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Abstract

A discrete model with a simple cubic nonlinearity term for the symmetric coupling of three fixed points (one

unstable) is treated in the study of bifurcations and chaotic behavior of a prototype delayed dynamical system under

discretization. Effective computation of Hopf bifurcations, stable limit cycles (periodic solutions), symmetrical breaking

bifurcations and chaotic behavior in nonlinear delayed equations is proposed.

� 2004 Elsevier Ltd. All rights reserved.
1. Introduction

In [18,19], a prototyped delay model with cubic nonlinearity
E-m

0960-0

doi:10.
_xðtÞ ¼ dxðt � sÞ � �½xðt � sÞ�3
or equivalently (by changing the scale by t0 ¼ st)
_xðtÞ ¼ dsxðt � 1Þ � �s½xðt � 1Þ�3 ð1:1Þ
has been proposed and its complex dynamical behavior has been studied in detail by the use of fifth order Runge–Kutta

ordinary differential solver embedded in Matlab toolbox [17] for 0.01 integration step-size and 10�6 absolute and

relative tolerance, where d and � are positive parameters and s is delay time.

It is easily simulated by numerical computation at least qualitatively and observed that the limit set of numerical

solutions changes from a stable equilibrium point into an invariant closed cure, invariants loops and eventually chaotic

behavior by varying the parameter value. As to the study of Hopf bifurcation and periodic solutions in numerical

approximation of delay differential equations, see [3–5,10,11] by use of the Euler method and [7] by Runge–Kutta

discretization.

In this note, we propose a discrete model by Euler method (a simple yet efficient way) to explore the rich dynamics of

delay differential equations, and present an implementation of the methods and our numerical experience. The main

results come from the estimate of the Large Lyapunov exponent and the amplitude of the trivial attractor (fixed points

or limit cycles) or strange attractor.

Employing the techniques and methods developed in this paper, complex dynamical behavior of delay differential

equations can be explored clearly, e.g., we obtain similar results to Uc�ar [18,19] and Strogatz [16] (see Section 4).

This paper is organized as follows: In Section 2, a discrete model has been defined. Some properties for Eqs. (2.1)

and (2.2) have been discussed in Section 3. The global behavior of the model has been delved into in Section 4, where a
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bifurcation diagram is provided to observe the effect of time delay, and a phenomenon of multiple bifurcations is also

observed. Finally, in Section 5 the findings are summarized and conclusions are drawn.
2. The discrete model

For simplicity of analysis, we consider step-sizes of the form h ¼ 1=n, where n is a positive integer. The Euler method

applied to (1.1) yields the delay difference equation (DDE)
uðk þ 1Þ ¼ uðkÞ þ aðd; s; nÞuðk � nÞ � bð�; s; nÞuðk � nÞ3; ð2:1Þ
where aðd; s; nÞ ¼ ds=n, bð�; s; nÞ ¼ �s=n, uðkÞ is an approximate value to xðkhÞ. As to the study of Neimark–Saker

bifurcation and chaotic behavior of (2.1) for d ¼ � < 0, see [11]. And for the study of Hopf bifurcation and periodic

solutions of (1.1) with d ¼ � < 0, see [1,2] and the references therein. If given nþ 1 arbitrary real valued numbers

aðk0 � nÞ, aðk0 � nþ 1Þ; . . . ; aðk0Þ, Eq. (2.1) has a unique solution fuðkÞg1k0�n satisfying the initial condition
uðkÞ ¼ aðkÞ for k 2 ½k0 � n; k0�: ð2:2Þ
In this paper the following notation is used throughout. Rn denotes the n-dimensional Euclidean space and detA is

determinant of a matrix A. r1 denotes the largest Lyapunov exponent of system (2.1). an denotes aðd; s; nÞ, bn denotes

bð�; s; nÞ.
3. Some properties

By introducing new variables xiþ1ðkÞ ¼ uðk � iÞ (i ¼ 0; 1; . . . ; n), we can rewrite (2.1) in the following form:
xðk þ 1Þ ¼ x1ðk þ 1Þ
xiðk þ 1Þ

� �
¼ F ðxðkÞÞ ¼ x1ðkÞ þ aðd; s; nÞxnþ1ðkÞ � bð�; s; nÞxnþ1ðkÞ3

xi�1ðkÞ

� �
; ð3:1Þ
where i ¼ 2; . . . ; nþ 1, aðd; s; nÞ > 0, bð�; s; nÞ > 0 and x 2 Rnþ1. They consist of a n-dimensional linear subsystem and

an one-dimensional nonlinear subsystem. Thus, only in one of the nþ 1-dimensional nonlinear folding and stretching

occurs in one of the variables ðxnÞ. In all the other variables a simple mapping from xi�1 onto xi take place. So mappings

(3.1) can be viewed as one of the simplest systems capable of showing higher-dimensional chaos.
Fig. 1. Bifurcation diagram of the 1D-Map: �0:56 d6 2 for � ¼ 1.
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Consider the fixed points �x of system (2.1) and their stability. From F ð�xÞ ¼ �x, we obtain
Fig. 2
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nþ1 times

:

The stability of the fixed points �x� is governed by the eigenvalues of the Jacobian of the map (3.1).

Obviously,
A ¼ oF
ox

����
x¼�x�

¼

1 0 . . . 0 an � 3dbn=�
1 0 . . . 0 0

..

. ..
. ..

. ..
.

0 0 . . . 1 0

0
BB@

1
CCA: ð3:2Þ
Note that detA ¼ ð�1ÞðnÞðan � 3dbn=�Þ and an � 3dbn=� ¼ �2ds=n, one can get the system is dissipative [6,15] for

jdsj < n=2.
The characteristic polynomial of A is
QðkÞ ¼ detðkI � AÞ ¼ knþ1 � kn þ 2ds=n ¼ 0: ð3:3Þ
. Phase portrait of Eq. (1.1) (also system (4.2)) with s ¼ � ¼ 1: (a) for d ¼ 0:5 system trajectory converges to the equilibrium

(b) self-sustained oscillation for d ¼ 0:9; (c) oscillation for d ¼ 1:51; (d) chaotic behavior for d ¼ 1:7. First hundreds of points are

tted. (See Fig. 4 [19] by the use of fifth order Runge–Kutta ordinary differential solver embedded in Matlab toolbox [17] for

ntegration step-size and 10�6 absolute and relative tolerance.)
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A fixed point is locally asymptotically stable if all the roots of the characteristic polynomial have modulus less than

one. It is shown by Levin and May [13] (also see [12]) that the absolute values of all the roots of (3.3) are less than one if

and only if 0 < 2ds=n < 2 cos½np=ð2nþ 1Þ�, i.e.,
Fig. 3

symme

respect
0 < ds < c�n , n cos½np=ð2nþ 1Þ�: ð3:4Þ

This c�n is a prospective value at which a Neimark–Sacker (Hopf) bifurcation occur (see, e.g. [8,10,11,20].
. Multiple limit cycle bifurcations of Eq. (1.1) (approximated by system (4.2)) with s ¼ � ¼ 1 for 1:516 d6 1:55: (a1–a2)

try breaking bifurcation for d ¼ 1:51 and 1.52; (b1–b4) period-doubling bifurcations for d ¼ 1:52, 1.53, 1.54, and 1.55

ively.



Fig. 4. A typical trajectory of the model (1.1) (approximated by system (4.2)) for � ¼ d ¼ 1 and s ¼ 1:65 (see Fig. 4 [18]).

Fig. 5. Chaotic behavior of ds ¼ 1:6 mode for model (1.1) (approximated by system (4.2)) with the same greatest Lyapunov exponent

r ¼ 0:0016 (20,000 iterations, N0 ¼ 256 different initial states set on the chaotic attractor; the last half part of iterations are plotted as

above): (a) for d ¼ 0:6, s ¼ 2:667; (b) for d ¼ 0:8, s ¼ 2; (c) for d ¼ 1, s ¼ 1:6; (d) for d ¼ 1:2, s ¼ 1:33. (a) d ¼ 8:55, s ¼ 0:2; (b)

d ¼ 1:71, s ¼ 1; (c) d ¼ 1, s ¼ 1:71; (d) d ¼ 0:171, s ¼ 10 (see Fig. 9 [18]).
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As to the trivial fixed point �x0, one can obtain the Jacobian matrix as follows:
Fig. 6

r ¼ 0:0

above)
B ¼ oF
ox

����
x¼�x0

¼

1 0 . . . 0 an
1 0 . . . 0 0

..

. ..
. ..

. ..
.

0 0 . . . 1 0

0
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1
CCA: ð3:5Þ
The characteristic polynomial of B is
QðkÞ ¼ detðkI � BÞ ¼ knþ1 � kn � an ¼ 0: ð3:6Þ
Therefore, according to Levin and May [13] and Kuruklis [12], the fixed point �x0 is unstable because of an > 0.
4. Numerical results

Let us now turn to numerical investigations for n ¼ 0 (without delay) and n ¼ 100 with initial value conditions

xið0Þ ¼ 0:1, i ¼ 1; 2; . . . ; nþ 1 and UðtÞ ¼ 0:1, �s6 t6 0 for system (1.1).

As to the case n ¼ 0, i.e., s ¼ 0 in system (1.1) and the Euler method is applied to system (1.1) with step-size h ¼ 1

and _xðkÞ � xðk þ 1Þ � xðkÞ, we give a brief study of the 1D-map
. Chaotic behavior of ds ¼ 1:71 mode for model (1.1) (approximated by system (4.2)) with the same greatest Lyapunov exponent

033 (30,000 iterations, N0 ¼ 256 different initial states set on the chaotic attractor; the last 10,000 of the iterations are plotted as

. (a) d ¼ 8:55, s ¼ 0:2; (b) d ¼ 1:71, s ¼ 1; (c) d ¼ 1, s ¼ 1:71; (d) d ¼ 0:171, s ¼ 10.



Fig. 7
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xðk þ 1Þ ¼ xðkÞð1þ d� �xðkÞ2Þ: ð4:1Þ
As the parameters of nonlinear system (4.1) change, the stability of the equilibriums changes as well as the number of

equilibrium points. If the parameter d passes through zero from negative to positive, the trivial stable fixed point splits

into three points. Dynamically, a symmetry-breaking pitchfork bifurcation occurs; one center (attractor) is transformed

into a unstable saddle point at the origin (repellor) and two centers (attractors) located at �
ffiffiffiffiffiffiffi
d=�

p
, which coincides

exactly with the results shown in [16,18]. Subsequently, period-doubling bifurcations occur and higher-periodic orbits
. Bifurcation diagram of model (1.1) (approximated by system (4.2)) for a range of time delay s : 0:66 s6 1:72 for d ¼ � ¼ 1.

Fig. 8. The largest Lyapunov exponent r of model (1.1) (approximated by system (4.2)) for 0:66 s6 1:72.
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become stable until two local chaotic regions sets in; after the symmetry-increasing crisis [14], these two regions cross

together and there exists a global chaotical region. The bifurcation diagram in Fig. 1 gives a graphic description of this

scenario for � ¼ 1.

Now, we consider the 101D-map
Fig. 9

bifurca
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xðk þ 1Þ ¼

x1ðkÞ þ 0:01dsx101ðkÞ � 0:01�sx101ðkÞ3
x1ðkÞ
..
.

x100ðkÞ

0
BBB@

1
CCCA; ð4:2Þ
where x 2 R101, i.e., the Euler method is applied to (1.1) with step-size h ¼ 0:01s, t ¼ kh, xðt � sÞ ¼
xðkh� sÞ � uðk � 100Þ ¼ x101ðkÞ, xðtÞ � x1ðkÞ and _xðtÞ � ðxðkhþ hÞ � xðkhÞÞ=h � ðx1ðk þ 1Þ � x1ðkÞÞ=h. Computer

simulation with 10�4 absolute and relative tolerance shows that numerical results similar to those proposed in [18,19]

can be obtained, see Figs. 2–6 and 9.

Using the method employed in this paper, a different bifurcation diagram (see Figs. 7 and 8) from [18] is presented to

delve into the detail effects of the time delay on the model behaviors for fixed model parameters of d ¼ � ¼ 1. Fig. 7

shows a one-parameter bifurcation diagram changing delay time s along the interval ½0:6; 1:72�. The results presented in

Fig. 7 are obtained such that the model response for chosen set of the parameters were monitored for ½0; 6000� sim-

ulation time with x0 ¼ 0:5 and their last thousand parts are considered to present state dynamic.

Figs. 7 and 8 show the model output, x first converges to the stable fixed point x ¼ 1 for 0:66 s6
0:78�ð100 cosð100p=201Þ for model (4.2) or p=4 for system (1.1)) then to a stable invariant closed limit cycle (periodic
. Trajectories of system (1.1) (approximated by model (4.2)) with d ¼ � ¼ 1 with increasing symmetry and multiple limit cycle

tions as the parameter s changes: (a) s ¼ 1:31, two unconnected limit cycles; (b–d) connected limit cycles with special symmetry

Þ ¼ �x for (b) s ¼ 1:32, (c) 1.33 and (d) 1.34 respectively.



Fig. 10. Multiple bifurcations of system (1.1) (approximated by system (4.2)) with d ¼ � ¼ 1 with initial functions UðtÞ ¼ �0:1.

(a1) s ¼ 1:51, (a2) s ¼ 1:52, (a3) s ¼ 1:53, (a4) s ¼ 1:54, (b1) s ¼ 1:574, (b2)s ¼ 1:576, (b3) s ¼ 1:578, (b4) s ¼ 1:58, (c1) s ¼ 1:641,

(c2) s ¼ 1:643 (see Fig. 7 [18]).
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Table 1

A comparison between our results for system (1.1) and those by [18]

Content Uc�ar’s results Our results

Numerical method Runge–Kutta method Euler method

Initial function /ðtÞ /ðtÞ ¼ 0:1 /ðtÞ ¼ 0:1

Step-size h h ¼ 0:01 h ¼ 0:01

The first chaotic region (� ¼ s ¼ 1) d � 1:56 d � 1:54

The first chaotic region (d ¼ � ¼ 1) s � 1:55 d � 1:54

The second chaotic region (d ¼ � ¼ 1) – s � 1:58

The third chaotic region (d ¼ � ¼ 1) s � 1:64 s � 1:641

Unbounded response (� ¼ s ¼ 1) dP 1:8 dP 1:72

Unbounded response (d ¼ � ¼ 1) s � 1:75 s � 1:73

Fig. 10 (continued )
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solution). After the symmetry-increasing crisis, the first chaotic region sets about at s � 1:54 (Figs. 9 and 10(a1)–(a4)).

Further increasing s leads to a multiple bifurcation again and then the second chaotic region (Fig. 10(b1)–(b4)) and then

the third chaotic region (Figs. 5 (c) and 10(c1)–(c2)). The model exhibits unbounded response for sP 1:73.
Now, we end this section with Table 1 which shows a comparison between our results for system (1.1) and those by

Uc�ar [18].
5. Conclusions

In this paper, we study the bifurcation and chaotic behavior in a class of delay difference equations (DDE). Ana-

lytical and numerical results for maps of lower and higher dimensions have been collected. Computer simulations show

that similar results to a prototype delay dynamical system can be obtained, such as the stability of the fixed point, the

occurrence of stable quasi-periodic solutions, invariant loops, and eventually chaotic dynamical behavior.

By considering the DDE, chaotic behavior of nonlinear delay-differential systems (DDS) can be studied, although

the delay system here only contains a single cubic term depending on one variable as nonlinearity. A method of using a

finite-dimensional discrete dynamical system to approximate an infinite-dimensional dynamical system is developed

here. This also illustrate that many results in the theory of difference equations has been obtained as much or less

natural discrete analog of corresponding results of differential equations [9]. So, the DDE gives a family of examples for

chaotic behavior usable to demonstrate analyzing and controlling schemes.
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