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Abstract

We construct a pinching semiconjugacy from a quadratic polynomial
fc(z) = z2 + c with c ∈ (0, 1/4) to f1/4(z) = z2 + 1/4 on the sphere. By
lifting this semiconjugacy to their natural extensions, we investigate the
structure of the regular leaf space of f1/4 in detail.

1 Introduction

As an analogy to hyperbolic 3-orbifolds associated with Kleinian groups, Lyu-
bich and Minsky[2] introduced hyperbolic orbifold 3-laminations associated with
rational maps. For a given rational map of degree ≥ 2, considering its natural
extension and regular leaf space is the first step to the construction of such a
hyperbolic orbifold 3-lamination.

However, the global structures of the regular leaf spaces of rational maps are
not precisely known except only a few examples. Here is one of such examples.
For fc(z) = z2 + c with c in the main cardioid of the Mandelbrot set, all regular
leaf spaces of fc are topologically the same as that of f0(z) = z2, which is 2-
dimensional extension of 2-adic solenoid[3, Example 2][2, §11].

Now we may expect the simplest deformation of these regular leaf spaces
as c tends to 1/4 along the real axis. Then the dynamics inside the Julia sets
degenerate from “hyperbolic” to “parabolic”, though the dynamics on and outside
the Julia sets are still topologically the same as f0. In this paper, we describe the
structure of the regular leaf space of f1/4(z) = z2 + 1/4, whose Julia set is called
the cauliflower, by using a pinching semiconjugacy from fc with c ∈ (0, 1/4) to
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f1/4. We will see that the transversal structure of those regular leaf spaces are
preserved, however, the dynamics on the invariant leaves corresponding to the
fixed points are change from “hyperbolic” to “parabolic”.

In this section, we first survey some basic notion of complex dynamics of
quadratic maps and their natural extensions. In §2, we construct tessellation
(or tiling) of the interior of the filled Julia sets of fc with c ∈ (0, 1/4] in a
dynamically natural way. In §3, we construct a pinching semiconjugacy from fc

with c ∈ (0, 1/4) to f1/4 by gluing tile-to-tile homeomorphisms and the conjugacy
on and outside the Julia sets. In §4, we lift such a semiconjugacy to their regular
leaf spaces and describe their degeneration.

1.1 Preliminaries

The Julia set. Let us set fc(z) = z2 + c (c ∈ C) and consider it as a rational
map on the Riemann sphere C̄ = C ∪ {∞} with fc(∞) =∞. The filled Julia set
Kc of fc is defined by

Kc :=
{
z ∈ C̄ : {fn

c (z)}∞n=0 is bounded
}
.

The Julia set Jc of fc is the boundary of Kc. One can easily check that those sets
are forward and backward invariant under the action of fc.

Now suppose that Kc is connected. (Thus so is Jc.) We denote the unit disk by
D. For the outside of Kc, there exists a unique conformal map φc : C̄−Kc → C̄−D̄

such that

• φc(fc(z)) = φc(z)2; and

• φc(z)/z → 1 as z →∞.

Moreover, if Jc is a Jordan curve, φ−1
c continuously extends to φ̄−1

c : C̄ − D →
C̄−K◦

c .
Now let us restrict our interest to the case of c ∈ (0, 1/4]. In our particular

situation, it is known that Jc are Jordan curves, and thus by looking through the
map φ̄−1

c , the dynamics on and outside the Julia sets are topologically the same
as z �→ z2. For θ ∈ R/Z, set γc(θ) := φ̄−1

c (e2πiθ). Then points on Jc are bijectively
parameterized by angles in R/Z. See [4, §18] for more details.

We define some more notation:

• αc := (1 −
√

1− 4c)/2 which is the attracting (or parabolic iff c = 1/4)
fixed point of fc with multiplier λc = 1−

√
1− 4c.

• βc := (1 +
√

1− 4c)/2 which is the repelling (or parabolic iff c = 1/4) fixed
point of fc with multiplier λ′

c = 1 +
√

1− 4c.
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The natural extension. Next we follow [2, §3]. For fc as above, let us consider
the set of all possible backward orbits

Nc :=
{
ẑ = (z0, z−1, . . .) : z0 ∈ C̄, fc(z−n−1) = z−n

}
.

This set is called the natural extension of fc, and is equipped with a topology
from C̄×C̄×· · · . On this natural extension, the lift of fc and a natural projection
are defined by

f̂c(ẑ) := (fc(z0), z0, z−1, . . .) and

πc(ẑ) := z0.

It is clear that f̂c is a homeomorphism, and satisfies πc ◦ f̂c = fc ◦ πc. For a fixed
point a ∈ C̄ of fc, set â := (a, a, . . .) ∈ Nc.

The regular leaf space. An element ẑ = (z0, z−1, . . .) ∈ Nc is regular if there
exists a neighborhood U0 of z0 such that its pull-back U−n along the backward
orbit ẑ are eventually univalent. For example, ∞̂ = (∞,∞, . . .) is not regular for
any c ∈ C.

Let Rc denote the set of regular points in Nc. Rc is called the regular leaf
space of fc. A leaf of Rc is a path connected component of Rc. By [2, Lemma
3.1], leaves of Rc are Riemann surfaces:

Lemma 1.1 Leaves of Rc have the following properties:

• For each leaf L, we can introduce a complex structure such that πc : L→ C̄

is an analytic map.

• πc branches at ẑ = (z0, z−1, . . .) if and only if ẑ contains a critical point in
{z−n}.

• f̂c maps a leaf to a leaf isomorphically.

This lemma holds for any c ∈ C. In our case, we have:

Proposition 1.2 If c ∈ (0, 1/4], Rc has the following properties:

• Rc = Nc − {∞̂, α̂c}.

• Each leaf of Rc is isomorphic to C.

This proposition is immediate from lemmas in [2, §3].
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2 Making tiles

For the first step, we will decompose the interior K◦
c of Kc with c ∈ (0, 1/4] into

countably many tiles and describe their relations.
Before making tiles, we introduce some notation. For c ∈ (0, 1/4], let Ic(0)

denote the interval [αc, βc] ⊂ R. In particular, I1/4(0) = {1/2}. Since Ic(0)
contains no critical orbit, preimages of Ic(0) by fc are univalently spread out
with one of their endpoints on the Julia set. Set Ic :=

⋃
i≥0 f−i

c (Ic(0)). For
θ ∈ Q/Z of the form k/2n, we denote the connected component of Ic containing
γc(θ) by Ic(θ). As c → 1/4, Ic degenerates into I1/4 which is the grand orbit of
the parabolic fixed point 1/2.

2.1 Tiles of K◦c with c ∈ (0, 1/4)

Suppose c ∈ (0, 1/4). Then αc is an attracting fixed point and K◦
c is its attracting

basin. On a neighborhood of αc, there exists a linearizing coordinate Φc which
analytically conjugates the action of fc near αc to w �→ λcw near the origin.
Moreover, we can extend this map to Φc : K◦

c → C, and it is unique up to
multiplication by a constant[4].

For the purpose of better understanding the difference between the cases of c ∈
(0, 1/4) and c = 1/4, let us take an additional conjugation by w �→ w+1/(1−λc)
on C. Then we can uniquely define Φc : K◦

c → C such that

• Φc(fc(z)) = λcΦc(z)+1;

• Φc(αc) = 1/(1− λc), Φc(0) = 0; and

• Φc is infinitely branched covering whose branch points are
⋃

i≥0 f−i
c ({0}).

Now let us set ac := 1/(1− λc), which tends to +∞ as c→ 1/4.
For m ∈ Z, set

Ac(m,+) :=
{
w ∈ C : λm+1

c ac ≤ |w − ac| ≤ λm
c ac, Im w ≥ 0

}

Ac(m,−) :=
{
w ∈ C : λm+1

c ac ≤ |w − ac| ≤ λm
c ac, Im w ≤ 0

}

and we call them the fundamental semi-annuli. Let Ac denote the collection of
all of the fundamental semi-annuli.

Note the following two facts:

• The vertices of fundamental semi-annuli on the interval (−∞, ac) are the
images of the grand orbit of 0. In particular, all of the ramified points
(critical values) of Φc are on the interval (−∞, 0].

• All components of Ic∩K◦
c are mapped univalently onto the interval [ac,∞).
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For the boundary of Ac(m,±), we call the edge on the interval (−∞, ac) (resp.
[ac,∞)) the critical edge (resp. degenerating edge). We call the edges shared by
Ac(m − 1,±) or Ac(m + 1,±) the circular edges.

By the facts above, Φ−1
c : C − (−∞, 0] → K◦

c is a multi-valued function
with univalent branches. Such a branch Ψc : C − (−∞, 0] → K◦

c determines a
unique angle θ ∈ Q/Z of the form k/2n such that Ψc([ac,∞)) ∪ γc(θ) = Ic(θ).
Thus for Ac(m,+) ∈ Ac, Ψc also determines a unique simply connected set T =
Tc(θ,m,+) ⊂ K◦

c such that T is the closure of Ψc(Ac(m,+)− (−∞, 0]). We call
such a T a tile, and the triple (θ,m,+) the address of the tile T . We also define
Tc(θ,m,−) in the same way. We denote the collection of all possible T by Tc, and
call it the tessellation of K◦

c . Now it is clear that Kc is the closure of
⋃
{T ∈ Tc}.

For each T ∈ Tc, Φc maps T to an A ∈ Ac homeomorphically. For the
boundary of T , critical (resp. degenerating, circular) edges are defined by the
boundary arcs corresponding to the critical (resp. degenerating, circular) edges
of A.

Now we give relations among tiles:

Proposition 2.1 For T = Tc(θ,m,+) ∈ Tc, we have the following properties:

(1) fc(T ) = Tc(2θ,m + 1,+). Moreover, f−1
c (T ) = Tc(θ/2,m− 1,+) ∪ Tc(θ/2 +

1/2,m− 1,+).

(2) T shares the circular edges with Tc(θ,m− 1,+) and Tc(θ,m + 1,+).

(3) T shares the degenerating edge with Tc(θ,m,−).

(4) T shares the critical edge with Tc(θ + 2m,m,−).

The similar holds if we replace T by Tc(θ,m,−). In particular, Tc(θ,m,−) shares
the critical edge with Tc(θ − 2m,m,+).

Proof. The first three properties come from the definition of tiles. One can
easily check property (4) in the case of θ = 0. For general θ of the form k/2n ∈
Q/Z, suppose that T = Tc(θ,m,+) shares the critical edge with T ′ ∈ Tc. Then
T ′ is the form Tc(θ

′,m,−) since Φc maps T and T ′ to Ac(m,+) and Ac(m,−)
respectively. Now fn sends T univalently to Tc(0,m + n,+) which shares the
critical edge with Tc(2

m+n,m + n,−). Thus fn(T ′) = Tc(2
m+n,m + n,−). Note

that fn(T∪T ′) joins Ic(0) and Ic(2
m+n). By pulling it back by a suitable univalent

branch of fn, T ∪ T ′ must join Ic(θ) and Ic(θ + 2m). This implies θ′ = θ + 2m. �

2.2 Tiles of K◦1/4

Next we make the tessellation T1/4 for K◦
1/4 in the same way as above. Now

α1/4 = 1/2 is the parabolic fixed point and K◦
1/4 is its parabolic basin. On an
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Figure 1: The tessellations of z2 + 0.2 and z2 + 1/4

attracting petal of α1/4, there exists a Fatou coordinate Φ1/4 which analytically
conjugates the action of f1/4 to w �→ w + 1. Moreover, we can uniquely extend
this Fatou coordinate to Φ1/4 : K◦

1/4 → C such that

• Φ1/4(f1/4(z)) = Φ1/4(z) + 1;

• Φ1/4(0) = 0; and

• Φ1/4 is infinitely branched covering whose branch points are
⋃

n≥0 f−n
1/4({0}).

(See [4] again.)
For m ∈ Z, set

A1/4(m,+) := {w ∈ C : m ≤ Re w ≤ m + 1, Im w ≥ 0}
A1/4(m,−) := {w ∈ C : m ≤ Re w ≤ m + 1, Im w ≤ 0}

and we call them the fundamental semi-cylinders. Let A1/4 denote the collection
of all of the fundamental semi-cylinders.

Note the following two facts, and compare with the case of c ∈ (0, 1/4):

• The vertices of fundamental semi-cylinders on the real axis (−∞,∞) are
the images of the grand orbit of 0. In particular, all of the ramified points
(critical values) of Φ1/4 are on the interval (−∞, 0].

• All components of I1/4 are outside of the domain of Φ1/4.

For the boundary of A1/4(m,±), we call the edge on the real axis the critical edge.
We also call the edges shared by A1/4(m − 1,±) or A1/4(m + 1,±) the circular
edges. Note that A1/4(m,±) has no edges corresponding to degenerating edges of
fundamental semi-annuli.
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Now Φ−1
1/4 : C − (−∞, 0] → K◦

1/4 is a multi-valued function with univalent

branches. Such a branch Ψ1/4 : C − (−∞, 0] → K◦
1/4 determines a unique angle

θ ∈ Q/Z of the form k/2n such that I1/4(θ) ∈ I1/4 is the limit of Ψ1/4(t) as t tends
to +∞ along the real axis. Thus for A1/4(m,+) ∈ A1/4, Ψ1/4 maps the interior of
A1/4(m,+) to a simply connected subset of K◦

1/4. Since Ψ1/4 extends continuously

to the boundary of A1/4(m,+), we denote its image by T = T1/4(θ,m,+) ⊂ K◦
1/4.

We also define T1/4(θ,m,−) in the same way. We denote the collection of all
possible T by T1/4, and call it the tessellation of K◦

1/4. Now it is also clear that

K1/4 is the closure of
⋃ {

T ∈ T1/4

}
.

For each T ∈ T1/4, Φc maps T to an A ∈ A1/4 homeomorphically. For the
boundary of T , critical (resp. circular) edges are defined by the boundary edges
corresponding to the critical (resp. circular) edges of A. Note that T1/4(θ,m,±)
does not contain the point I1/4(θ) ∈ J1/4, and has no edges corresponding to
degenerating edges.

The relations among tiles are given in the same way as Proposition 2.1:

Proposition 2.2 For T = T1/4(θ,m,+) ∈ T1/4, we have the following properties:

(1) f1/4(T ) = T1/4(2θ,m + 1,+). Moreover, f−1
1/4(T ) = T1/4(θ/2,m − 1,+) ∪

T1/4(θ/2 + 1/2,m − 1,+).

(2) T shares the circular edges with T1/4(θ,m± 1,+).

(3) For any n ∈ Z, T shares a point I1/4(θ) ∈ I1/4 with T1/4(θ, n, +) and

T1/4(θ, n,−).

(4) T shares the critical edge with T1/4(θ + 2m,m,−).

The similar holds if we replace T by T1/4(θ,m,−).

3 Construction of the semiconjugacy

Here we construct a semiconjugacy which pinches Ic to I1/4:

Theorem 3.1 For c ∈ (0, 1/4), there exists a semiconjugacy Hc : C̄ → C̄ from
fc to f1/4 such that

• Hc maps C̄−Ic to C̄−I1/4 homeomorphically and is a topological conjugacy
between fc|(C̄− Ic) and f1/4|(C̄− I1/4);

• For each θ = k/2n ∈ Q/Z, Hc maps an arc Ic(θ) onto a point I1/4(θ).

Proof. The rest of this section is devoted to the proof of this theorem. Let us
fix c ∈ (0, 1/4).
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Conjugation on tiles. First we make a homeomorphism between Ac(0,+) −
[ac,∞) (a tile minus its degenerating edge) and A1/4(0,+). Take w ∈ Ac(0,+)−
[ac,∞), and set reit := w − ac with (ac − 1 =)λcac ≤ r ≤ ac and 0 < t ≤ π. Now
set

hc(w) := (ac − r) + i tan
π − t

2
∈ A1/4(0,+).

Then hc is a homeomorphism between Ac(0,+) − [ac,∞) and A1/4(0,+) which
preserves the action of Sc(w) = λcw+1 on the (outer) circular edge of Ac(0,+)−
[ac,∞) to that of S1/4(w) = w + 1 on the (left) circular edge of A1/4(0,+).

0 1 0 1

t

ac

w

R R

hc(w)

Figure 2: hc : Ac(0,+)→ A1/4(0,+)

By using this property, for any m ∈ Z, we can extend hc to Ac(m,+)− [ac,∞)
by

hc : Ac(m,+)− [ac,∞)→ A1/4(m,+)

w �→ hc(S
−m
c (w)) + m.

Then hc gives a homeomorphism between Ac(m,+) − [ac,∞) and A1/4(m,+).
Similarly, we define hc on Ac(m,−)− [ac,∞). Then we obtain a homeomorphism
hc : C − [ac,∞) → C, moreover, hc is a topological conjugacy between Sc|(C −
[ac,∞)) and S1/4.

Next, let us take θ of the form k/2n ∈ Q/Z, and take m ∈ Z. We de-
fine a map between Tc(θ,m,+) − Ic(θ) (a tile minus its degenerating edge) and
T1/4(θ,m,+) as follows: There is a unique branch Ψθ

1/4 of Φ−1
1/4 which maps the

interior of A1/4(m,+) to the interior of T1/4(θ,m,+). It is clear that Ψθ
1/4 extends

continuously to the boundary of A1/4(m,+). For z ∈ Tc(θ,m,+)− Ic(θ), set

Hc : Tc(θ,m,+)− Ic(θ)→ T1/4(θ,m,+)

z �→ Ψθ
1/4 ◦ hc ◦ Φc(z).

This definition gives a homeomorphism Hc : K◦
c − Ic → K◦

1/4, moreover, by the
definition and the combinatorics of tiles, Hc is a topological conjugacy between
fc|(K◦

c − Ic) and f1/4|K◦
1/4.
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Continuous extension. For θ ∈ Q/Z of the form k/2n, set Hc(Ic(θ)) :=
I1/4(θ) = γ1/4(θ). Then Hc : K◦

c ∪ Ic → K◦
1/4 ∪ I1/4 is a semiconjugacy which

pinches the arcs in Ic to the points in I1/4. Now we claim that we can continu-
ously extend this Hc to Hc : Kc → K1/4. Fix a point ζ ∈ Jc. Since Jc is a Jordan
curve, there exists an angle θ ∈ R/Z such that ζ = γc(θ). Let zn ∈ K◦

c ∪ Ic be a
sequence converging to ζ . We show that wn := Hc(zn) ∈ K◦

1/4 ∪ I1/4 converges to

γ1/4(θ).
Take a small interval of angle [t, t′] containing θ, where t and t′ are of the forms

(2k − 1)/2m and (2k + 1)/2m respectively with the same k and m 
 0. Then
γc(t) and γc(t

′) bound a small piece of Jc, and the piece, say J ′
c, is a Jordan arc

containing ζ . Take an open arc C ⊂ K◦
c such that C only passes though tiles of

angles in [t, t′] and C̄ ∩ Jc = {γc(t), γc(t
′)}. (See Remark 2 below.) Let V denote

the small open set with ∂V = C∪J ′
c. By the definition of Hc, Hc(V )∩J1/4 =: J ′

1/4

is a piece of J1/4 which is a small Jordan arc with endpoints γ1/4(t) and γ1/4(t
′).

Since zn ∈ V ∪ J ′
c for all n 
 0, wn ∈ Hc(V ) ∪ J ′

1/4 for all n 
 0. If there

exists a subsequence {ni} ⊂ {n} such that wni
converges to a point in K◦

1/4,
then zni

→ ζ ∈ K◦
c by the definition of Hc. This contradicts ζ ∈ Jc. Thus wn

accumulates on J ′
1/4. Since t and t′ are arbitrarily close to θ, wn must converges

to γ1/4(θ).

Extension to a global semiconjugacy. Finally we define Hc outside the Julia
set by

Hc : C̄−Kc → C̄−K1/4

z �→ φ−1
1/4 ◦ φc(z),

which gives a topological conjugacy on the domain, and continuously extends to
the conjugacy Hc : C̄ − K◦

c → C̄ − K◦
1/4. Then Hc inside and outside Jc are

continuously glued along Jc. Now Hc : C̄→ C̄ is a desired semiconjugacy. �

Remark. There are other possible choices of the conjugacy hc : C−[ac,∞)→ C

with better regularity. For example, for w = ac + reit with r > 0 and 0 < t < 2π,
one may also use

hc(w) =
log r − log ac

log λc

+ i tan
π − t

2
.

Remark 2. The arc C in the proof above exists. First, take tiles T = Tc(t,−m,+)
and T ′ = Tc(t

′,−m,−). By Proposition 2.1, T and T ′ share the critical edges
with T1 = Tc(k/2m−1,−m,−) and T ′

1 = Tc(k/2m−1,−m,+) respectively, and then
T1 and T ′

1 share the degenerating edges. Now we can join γc(t) and γc(t
′) by an

arc via Ic(t), T, T1, T ′
1, T

′, and Ic(t
′).
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4 Degeneration of the regular leaf spaces

Finally we investigate the structure of R1/4, the regular leaf space of f1/4, and

the degeneration of the invariant leaf corresponding to β̂c.
We begin with some notation and preliminary remarks. For c ∈ (0, 1/4], let

us set Îc := π−1
c (Ic). Now we take a sequence of angles θ̂ := (θ0, θ−1, . . .) such

that θ0 is of the form k/2m and θ−n = 2θ−n−1. Since Ic contains no critical orbit,
θ̂ corresponds bijectively to a connected component of Îc which consists of the
backward orbits {z−n}∞n=0 satisfying z−n ∈ Ic(θ−n). We denote such a component

Îc(θ̂). Note that Îc(θ̂) is an arc if c ∈ (0, 1/4), or a point if c = 1/4. Note also
that for 0̂ = (0, 0, . . .), Îc(0̂) is the component corresponding to the backward
orbits which are always in the interval Ic(0) = [αc, βc]. Thus Îc(0̂) contains α̂c,
one of the two irregular points of Nc.

For c ∈ (0, 1/4], the set

Lc := {ẑ = (z0, z−1, . . .) ∈ Rc : z−n → βc}

is invariant under the action of f̂c and is a leaf isomorphic to C. (We will construct
the isomorphism later.) Note that Î1/4(0̂) = β̂1/4 = α̂1/4 does not belong to L1/4.

On the other hand, for c ∈ (0, 1/4), Îc(0̂)− {α̂c} is a subset of Lc.
Now the main result is:

Theorem 4.1 For c ∈ (0, 1/4), there exists a semiconjugacy Ĥc : Nc → N1/4

from f̂c to f̂1/4 with the following properties:

(1) Ĥc : Nc − Îc → N1/4 − Î1/4 is a topological conjugacy between f̂c|(Nc − Îc)

and f̂1/4|(N1/4 − Î1/4).

(2) For θ̂ as above, Ĥc maps the arc Îc(θ̂) to the point Î1/4(θ̂).

(3) Ĥ−1
c (L1/4 ∪

{
α̂1/4

}
) = Lc ∪ {α̂c}.

(4) For a leaf L in Rc − Lc, Ĥc(L) is a leaf in R1/4 − L1/4.

(5) For a leaf L in R1/4 − L1/4, Ĥ−1
c (L) is a leaf in Rc − Lc.

Proof. For ẑ = (z0, z−1, . . .) ∈ Nc, set

Ĥc(ẑ) := (Hc(z0), Hc(z−1), . . .) ∈ N1/4.

Since Hc is a semiconjugacy from fc to f1/4, one can easily check that Ĥc is

surjective, continuous, and satisfies Ĥc◦f̂c = f̂1/4◦Ĥc. Thus Ĥc is a semiconjugacy

from f̂c to f̂1/4 on their respective natural extensions. In particular, since Hc :
C̄ − Ic → C̄ − I1/4 is a topological conjugacy, corresponding lift to the natural
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extensions Ĥc : Nc − Îc → N1/4 − Îc is also a topological conjugacy. Thus we
obtain property (1).

Property (2) comes from the definition of Ĥc above and the one-to-one corre-
spondence

Îc(θ̂) ←→ θ̂ ←→ Î1/4(θ̂).

Let us show property (3). Take ẑ = {z−n} ∈ Lc. Then z−n → βc implies
Hc(z−n) → Hc(βc) = β1/4 = α1/4 and thus Ĥc(Lc) ⊂ L1/4 ∪

{
α̂1/4

}
. Since

Ĥc(α̂c) = α̂1/4, we have Ĥc(Lc ∪ {α̂c}) ⊂ L1/4 ∪
{
α̂1/4

}
. On the other hand, we

claim that for ŵ = {w−n} ∈ L1/4 and ẑ = {z−n} ∈ Ĥ−1
c (ŵ), w−n → β1/4 implies

z−n → βc, and thus Ĥ−1
c (L1/4) ⊂ Lc. Take a subsequence z−ni

converging to
a point ζ . Note that ζ must be in the Julia set, since otherwise one can show
that ẑ = α̂ or ∞̂ and it contradicts to Ĥc(ẑ) = ŵ ∈ R1/4. By continuity of Hc,
Hc(z−ni

) = w−ni
→ Hc(ζ) and this implies ζ ∈ H−1

c (β1/4) = Ic(0) = [αc, βc]. Since

ζ ∈ Jc, ζ = βc and we conclude the claim. Since Ĥ−1
c (α̂1/4) = Ĥ−1

c (Î1/4(0̂)) =

Îc(0̂) ⊂ Lc ∪ {α̂c}, we have

Ĥ−1
c (L1/4 ∪

{
α̂1/4

}
) = Ĥ−1

c (L1/4) ∪ Ĥ−1
c (α̂1/4) ⊂ Lc ∪ {α̂c}.

Now one can easily check property (3).
To show properties (4) and (5), for ∗ ∈ {c, 1/4} and θ̂ as above, we define

open arcs η∗[θ̂] : (1, 2)→R∗ − Î∗ by

η∗[θ̂](r) := (φ−1
∗ (re2πiθ0), φ−1

∗ (r1/2e2πiθ−1), φ−1
∗ (r1/4e2πiθ−2 ), . . .).

Note that the points

ẑ∗[θ̂] = (γ∗(θ0), γ∗(θ−1), . . .) ∈ Î∗

are accessible by η∗[θ̂](r) by letting r tend to 1. Thus for each ∗ ∈ {c, 1/4}, ẑ∗[θ̂]
and η∗[θ̂] are in the same leaf of R∗, except when ∗ = 1/4 and θ̂ = 0̂, that is,
ẑ∗[θ̂] = α̂1/4.

We show property (5) first. Take a leaf L �= L1/4 from R1/4. By property

(1), Ĥ−1
c (L − Î1/4) is homeomorphic to L− Î1/4, which is path connected. Now

any connected component of Ĥ−1
c (L ∩ Î1/4) ⊂ Îc is an arc and has an endpoint

of the form ẑc[θ̂], which is accessible by ηc[θ̂]. Since Ĥc(ẑc[θ̂]) = ẑ1/4[θ̂] ∈ L is

accessible by η1/4[θ̂], we have η1/4[θ̂] ⊂ L− Î1/4 and thus ηc[θ̂] ⊂ Ĥ−1
c (L− Î1/4).

Then we conclude that any component of Ĥ−1
c (L ∩ Î1/4) is attached to an arc in

Ĥ−1
c (L− Î1/4), and thus Ĥ−1

c (L) is path connected.

Since Ĥ−1
c (∞̂) = ∞̂, Ĥ−1

c (α̂1/4) = Îc(0̂), and L ⊂ R1/4 = N1/4 −
{
∞̂, α̂1/4

}

(Proposition 1.2), we have

Ĥ−1
c (L) ⊂ Nc − {∞̂} ∪ Îc(0̂) ⊂ Rc
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and thus there is a leaf L′ of Rc which contains Ĥ−1
c (L). By property (3) and L �=

L1/4, L′ is not Lc. Now L ⊂ Ĥc(L
′) ⊂ R1/4 − L1/4 and Ĥc(L

′) is path connected

by the continuity of Ĥc. Thus Ĥc(L
′) is contained by a leaf in R1/4−L1/4, which

must be L. This implies Ĥc(L
′) = L and we have

L′ ⊂ Ĥ−1
c (Ĥc(L

′)) = Ĥ−1
c (L) ⊂ L′.

Thus Ĥ−1
c (L) is L′, a leaf in Rc − Lc.

Property (4) comes from property (5). Take a leaf L′ from Rc − Lc. Since
Ĥc(L

′) contains no irregular point and is path connected, there is a leaf L �= L1/4

of R1/4 containing Ĥc(L
′). Then L′ ⊂ Ĥ−1

c (L). By property (5), Ĥ−1
c (L) is a leaf

�= Lc, which must be L′. Thus L′ = Ĥ−1
c (L) and this implies Ĥc(L

′) is L, a leaf
in R1/4 − L1/4. �

Dynamics on the invariant leaves. Let us describe property (3) in further
detail. Now the semiconjugacy Ĥc maps Lc ∪ {α̂c} onto L1/4 ∪

{
α̂1/4

}
. Within

Rc and R1/4, we observe this as following.

For c ∈ (0, 1/4), Lc compactly contains all but one component of π−1
c (Îc)∩Lc.

The exception is Îc(0̂)−{α̂c}. Since Îc(0̂) (resp. α̂1/4) is invariant under the action

of f̂c (resp. f̂1/4) and Ĥ−1
c (α̂1/4) = Îc(0̂), the map

Ĥc : Lc − Îc(0̂)→ L1/4

is a semiconjugacy from f̂c|(Lc − Îc(0̂)) to f̂1/4|L1/4.
Let us describe this semiconjugacy more precisely. For c ∈ (0, 1/4) (resp.

c = 1/4), take a linearizing (resp. Fatou) coordinate Φ+
c on a neighborhood (resp.

repelling petal) Πc of βc such that the action of fc is conjugate to S+
c (w) = λ′

cw+1.
(Recall that λ′

1/4 = 1.) In particular, we may assume that Πc contains z = 1 and

Φ+
c (1) = 0. Then for any ẑ = (z0, z−1, . . .) ∈ Lc, there exists an N such that

z−n ∈ Πc for n ≥ N . By [2, §4], the isomorphism between Lc and C is given by:

Φ̂+
c (ẑ) := (S+

c )N(Φ+
c (z−N )).

One can easily check that Φ̂+
c (ẑ) does not depend on the choice of N . Then the

isomorphism Φ̂+
c : Lc → C has the following properties:

• Φ̂+
c (f̂c(ẑ)) = λ′

cΦ̂
+
c (ẑ) + 1;

• (Φ̂+
c )−1(0) is the backward orbit of z = 1 along the interval (βc, 1];

• if c ∈ (0, 1/4), bc := Φ̂+
c (β̂c) = 1/(1− λ′

c) tends to −∞ as c→ 1/4; and

• if c ∈ (0, 1/4), Φ̂+
c (Îc(0̂)− {α̂c}) = (−∞, bc].
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Now let us consider the map

Φ̂+
1/4 ◦ Ĥc ◦ (Φ̂+

c )−1 : C− (−∞, bc]→ C

for c ∈ (0, 1/4), which is a semiconjugacy from S+
c |(C − (−∞, bc]) to S+

1/4. The

slit (−∞, bc] is just like pinched and pushed away to “infinity”. Topologically the
same thing happens on the invariant leaves. By Ĥc, a slit Îc(0̂)∩Lc is pinched, and
pushed away to β̂1/4. As a result, π−1

1/4(J1/4) ∩ L1/4 is split into two components.

(See Figure 3)

Figure 3: Lc for c = 0.2 and L1/4

Notes.

1. For c ∈ (0, 1/4], Rc has the structure of Riemann surface lamination. More
precisely, each point of Rc has a neighborhood homeomorphic to D×T , where
D is a topological disk and T is a Cantor set, and each t ∈ T , D × {t}
corresponds to a topological disk on a leaf of Rc. (See [2, §2].) For c ∈
(0, 1/4), Ĥc preserves the Cantor set direction of such neighborhoods, and the
holonomies of fibers of πc and π1/4.

2. The hyperbolic 3-lamination of fc is constructed by adding “height” to the
leaves ofRc to obtain leaves isomorphic to H3. Though the actual construction
in [2] is very complicated, we may hope that the pinching Ĥc will naturally
extend to this hyperbolic 3-lamination and describe the degeneration as c tends
to 1/4.

3. For a quadratic polynomial with an attracting cycle, we can consider its degen-
eration to a parabolic cycle with multiple petals. To investigate the associated
degeneration of the regular leaf spaces, the method developed in this paper
would be useful. Make a semiconjugation between the maps, and lift it to
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their natural extensions. Then the lifted semiconjugation would give us es-
sential information about the degeneration (or bifurcation) of the regular leaf
spaces. See part 2 of [1].
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