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Abstract

In this Letter a simple but effective iteration method is proposed to search for limit cycles or bifurcation curves of
differential equations. An example is given to illustrate its convenience and effectiveness.
 2005 Elsevier B.V. All rights reserved.
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1. Introduction

This Letter considers a non-linear delay-differen
system in the form

(1)ẋ = −µ
x(t − 1)

1+ [x(t − 1)]4 .

This system was studied by Peng and Ucar[1] by
numerical approach. The numerical result shows
the system, Eq.(1), has multiple bifurcations, stab
limit cycles (periodic or quasiperiodic solutions), a
chaotic behavior.

Recently many methods were suggested to d
with non-linear equations, for example, homotopy p
turbation method[2–4], variational iteration method
[5,6], various Lindstedt–Poincaré methods[7–9], vari-
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ational method[10–15], extended tanh method[16,17],
Adomian Pade approximation[18]. There also exis
many approaches to bifurcation of various non-lin
problems[19–24].

This Letter suggests a simple but effective iterat
approach to Eq.(1) to find its periodic solutions an
bifurcations.

2. An iteration method

Delay systems are widely found in engineering,
Ref.[25] and references cited thereby. In this Letter
suggest an iteration method for the discussed prob

We rewrite Eq.(1) in the form

(2)ẋ = −µx(t − 1) − ẋ
[
x(t − 1)

]4
,

.
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and construct an iteration formulation for(2) as fol-
lows

(3)ẋn+1 = −µxn(t − 1) − ẋn

[
xn(t − 1)

]4
.

We feel interest in its periodic solutions (or limit c
cles) and its bifurcations. If we know that the discuss
system has limit cycles, then the energy method
variational method) suggested by He[26] can be pow-
erfully applied to the search for its solution. Homoto
perturbation method was first introduced to find the
furcation curves[3]. Generally speaking, limit cycle
can be determined approximately in the form[3,26]

(4)x = b + a cosωt +
m∑

n=1

(Cn cosnωt + Dn sinnωt),

wherea, b, Cn andDn are constants.
For simplicity we begin with

(5)x0 = Acosωt,

whereA is the amplitude andω its frequency. Substi
tuting (5) into (3), we obtain

ẋ1 = −µAcosω(t − 1) + A5ω sinωt cos4 ω(t − 1)

= −µA(cosωt cosω + sinωt sinω)

+ 1

8
A5ω sinωt

[
3+ 4 cos2ω(t − 1)

(6)+ cos4ω(t − 1)
]
.

If ẋ1 = ẋ0, thenx0 happens to be the exact sol
tion. Generally such case will not arise for non-line
problems, but we can minimize

(7)J =
T∫

0

(ẋn+1 − ẋn)
2 dt, T = 2π

ω
,

to identify ω in trial function, Eq.(5). The second ap
proach to the identification of the unknown consta
in (4) is the Galerkin method, which requires

(8)

T∫

0

(ẋn+1 − ẋn)cosiωt dt = 0,

T∫

0

(ẋn+1 − ẋn)siniωt dt = 0,

(9)i = 0,1,2,3, . . . .
In this Letter we will apply the Galerkin method to th
determination of the frequency,ω, in Eq.(5). Setting

(10)

T∫

0

(ẋ1 − ẋ0)sinωt dt = 0,

we have

(11)−µAsinω + 3

8
A5ω − 1

4
A5ω sin2ω + Aω = 0.

We rewrite(11) in the form

(12)A4 = µ sinω
ω

− 1
3
8 − 1

4 sin2ω
.

Since A4 � 0, the above equation has no soluti
whenµsinω/ω − 1 < 0, so Eq.(1) has no periodic
solution. However, whenµsinω/ω − 1 > 0, Eq.(12)
has real solutions, so Eq.(1) exists periodic solution
its frequency can be solved from(12). The so-called
simple bifurcation occurs when

(13)µsinω − ω = 0,

Eq. (11) has multiple roots depending upon the va
of µ.

Whenµ = π/2, we haveω = π/2. Andµ = π/2 is
the Hopf bifurcation point, which agrees exactly w
the numerical result[1]. Other bifurcation points occu
atµ = 2nπ + π/2, wheren is nature number.

3. Conclusion

The preceding analysis has the virtue of utter s
plicity. We conclude from the result obtained that t
method developed here is extremely simple in its p
ciple, quite easy to use, and gives a very good ac
racy in the whole solution domain, even with the si
plest trial functions. Theoretically any accuracy can
achieved by a suitable choice of the trial functio
With the help of some mathematical software, su
as MATHEMATICA , MATLAB , the method provides
powerful mathematical tool to the determination
limit cycles and bifurcation curves for complex no
linear systems.
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