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Abstract

This work describes how evolutionary computation can be used to synthesize low-
level image operators that detect interesting points on digital images. Interest point
detection is an essential part of many modern computer vision systems that solve tasks
such as object recognition, stereo correspondence and image indexing, to name but a
few. The design of the specialized operators is posed as an optimization/search prob-
lem that is solved with genetic programming (GP), a strategy still mostly unexplored
by the computer vision community. The proposed approach automatically synthesizes
operators that are competitive with state-of-the-art designs, taking into account an op-
erator’s geometric stability and the global separability of detected points during fitness
evaluation. The GP search space is defined using simple primitive operations that are
commonly found in point detectors proposed by the vision community. The experi-
ments described in this paper extend previous results (Trujillo and Olague, 2006a,b) by
presenting 15 new operators that were synthesized through the GP-based search. Some
of the synthesized operators can be regarded as improved man-made designs because
they employ well-known image processing techniques and achieve highly competitive
performance. On the other hand, the GP search also generates what can be considered
as unconventional operators for point detection, these results provide a new perspec-
tive to feature extraction research.
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1 Introduction

Historically, vision systems would include an image segmentation stage during low-
level processing. Segmentation attempts to group image pixels into fully connected
and homogeneous regions. Each region, it is expected, will cover actual objects or
clearly identifiable concepts, e.g., car or face. However, segmentation is very difficult in
the general case because it is an ill posed problem. Hence, a recent approach used by
computer vision (CV) researchers is to adopt a simplified methodology for problem do-
mains such as object detection/recognition, content based image retrieval, and image
indexing. Essentially, the segmentation stage is eliminated by only focusing on local
and relatively small amounts of image information. The approach that is being made
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reference to was introduced by Schmid and Mohr (1997) and subsequently extended by
the work of Lowe (1999) and others. This paper presents a novel perspective on how
to solve the problem of identifying locally salient information through an evolutionary
process. Thus, in order for the reader to grasp the relevance of the present contribution,
a brief overview on how this process is normally studied follows.

The approach described by (Schmid and Mohr, 1997; Lowe, 1999) proceeds as fol-
lows. First, interesting or salient image regions must be detected. Afterwards, dis-
criminative descriptors are used to characterize the local neighborhood around each
detected feature, such as the popular SIFT descriptor (Lowe, 1999), a PCA method (Ke
and Sukthankar, 2004), or an image description based on local signal regularity (Tru-
jillo et al., 2007b). Finally, detected features and their respective descriptors are used
to construct generative (Trujillo et al., 2007a) or discriminant (Lowe, 1999) scene and
object models. When the previously described scheme is employed it is paramount to
use feature detectors that can identify stable and informative image regions. Detectors
that fulfill these requirements are known as interest region detectors, of which interest
point detectors are the most well-known and widely used by vision systems.

Nevertheless, the overwhelming majority of interest point detectors are the prod-
uct of a detailed human analysis which usually produces a single design. Conversely,
evolutionary computation (EC) provides a framework that allows for the automated
design of solutions in different problem domains (Poli et al., 2008; Cagnoni et al., 2007).
Hence, multiple solutions can be obtained by simply running the evolutionary pro-
cess several times. This can be achieved by correctly framing the problem statement
through two essential aspects: the fitness function and the search space. In the litera-
ture few examples exist where feature detectors have been automatically synthesized
(Ebner, 1998; Ebner and Zell, 1999). However, in those examples the search problem
was not framed correctly and have thus failed to produce truly competitive or general
results. It was not until previous work by Trujillo and Olague (2006a,b) that the auto-
matic synthesis of interest point operators was framed in such a way as to evolve truly
human-competitive solutions.

1.1 Research contributions

This paper outlines the following research contributions:

1. First, the automated design of an interest point detector is explained, where the
problem is stated in terms of an optimization/search process using GP. The expla-
nation presented extends the one of (Trujillo and Olague, 2006a,b).

2. Second, a new set of high-performance interest point detectors is presented; a to-
tal of 15 new and sometimes unprecedented designs. Each detector can be used
in situations where vision-systems require interest point detection. In fact, the GP
search produced several operators that are very simple. This is in contrast to com-
mon published GP results where the parsimony principle is not fulfilled. Here,
the operators designed by artificial evolution are able to outperform more elabo-
rate man-made designs. This was unexpected given the unquestionable difficulty
of the detection problem. In this way, it can be argued that simulated evolution
tends to find the simplest and most apt solution when appropriate fitness criteria
are defined.

3. Third, a detailed analysis of the search space was undertaken, based on a large
amount of experimental work. During the analysis, special attention was given to

2 Evolutionary Computation Volume x, Number x



Automated design of image operators that detect interest points

the convergence tendency of the GP-search towards optima centered around the
Laplacian-of-Gaussian (LoG) and Difference-of-Gaussian (DoG) filters.

4. Finally, an analysis of each successful experiment is presented. The structure of
each of the best operators is described along with their respective performance,
and insights regarding the dynamics of each evolving population are given.

The remainder of this paper proceeds as follows: Section 2 gives a brief overview of
related research to appropriately frame the contributions of the present work in terms
of what is now known as evolutionary computer vision (Olague et al., 2006a; Cagnoni
et al., 2007). Section 3 defines the concept of interest points, it also reviews how interest
point detection is performed, and describes how this process can be evaluated. The
proposed GP-based methodology is detailed in Section 4. Afterwards, experimental
results are presented in Section 5 with a detailed discussion. Finally, the last section
contains a summary and concluding remarks.

2 Related work

The capability for visual perception, rediscovered many times by natural evolution, is
still a daunting problem for modern CV. Vision requires the fast processing of multidi-
mensional and redundant information, it involves low-level data acquisition and high-
level cognition. This presents researchers with many complex problems that are still
unsolved, prompting some to employ black-box computation methods. In particular, EC
has begun to produce promising results because of its intrinsic ability to search within
high dimensional and multimodal spaces. This relatively new perspective has pro-
duced a promising area of research that is reformulating well-known vision problems
and proposing highly creative solutions (Olague et al., 2006a; Cagnoni et al., 2007). Pub-
lished literature in this area includes work on: image segmentation (Poli, 1996), camera
network design (Olague and Mohr, 2002), dense stereo correspondence (Olague et al.,
2006b), 3D reconstruction (Olague and Puente, 2006), and feature selection (Sun et al.,
2004; Hernández et al., 2007; Trujillo et al., 2007a), to name but a few. However, the do-
main that is directly related to the present work is that pertaining to feature synthesis,
where EC algorithms have been used to identify specific types of image features. For
example, Lin and Bhanu (2005) perform object detection in SAR images using GP in a
cooperative co-evolutionary framework. They start with simple features that are useful
for the problem domain, what they call primitive features, as a terminal set. After, novel
features are synthesized using this a priori information. The use of domain related
information accelerates the evolutionary search and confines it to promising regions
within the search space. Zhang et al. (2003) use GP to perform multi-class detection of
small objects present in large images, with domain independent pixel statistics as the
terminal set. Both of the above mentioned contributions do not address low-level prob-
lems, they focus on providing novel methodologies for higher level applications, and
each time a new problem instance is presented a new run of the algorithm is required.
Other works attempt to synthesize algorithmic solutions, using a single evolutionary
run, that can later be used by different vision systems. For instance, Ebner (1998) fo-
cuses on constructing an equivalent to the Moravec interest point detector (Moravec,
1977) using GP. Experimental results shows a 15% localization error between interest
point detection with the evolved operator and that obtained using the Moravec detec-
tor. In another work, Ebner and Zell (1999) present an evolved operator optimized for
optical flow estimation. The main drawbacks of these contributions is that they fail to
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define appropriate fitness criteria, and produce specialized functions that are difficult
to analyze and interpret.

The current paper describes a methodology that synthesizes image operators that
detect low-level features, also called interest points. The approach evolves operators that
can be used by vision applications that need to detect salient pixels that are stable and
sparsely distributed within the image. The experimental comparisons presented here
show highly competitive, and in most cases superior, performance compared to man-
made designs. Hence, it is reasonable to assume that a wide variety of vision systems
can benefit from the automated design process described in this work.

3 Visually interesting points

Previously, an approach for vision-based recognition was described where the detec-
tion of stable image features is required (Schmid and Mohr, 1997; Lowe, 1999). Said
features are relatively small compared to the whole image, they are usually called in-
terest points because they convey visually interesting information. A measure of how
interesting an image pixel is, can be extracted using a mapping K : R

+ → R or interest
operator1; where, different detectors employ different K 2. Applying K to an image I

produces what can be called an interest image I∗, see Figure 1. Afterwards, most detec-
tors follow the same basic process: non-maxima suppression that eliminates pixels that
are not local maxima, and a final thresholding that obtains the final set of features.

Schmid et al. (2000) proposed a performance measure that can be used to eval-
uate and compare different detectors known as the repeatability rate. This measure
characterizes the geometric stability of a detector when the conditions produced by im-
age acquisition change. Stable and easily repeatable points make them, in the words
of Shi and Tomasi (1994), good features to track. In this context, visually interesting re-
gions contain image pixels that exhibit a distinctive property that make them suitable
for applications where specific scene points need to be tracked across multiple images,
or identified under different viewing conditions. The stability of a detector has been
evaluated under different kinds of image transformations: illumination change, rotation,
scale change and affine transformations. Detectors invariant to the first two types of im-
age transformations extract interest points (Trujillo and Olague, 2006a,b), invariance to
the first three extract scale invariant regions (Trujillo and Olague, 2007), and detectors
invariant to all identify affine covariant regions (Mikolajczyk et al., 2005).

3.1 Interest point detection

Interest point detection resulted from research devoted to corner detection, a taxonomy
of which contains three basic classes: contour methods (Asada and Brady, 1986), paramet-
ric model methods (Olague and Hernández, 2005) and image intensity methods (Moravec,
1977; Beaudet, 1978; Kitchen and Rosenfeld, 1982; Harris and Stephens, 1988; Wang and
Brady, 1991; Förstner and Gülch, 1987; Shi and Tomasi, 1994). The class of corner de-
tectors that operate directly on the intensity image are more appropriately referred to
as interest point detectors. While corners are point features located at line and surface
junctions, such as L, T, Y and X junctions, interest points include these features as well
as others that may lack a clear semantic interpretation. Relevant examples of interest
point detectors are recalled next.

1The domain of K is R
+ because images do not contain negative intensity values.

2A detector refers to the complete algorithmic process that extracts interest points. On the other hand, an
operator only computes the interest measure for each pixel.

4 Evolutionary Computation Volume x, Number x



Automated design of image operators that detect interest points

Figure 1: A look at interest point detection: left, an input image I ; middle, interest image
I∗; right, detected points after non-maximum suppression and thresholding superim-
posed on I . Interest points were detected with the KIPGP2 operator.

For instance, some detectors base their interest measure K on the local autocorre-
lation matrix A, which characterizes the gradient distribution around each image pixel,
with

A(x, σI , σD) = σ2
D·GσI

∗
[

L2
x(x, σD) Lx(x, σD)Ly(x, σD)

Lx(x, σD)Ly(x, σD) L2
y(x, σD)

]

,

where σD and σI are the derivation and integration scales respectively, Lu(x, σD) is the
Gaussian derivative in direction u of image I at point x given by

Lu(x, σD) =
δ

δu
GσD

∗ I(x) ,

Gσ is a Gaussian smoothing function with standard deviation σ; σD = 1 is used unless
noted otherwise. Detectors based on A include those proposed by Förstner and Gülch
(1987), Harris and Stephens (1988), and Shi and Tomasi (1994), with their corresponding
interest measures given by

KForstner(x) =
det(A)

Tr(A)
,

KHarris&Stephens(x) = det(A) − k · Tr(A)2 ,

KShi&Tomasi(x) = min {λ1, λ2} ,

where λ1, λ2 are the two eigenvalues of A; the definition of A is taken from (Schmid
et al., 2000), used with the Improved Harris detector described in that work. Beaudet
(1978) proposed the determinant of the Hessian, which is proportional to the Gaussian
curvature, as an interest measure,

KBeaudet(x) = Ixx(x)· Iyy(x) − I2
xy(x) .

where Iu(x) is the image derivative in direction u. Wang and Brady (1991) characterize
the curvature response using the Laplacian and the gradient magnitude,

KWang&Brady(x) = (∇2I(x))2 − s|∇I(x)|2 .

Kitchen and Rosenfeld (1982) present an interest measure aimed at detecting image cor-
ners that is given by the product between the gradient magnitude and the magnitude
of the change of direction of the gradient,

KKitchen&Rosenfeld(x) =
Ixx(x)I2

y (x) + Iyy(x)I2
x(x) − 2Ixy(x)Iy(x)Ix(x)

I2
x(x) + I2

y (x)
.
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All detectors follow the same process. First apply K to I and obtain the interest
image I∗. Then, a pixel x is tagged as an interest point if the following conditions hold,

K(x) > sup {K(xW)|∀xW ∈ W,xW 6= x} ∧ K(x) > h , (1)

where W is a square neighborhood of size n × n around x, and h is an empirically de-
fined threshold. The first condition in Eq. (1) accounts for non-maximum suppression
and the second is the thresholding step, the process is shown in Figure 1. Experiments
in the current work use n = 5, while h is operator dependent. Several extensions of
this process have been proposed. Laptev and Lindeberg (2003), for example, include
a space-time analysis, and van de Weijer et al. (2006) incorporate color information.
However, these improvements are not considered within the scope of this paper.

3.2 Evaluating interest point detectors

It is commonly assumed that interest points should fulfill the following properties:
global separability between extracted points; high information content when com-
pared to other pixels; and stability. The previous list is not exhaustive, nor is it meant
to be rigorous. However, it does express desired properties that a detector is expected
to fulfill when employed by a higher-level system. The global separability of extracted
points suggests that on most images interest points will not be crowded together on iso-
lated portions. This property will be image dependent and requires prior knowledge of
the expected number of points and their position. Nevertheless, when interest points
are used to build models of objects or images it is better to have a close to uniform sam-
pling of the visual appearance of the imaged scene. A high information content refers to
the uniqueness of the local neighborhood around each detected point. This property
would facilitate interest point matching based on local descriptors. Information content
is related with global separability because if points are cluttered together their descrip-
tion will be very similar and could thus be less unique. Finally, the stability of detected
points is probably the most important criterion and the only one for which an accepted
measure exists, the repeatability rate (Schmid et al., 2000).

3.2.1 Repeatability rate

The most common performance measure for interest point detectors is the repeatability
rate that quantifies how detection is invariant to changes produced by image acquisi-
tion, such as rotations or scene illumination (Schmid et al., 2000). An interest point x1

detected on image I1 is repeated in image Ii if the corresponding point xi is detected
in image Ii; for simplicity, both images are assumed to be of the same size. In the
case of planar scenes, a relation between points x1 and xi can be established with the
homography H1,i, where

xi = H1,ix1 . (2)

The repeatability rate measures the number of repeated points between both images
with respect to the total number of detected points. However, parts of image I1 may
not appear on the transformed image Ii. In order to account for this, repeated and
detected points are only counted if they lie within the common parts of image I1 and
image Ii. Furthermore, a small amount of detection error needs to be taken into account
because exact localization is not a necessity for most applications. A repeated point is
said to be detected at pixel xi if it lies within a given neighborhood of xi of size ǫ, all
our experiments use ǫ = 1.5 pixels, see Figure 2. The set of point pairs (xc

1, x
c
i ) that lie

in the common part of both images and correspond within an error ǫ is defined by

RIi
(ǫ) = {(xc

1, x
c
i ) |dist (H1,ix

c
1, x

c
i ) < ǫ} . (3)
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Figure 2: A 3D point X is projected onto points x1 and x2 on images I1 and I2 respec-
tively. Point x1 is said to be repeated by xi, if a point is detected within a neighborhood
of xi of size ǫ. For planar scenes x1 and xi are related by the homography H1,i.

Thus, the repeatability rate ri (ǫ) of points extracted from image Ii with respect to points
from image I1 is defined by the following equation

rIi
(ǫ) =

|RIi
(ǫ) |

min (γ1, γi)
, (4)

where γ1 = | {xc
1} | and γi = | {xc

i} | are the total number of points extracted from
image I1 and image Ii respectively. Schmid et al. (2000) conclude that the Improved-
Harris operator shows the best stability, outperforming every detector included in the
survey. Those results have contributed into making the Harris detector the most widely
used within CV. However, the list of compared detectors was not exhaustive, examples
of those left out include (Beaudet, 1978; Kitchen and Rosenfeld, 1982).

4 Evolving interest point operators with Genetic Programming

The design strategy described in the present work focuses on two main aspects of the
detection process: 1) the structure of the operator used to compute an interest measure,
and 2) the performance measure used for evaluation. The structure of every operator
presented in Section 3.1 was designed using a particular problem modeling and data
representation. Each is derived from a detailed analysis of the observable properties
of particular image features that an operator was intended to detect, such as corners,
blobs or edges. However, every operator presented thus far can be constructed using a
finite set of basic image operations. For instance, every operator employs at least one
arithmetic operation, and it also relies on image derivatives and/or Gaussian filtering.
From the point of view of measuring the performance of an operator, it has already been
discussed that a reliable measure exists, the repeatability rate. Thence, it is reasonable
to assume that an optimal operator would have the highest repeatability measure on
all image sequences where it can be computed. Based on the previous observations
the following research question can be stated: Is it possible to automatically synthesize
an interest operator optimized for high performance and constructed from a basic set of image
operations? The hypothesis of this work is that the answer is infact affirmative, and the
rest of this section outlines a framework based on GP that accomplishes this task.

The goal of the GP search is to synthesize operators that detect point features that
are sparsely distributed, and are invariant to certain transformations. These objectives
are not directly related to a particular semantic concept captured within an image.
Thence, the GP design process might produce operators that detect features that de-
viate from the common conceptualization of what an interest point should be, such as
a corner. However, this should not be taken as a limitation of the approach. On the
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contrary, it is more aptly seen as a possibility to discover the true nature of what an
interest point is, or should be, and to better understand what is the most appropriate
way to evaluate the detection process.

In order to present the GP-based search two aspects must be defined: 1) the func-
tion and terminal sets, which represent the problem’s search space; and 2) the evalua-
tion function that defines the fitness landscape.

4.1 Search space

From a careful analysis of the previously described operators it is possible to define a
set of primitives that can be used to construct any of them, as well as a large amount of
still unknown operators. This leads to the following Function and Terminal sets,

F =
{

+, | + |,−, | − |, |Iout|, ∗,÷, I2
out,

√
Iout, log2(Iout), EQ(Iout), k · Iout

}

⋃

{

δ
δx

GσD
, δ

δy
GσD

, Gσ=1, Gσ=2

}

,

T = {I, Lx, Lxx, Lxy, Lyy, Ly} ,

(5)

where I is the input image, and Iout can be any of the terminals in T , as well as the
output of any of the functions in F ; EQ(I) is an histogram normalization operation; Lu

are Gaussian image derivatives along direction u; Gσ are Gaussian smoothing filters;
δ

δu
GσD

represents the derivative of a Gaussian function3; and the constant k = 0.05.
Note that the authors in (Kitchen and Rosenfeld, 1982; Wang and Brady, 1991;

Beaudet, 1978) do not use Gaussian derivatives. However, T is defined in this way
because Gaussian derivatives are less susceptible to noise perturbations and provide
isotropic properties. It is necessary to remember that every operator constructed with
the primitives p ∈ {F ∪ T } will only have one true input which is the image I ; and
therefore, the differentiation between T and F is only used to help the evolving process
by including what is a priori considered useful information (Lin and Bhanu, 2005). It
is not claimed that {F ∪ T } represents an optimal set of primitives for the problem
at hand. Nevertheless, from a large set of experimental runs it was confirmed that
selective pressure tends to favor the primitives in {F ∪ T }. Other primitives were also
tested, such as Gabor filters, Sobel filters, and max and min filters. However, those
were consistently removed from the final population and considered unsuitable genetic
material; therefore, they are not included in the current discussion.

Figure 3 represents a high level view of the space Ω of possible interest operators
constructed with primitives taken from {F ∪ T }. Additionally, a subspace Ωδ ⊂ Ω rep-
resents the subspace of operators that use image derivatives taken from T to obtain
their interest measure. Obviously, image derivatives that were not computed through
any of the terminals in T are not considered as part of the genotype. Figure 3 also
shows the subspace of operators that rely on measures derived from the local autocor-
relation matrix ΩA. Because of the earlier definition of A, it is affirmed that ΩA ⊂ Ωδ .
Both ΩA and Ωδ contain operators that are similar based on their structure and not their
functionality; i.e., based on their genotype and not their phenotype. Another possible
subspace Ωβ ⊂ Ω contains operators that extract a measure related to surface curvature.
In this case, Ωβ contains operators with similar functionality (phenotypical representa-
tion). This distinction is made explicitly because a one-to-one correspondence between
structure and functionality cannot be expected with this GP approach, what is often
called the problem of competing conventions (Montana and Davis, 1989). In the current
work, this difficulty is made evident when one considers function approximations. For

3All Gaussian filters are applied by convolution.
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Figure 3: Space of possible interest operators constructed with {F ∪ T }. Three sub-
spaces are shown: a) Ωδ contains operators that use image derivatives taken from T ; b)
ΩA contain operators that employ elements from the autocorrelation matrix A; and c)
Ωβ which contains operators that extract a measure related to surface curvature.

instance, a LoG filter can be approximated by a DoG operation, these operators have
very different genotypes in the described GP setting; however, they share a similar
phenotypical functionality.

4.2 Fitness evaluation

An appropriate objective function should depend on an operator’s repeatability rate
rK,J (ǫ), measured with an operator K and an image sequence J , in such a way that

f(K) ∝ rK,J (ǫ) . (6)

The value rK,J (ǫ) will represent the performance that K exhibits when it is applied
to an image sequence J of progressively transformed images Ii, with i = 1...N , start-
ing from the reference image I1 and extracting a repeatability score rK,Ii

(ǫ) ∀Ii ∈ J

with i 6= 1. In this way, rK,J(ǫ) could be the minimum or maximum value of {rK,Ii
}.

In this work, the average repeatability rate obtained on J is employed; a simple but
experimentally effective choice (Trujillo and Olague, 2006a,b),

rK,J (ǫ) =
1

N − 1

N
∑

2

rK,Ii
(ǫ) . (7)

However, when rK,J (ǫ) is the only term in f(K) the GP search can get lost in unwanted
maxima if appropriate precautions are not taken. For example, in a degenerate case the
GP search could exploit individuals that extract useless points clustered together on
texture-less regions and still achieve a high repeatability rate; see Figure 4(a). This
is undesirable; for example, if the goal of the detection process is to identify unique
and distinctive points. Moreover, because the training images employed have texture
distributed in a close to uniform manner, it is prudent to predict that a good detector
will extract uniformly distributed points. Obviously, this constitutes a multi-objective
problem, one objective is to promote a high repeatability score and the other is to have a
high level of point dispersion or global separability. The latter is a property that depends
on the specific characteristics of a given image. Nevertheless, it was experimentally de-
termined that including this criterion into the fitness function promotes the emergence
of better overall detectors. Therefore, both objectives are combined in a multiplicative
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manner,
f (K) = rK,J (ǫ) · φα

x · φβ
y · Nγ

% , (8)

where φu are terms that promote a large global separability of detected points. The terms
φu behave like sigmoidal functions, the reason for which is explained below, within a
specified interval,

φu =

{ 1

1 + e−a(Hu−c)
, when Hu < Hmax

u ,

0 otherwise .
(9)

Where Hu is the entropy value of the spatial distribution of detected interest points
along direction u, on the reference image I1 of the training set J , given by

Hu = −
∑

Pj(u)log2 [Pj(u)] , (10)

with Pj(·) approximated by the histogram of interest point localizations using bins
of 8 × 8 pixels. Values for Hmax

x and Hmax
y are set empirically using the reference

image of the training sequence. In order to better explain function φu an illustrative
example is helpful. Figure 4 shows the curve generated by the sigmoidal part of φα

x

with the following parameter values: α = 20, a = 7 and c = 5. In this plot, the
position of three individuals on the curve is shown, each has a different amount of global
separability, or to be more precise, a different entropy value Hx. For instance, the points
shown in Figure 4(a) are tightly clustered, thus the associated entropy value Hx =
5.6 is low. The next individual is the KIPGP2 operator (Trujillo and Olague, 2006a,b),
Figure 4(b), which extracts highly repeatable points and maintains a good amount of
point dispersion with Hx = 5.74. The last individual, Figure 4(c), is an operator that
extracts very sparse points and has a low associated rK,J(ǫ), the individual is therefore
biased to the separability part of the fitness function. Experimental results have shown
that stable operators with good repeatability tend to have an associated φα

x located
within the bounding box shown in Figure 4. Therefore, values above Hmax

x = 5.9 are
thresholded in order to discourage individuals that only exploit the separability term;
using the same analysis, the entropy value along direction y is set to Hmax

y = 5. The
final term,

N% =

(

extracted points

requested points

)γ

, (11)

is a penalizing factor that reduces the fitness value for detectors that return less than the
number of requested points. Because a GP can construct very diverse operators, it is
impossible to set a constant value for h in Eq. (1) that would be useful for every operator
K . Therefore, a constant number of points are selected, requested points=500, for every
individual operator in the following manner. After obtaining an interest image I∗i all
the pixels in I∗i are sorted in descending order and h is set to the value of the 500th

highest pixel. Because the condition in Eq. (1) is K(x) > h and not K(x) ≥ h it
is possible that extracted points < requested points. If the difference is small then the
penalization will be negligible. However, for a K that produces an I∗i with uniform
values, such as K(x) = 0 ∀x ∈ Ii, then this will result in a high penalty for K because
of the inability to produce a discriminate value between interesting and non-interesting
pixels. A final heuristic taken in order to promote interest point dispersion was to set
the size of the neighborhood W of Eq. (1) to n = 5. This proved to be beneficial during
evolution, and n was set to 3 during testing in order to make possible a straightforward
comparison with Schmid et al. (2000).
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Figure 4: Behavior of the separability term φα
x of f (K). It shows the associated sep-

arability value of three operators. From left to right: first, an operator that extracts
cluttered points; second, IPGP2 with a good separability of detected points; and finally,
an operator biased towards detecting very sparse points.

Figure 5: Samples from the Van Gogh sequence show images: I1, I3, and I7.

5 Experimentation

This section describes the implementation setup, the training and testing sets, previous
results, and the new set of operators designs by the proposed GP algorithm.

5.1 Implementation details

The implementation of the previously described approach was programmed on Mat-
lab, with the Genetic Programming toolbox (GPLAB)4. The image sequence used for
training was the Van Gogh set of a planar scene with rotation transformations, see
Figure 5. The Van Gogh sequence has one base image and 16 progressively rotated
images, N = 17, each with a rotation of 11.25◦ degrees clockwise from the previous
one. However, due to the computational complexity of obtaining interest points from
arbitrary operators and calculating a repeatability score for each image, only half of the
Van Gogh sequence is used for training. Hence, N = 9 with a rotation angle of 22.5◦, a
trade-off between generality and computational effort. Training and testing sequences
were all downloaded from the Visual Geometry Group website 5, along with Matlab
source code that computes the repeatability rate, and binary files for the Improved Har-

4http://gplab.sourceforge.net/index.html, GPLAB A Genetic Programming Toolbox for MATLAB.
5Visual Geometry Group: http://www.robots.ox.ac.uk/ vgg/research/ .
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ris detector used for comparison. All experiments were made on a PC with Intel Dual-
Core processor and 2Gb of RAM running Linux OS. Table 1 specifies the GP run-time
parameters used during the experimental tests. The first three parameters, population
size, initialization, and genetic operator probabilities, have canonical values which were set
empirically. The next four help to control code bloat. Tree depth is dynamically set using
two maximum tree depths that limit the size of any given individual within the popu-
lation. The dynamic max depth is a maximum tree depth that may not be surpassed by
any individual unless its fitness matches the fitness of the best individual found. When
this happens, the dynamic max depth is augmented to the tree depth of the new fittest
individual. The other, real max depth is a hard limit that no individual may surpass
under any circumstance. In previous work, (Trujillo and Olague, 2006a,b), tournament
selection with lexicographic parsimony pressure was employed. However, this lead to
a loss in population diversity without significant code bloat control. Therefore, the new
set of results employ stochastic universal sampling.

5.2 Preliminary results

Previous work by Trujillo and Olague (2006a,b) presented two operators: KIPGP1 and
KIPGP2; where IPGP stands for Interest Point operator with Genetic Programming.

KIPGP1(x) = Gσ=2 ∗ (Gσ=1 ∗ I − I) , (12)

KIPGP2(x) = Gσ=1 ∗ [Lxx(x)·Lyy(x) − L2
xy(x)] . (13)

Figure 6 shows an interest image obtained with each operator, along with relevant
statistics of their corresponding evolutionary run. The top row are the plots related to
KIPGP1 found in generation 9; while, the bottom row are plots for KIPGP2 found in
generation 18. Both experimental runs show low associated diversity, this is mostly re-
lated to the tournament selection employed. For KIPGP1 the population fitness tends
to be higher, a product of the low diversity, and the fact that KIPGP1 is situated on
a plateau of local maxima. A subspace Ω1 ⊂ Ω is defined that contains individu-
als situated within this plateau, these are individuals with similar genetic material to
KIPGP1. On the other hand, KIPGP2 is obviously located on a more steeper slope of
fitness space, evidenced by the more unstable fitness plots of the population. This is
further exemplified by the fact that of 30 additional experimental runs none rediscov-
ered the structure of KIPGP2. The mathematical expression of each operator and the
corresponding interest image reveal noteworthy properties. KIPGP1 can be seen as ex-
tracting image borders, applying what can be understood as DoG filtering. KIPGP2,
on the other hand, performs a smoothing operation on the determinant of the Hessian,

Parameters Description and values

Population size 50 individuals.
Generations 50.
Initialization Ramped Half-and-Half.
Crossover & Mutation prob. Crossover prob. pc = 0.85; mutation prob. pµ = 0.15.
Tree depth Dynamic depth selection.
Dynamic max depth 5 levels.
Real max depth 7 levels.
Selection Stochastic universal sampling
Survival Keep best survival strategy.
Fitness function parameters ax = 7, cx = 5.05, ay = 6, cy = 4.3, α = 20, β = 20, γ = 2.

Table 1: General parameter settings for our GP framework.
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Figure 6: Evolutionary statistics for IPGP1 and IPGP2, the operators correspond to
the first and second row respectively. The columns show from left to right: 1) Sample
I∗, 2) Fitness graphs, and 3) Population diversity.

a small modification over the operator originally proposed by Beaudet (1978). Despite
the fact that the improvement discovered by KIPGP2 is subtle, it is the same type of
modification proposed by Schmid et al. (2000) to the Harris operator, what the authors
called Improved Harris, that produced significant performance gains.

Figure 7 plots the repeatability rate of KIPGP1 and KIPGP2 on the complete Van
Gogh sequence, along with the repeatability rate of the operators proposed in (Beaudet,
1978; Kitchen and Rosenfeld, 1982; Harris and Stephens, 1988; Wang and Brady, 1991;
Förstner and Gülch, 1987). For the Harris and Stephens detector the Improved Har-
ris is used (Schmid et al., 2000). All the detectors were given the benefit of using
isotropic Gaussian derivatives. The plot shows that KIPGP1 and KIPGP2 outperform
all man-made designs, except for the Improved Harris operator that has comparable per-
formance. If the additional 3 detectors evaluated by Schmid et al. (2000) are considered,
the evolved operators outperform a total of 7 man-made designs. Additionally, the only
operators with comparable performance, Improved Harris, has a more complex structure
which can be a factor when deciding for real-time vision applications.

5.3 Further results

After obtaining the previous results, 30 new runs of the algorithm have yielded the
following outcome. Table 2 lists the 15 best solutions found during those executions
which are also called the super individuals. From the 30 runs, only 18 generated a solu-
tion that can generalize on the complete Van Gogh sequence. Also, from those 18 runs a
solution was reproduced on three occasions; thus, the 15 operators presented here. The
12 non-productive runs could have been avoided if the complete Van Gogh sequence
was used during training. There is an obvious trade-off between the run-time of the
algorithm and the probability of obtaining a useful operator. In order to avoid this bot-
tleneck a larger population size or a grid computing environment could be employed;
Lombraña et al. (2007) present preliminary results on this topic. Table 2 shows the
name of each operator, the mathematical expression, the number of the corresponding
run in which it was obtained, the corresponding subspace, its fitness value, the average
repeatability score on the complete Van Gogh sequence, and if the expression was alge-
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Figure 7: Repeatability score on the complete Van Gogh sequence for KIPGP1 and
KIPGP2; plotted for comparison with the operators proposed in (Beaudet, 1978;
Kitchen and Rosenfeld, 1982; Harris and Stephens, 1988; Wang and Brady, 1991;
Förstner and Gülch, 1987).

Name Operator Run Sub. Fit. rJ ⋆ Sim.

IPGP1∗ G2 ∗ |I − G2 ∗ I|2 3, 28 Ω1 77.91 94.78 no
IPGP3 G1 ∗ G1 ∗ G1 ∗ G2 ∗ G2 ∗ (G1 ∗ I − I) 5 Ω1 83.98 95.9 no
IPGP4 G2 ∗ G2 ∗ G2 ∗ (G2 ∗ I − I) 7 Ω1 85.98 96.35 no

IPGP5 G1 ∗ G2 ∗ |I − G1 ∗ I|2 19 Ω1 83.86 93.22 no

IPGP6 G2 ∗ G2 ∗ G1 ∗

„

I

G2 ∗ I

«

15 Ω1 78.13 94.84 no

IPGP7 G2 ∗ |2 · Lyy + 2 · Lxx| 4, 9 Ω∇ 78.33 94.92 yes

IPGP8 G2 ∗
˛

˛

˛
Lxx + 2 · G2(Lxx + Lyy)2

˛

˛

˛
11 Ω∇ 73.86 90.54 yes

IPGP9 G2 ∗ G2 ∗ |2 · Lyy + 2 · Lxx + Lxy| 16 Ω∇ 80.3 93.44 no
IPGP10 G2 ∗ |Lyy + Lxx| 18, 20 Ω∇ 77 92.81 no

IPGP11 G1 ∗

 

G1 ∗ I

(G1 ∗ G1 ∗ I)3

!

21 Ωσ \ Ω1 78.23 92.44 yes

IPGP12
G2 ∗ I

3

2

(G1 ∗ I)
9

4

22 Ωσ \ Ω1 72.67 91.91 yes

IPGP13 G2 ∗ G2 ∗ [(G2 ∗ I)(G2 ∗ G1 ∗ I − I)] 6 Ωσ \ Ω1 85.72 96.37 no
IPGP14 G2 ∗ G2 ∗ [(G2 ∗ G2 ∗ G2 ∗ I)(G2 ∗ G2 ∗ I − I)] 23 Ωσ \ Ω1 85.94 96.5 no

IPGP15
G2 ∗ [G2 ∗ G2 ∗ |I − G1 ∗ I − G2 ∗ G2 ∗ I|]

G2 ∗ G2 ∗ I
24 Ωσ \ Ω1 85.81 95.15 no

IPGP16
G2 ∗ G2 ∗

h

G1 ∗ G2 ∗ I2 − I2
i

G2 ∗ G2 ∗ G1 ∗ I
30 Ωσ \ Ω1 84.63 96.8 no

⋆ To obtain rJ the size of the neighborhood W

for non-maximum suppression was set to n = 3.

Table 2: Evolved interest operators.

braically simplified. Table 2 is organized into three sets, each presenting operators from
the subspaces Ω1, Ωσ \ Ω1 and Ω∇. The subspace Ωσ ⊂ Ω contains operators that do
not include Gaussian derivatives Lu as part of their genetic material; i.e., they rely on
Gaussian filters and arithmetic operations. Next, Ω1 ⊂ Ωσ , as mentioned above, con-
tains operators that are genetically similar to KIPGP1. Some of the GP runs converged
around the local optima in which IPGP1 is located. Finally, Ω∇ ⊂ Ωδ contains oper-
ators that explicitly apply the Laplacian operation to the image, making it an obvious
subspace of Ωδ . Notice that Ω∇ and Ω1 are located in different regions of Ω defined by
the genotype, and at the same time share the same phenotypical representation caused
by the competing conventions problem. Additionally, the GP also finds unorthodox
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operators that are not commonly used in vision applications; each is described next.

5.4 Discussion and comparisons

The discussion begins by focusing on operators within Ω1. First, special attention is
given to KIPGP1∗ because of its extremely simple structure, a particularity it shares
with KIPGP1, and hence the name assigned to it. KIPGP3 and KIPGP4, on the
other hand, are proportional to KIPGP1; they apply the same filtering of the form
Gσ1

∗ I − Gσ2
∗ I with σ1 > σ2. The same analogy can be made between KIPGP1∗ and

KIPGP5, because the only difference between them is the amount of image smoothing
used. The additional smoothing operations are related with the theory of scale-space
analysis, where larger image structures are salient at larger smoothing scales (Linde-
berg, 1998). It is evident that the GP process focuses the detection strategy on larger
image structures which are indeed more stable than smaller features. This particular
result exhibits the resourcefulness of EC methods.

Operators that are proportional to KIPGP1 will detect corners, edges and blobs
of salient low intensity regions; the additive inverse of KIPGP1 extracts salient high
intensity regions. It is interesting to note that the basic structure of KIPGP1 has been
rediscovered a total of three times by the GP search, while its additive inverse has yet
to appear (Trujillo and Olague, 2007). This is probably related to the training sequence
used and not due to any bias within the search process. KIPGP1∗ on the other hand,
because of its absolute value, identifies maxima related to both KIPGP1 and its additive
inverse K−IPGP1. An interesting property of the operators from Ω1 is that all employ
a DoG filter.

Proposition 1: Both KIPGP1 and KIPGP1∗ are proportional to DoG (Difference-off-

Gaussian) filters, if we assume that image I is derived from an unknown image Î blurred with

a Gaussian of unknown standard deviation σ̂ such that I = Gσ̂ ∗ Î , and

Gσ ∗ I − I = Gσ ∗ Gσ̂ ∗ Î − Gσ̂ ∗ Î ∝ Gσ+σ̂ ∗ Î − Gσ̂ ∗ Î = (Gσ+σ̂ − Gσ̂) ∗ Î . (14)

Given Proposition 1, KIPGP1∗ , KIPGP3, KIPGP4, and KIPGP5, are all related by
their use of a DoG filter, not just by their genetic similarities with KIPGP1. The final
operator assigned to Ω1 is KIPGP6, its main difference to KIPGP1 is the fact that in
place of an image subtraction it uses a protected image division. This makes KIPGP6

a very close neighbor of KIPGP1 in terms of its genetic content, but also quite different
considering the operation it performs.

The next group of operators in Table 2 are those from Ω∇. Operators KIPGP7 and
KIPGP10 perform a similar Laplacian operation, differing only by a dismissible con-
stant factor, which means that the GP converged to this precise solution four times. It
is easy for the GP search, thanks to the terminal set, to find an above average fitness
region using the provided Gaussian derivatives. Furthermore, KIPGP8 and KIPGP9

perform more complex operations, but still rely on the Laplacian to obtain their inter-
est measure. For example, KIPGP9 is the sum of all second order derivatives, while
KIPGP8 uses the square of the Laplacian. Hence, because the DoG filter is an approxi-
mation of the Laplacian, Ω∇ and Ω1 contain operators with competing conventions.

Finally, Table 2 presents six operators from Ωσ \ Ω1; they apply interesting varia-
tions of the DoG filtering performed by operators in Ω1, such as a DoG filter applied to
the square of an image in KIPGP12, KIPGP14 and KIPGP16. The protected division was
used by three of the individuals, only 4 out of the 18 super individuals synthesized
use this primitive. Ratios of two measures appear to be more useful when Gaussian
derivation is not employed. Figures 8, 9 and 10 present the evolution statistics of each
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Figure 8: Evolution statistics for operators presented in Table 2 are presented by
columns from left to right: 1) fitness (median, average, and best fitness), 2) population
diversity, 3) complexity (dynamic max depth, best individual tree depth and number of
nodes); by rows, from top to bottom: IPGP1∗, IPGP3, IPGP4, IPGP5, and IPGP6
(continued).

operator described in Table 2, presented in the same order row by row. Columns, from
left to right, are for fitness statistics, population diversity, and complexity of best indi-
vidual. Fitness plots include the median population fitness, the average population fit-
ness and the fitness of the best individual found thus far in every generation. Diversity
graphs represent the amount of genetic diversity found in the population at each gen-
eration. Finally, the complexity graphs describe the behavior of the dynamic maximum
tree depth parameter, along with the tree depth of the fittest individual (both of these
values multiplied by 10 to facilitate viewing), and the number of nodes of the fittest
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Figure 9: Evolution statistics for operators presented in Table 2, by rows: IPGP7,
IPGP8, IPGP9, IPGP10, and IPGP11.

individual. For operators discovered in more than one run, the statistics of a single run
are used to present the behavior of the evolutionary process. Most of the operators are
found early in the GP search, before generation 25, with KIPGP5, KIPGP7, KIPGP12

KIPGP14, KIPGP15, and KIPGP16 being the exceptions. Operators from Ωσ \ Ω1 are
mostly found in later generations, probably because their unorthodox measures re-
quire more exploration. Furthermore, statistics show that populations that converge to
Ωσ \ Ω1 have lower median and average fitness, with low median peaks even near the
end of the run. Conversely, populations that converged to Ω∇ have higher performing
populations, where image derivatives are able to capture, in a direct manner, the high
variation property that every interest point requires. The diversity plots of all operators
are closely related to the complexity of the best individual found. The smaller the super
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Figure 10: Evolution statistics for operators presented in Table 2, by rows: IPGP12,
IPGP13, IPGP14, IPGP15, and IPGP16.

individual, in terms of number of nodes, the less diverse the population; the opposite
being true for larger super individuals. Therefore, populations that converge towards
Ω1 produce the best solution in earlier generations, while populations that converge
towards Ωσ \Ω1 require more evolution time. The complexity plots also show the ben-
efits of the dynamic max depth parameter. Early generations try out simple operators
first, and the complexity is allowed to gradually increase only when an associated fit-
ness improvement is found. One final observation regarding the operators presented in
Table 2 is related to the filtering of some genetic primitives by selective pressure. From
the 20 primitives in {F ∪ T }, six of them never appeared in any of the super individu-

als, including
√

I, log2,
I
2 , EQ(I), and more notably, the first order Gaussian derivatives

Lu despite their wide ranging use in corner and edge detection.
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Figure 11: The reference image (right) and a transformed image (left) for each testing
sequence. a) Mars (N = 18, rotation), b) New York (N = 35, rotation), c) Graph (N =
12, illumination), d) Mosaic (N = 10, illumination).

Figure 12: Repeatability for each operator, computed for each image sequence.

From Table 2, a set of 7 operators were selected for further testing along with
KIPGP1, KIPGP2, and the Improved Harris detector. The operators chosen are: KIPGP1∗ ,
for its simplicity and complementary structure to KIPGP1; KIPGP6 for its unique op-
eration; KIPGP7 that represents the 4 operators that use the Laplacian explicitly in Ω∇;
KIPGP9, the sum of second order derivatives; and KIPGP14, KIPGP15, and KIPGP16

for their unorthodox measures. Other operators are not presented in further tests be-
cause some are redundant, and others achieve lower fitness scores. Figure 11 presents
4 image sequences used for testing, where Mars and New York have rotation trans-
formations, and Graph and Mosaic have illumination changes. Considering the fact
that the sequence used for training only presents rotation transformations, there is no
guarantee that the evolved functions will show stability under other transformations.
Furthermore, the Van Gogh sequence is a textured scene while New York has a more
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Figure 13: A qualitative comparison showing points with the highest interest measure.
First row, New York image with 400 points. Second row, Mosaic image with 200 points.

geometric structure, this could be another possible source of problems.
Figure 12 shows the performance plots. First, for the Van Gogh sequence, as ex-

pected, all operators have a high and stable performance, note the scale. For the Mars
sequence, high performance is also obtained by most of them, which is an expected re-
sult considering the similarities with the training sequence. Only KIPGP15 is decidedly
worse than the rest, while KIPGP1∗ and KIPGP9 are only slightly below the average.
Encouraging results are obtained for the New York sequences, given the differences
between it and the training set. Nevertheless, all operators were able to generalize to
the different type of scene, with KIPGP1∗ and KIPGP9 only slightly below average.

For the sequences that present illumination transformations, the detection method
was necessarily modified. Specifically, a fixed number of points cannot be extracted
from every image in the sequence because the intensity values are altered. Therefore,
the number of extracted points is equal to the number of points detected by the Im-
proved Harris detector. Future work requires an optimal threshold to be determined
for each operator; however, the solution used is sufficient to illustrate the performance
of the described operators. Surprisingly, on both illumination sequences every detec-
tor obtained a high performance score, with KIPGP2 consistently receiving the slightly
higher measures. This shows that the GP search has located operators that can general-
ize to different types of tests, an match the state-of-the-art in interest point detection. It
could be argued that the evolved operators are only capable of mimicking the perfor-
mance of the Harris detector due to the performance similarity. However, a qualitative
comparison shows that the operators found by the GP are capable of achieving a high
fitness while also focusing on different image features, see Figure 13.
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6 Summary and concluding remarks

This paper presented a GP-based methodology that automatically synthesizes opera-
tors that detect interest points on images. The problem formulation poses the design
process of an interest point operator as an optimization/search problem, and employs
simulated evolution to solve it. A careful analysis of previously proposed detectors re-
vealed that a finite set of simple image operations can be used to define a GP’s function
and terminal sets. However, the manner in which those elements are combined is not
a trivial task. Moreover, close attention was given to define an appropriate objective
function. A well-established performance measure was chosen as the main component
of the fitness measure, the repeatability rate. In addition, the objective function also
promotes a good dispersion of detected interest points. Therefore, operators synthe-
sized with this approach reveal reasonable and desirable properties that make them
suitable for many types of vision applications that rely on the detection of salient or
interesting image regions. The experimental results presented a total of 17 operators,
including the two obtained in earlier work (Trujillo and Olague, 2006a,b).

Strong experimental evidence suggest that the GP-based approach synthesizes ro-
bust and effective interest point detectors. A noteworthy result is the fact that the op-
erators are able to generalize quite well to different types of scenes and image trans-
formations. Furtheremore, the operators outperform all previously man-made designs
except for the Improved Harris detector which achieved similar performance. However,
the GP search did produce operators that are functionally unique and capable of iden-
tifying qualitatively different interest points, when applied to the same image, with a
high performance.

On the other hand, interesting properties could be observed when the convergence
tendencies of the GP search were analysed. For instance, the fact that the algorithm
mostly produced operators that performed LoG or DoG filtering in their computation.
The GP basically promotes the detection of edge or blob points and not necessarily
image corners. However, this was not always the case because the GP also produced
some less obvious and unorthodox operators that were still highly competitive.

Future work on this research will focus on the evaluation scheme. Here, the prob-
lem was formulated as a mono-objective optimization process where two performance
criteria were combined: the repeatability rate and the amount of global separability.
However, there is no prior reason to assert that this is the correct approach, and a truly
multi-objective approach could be more insightful and productive. Thence, through
multi-objective evolutionary algorithms the problem can be restated and additional
objectives could be added in a principled manner.
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