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The plasmon is a well established collective excitation of metals in the visible and

near UV but at much lower frequencies dissipation destroys all trace of the plasmon

and typical Drude behaviour sets in. We propose a mechanism for depression of the

plasma frequency into the far infra red or even GHz band: periodic structures build of

very thin wires dilute the average concentration of electrons and considerably enhance

the effective electron mass through self-inductance. Computations replicate the key

features and confirm our analytic theory. The new structure has novel properties not

observed before in the GHz band, including some possible impact on superconducting

properties.
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Much of the fascination of condensed matter turns on our ability to reduced its

apparent complexity and to summarise phenomena in terms of a new ‘excitation’ that is

in fact a composite put together from the elementary building blocks of the material

but behaves according to its own simplified dynamics. One of the earliest and most

celebrated of these composites occurs in metals and is known as a plasmon [1,2]: a

collective oscillation of electron density. In equilibrium the charge on the electron gas

is compensated by the background nuclear charge. Displace the gas and a surplus of

uncompensated charge is generated at the ends of the specimen, with opposite signs at

opposite ends supplying a restoring force resulting in simple harmonic motion,
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The plasma frequency, ω p , is typically in the ultraviolet region of the spectrum:

around 15eV in aluminium.

 The plasmons have a profound impact on properties of metals, not least on their

interaction with electromagnetic radiation where the plasmon produces a dielectric

function of the form,
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which is approximately independent of wave vector, and the parameter γ  is a damping

term representing dissipation of the plasmon’s energy into the system. In simple metals

γ  is small relative to ω p . For aluminium,

ω γp = =15 01eV, eV. (3)

The significant point about equation (2) is that ε  is essentially negative below the

plasma frequency, at least down to frequencies comparable to γ .
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Why is negative epsilon interesting? Cut a metal in half and the two surfaces

created will be decorated with surface plasmons [3,4]: collective oscillations bound to

the surface whose frequency is given by the condition,

ε ω ε ω1 2s se j e j+ = 0
(4)

Where ε1 and ε2  are dielectric functions for material on either side of the interface.

Choosing vacuum on one side and metal on the other gives,

ω ωs p= / 2 (5)

if we neglect dissipation. It is of course an essential precondition that ε  for the metal

be negative. Shape the metal into a sphere and another set of surface modes appear.

Two spheres close together generate yet another mode structure. Therefore negative ε

gives rise to a rich variety of electromagnetic structure decorating the surfaces of

metals with a complexity controlled by the geometry of the surface.

In fact the electromagnetic response of metals in the visible region and near

ultraviolet is dominated by the negative epsilon concept. Ritchie and Howie [5],

Echenique [6,7,8], Howie and Walsh [9] and many other researchers have shown how

important the concept of the plasmon is in the response of metals to incident charged

particles. However at lower frequencies, from the near infra red downwards,

dissipation asserts itself and the dielectric function is essentially imaginary. Life

becomes rather dull again.

In this letter we show how to manufacture an artificial material in which the

effective plasma frequency is depressed by up to six orders of magnitude. The building

blocks of our new material are very thin metallic wires of the order of one micron in

radius. These wires are to be assembled into a periodic lattice and, although the exact
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structure probably does not matter, we choose a simple cubic lattice shown below in

figure 1.

Figure 1. The periodic structure is composed of infinite wires arranged in a simple
cubic lattice, joined at the corners of the lattice. The large self inductance of a thin
wire delays onset of current mimicking the effect of electron mass.

Sievenpiper et al [10] have independently investigated metallic wire structures.

Our work differs from theirs in one important respect: we suggest that very thin wires

are critical to applying the concept of plasmons to these structures.

We now derive the plasma frequency for collective oscillations of electrons in the

wires. Consider a displacement of electrons along one of the cubic axes: the active

wires will be those directed along that axis. If the density of electrons in these wires is

n, the density of these active electrons in the structure as a whole is given by the

fraction of space occupied by the wire,

n n
r

a
eff =

π 2

2 (6)

Before we rush to substitute this number into formula (1) for the plasma frequency we

must pause to consider another effect which is at least as important: any restoring

force acting on the electrons will not only have to work against the rest mass of the

electrons, but also against self-inductance of the wire structure. This effect is not
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present in the original calculation of the plasma frequency but in our structure it is the

dominant effect. It can be represented as a contribution to the electron mass. The

important point is that the inductance of a thin wire diverges logarithmically with

radius. Suppose a current I flows in the wire creating a magnetic field circling the wire,
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where R is distance from the wire centre. We have also re-expressed the current in

terms of electron velocity, v, and charge density, ne. We write the magnetic field in

terms of a vector potential,

H AR Rb g b g= ∇ ×−µ0
1

(8)

where,

A R
r nve

a Rb g b g=
µ0

2

2
ln / (9)

and a is the lattice constant. We note that, from classical mechanics, electrons in a

magnetic field have an additional contribution to their momentum of eA , and therefore

the momentum per unit length of the wire is,
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where and meff  is the new effective mass of the electrons given by,
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This new contribution is dominant for the parameters we have in mind. For instance for

aluminium wires,

 m m,      m (aluminium)-3r a n= × = × = ×− −10 10 5 10 5 675 106 3 17. , . (12)

gives an effective mass of,
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In other words, by confining electrons to thin wires we have enhanced their mass by

four orders of magnitude so that they are now as heavy as nitrogen atoms!

Having both the effective density, neff , and the effective mass, meff , to hand we

can substitute into (1),
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Here is the reduction in the plasma frequency promised.

Note in passing that although the new reduced plasma frequency can be expressed

in terms of electron effective mass and charge, but these microscopy quantities cancel

leaving a formula containing only macroscopic parameters of the system: wire radius

and lattice spacing. It is possible to formulate this problem entirely in terms of

inductance and capacitance of circuit elements. However in doing so we miss the

analogy with the microscopic plasmon. Our new reduced frequency plasma oscillation

is every bit the quantum phenomenon as is its high frequency brother.

One remaining worry: does electrical resistance in the wires swamp the effect? A

more careful calculation including resistance gives the following expression for an

effective dielectric function of the structure,
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where σ  is the conductivity of the metal. Typically for aluminium,
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σ = × − −365 107 1 1. Ω m   (aluminium) (16)

and,
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(17)

Thus our new plasmon is about as well defined  relative to its resonant frequency as

the original plasmon.

To what extent is our theory confirmed by detailed calculations? We have

developed a method for calculating dispersion relationships in structured dielectrics

[11,12] and we use this to check our analytic predictions. Below in figure 2 we see our

calculations of dispersion in our lattice. We choose the most critical case of infinitely

conducting lossless wires.
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Figure 2. Band structure: real (top) and imaginary (bottom) parts of the wave
vector for a simple cubic lattice, a=5mm, with wires along each axis consisting
of ideal metal wires, assumed 1µ in radius. The wave vector is assumed to be
directed along one of the cubic axes. The full lines, largely obscured by the data
points, represent the ideal dispersion of the longitudinal and transverse modes
defined above assuming a plasma frequency of 8.2GHz. The light cone is drawn
in for guidance. Note the two degenerate transverse modes in free space are
modified to give two degenerate modes that are real only above the plasma
frequency of 8.2GHz.. The new feature in the calculation is the longitudinal
mode at the new plasma frequency.

Also shown is the result for dispersion of transverse light obtained by applying our

effective dielectric function taken from equation (15) with γ = 0:
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which gives real bands only above the plasma frequency of 8.2GHz, imaginary

bands below. In addition we show the analytic prediction of a dispersionless

longitudinal plasmon.

So accurately does our formula reproduce the computed result that the points

obscure the analytic line. The computed longitudinal mode agrees very well at K = 0

but shows a small degree of dispersion towards the Brillouin zone boundary.

Computations for other directions in the Brillouin zone show a similar picture and

equation (18) appears to give a good description of the results, at least when K is less

than the free space wave vector. It is worth emphasising that at the plasma frequency

of 8.2GHz the free space wavelength of light is about 35mm: much greater than the

lattice spacing of 5mm. In other words, as far as external electromagnetic radiation is

concerned, this structure appears as an effectively homogeneous dielectric medium

whose internal structure is only apparent in so far as it dictates εeff . In this respect it is

important that the structure be made of thin wires. Equation (14) shows that the

function of the small radius is to suppress the plasma frequency. In a thick wire

structure in equation (14),

ln /a rb g ≈ 1 (19)

so that the plasma frequency corresponds to a free space wavelength of approximately

twice the lattice spacing. Therefore Bragg diffraction effects would interfere with our

simple plasmon picture. Choosing a small radius ensures that diffraction occurs only at

much higher frequencies.
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In its ideal dissipationless form the structure has the novel feature that below the

plasma frequency all electromagnetic modes are excluded from the structure. At

sufficiently low frequencies dissipation must take charge in a normal metal, but if

superconducting material were employed for the wires and kept well below the

transition temperature, dissipation could be small down to zero frequency. In the

context of superconductivity it should be noted that plasma frequencies in these

structures can be well below the gap energy of a conventional superconductor.

Anderson [13] has stressed the role of the plasmon in the electromagnetic properties of

superconductors where it appears a ‘Higgs Boson’ but with a very large mass relative

to the superconducting gap. In our new material the Higgs is now well within the gap

giving rise to speculation about a more active role for the Higgs in the superconducting

mechanism itself. This theme will be pursued elsewhere.

Another allusion to be drawn is to the doping of semiconductors. It is plain from

figure 2 that in the GHz frequency range the electromagnetic spectrum is very severely

modified. This has been achieved with an extremely small amount of metal: the average

density of metal in the structure is less than a part per million: comparable to doping

levels in a semiconductor.

The interest in this new material derives from the analogy to be made with the role

of the plasmon at optical frequencies. Objects constructed from the new material will

support GHz plasmons bound to the surface which can be controlled by the local

geometry. Here are possibilities for novel waveguides. Such material is also a very

effective band stop/band pass filter. Below the plasma frequency very little can be

transmitted; above, and especially in the visible, the structure is transparent.

Another aspect is coupling to charged particles [14]. It is well know from electron

microscope studies that metals, metal spheres, and colloids are all efficient at
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extracting electromagnetic energy from an electron. The mechanism is essentially

Cerenkov radiation into the almost dispersionless plasma modes. In our materials the

energy scale is much smaller and it is possible to imagine ballistic electrons with a few

eV energy injected into our new material where they would have a rather fierce

interaction with the low frequency plasmon which could conceivably be exploited in

microwave devices.

We have demonstrated that a very simple metallic microstructure comprising a

regular array of thin wires exhibits novel electromagnetic properties in the GHz region,

analogous to those exhibited by a solid metal in the UV. We trust that the analogy will

prove a powerful one and lead to further novel effects and applications.
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