oblique
lattice (red lines) with a two-atomic basis. The oblique angle γ = 75◦ is close to
the value of 72◦ on decagonal substrates. Accordingly, when superimposing ideal
pentagons (white lines) on the archimedean tiling, their vertices (and the center of
the bigger one) agree almost perfectly with the vertex positions. The height ratio of
these pentagons equals the golden ratio τ .
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Figure 4.18: Substrate-adsorbate correlations. (a) Ideal archimedean tiling with (33.42)
vertex type. The vertices and centers of the two pentagons (white) fit the
lattice sites almost perfectly. The structure can be also represented by an
oblique lattice with two atoms per unit cell (red). (b) Tiling of the in-
termediate phase superimposed on the laser intensity distribution of the
decagonal interference pattern. Particles are partly located at deep minima
in substrate potential. Other colloids are located at interstitial sites with
weak substrate interactions. The red decagons indicate the high symmetry
stars (HSS) where double triangular rows are observed (red arrows). The
scale bar is 20 µm.

To understand how the observed intermediate phase forms on the quasicrystalline
substrate, we plotted the contours of the tiles taken from Fig. 4.13c (black lines) on
top of the decagonal intensity distribution of the laser field (Fig. 4.18b). The deepest
potential wells of the substrate coincide with vertices and thus show quasicrystalline
order. For our particle density, this applies to about half of all vertex positions. The
other vertices are located at sites with weak or vanishing substrate interactions, and
their configuration is dominated by electrostatic particle repulsion. They therefore
assemble in such a way that their nearest-neighbor distance is fairly uniform. As a
result, vertices partly adopt a 10-fold rotational symmetry but simultaneously seek
to achieve equal nearest-neighbor distances. Both aspects are ideally supported by
the archimedean tiling. Because archimedean tilings are strictly periodic, they can
be only locally commensurate with quasicrystalline substrates; disruptions at larger
length scales must occur. In Fig. 4.19 we show the tiling of a larger cut. Remarkably,
one can observe the alignment along two directions of large domains. These domains
show additional interstitial rows of triangles (that is, double triangular rows). As a
result, two vertex types, namely (33.42) and (36), arise. Such structures are referred
to as archimedean-like tilings [100]. One would expect that the spacing of those
interstitial rows corresponds to a Fibonacci sequence, taking into account the long
range quasicrystalline order along one direction. This is consistent with the structure
observed in Fig. 4.19. The origin of the two characteristic length scales of such a
Fibonacci chain is due to the fact that the double triangular rows nucleate along



4.4. INTERMEDIATE ARCHIMEDEAN-LIKE TILING PHASE 101

rows in the pattern where high symmetry stars HSS are present (Fig. 4.18b). The
sequence of these HSS along e.g. the vertical direction follows indeed the Fibonacci
sequence.

Figure 4.19: Tiling of a larger cut showing the formation of the intermediate archimedean-
like tiling aligned along two directions making an angle of 72◦. Along each
direction a part of the Fibonacci sequence of long (square-triangle-triangle)
and short (square-triangle) stripes is observed.

4.4.4 Density dependence
We also investigated whether the intermediate phase is stable with other parameters.
Fig. 4.20 shows the result when a colloidal layer with density φ = 0.030 µm−2

is exposed to a decagonal substrate potential whose characteristic length scales is
decreased to av = 7.8 µm thus A/av = 0.79.
In contrast to the above, here the number of deep potential wells provided by the

substrate is larger than the number of vertices. Nevertheless, the structure of the
system is again well described by an archimedean-like tiling and even though the
magnitude of particle fluctuations relative to the substrate is stronger than in the
previous case, the diffraction pattern (Fig. 4.20b) agrees well with that in Fig. 4.13d.
This suggests that the intermediate phase forms for a wider range of parameters.
Obviously this intermediate phase can occur at different densities for which a

high number of particles is located in a potential well and subsequently the average
potential energy is minimized. Schmiedeberg et al. calculated how this average
potential energy varies with density when the particles adapt a triangular structure
and when they adapt the archimedean-like tiling structure in the presence of the
decagonal substrate potential [104]. From Fig. 4.21 one can clearly identify two
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Figure 4.20: (a) Tiling of the intermediate phase occurring at different parameters. The
tiling is superimposed on the laser intensity distribution of the decagonal
interference pattern. The particle density is φ = 0.030 µm−2, and the pat-
tern characteristic length scales is decreased to av = 7.8 µm. (b) Structure
factor of (a).

densities where the archimedean-like tiling fits to the substrate perfectly and other
densities at which the potential energy of the archimedean-like tiling phase is slightly
lower compared to the triangular phase. The first deep minimum at A/av = 0.58
agrees well with the experimental data shown in Fig. 4.13 and proves that the change
of density observed at low laser intensities is a result of the energy minimization.
Most of the colloids are then located in minima of the potential and therefore the
average potential energy exhibits a sharp minimum.

Figure 4.21: Average potential energy of a colloid in the decagonal potential calculated
for a triangular and for an archimedean-like tiling structure as a function of
density, which is given by the particle spacing A/aV .
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4.4.5 Numerical simulations

By using Monte Carlo simulations, Schmiedeberg et al. also studied the phase beha-
vior of charged-stabilized colloidal particles in a two-dimensional substrate potential
with quasicrystalline decagonal symmetry [105]. The colloidal structures were classi-
fied by the bond-orientational order parameter Ψm (m=6, 10 and 20). In the phase
diagrams of Fig. 4.22(a,b) which show the respective phase diagrams for the low and
high density cases, a m-fold bond order was assigned to the phases for Ψm > 0.1.
For both cases, at low V0 the phase transition from the triangular to the fluid phase
is observed. At sufficiently large V0, a quasicrystalline phase with 10-fold symmetry
is favored by the decagonal potential. Interestingly, other phases occur for interme-
diate potential strengths. In the low density case (Fig. 4.22a), a quasicrystalline
phase with pure 20-fold bond order is found, i.e., where Ψ20> 0.1 but Ψ10< 0.1.
In the high density case (Fig. 4.22b), the intermediate phase does not display any
bond-orientational order. For A/av = 0.58, a distinctive feature occurs and the
archimedean-like tiling phase is observed.

Figure 4.22: Phase diagrams for low (a) and high (b) colloidal densities depending on the
potential strength V0 (in units of kBT ) and the particle spacing A (in units
of aV ) in an ideal triangular lattice. [105]
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As seen in Fig. 4.23, also the simulation data show the formation of an archimedean-
like tiling phase. A sequence that corresponds to 77 single or double rows of triangles
was identified [104] and within this range the observed sequence is exactly the se-
quence of the Fibonacci chain, if one identifies a double row with L and a single row
with S.

Figure 4.23: Archimedean-like tiling phases obtained by Monte Carlo simulations induced
by a decagonal substrate. The figure shows a Delaunay triangulation of
the colloidal coordinates where bonds longer than 1.1aS are omitted. The
potential strength is V0/(kBT ) = 20 and the density is given byA/aV = 0.57.
Along the vertical direction a part of the Fibonacci sequence of long (square-
triangle-triangle) and short (square-triangle) stripes is observed. [104]

4.4.6 Archimedean tiling phases in other systems
Because the phase behavior of colloidal monolayers on surfaces is similar to that of
atomic systems [62], structures comparable to those observed in the colloidal systems
are expected to occur in atomic adsorbates on quasicrystalline surfaces. Experiments
with thin copper films deposited on the 5-fold surface of icosahedral AlPdMn quasi-
crystals reveal that above a few monolayers the copper atoms are arranged in rows
spaced in a Fibonacci sequence [102, 42]. The atomic positions relative to the sub-
strate have not yet been identified. However, although the atomic pair interactions in
these experiments are more complex than in colloidal systems, the diffraction pattern
of the copper film is almost identical to that of our intermediate phase (Fig. 4.24).
This close resemblance suggests that the intermediate phase does not necessarily re-
quire complex substrate interactions but is driven by geometrical considerations and
thus might also be observed for other adsorbate/quasicrystal combinations.
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Figure 4.24: Comparison between colloidal and atomic systems. (a) Superposition of dif-
fraction patterns taken from Fig. 4.13d and rotated by multiples of 72◦.
The result is in very good agreement with (b) the LEED pattern of the five-
fold oriented domains of thin Cu films on quasicrystalline Al-Pd-Mn surfaces
[102].

Similar Archimedean tiling was also lately observed for binary mixtures of nano-
particles situated between a cubic and a dodecagonal phase [49]. At the periphery of
large quasicrystal domains observed in self-assembled system of binary nanoparticles
(Fig. 4.25), a smooth transition between a decagonal quasiperiodic phase and a cubic
phase was observed. The transition between the two topologically different phases
was achieved through a region of (33.42) archimedean tiling that matched both phases
with a low concentration of interfacial defects. This demonstrates the unique feature
of this phase with crystalline and quasicrystalline structural properties.

Figure 4.25: Structure of the interface between quasicrystalline and crystalline phases in
a self-assembled system from 12.6 nm Fe3O4 and 4.7 nm Au nanocrystals.
The transition from the dodecagonal phase to the cubic phase is facilitated
by the presence of a (33.42) Archimedean tiling [49].
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4.5 Conclusion
Our experiments show that colloidal systems on decagonal light patterns allow us to
understand the equilibrium structure of monolayers on quasicrystalline surfaces. We
found that the phase transition from a triangular crystalline structure to a decagonal
quasiperiodic phase occurs in two stages. First, rows of quadratic tiles are formed
leading to a destruction of the local periodic ordering perpendicular to the rows.
In a second stage, at a critical laser intensity, pentagonal tiles start to form and
lead to the quasiperiodic ordering. We also found that for specific densities, the
quadratic rows can be infinitely long and lead to the formation of a pseudomorphic
phase that shows both crystalline and quasicrystalline structural properties. It can
be described by an archimedean-like tiling consisting of alternating rows of square
and triangular tiles. The calculated diffraction pattern of this phase is in agreement
with recent observations of copper adsorbed on icosahedral Al70Pd21Mn9 surfaces.
In addition to establishing a link between archimedean tilings and quasicrystals, our
experiments allow us to investigate in real space how single-element monolayers can
form commensurate structures on quasicrystalline surfaces.
This approach can be also extended to investigate dynamical processes on quasi-

crystalline surfaces. By introducing phase shifts between the interfering laser beams,
phason or phonon modes can be induced in the substrate. These elementary excita-
tions are important for the three-dimensional growth of quasicrystals and it will be
interesting to study how such substrate excitations modify the behavior of adsorbed
thin films.



CHAPTER 5

FORMATION OF COLLOIDAL QUASICRYSTALS WITH
ANOMALOUS SYMMETRIES

Despite a strong potential for numerous technical applications, the conditions under
which quasicrystals form are still poorly understood [106, 4, 107, 108, 109, 110].
Currently, it is not clear why all two-dimensional quasicrystals are of a rank ∆ = 4
but no single example with ∆ ≥ 6 has ever been observed [111, 112]. Here we report
on geometrical constraints which impede the formation of quasicrystals with certain
symmetries in a colloidal model system. This is achieved by subjecting a colloidal
monolayer to N=5- and 7-beam quasiperiodic potential landscapes, i.e. ∆ = 4 and
∆ = 6 respectively. Our results clearly demonstrate that quasicrystalline order is
much easier established for N = 5 compared to N = 7. With increasing laser intensity
we observe that the colloids first adopt quasiperiodic order at local areas which then
laterally grow until an extended quasicrystalline layer forms. As nucleation sites
where quasiperiodicity originates, we identify highly symmetric motifs in the laser
pattern. We find that their density strongly varies with n and surprisingly is smallest
exactly for those quasicrystalline symmetries which have never been observed in
atomic systems. Since such high symmetry motifs also exist in atomic quasicrystals
where they act as preferential adsorption sites, this suggests that it is indeed the
deficiency of such motifs which accounts for the absence of e.g. materials with 7-fold
symmetry.

Interestingly, we also observe the formation of the same archimedean-like tiling
phase (shown in the previous chapter) on the tetradecagonal potential at densities
for which the potential energy of the colloidal system is minimized. Although the
structure can also be described by rows of triangles and rows of squares, a closer
analysis reveals substantial differences. Here, large domains with almost periodic
ordering are found. We show that this behavior is closely related to the low density
of the high symmetry motifs.

107
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5.1 Peculiarity of quasicrystals with rank ∆ = 6
Although geometrical principles do not forbid structures with arbitrary rotational
symmetry, experimentally only quasicrystals with 5-,8-,10-, 12-fold (axial symme-
tries) and icosahedral point group symmetries have been found [111]. Interestingly,
for all axial symmetries, the minimum number of incommensurate wave vectors ∆
(rank) required to span the reciprocal space is 4 and for the icosahedral symmetry
∆ = 5 (for details refer to 1.2.4). It is interesting to ask why e.g. solids with 7-fold
rotational symmetry (∆ = 6) do not exist because this will give insights into the
mechanisms governing the formation of ordered matter in general.
According to some energetic-based considerations, it has been shown that if only

the two-dimensional part of quasicrystals is taken into account, only those based on
quadratic irrationalities should be energetically stable [113]. Consequently, only 5-,
8-, 10-, and 12-fold symmetries would be allowed. Nevertheless, three-dimensional
quasicrystals, based on cubic irrationalities, such as 7- and 9-fold, would also be
possible according to thermodynamics-based considerations [114].
Simple geometrical arguments can illustrate the peculiarity of quasicrystals with

rank ∆ = 6 (Fig. 5.1) [112]. Starting with a pentagonal, hexagonal or heptagonal tile,
one can construct 5-, 6- or 7-fold structures by iteratively adding identical clusters
at the free edges. Although the building complexity of all three structures is quite
similar, their decoration with atoms or molecules is not. Contrary to the 5-fold
structure which leaves voids (white), the 7-fold structure causes overlaps of different
shapes (green). Their atomic decoration becomes nontrivial due to steric hindrance.
Similar, non-uniform overlaps, however, also occur for e.g. 8-fold structures (being
indeed observed in atomic systems); therefore additional reasons for the absence of
7-fold quasicrystals must exist.

5.2 Comparison of the phase behavior of colloids on
lattices with rank ∆ = 4 and ∆ = 6

Because there exist no regular or semiregular polyhedra with more than 5-fold sym-
metry, any quasicrystal with rank R ≥ 6 will be comprised of periodically stacked
quasicrystalline layers [115]. Therefore, in our work we search for hurdles that im-
pede the formation of certain symmetries in two-dimensional systems. We create
quasiperiodic potentials with rank ∆ = 4 and rank ∆ = 6. As described in 3, this
is achieved by interfering N=5 and 7 laser beams. The resulting intensity patterns
have 10- and 14-fold symmetry, i.e decagonal and tetradecagonal respectively.
Fig. 5.2 show the measured intensity distribution of quasiperiodic light patterns

created from 5 and 7 laser beams which exhibit differently sized pentagonal and
heptagonal structures. The characteristic length scales of both patterns has been
adjusted to the same value of av = 7.5 µm.
In Figs. 5.3 and 5.4 we qualitatively compare how a colloidal system responds

to these patterns as a function of the areal laser intensity I0. The particle density
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Figure 5.1: Construction of 5-, 6- or 7-fold tilings. Assembly of periodic and quasipe-
riodic tilings according to the method of polysynthetic twinning [112]. The
construction principle consists in starting with a nucleus polygon and then
iteratively adding others to the free edges. Pentagons lead to a tiling with
quasiperiodic 5-fold local symmetry including gaps (white). From hexagons
a periodic tiling without any gaps is obtained. For heptagons, the tiling
contains both gaps (white) and nonuniform overlapping regions (green) lea-
ding to non-trivial steric hindrance problems when decorating the tiles with
atoms.

and the Debye screening length were chosen such, that the colloids (R = 1.45 µm)
form a liquid in the absence of the laser field. In case of the 5-beam pattern, the
colloids follow the underlying potential already at quite small intensities as seen by
the formation of local pentagons. At a laser intensity of about I0 = 2.82 µWµm−2 the
particle configuration almost perfectly resembles the underlying interference pattern.
In contrast, when exposing the colloidal system to a 7-beam pattern, the particles

do only rarely form heptagons at the same intensity. Even at I0 = 5.08 µWµm−2

(Fig. 5.3b) the particles do not equally respond to the pattern compared to Fig.
5.4b. To quantify this observation, in Fig. 5.5 we show the corresponding bond
orientational order parameter normalized by the maximal value Ψm can achieve. It
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Figure 5.2: Contour plots of the intensity distribution of a 5-beam (a) and a 7-beam (b)
pattern with characteristic length scale av = 7.5 µm. They exhibit charac-
teristic motifs (shown as black solid lines), pentagonal in (a) and heptagonal
in (b). The dashed lines correspond to the directions of the incident laser
beams. The scale bare denotes 15 µm.

Figure 5.3: Colloidal monolayer subjected to a 5-beam interference pattern (φ =
0.028 µm−2), at different laser intensities. For higher intensities, the par-
ticles adapt the structure of pentagonal motifs (red). The scale bare denotes
15 µm.

Figure 5.4: Same colloidal monolayer as in fig. 5.3 subjected to a 7-beam interference
pattern, at different intensities. Only at very high intensities, the particles
adapt the structure of heptagonal motifs (red). The scale bare denotes 15 µm.
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is clearly seen that at I0 = 2.82 µWµm−2 the particles on the 5 beam interference
pattern have achieved almost 70% of the saturation value while in case of the 7 beam
interference pattern even for the highest experimental intensity I0 = 5.08 µWµm−2

only 40% of the corresponding maximum value were achieved. Similar results were
obtained for other particle densities and Debye screening lengths. Obviously, quasi-
crystalline order induced by a quasiperiodic light potential of N=7 is only achieved
at much higher potential strengths of the light field compared to N=5.

Figure 5.5: Comparison of the bond-orientational order parameter Ψm of the colloidal
system on quasiperiodic patterns of 5 (m=10) and 7 (m=14) laser beams.
Ψm is normalized by the maximal value it can achieve.

5.3 Phase transition from a periodic crystal to a
tetradecagonal quasicrystal

To understand on a microscopic scale what prevents the colloidal particles to follow
the 7 beam quasiperiodic pattern at small laser intensities, we increased their den-
sity and electrostatic interaction which results in the formation of large hexagonal
colloidal domains in the absence of the laser field. Due to the well defined particle
positions in a periodic crystal (compared to a liquid) this facilitates the analysis how
the particles respond to a quasiperiodic potential landscape.
Fig. 5.6 shows typical particle snapshots showing how a colloidal crystal responds

to a 7-beam pattern of increasing laser intensity. In order to highlight regions where
the hexagonal order becomes destroyed due to the interaction of the particles with
the quasiperiodic light field, we have applied a Delaunay triangulation (lines) and
encoded the number of nearest neighbors with different colors (green=5, blue=6,
red=7). With this representation one can easily identify regions where the initial
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Figure 5.6: Phase transition from a periodic crystal to a quasicrystal on a 7-beam pat-
tern. (a-c) Delaunay triangulation of typical particles configurations for a
colloidal monolayer interacting with a 7-beam interference pattern of increa-
sing intensity; φ = 0.033 µm−2, av = 8.5 µm. The particle coordination 5, 6,
7 is encoded in green, blue and red, respectively. The scale bar corresponds
to 20 µm. (d) Two-dimensional structure factor calculated for the particle
configuration in (c).
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hexagonal structure of the particles becomes distorted by the underlying laser field.
For I0 = 0 the particles arrange in a single hexagonal domain with most of the
particles having 6 nearest neighbors. Upon increasing I0, the interaction with the
quasiperiodic laser field leads to an increasing number of defects. Interestingly, these
defects develop at rather localized regions (center of Fig. 5.6a and remain there
during the entire measurement. Further increase of I0 leads to a spatial extension
of the defect area (Fig. 5.6b) until finally most of the particles lost their 6-fold
coordination (Fig. 5.6c). In this situation, the particles almost perfectly follow the
underlying quasiperiodic light field as seen by the 14-fold rotational symmetry of the
corresponding structure factor (Fig. 5.6d).

Figure 5.7: (a) Contour plot of the 7-beam light pattern with heptagons (green) and high
symmetry stars (yellow). (b-d)Particle positions (taken from 5.6) superim-
posed to the light pattern (grey contour). Particles whose nearest neighbors
are not 6-fold coordinated and overlap by more than 50% with an intensity
maximum of the laser field are colored in red (white otherwise). The yellow
and green patterns indicate distinct symmetric motifs in the laser pattern and
are a guide to the eye.

To identify what determines the positions where the defects first occur, in Figs.
5.7b-d we superimposed the particle positions taken from Figs. 5.6a-c with the
laser intensity distribution (light grey). In red we marked those colloids which most
strongly respond to the quasiperiodic laser lattice, i.e. whose nearest neighbors
lost their original 6-fold coordination and which overlap with quasiperiodic potential
wells (all other particles are white). As seen from Fig. 5.7b, the particles which most
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strongly respond to the interference pattern are those at so-called high symmetry
stars (yellow) which correspond to local motifs in the laser lattice having the highest
possible local rotational symmetry. High symmetry stars are comprised of a central
potential well surrounded by 14 others. Since the potential wells are rather deep, they
enforce a colloidal arrangement with quasiperiodic order. Upon further increasing I0,
quasicrystalline order laterally spreads around the high symmetry stars until almost
all particles lost their 6-fold coordination and follow the quasicrystalline potential
(Fig. 5.7a). From this we conclude, that the high symmetry stars of the laser
pattern act as preferential adsorption sites where quasicrystalline order is initiated
in the colloidal monolayer. Interestingly, the particles do not equally respond to the
heptagonal motifs (green circles in Figs. b-d) of the laser pattern although their
potential depths is similar to that of the high-symmetry stars. Obviously, the deep
central potential wells of high symmetry stars (which are absent in the heptagons)
plays an important role for the decoration of high symmetry stars with colloidal
particles.

5.4 High symmetry stars density
After having identified high symmetry stars as nucleation sites of quasicrystalline
order in the colloidal system, we expect that a high density of such stars should
largely facilitate the extention of quasiperiodic order across the entire system. To
demonstrate that this is indeed the case, we calculated the density of high symmetry
stars for interference patterns created with 3 ≤ n ≤ 12 laser beams. As shown in
the chapter 3, high symmetry stars occur in any interference pattern created with
n beams. They are not limited to 7-fold patterns but appear in any interference
pattern of n laser beams. Fig. 5.8 illustrates such patterns of N=3, 5, 7, 8 laser
beams together with the corresponding HSS. Depending on whether N is even or
odd, they exhibit either N- or 2N-fold rotational symmetry.
Fig. 5.9a shows how the number density F of such stars varies with N. In our

calculations, the number density of high symmetry stars F is determined by calcu-
lating the potentials that correspond to the intensity distribution of the laser fields
and determining the fraction of local minima whose depths is at least 99 % of the
deepest well. At a deep potential well the laser beams are almost in phase and the-
refore such a minimum is the center of a high symmetry star. Although the number
density varies over several orders of magnitude depending on N, three regimes can
be distinguished: for periodic laser patterns with N=3, 4 or 6 laser beams, F is of
the order of 1 (i). For N=5, 8, 10 and 12, i.e. for laser fields with rank ∆ = 4, the
value of F is about two orders of magnitude smaller (ii) and for N=7, 9, 11 (∆=6)
the density of high symmetry stars becomes smallest (iii). It is important to realize
that all quasicrystalline symmetries in regime (ii) have been experimentally observed
in atomic systems [116] while no single example of regime (iii) was ever found.
This systematic dependence of F reported in Fig. 5.9a does not only occur for

interference patterns but is a general feature of quasiperiodic order. It is also found
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Figure 5.8: Calculated 3-, 5-, 7- and 8-beam patterns. The inset shows typical HSS for
each pattern. The white polygons highlight the HSS. When potential wells
are deeper than V = 0.95V0 (V0 being the deepest potential well), they are
considered as centers of the stars. The hexagons in the case of the 3-beam
pattern are not plotted.
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in n-fold rhombic tiling based on the dualization of an n-fold grid [117]. They are
constructed from n grids of parallel lines pointing along n symmetrically distributed
directions and have the same rotational symmetry as an n-fold light pattern. The
number density of HSS was calculated for rhombus tilings with up to 4×107 vertices
by Johannes Roth (Fig. 5.9b). For n prime it is possible to estimate the frequency
of HSS in the rhombus pattern analytically by the projection method which is com-
pletely equivalent to the dual-grid-method: The rhombus pattern is produced by
projection from n to 2 dimensions. The acceptance domain is the complementary
(n-2)-dimensional projection of a hypercube and contains the acceptance domain of
the HSS at its center. The frequency of the HSS can be determined if we assume
that both domains are similar (which is an underestimation, since the HSS domain
is larger). The existence condition for the HSS and thus the similarity factor S is
given as in [118]. Then the frequency of HSS is roughly S(n-2). Although the high-
dimensional polytopes get exceedingly complex we have succeeded in checking the
accurateness of the estimate by calculating the volumes and cross sections of the po-
lytopes exactly up to n=7 and partially up to n=11. Despite quantitative variations
compared to Fig. 5.9a, the differences between observed and not observed atomic
quasicrystalline symmetries are obvious.

Figure 5.9: (a) Number density of high symmetry stars F calculated for n-beam patterns
with 3 ≤ n ≤ 12. The density of high symmetry stars is defined by the fraction
of wells deeper than 99% of the deepest well. For 11-beam patterns the value
provides an upper limit. (b) Same as (a), but calculated for rhombus tilings.

This remarkable coincidence cannot be accidental. It suggests that a similar ar-
gument, i.e. a deficiency of high symmetry motifs, may also explain why certain
quasicrystalline symmetries are not observed in atomic systems. In contrast to crys-
tals which are periodic in all three dimensions, quasiperiodicity is always (except
for icosahedral quasicrystals) restricted to two dimensions [115]. Accordingly, three-
dimensional quasicrystals are comprised of a periodic stacking of quasiperiodic layers
and any hurdle in the formation of quasiperiodic order within a single layer will even-
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tually prohibit their growth along the periodic direction. Indeed, strong evidence for
the importance of symmetric motifs for the formation of quasiperiodic order in ato-
mic systems has been recently obtained by scanning-tunneling microscopy studies
and ab initio calculations [38, 119] where the structure of thin overlayers adsorbed
on quasiperiodic surfaces was determined. Only for certain atoms, which do prefe-
rentially absorb on these motifs, extended thin films with quasiperiodic order have
been observed.

5.5 Archimedean-like tiling phase on tetradecagonal
lattices

In the previous chapter, we have shown that subjecting a crystalline monolayer to a
laser pattern with decagonal symmetry can lead to the formation of an archimedean-
like tiling phase where rows of squares and triangles are order aperiodically along one
direction [101]. In this section, we show that a similarly ordered intermediate phase
can also occur on laser patterns with tetradecagonal symmetry. When hexagonal
monolayers, with densities, at which the colloid-substrate interaction is minimized,
is subjected to a 7-beam pattern, a structure also consisting of alternating rows of
squares and rows of triangles is found. In the following, we study the phase behavior
of a colloidal system which is denser than the system in section 5.3 interacting with
a tetradecagonal substrate potential. We investigate the structure of the occurring
intermediate phase and show that, in contrast to the decagonal case, the ordering is
rather periodic in both directions. We also show that this behavior is related to the
low density of the high symmetry motifs.
In this experiment, polystyrene colloidal particles with radius R = 1.45 µm are

used. The system is prepared so that the density is φ = 0.036 µm−2, i.e. 3500
particles homogeneously distributed in the field of view (the choice of this specific
density will be explained later). In the absence of the quasiperiodic light potential,
spontaneous crystallization is observed. The particles thus adapt a triangular struc-
ture with long range order and a mean particle distance A = 5.39 µm. The sample is
later exposed to an interference pattern with characteristic length scale av = 7.5 µm
thus A/av = 0.72. The laser intensity I0 is stepwise increased with a time interval of
2000 seconds.
The change in the particle configuration upon increasing the laser power I0 can be

clearly seen in the change of the bond length histogram shown in Fig. 5.10. At low
I0, a sharp monomodal distribution with a peak located at the mean particle distance
A = 5.39 µm is observed. This indicates a periodic crystalline phase characterized
by one length scale, i.e. the particle mean average distance. By increasing the
laser intensity, the peak slightly shifts to lower distances and simultaneously another
peak starts to form at larger distances (green arrow). For I0 = 1.11 µWµm−2 the
distribution clearly becomes bimodal with the ratio of the two peak positions close to√

2. The position of the first peak coincides well with the shortest length scale of the
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Figure 5.10: Bond-length histogram calculated for the particle configurations at different
potential strength. The red arrows mark the positions of the pattern three
length scales and the green arrow located at A

√
2 points at the peak corres-

ponding to the diagonal of the square tiles.

underlying pattern (red arrow). Obviously, the colloid-substrate interaction is strong
enough to overcome the colloid-colloid repulsion resulting in a shift in the position of
the peak of about 230 nm. The second peak (green arrow), however, does not coincide
with any of the larger length scales of the tetradecagonal pattern (red arrows). Since
the bond length distribution depends sensitively on the structure of the different
phases, and since a quasiperiodic order would lead to a three-modal distribution
(3.6.3), one would expect that this distribution corresponds to an intermediate phase
containing quadratic tiles. The fact that the ratio of the two peak positions is (

√
2)

suggests the formation of quadratic tiles with a diagonal bond length equal to A
√

2.
To confirm the hypothesis of the occurrence of an intermediate phase, we construct

the tiling of single snapshots taken at different laser intensities. Figure 5.11 shows
how the colloidal monolayer changes when the substrate strength of the tetradecago-
nal substrate is increased. In absence of a substrate potential the system crystallizes
(5.11a). The observed structure contains two triangular domains (green tiles) orien-
ted along two directions having an angle of 85◦. Apart from the defects along the
domain wall, each vertex is surrounded by six triangular tiles forming a (36)-vertex
type. When I0 is increased to I0 = 0.37 µWµm−2, the particles strongly interact with
the surface potential, and the tiling of the colloidal system does not only consist of
triangular tiles. The particle-substrate interaction is strong enough to create geome-
trical defects in the form of quadratic tiles (blue). The observed structure shows a
coexistence between regions where the triangular ordering prevails (white contour)
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Figure 5.11: Real space structure of the adsorbate. Tiling of the phases for I0 =
0 µWµm−2 (a) I0 = 0.37 µWµm−2 (b) I0 = 0.61 µWµm−2 (c) and I0 =
0.86 µWµm−2 (d). The scale bar is 20 µm.

and regions with triangular and quadratic tiles. An increase of the laser intensity,
I0 = 0.86 µWµm−2, leads to a complete destruction of the triangular ordering and
the formation of rows of quadratic tiles. These rows are mainly aligned along two
directions making an angle of about 72◦. The analysis of the static phason strain
occurring in the underlying substrate (for details see 3.5.4) has also shown that these
orientation match with the directions of the substrate with low density of jaggs.
The structure in Fig. 5.11d is almost identical with the archimedean-like tiling

observed on decagonal substrates (as shown in 4.4). Exemplary, we show in Fig.
5.12a the ordering of 53 horizontally aligned rows of squares and rows of triangles.
Except for few defects, the tiles in this situation mainly form a (33.42)-vertex type.
Similar to the situation on the decagonal substrate, disruptions at larger length scales
must occur. Indeed, as shown by two black arrows double square rows interrupt the
periodic sequence of alternating rows of squares and rows of triangles. Accordingly,
this phase consists of large periodic regions that correspond to a perfect archimedean
tiling of type (33.42) and the periodicity is only interrupted by a few double rows
of squares. Fig. 5.12b shows a cut of the archimedean-like tiling phase observed on
decagonal substrates. In contrast to Fig. 5.12a, the double triangular rows (black
arrows) occur more often and lead to an aperiodic ordering perpendicular to the
rows.
In order to understand why the interstial rows are of a different nature between the

decagonal and the tetradecagonal cases, we next look at the position of the colloids on
the different substrates. In Fig. 5.13 the substrate-adsorbate correlations are plotted
for both tetradecagonal (a) and decagonal (b) substrate potentials. It can be clearly
seen that the interstial rows occur at positions where high symmetry stars are present.
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Figure 5.12: Comparison between archimedean-like tiling structures on tetradecagonal
substrates (I0 = 0.86 µWµm−2 and A/av = 0.72) (a) and decagonal sub-
strates (I0 = 3 µWµm−2 and A/av = 0.62) (b). The arrows point at disrup-
tions that occur as additional interstitial rows of squares in (a) and triangles
in (b).

Figure 5.13: Substrate-adsorbate correlations. Tiling of both intermediate phases sho-
wing interstial rows superimposed on the laser intensity distributions. For
the tetradecagonal case (a) the interstitial rows are double square rows and
for the decagonal case (b) double trangular rows. The interstial rows occur
at positions where high symmetry stars are present (red arrows).
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Obviously, a double row of squares occurs at a 14-fold high symmetry star and a
double triangular row at a 10-fold high symmetry star. Since in a tetradecagonal
laser field local symmetry stars are rare (ref. 5.4), only few double rows of squares
exist in the archimedean-like tiling structure. For the decagonal case, there are
much more symmetry stars and subsequently much more double rows exist in the
archimedean-like tiling phase of a decagonal substrate.

Figure 5.14: Calculated 7- and 5-beam, (a) and (b) respectively, interference patterns
and a projection of the intensities along the x direction. In between the
high peaks the number of square and triangle rows that can fit is indicated.
The dashed blue line indicates the intensity threshold used to determine the
highest peaks.

The spacing of those interstitial rows is illustrated in Fig. 5.14. For numerical
7- and 5-beam patterns, (a) and (b) respectively, we calculate the projection of the
intensities along the x direction (in red). As stated before, the central intensity
maximum of a high symmetry star is, compared to all other maxima, the highest.
Accordingly, the spacing between the highest peaks in the intensity projection must
be equal to the spacing between the interstial rows observed in the tiling of the
colloidal particles. By choosing an appropriate threshold (dashed blue line), the
highest peaks are selected and the number of rows fitting in between is calculated.
In the case of the tetradecagonal pattern, a large number of rows, ranging from
4 to 16, can fit in between two peaks. For the decagonal pattern, only three or
five rows are obtained. The sequence of these three and five rows is, as mentioned
previously, a Fibonacci sequence reflecting on an intermediate length scale the long
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range quasicrystalline order along one direction. This result is in good agreement
with the experimental data.

Figure 5.15: (a) Average potential energy of a colloid in the tetradecagonal potential cal-
culated for a triangular and for an archimedean tiling structure as a function
of density, which is given by the particle spacing A/aV . (b) Archimedean-like
tiling phases obtained by a Monte Carlo simulations induced by a tetrade-
cagonal substrate. The figure shows a Delaunay triangulation of the colloi-
dal coordinates where bonds longer than 1.1aS are omitted. The potential
strength is V0/(kBT ) = 20 and the density is given by A/aV = 0.7.

The densities, at which archimedean-like tilings occur under the influence of the
tetradecagonal substrate potentials, are shown in Fig. 5.15a [104]. The calculated
average potential energy of a colloid within an archimedean tiling structure as a
function of the particle spacing A/av shows pronounced minima at A/av = 0.557,
A/av = 0.691, and A/av = 0.861. The second minimum matches well with the
experimental data. This proves, once again, that such intermediate phases occur
at densities for which a high number of particles is located in a potential well and
subsequently the average potential energy is minimized. Our experimental data were
also reproduced by Monte Carlo simulations [104]. Fig. 5.15b shows the formation
of an archimedean-like tiling phase on a tetradecagonal substrate with potential
strength V0/(kBT ) = 20 for a density equal to A/aV = 0.7.
Interestingly, simulations using substrate potentials with other quasiperiodic sym-

metries also show similar phases. For example, on a 8-beam pattern rows of squares
and triple or four-fold rows of triangles are observed [104]. A 10-beam pattern favors
exactly the same structure as the decagonal potential created by 5-beams. For the
case of eleven beams, characteristic rows of triangles and squares are also observed.

5.6 Conclusion
From our experiments we conclude that colloidal particles on quasicrystalline laser
fields favor symmetries with rank ∆ = 4 compared to ∆ = 6. This behavior is
attributed to large differences in the number of highly symmetric sites where quasi-
crystalline order first originates. The remarkable coincidence between the symmetries
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with low density of high symmetry stars and the non-observed symmetries in atomic
systems suggests that a similar argument, i.e. a deficiency of high symmetry mo-
tifs, may also explain why certain quasicrystalline symmetries are not observed in
atomic systems. The importance of symmetric motifs for the formation of quasipe-
riodic order in atomic systems has been also recently reported by scanning-tunneling
microscopy studies and ab initio calculations [38, 119] where the structure of thin
overlayers adsorbed on quasiperiodic surfaces was determined. It should be empha-
sized, that geometrical considerations do not only play an important role for the
growth of quasicrystals. Recent experiments demonstrate, that e.g. the electronic
properties of Pb monolayers with quasiperiodic and periodic order are quite different
[38]. In addition, the friction [23] or the lattice vibrations [24] also strongly depend
on the quasiperiodic long range order.
By studying of the phase behavior of colloids on tetradecagonal substrates, we also

find that intermediate archimedean-like tiling phases are not exclusive to decagonal
substrate potentials. Similar phase also occur on tetradecagonal potentials. While
the ordering perpendicular to the rows in the decagonal case is aperiodic, for the
tetradecagonal case large periodic sequences interrupted by interstitial double rows
of squares are observed. This behavior is also related to the low density of the high
symmetry motifs.





CHAPTER 6

MICROMETER-SCALE QUASICRYSTALLINE
MATERIALS

Because quasicrystals have higher point group symmetry than ordinary crystals,
micrometer-scale quasicrystalline materials are expected to exhibit large and isotropic
photonic bandgaps in the visible range [53, 100]. In this chapter, we report the
fabrication of large colloidal quasiperiodic layers incorporated in a polymer hydrogel
matrix. The quasiperiodic symmetries are induced using extended light fields. The
present gelled colloidal quasicrystals are unique in that they have large sizes as well
as good optical uniformity. With laser diffraction the in situ variable length scale
of such materials is demonstrated. Also preliminary stacking experiments aiming to
create three-dimensional structures are presented.

6.1 Introduction
Photonic crystals are materials with periodically repeating variations in refractive
index [120]. An electromagnetic wave propagating inside these structures undergoes
constructive or destructive interferences, depending on its frequency [121]. These
effects lead to the appearance of allowed or forbidden frequency bands (stop-bands).
Photons in the stop-band will not propagate in any dimension inside the photonic
band gap (PBG) crystal. The ability of PBGs to control, reflect, or redirect light
has powerful applications in photonics and optoelectronics [122].
Until recently, the only known materials with complete PBGs were photonic crys-

tals comprised of a periodic arrangements of dielectric materials. One can define a
Brillouin zone because of the periodicity; and a complete photonic gap (i.e., bandgaps
for any propagation direction in the periodicity plane and for both polarizations) is
formed when the spectral gaps at the Brillouin zone boundary overlap in all direc-
tions. The spatial arrangement of two-dimensional photonic crystals corresponds to
one of the five two-dimensional Bravais lattices. Among these five lattices, the tri-

125



126 CHAPTER 6. MICROMETER-SCALE QUASICRYSTALLINE MATERIALS

angular and honeycomb ones possess the highest order of rotational symmetry (six),
and the Brillouin zone that is the closest to the circle. They exhibit the widest
two-dimensional complete bandgaps [123]. Nevertheless, the band diagram of these
lattices remains strongly dependent on the light propagation direction.
Because quasicrystals have higher point group symmetry than ordinary crystals,

they are expected to have a complete bandgap that is more closely spherically sym-
metric [53]. In the search for structures with isotropic optical properties, photonic
quasicrystals were studied both theoretically and experimentally [121, 120, 124]. For
instance, quasicrystals with 8-, 10-, and 12-fold rotational symmetries were propo-
sed [121]. These lattices present a higher order of local rotational symmetry than
Bravais lattices. Their spectral properties are thus much less dependent on the pro-
pagation direction. Quasiperiodic symmetries facilitate the development of PBG for
light propagating through quasicrystalline dielectric heterostructures, even when the
dielectric contrast among the constituent materials is low.
Colloidal crystals, like photonic crystals, are composite materials with a spatial

periodic distribution of micrometric building blocks. Because of their simplicity and
scalability over a wide range of length scales, colloidal crystals are considered to be
excellent photonic materials for the visible range. Quasiperiodic micrometer-scale
materials have been realized in lithographically or holographically defined quasipe-
riodic structures [124, 125, 95]. Here we propose the use of colloids on extended
quasiperiodic light fields in combination with hydrogel matrices. In contrast to other
methods, here large materials with high optical uniformity can be fabricated.

6.2 Directed-assembly of polymerized quasicrystalline
colloidal layers

Our approach is based on immobilizing colloidal particles, with high index of refrac-
tion, quasiperiodically arranged on large laser fields. We use melamine microspheres
with carboxylic endgroup (MF-COOH-S1748, Microparticles GmbH Berlin). The
melamine particles have according to the manufacturer a diameter of 3.27 µm, a
density of ρMF = 1.51 g/cm3, and a refractive index of nMF = 1.68 much higher
than the index of refraction of silica or polystyrene particles.
Figure 6.1 illustrates the preparation procedure. The particles are first dispersed

in a aqueous solution of monomer-crosslinker and a UV-light-curable photoinitiator.
As monomer and cross-linker we use a 40% (diluted to 30%) aqueous solution of
acrylamide and N,N’-methylenebis(acrylamide) with a mass ratio of 19:1 (Carl Roth).
As photoinitiator we use 2,2-diethoxyacetophenone (Sigma Aldrich). The mixture is
later inserted in a home made cell consisting in two glass substrates and separated
by a d=1mm silicon rubber spacer (Fig.6.1a). The sample cell is then inserted in
the interferometer setup (described in chapter 3) and exposed to a quasiperiodic
light field (decagonal or tetradecagonal) (Fig.6.1b). The laser intensity is gradually
increased over 20 minutes which allows the particles to sample the whole pattern.
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Figure 6.1: (a-c) Schematic drawings illustrating the preparation procedure of a two-
dimensional polymerized colloidal quasicrystal. The description is in the text.
(d) Picture of the resulting sample which contains the polymerized colloidal
quasicrystal.

At very high laser power, I0 > 5 µWµm−2, the particles are trapped in the deep
potential wells. To cure the monomer and to polymerize the gel, the sample is then
homogenously illuminated by a UV-light lamp (X-Cite 120Q, EXFO Mississauga) for
several minutes (Fig.6.1c). The quasiperiodic colloidal crystal is then immobilized
even when the quasiperiodic light field is turned off. The gelled quasicrystals could
be removed from the cell as selfstanding materials. A continuous exposure to air
results in dehydration of the sample, however they are long-time stable in closed
vessels.
Figure 6.2 is a picture of the whole gelled quasicrystal. As the laser beam profiles

are circular, the decagonal colloidal crystal is extended over a circular region (red
lines) with a diameter of about 1.2 mm, i.e. includes about 40000 particles. In
the outer region of the sample cell, the particles are immobilized but the structure
has no long range order. Figure 6.3 shows snapshots taken from the sample after
polymerization. The first (Fig. 6.3a) is taken from a region where the particles were
not exposed to the light field and the second (Fig. 6.3b) from a region exposed to
the light field. The difference in the structure can be clearly seen. In Fig. 6.3b the
particles are arranged along the directions of the laser beams highlighted by the red
lines.
A zoom in the above described images shows the ordering on the level of each

particle. The 220× 176 µm2 cuts in Fig. 6.3(c,d) are taken several months after the
polymerization. They show that the quasiperiodic ordering is perfectly conserved.
As highlighted by the red decagons and the blue pentagons, almost all the particles
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Figure 6.2: Snapshot of the system after polymerization. The red lines surround the
region of the sample containing the quasiperiodic structure. It has a diameter
of 1.2 mm and contains about 40000 particles. In the outer regions of the
sample, the particles are also immobilized.

are located at potential wells. Subsequently, they locally adapt the structure of the
pattern.

6.3 Laser diffraction from two-dimensional layers
The optical uniformity and high quality of the above described quasiperiodic material
can be checked using laser diffraction. Figure 6.4(a,b) shows the visible diffraction
pattern produced by a normally incident green He-Ne laser beam (λ = 543 nm) for
tetradecagonal and decagonal fabricated quasicrystals. The observed Bragg peaks
are sharp with several higher-harmonic peaks confirming the fabrication of a fully-
fledged quasicrystal [54]. Each order has rings of peaks at different cone angles around
the zero-order central peak which is blocked in order to make the higher-order peaks
easily visible. The peaks show a 14- (a) and 10-fold (b) symmetry as expected. These
pictures clearly show the presence of quasiperiodicity within the sample.
The quality of these diffraction patterns, in contrast to other micrometer-scale

quasiperiodic structures as shown in Fig. 6.5 [126, 124, 95], is comparable to x-ray
diffraction patterns obtained from decagonal or icosahedral metal alloys. In figure
6.4c, we show the 5-fold x-ray pattern of a natural quasiperiodic alloy of aluminum,
copper, and iron (Al65Cu20Fe15) [4]. A comparison of the 10-fold laser diffraction
pattern (Fig. 6.4b) with the X-ray diffraction pattern from atomic quasicrystals (Fig.
6.4c) shows that both patterns are almost identical. The correspondence between the
positions of the spots in the laser diffraction pattern with those in the x-ray pattern
provide insight into the nature of the order in the atomic quasicrystal.
The colloidal quasicrystal fixed in the polyacrylamide hydrogel matrix is a highly

elastic material. In order to demonstrate the in situ variable length scale of such
materials we record the change in the 10-fold diffraction pattern while applying a
mechanical deformation to the hydrogel. Figure 6.6 shows the in situ length scale
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Figure 6.3: Snapshots taken from the polymerized sample. (a,b) 850× 680 µm2 cuts
showing the fluid phase adapted by the particles in regions not exposed to
the laser field (a) and the decagonal quasiperiodic phase where the particles
were exposed to the laser field (b). The red lines indicate the directions of the
laser beams. (c,d) 220× 176 µm2 cuts showing the local ordering of melamine
particles with diameter 3.3 µm. (c) Fluid phase and (d) decagonal phase. The
red decagons and blue pentagons highlight some of the main structural motifs
also present in the underlying pattern.



130 CHAPTER 6. MICROMETER-SCALE QUASICRYSTALLINE MATERIALS

Figure 6.4: (a,b) Laser diffraction pattern obtained from the tetradecagonal (a) and de-
cagonal (b) polymerized colloidal quasicrystals. (c) 5-fold X-ray diffraction
pattern obtained from a icosagedral natural alloy of aluminum, copper, and
iron [4].

Figure 6.5: (a) Laser diffraction pattern showing 10-fold symmetric peaks obtained from a
holographic assembly of 173 silica particles [124]. (b) Diffraction pattern using
a green wavelength laser obtained from a quasicrystal structure fabricated
in holographic polymer-dispersed liquid-crystal materials using a multibeam
hololithography exposure technique [95].

variation in real and reciprocal space. The system shown in Fig. 6.6a is stretched
to about 120% of its original size along the x direction. The circular quasiperiodic
region thus becomes elliptical (Fig. 6.6b). The high intensity Bragg peaks are traced
while applying the deformation and the resulting trajectories are plotted in Fig. 6.6c.
As expected the deformation in real space is translated into a change in the position
of the Bragg peaks in the reciprocal space. The trajectories path (evolving from red
to green) shows that the Bragg peaks are displaced along the ky direction.

6.4 Conclusion
Creating large quasiperiodically ordered arrays in the micrometer-scale is quite im-
portant especially for manipulating photons in the visible range. Here, we reported
a different method to create such structures with long-range quasiperiodic order in
two dimensions. Thousands of particles arranged quasiperiodically on extended light
fields are immobilized using a polymerized hydrogel. The gelled colloidal quasi-
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Figure 6.6: In situ length scale variation in real and reciprocal space. (a) Real space
picture of the system. (b) After stretching, the quasiperiodic region of the
sample becomes elliptical. (c) Trajectories (from red to green) of the Bragg
peaks registered while stretching the hydrogel sample.

crystals are unique in that they have large sizes as well as good optical uniformity
demonstrated in the high quality laser diffraction patterns. We also demonstrate the
in situ variable length scale of such materials by applying a mechanical deformation
to the sample and recording the change in the position of the Bragg peaks.

Figure 6.7: Snapshot showing the stacking of double quasiperiodic layers. The image is
focused in (a) on the first layer and in (b) on the second.

Using this fabrication method three-dimensional structures can also be formed.
Figure 6.7 shows preliminary experiments where a layer by layer assembly is applied.
These preliminary results show that this is a promising route for creating novel
photonic structures.





SUMMARY AND OUTLOOK

Quasicrystals provide a fascinating class of materials with partially unique proper-
ties. Compared to crystals, quasicrystalline surfaces exhibit much larger structural
and chemical complexity leading e.g. to unusual frictional, catalytical or optical pro-
perties. Accordingly, deposition of thin films onto such substrates can lead to novel
structures which may even exhibit typical quasicrystalline properties. Recent expe-
riments indeed demonstrate 5-fold symmetries in the diffraction pattern of metallic
layers adsorbed onto quasicrystals. In this Thesis we report on a real-space investi-
gation of the phase behaviour of a colloidal monolayer interacting with a decagonal
substrate created by interfering five laser beams. Different starting configurations,
such as dense fluid and triangular crystals with different densities, are prepared. At
low intensities and high particle densities, the electrostatic colloidal repulsion do-
minates over the colloid-substrate interaction and the crystalline structure remains
mainly intact. As expected, at very high intensities the colloid-substrate interaction
dominates and a quasiperiodic ordering is observed. Interestingly, at intermediate
intensities we observe the alignment of crystalline domains along the 5 directions
of the quasicrystalline substrate. This is in agreement with observations of Xenon
atoms adsorbed on the ten-fold decagonal Al-Ni-Co surface and numerical simu-
lations of weakly adsorbed atomic systems. Intermediate phases are observed for
colloid-substrate interactions strong enough to produce defects in the crystal. These
defects adapt the form of rows of quadratic tiles. Surprisingly, for specific particle
densities (at which the colloid-substrate interaction is minimized) we identify a novel
pseudomorphic phase which exhibits likewise crystalline and quasicrystalline struc-
tural properties. It can be described by an Archimedean-like tiling consisting of
alternating rows of square and triangular tiles. The calculated diffraction pattern of
this phase is in agreement with recent observations of copper adsorbed on icosahedral
AlPdMn surfaces. In addition to establishing a link between Archimedean tilings and
quasicrystals our experiments allow to investigate in real space how single-element
monolayers can form commensurate structures on quasicrystalline surfaces.
In the second part of this Thesis the conditions under which quasicrystals form

are investigated. Currently, it is not clear why most quasicrystals hold 5- or 10-fold
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symmetry but no single example with 7 or 9-fold symmetry has ever been observed.
Here, we report on geometrical constraints which impede the formation of quasi-
crystals with certain symmetries in a colloidal model system. Experimentally, this is
achieved by subjecting a colloidal monolayer to two-dimensional quasiperiodic poten-
tial landscapes created by N = 5 and 7 laser beams. Our results clearly demonstrate
that quasicrystalline order is much easier established for N = 5 compared to N = 7.
With increasing laser intensity we observe that the colloids first adopt quasiperiodic
order at local areas which then laterally grow until an extended quasicrystalline layer
forms. As nucleation sites where quasiperiodicity originates, we identify highly sym-
metric motifs in the laser pattern. We find that their density strongly varies with n
and surprisingly is smallest exactly for those quasicrystalline symmetries which have
never been observed in atomic systems. Since such high symmetry motifs also exist
in atomic quasicrystals where they act as preferential adsorption sites, this suggests
that it is indeed the deficiency of such motifs which accounts for the absence of e.g.
materials with 7-fold symmetry. In addition to the fundamental aspects, we also de-
monstrate that the combination of extended light fields and hydrogel matrices lead
to the formation of quasiperiodically ordered colloidal materials. The reported gelled
colloidal quasicrystals are unique in that they have large sizes as well as good optical
uniformity. With laser diffraction we demonstrate the in situ variable length scale of
such materials.
After having demonstrated that colloids on quasiperiodic light fields are a good mo-

del system, other apsects can be in the future investigated. This approach can be used
to study the elastic properties of a two-dimensional colloidal quasicrystals. Similar
studies on periodic systems have shown that the phonon band structure can be tuned
depending on the symmetry and depth of the substrate potential. Subsequently, the
investigation of quasiperiodic structures must be of high interest since there are no
restrictions on the rotational symmetries. Our approach can also be extended to
investigate dynamical processes on quasicrystalline surfaces. By introducing phase
shifts between the interfering laser beams, phason modes can be induced in the sub-
strate. Such elementary excitations are important for the three-dimensional growth
of quasicrystals and it will be interesting to study how such substrate excitations
modify the behaviour of adsorbed thin films. Also by introducing controlled phase
shifts, long-wavelength phonon modes can be induced. Such modes lead to a conti-
nous translation of the laser pattern. This enables the study of friction on periodic
and quasiperiodic substrates, and the investigation of collective sliding states as a
function of substrate strength.
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