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Abstract

In this paper, a simple model is proposed for chaos studies. The model consists of a state, time delay and
a nonlinear element. It can be described as an autonomous continuous-time difference—differential equation
with only one variable. The rich behaviour of the system is numerically illustrated. © 2001 Elsevier Science
Ltd. All rights reserved.
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1. Introduction

Traditionally, it was implicitly assumed that random behaviour was due to extreme complexity
of the dynamical systems with higher number of independent degrees of freedom. However, recent
introduction of chaotic dynamics tells us that randomness in the dynamical systems does not
necessarily involve an enormous number of independent degrees of freedom [1]. In the presence of
a nonlinearity only a few independent variables are sufficient to generate chaotic motion. Consider
the following deterministic ordinary differential equations:

x=f(x1), x(0)=x), (1)

in which x € " is the state vector dependent on ¢ and x denotes the derivative. The nonlinear
function is f'(x,7) : #,. x #" — A" and may depend on ¢ and x. The initial-state vector at t = 0 is
x(0). The nonlinear function f(-) may include continuous or discontinuous nonlinearities. The
system defined in (1) must contain nonlinearity and has at least three degrees of freedom, » = 3, in
order to exhibit chaotic behaviour [2]. However this two conditions are not only necessary
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Fig. 1. An illustration of uncertainty growth in chaotic systems.

properties for a chaotic system, but also its trajectory needs to be sensitive to the initial conditions
[2]. Suppose the system output, x(z), and its velocity, x(¢), are measured accurately. Then in
x(t) — x(¢) plane (known as the phase plane) one can divide up the space into areas of size Ax(7),
Ax(t) as shown in Fig. 1(a). If a nonchaotic system is released from two nearby initial conditions,
its trajectories start close to one another in phase space and their future values can be predicted
somewhere in the shaded box, Ny(¢), illustrated in Fig. 1(a).

However, if the system is chaotic, its trajectories will move exponentially away from each other for
small times on the average and resulting loss of information about initial conditions. The uncer-
tainty grows in time to N(¢) boxes as shown in Fig. 1(b). The growth in the uncertainity given by

N = Nye", (2)

where £ is related to concept called the Lyapunov exponent, which the rate at which nearby
trajectories of the system phase space diverge [2]. This complexity of the behaviour is due to the
internal, rather then external dynamics.

For autonomous continuous time nonlinear system it has been indicated in [2] that chaos cannot
occur when n = 1,2. Confirming this result, the systems given in [3] all have at least three-state
variables and models for chaos studies; Chua’s circuits [4], Lorenz equations [5] and pressure
transducer model [6] are all in third-order forms. This seems not the case for systems with delay time,
a two-cell nonautonomous neural networks with delay (which is a third-order continuous time
autonomous system) may appear chaotic attractor [7]. Here further it points out that a simple
continuous-time nonlinear system modelled with delay differential equation can exhibit chaotic
behaviour without taken delay time too large and can be used as a prototype model in chaos studies.

2. The system description

Consider the following nonlinear continuous system in dimensionless form with one-state
variable
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i(t) = ox(t —7) —elx(t — 1))’ (1= 1), (3)

where § and ¢ are positive system parameters. Here 7, is the initial interval and 7 > 0 corresponds
to the delay time in which represents the time interval between the start of an event at one point
and its resulting action at another point in the system. The solution of the system equation defined
in (3) is determined uniquely when an initial function ¥(¢) defined on an initial interval is pre-
scribed as

x(t) =Y(t) forte[ty—1,t).

The time delay has been approximated or its effects are generally ignored by modellers. There are
several researches have comments on the dangers that modellers risk if they ignore delays which
they think are small [8]. In the case of approximation used for the delay elements, its effects on the
system behaviour can only partly be observed. The delay element arises naturally in various di-
verse fields: infectious diseases, chemical kinetics, and the navigational control of ships and air-
craft [8]. Therefore the subject of delay differential equations is now a rapidly growing one and
numerical solution of system modelled by delay differential equations is both theoretical and
practical interest. The bibliography prepared by Baker et al. [9] shows recent developments and
interests on this field.

3. From regular to complex behaviours

The system given in (3) has been used as a prototype model to observe self-oscillations in the
shipbuilding industry [10]. However, the complexity of the system has not been mentioned or
discussed yet. Since the system behaviour is generally studied with the small signal analysis, the
local behaviours around the equilibrium points are only obtained and discussed. Consider the
system in (3) with zero delay time, t = 0, has three equilibrium points namely origin and i\/é_/g.
The vector field of the system is depicted in Fig. 2. The arrows on the x-axis indicate the corre-
sponding velocity vectors at each interval of equilibrium points. The arrows point to the right
when x > 0 and to the left when x < 0. There is no flow at the equilibrium points.

In Fig. 2 solid black dots at ﬁ:\/é—/s represent stable equilibrium points where open circle at
origin represents unstable one. Fig. 2 shows that the system trajectory moves and approaches the
stable fixed point at y/d/¢ for any initial condition satisfies x, > 0. Similarly, if negative initial
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Fig. 2. Vector field of system given in (3) for 7 = 0.
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condition, xy < 0, is chosen then the system trajectory approaches to the negative equilibrium
point at —y/d/e.

The effects of delay on the system dynamics are discussed and investigated in the feedback
nonlinear systems [11]. It has been shown that the time delay occurred due to the sensors
dynamics in feedback path leads to undesirable phenomena such as oscillations and insta-
bility.

4. Numerical results

The dynamical behaviour of the system given in (3) without any restrictions and approxima-
tions may only be examined numerically. Here the system is modelled in Matlab/ SIMULINK"®
environment and is numerically solved by the use of fifth-order Runge—Kutta ordinary differential
solver, embedded in Matlab toolboxes. Since the system has not contain discontinuous elements,
ode45 solver is found to be suitable in this case [12]. The following numerical results are obtained
for 0.001 integration step size and 10~® absolute and relative tolerances. The delay time T = 0 and
the nonlinearity gain ¢ in (3) are fixed at unity. Here ¥(¢) = 0.1 is chosen on the initial interval as
initial function. The system response is examined by changing the gain 6 of the linear part of the
feedback signal. The delay value, T = 1, is not taken large and can be occurred in many engi-
neering systems especially due to the measurement devises in process control systems. The system
trajectory is first observed from time response and its a typical time response is shown in Fig. 3,
depicted for 6 = 1.6.

In order to monitoring the system response, its trajectory is depicted in phase plane by plotting
the integrator input versus its output as illustrated in Fig. 1. It can be seen from (3) that the system
without linear feedback part is asymptotically stable. However the linear part is destabilise the
system since positively fed back to the system input.

The numerical results are obtained for § = 0.5, 0.9, 1.51 and 1.7, and the system trajectories are
depicted in phase plane, Figs. 4(a), (b), (¢) and (d), respectively. Since positive initial function is
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Fig. 3. Time response of the system for t=¢=1 and 6 = 1.6.
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Fig. 4. Phase portrait of the system with t = ¢ = 1: (a) for 6 = 0.5 system trajectory converges to the equilibrium point,
(b) self-sustained oscillation for 6 = 0.9, (c) oscillations for 6 = 1.51, (d) chaotic behaviour for 6 = 1.7.

chosen, Fig. 4(a) shows the system trajectory is asymptotically decaying at positive equilibrium
point for ¢ = 0.5. Conversely, one can show that the trajectory will decay onto the negative
equilibrium point at —\/5_/8 if a negative initial function is chosen. Increasing the value of ¢ to 0.9
leads to a self-oscillation as depicted in Fig. 4(b) and encloses the stable equilibrium point located
at y/0/e. One can shows that this self-sustained oscillation is stable for a positive range of the state
initial conditions. Choosing the parameter 6 = 1.5 yields to the behaviour depicted in Fig. 3(c)
which indicates several oscillations with different amplitude and frequencies. Note that the sim-
ulation interval time for Fig. 4 is chosen large enough in order to observe both the transient and
study-state trajectories of the system. The trajectories depicted in Figs. 4(a)—(c) are usually con-
sidered as regular behaviours since their nature are known and can be analysed analytically.
However, increasing the values of 0 leads to complex behaviours: for example, choosing the
parameter 6 = 1.7 results to a strange behaviour depicted in Fig. 4(d). Note that the phase portrait
of the system depicted in Fig. 2(d) shows the last-half part of the system trajectory in order to
monitoring the steady-state behaviour of the system. The phase portrait depicted in Fig. 4(d) is a
clear indication of double-scroll chaotic-type behaviour, observed in the study of chaotic systems
[1] with three-state variables.

The unique character of chaotic dynamics may be seen most clearly by examining the system to
be started twice, but from slightly different initial functions. For nonchaotic system, the uncer-
tainty between two nearby initial functions leads to an error in prediction that groves linearly with
time. For chaotic systems, on the other hand, the error between two trajectories grows expo-
nentially in time (see Fig. 1), so that the state of the system is essentially unpredictable after a very
short time. These phenomena can be observed from error function depicted in Fig. 5 for two
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Fig. 5. The error, e = x(t),, — x(t)g 10001 DEtWeen two trajectories obtained for nearby initial conditions of the system
state.

nearby the state initial values, xo = 0.1 and xo = 0.10001. Fig. 5 shows simultaneous difference
taken between them, e = x(¢),,; — x(¢), ;000;> fOr 6 = 1.7.

Fig. 5 indicates the error between two trajectories initially almost unchanged within the time
interval of 0 < ¢ < 40, but it increases and gives raise to large error in later times resulting in a loss
of final-state predictability. This phenomenon is known as sensitivity of the system trajectory to
the value of the initial conditions. This is a clear evidence of chaotic behaviour of the proposed
simple structure system given in (3) with a realistic delay time.

5. Bifurcation diagram

The error between two system trajectories depicted in Fig. 5 only illustrates the results for fixed
system parameters. However, the details of the system responses to a range of a system parameter
is considerably important and chaotic regions are generally needed to produce chaos or operate
the system in nonchaotic regions. There are two methods namely the bifurcation diagrams and
Lyapunov exponents are usually used and obtained for monitoring the overall system behaviour
[2].

The system behaviour qualitatively can be observed as a function of the system parameters é or
¢ for the fixed delay time. It has been shown in [11] that changing the system parameter ¢ actually
stabilises the system and does not effect the system behaviour, since it fed to the system negatively.
Here the bifurcation diagram, which is a widely used technique for examining the pre-chaotic or
post-chaotic changes in the system under parameter variations, is obtained. A Matlab programme
is developed in order to obtain bifurcation diagram based on the procedure given in [2]. Again the
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system parameter ¢ is fixed at unity and its behaviour is observed by changing ¢ within the range
of 0.5 <0< 1.78 with 0.2 step size. The system trajectories are obtained for [0 20000] simulation
times and considering only its last-half part to eliminate the possible transient responses. In order
to illustrate the algorithm developed for bifurcation diagram, consider Fig. 6 that illustrates a
system trajectory in phase plane for fixed system parameters. Let S be an one-dimensional surface
of section. S is required to be transverse to the flow, i.e., all trajectories starting on S flow through
it, not parallel to it.

The mapping from S to itself, obtained by following trajectories from one interaction with S,
solid black dots, to the next, is known Poincare’ section [2]. Note Fig. 4(b) shows a solid black dot
only in Poincare’ section for ¢ = 0.9. If two self-sustained oscillations exist, then two dots will be
appearing on Poincare section. The bifurcation diagram shows the black dots, obtained from each
Poincare’ sections, versus a system parameter.

The system bifurcation diagram is depicted in Fig. 7, in which the system output x stereo-
scopically observed from Poincare’ section and depicted versus the selected range of positive
feedback gain ¢. Fig. 7 shows the trajectory of the system has initially settled down at a fixed point

’

Fig. 6. A typical Poincare’ section diagram.
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Fig. 7. Bifurcation diagram for the long-term values of the system output x versus the parameter 9.
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for 0 < 1. Increasing § > 1 leads to period two until the value of é reach to 1.56 where a small
chaotic region sets. For the range of 1.64 < ¢ < 1.8 the bifurcation diagram clearly indicates that
the system exhibits chaotic behaviour. Further increasing ¢ leads to unbounded solution namely
unstable behaviour.

6. Conclusions

The dynamic behaviour of a simple nonlinear system with delay element is studied in this paper.
It has been shown that such system may exhibit complex behaviour which cannot be observed
from approximation on the nonlinearity and time delay elements. The effective results presented
here may be considered as:
1. a simple dynamical system with a time delay can exhibit very complex behaviour include chaos,
2. the system presented in this paper can be used as a prototype model for studying chaotic behav-
iours in engineering science.
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