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We show that the unification problem ‘is there a substitution instance of a given formula that
is provable in a given logic?’ is undecidable for basic modal logics K and K4 extended with the
universal modality. It follows that the admissibility problem for inference rules is undecidable
for these logics as well. These are the first examples of standard decidable modal logics for
which the unification and admissibility problems are undecidable. We also prove undecidability
of the unification and admissibility problems for K and K4 with at least two modal operators and
nominals (instead of the universal modality), thereby showing that these problems are undecidable
for basic hybrid logics. Recently, unification has been introduced as an important reasoning service
for description logics. The undecidability proof for K with nominals can be used to show the
undecidability of unification for Boolean description logics with nominals (such as ALCO and
SHIQO). The undecidability proof for K with the universal modality can be used to show that
the unification problem relative to role boxes is undecidable for Boolean description logics with
transitive roles, inverse roles and role hierarchies (such as SHI and SHIQ).

Categories and Subject Descriptors: F.4.1 [Mathematical logic and formal languages]: modal
logic.

General Terms: theory.

Additional Key Words and Phrases: unification, admissible rule, description logic, hybrid logic,
decidability.

1. INTRODUCTION

The unification (or substitution) problem for a propositional logic L can be for-
mulated as follows: given a formula ϕ in the language of L, decide whether it is
unifiable in L in the sense that there exists a uniform substitution s for the vari-
ables of ϕ such that s(ϕ) is provable in L. For normal modal logics, this problem is
equivalent to the standard unification problem modulo equational theories [Baader
and Siekmann 1994]: in this case the equational theory consists of any complete
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set of equations axiomatising the variety of Boolean algebras with operators and
additional equations corresponding the axioms of L.

A closely related algorithmic problem for L is the admissibility problem for in-
ference rules: given an inference rule ϕ1, . . . , ϕn/ϕ, decide whether it is admissible
in L, that is, for every substitution s, we have L ` s(ϕ) whenever L ` s(ϕi), for
1 ≤ i ≤ n. It should be clear that if the admissibility problem for L is decidable,
then the unification problem for L is decidable as well. Indeed, the rule ϕ/⊥ is not
admissible in L iff there is a substitution s for which L ` s(ϕ). As was observed
in [Ghilardi 1999], in some cases the admissibility problem can be reduced to the
unification problem. More precisely, suppose that for a unifiable formula ϕ in L
one can compute a finite complete set S of unifiers in the sense that each unifier s
for ϕ in L is less general than some s′ ∈ S (i.e., there exists a substitution s′′ such
that L ` s(p) ↔ s′′(s′(p)), for all variables p in ϕ). Then to decide whether the
rule ϕ/ψ is admissible in L it is enough to check whether L ` s′(ψ) for all s′ ∈ S.

It follows from the results of V. Rybakov (see [Rybakov 1997] and references
therein) that the unification and admissibility problems are decidable for proposi-
tional intuitionistic logic and such standard (‘transitive’) modal logics as K4, GL,
S4, S4.3. The computational complexity of the admissibility problem for these log-
ics has been investigated in [Jerabek 2007]. For example, for intuitionistic logic, S4,
and GL, the problem was shown to be NExpTime-complete. For further studies on
unification and admissibility of rules in intuitionistic and modal logics, in particu-
lar, the problem of finding a finite basis for admissible rules and the existence of
finite complete sets of unifiers, we refer the reader to [Ghilardi 2000; 2004; Ghilardi
and Sacchetti 2004; Iemhoff 2001; 2003; Jerabek 2005].

Unfortunately, nearly nothing has been known about the decidability status of
the unification and admissibility problems for other important modal logics such
as the (‘non-transitive’) basic logic K, various multi-modal, hybrid and description
logics. In fact, only one—rather artificial—example of a decidable unimodal logic
for which the admissibility problem is undecidable has been found [Chagrov 1992]
(see also [Chagrov and Zakharyaschev 1997]).

The first main result of this paper shows that for the standard modal logics K and
K4 (and, in fact, all logics between them) extended with the universal modality the
unification problem and, therefore, the admissibility problem are undecidable.

The universal modality, first investigated in [Goranko and Passy 1992], is re-
garded nowadays as a standard constructor in modal logic; see, e.g., [Blackburn
et al. 2007]. Basically, the universal box is an S5-box whose accessibility relation
contains the accessibility relations for all the other modal operators of the logic.
The undecidability result formulated above also applies to those logics where the
universal modality is definable, notably to propositional dynamic logic with the
converse; see, e.g., [Harel et al. 2000]. The unification and admissibility problems
for K itself still remain open. Observe that K4 is an example of a logic for which
the unification and admissibility problems are decidable, but the addition of the
universal modality makes them undecidable. This might be regarded as a surpris-
ing result: recall that the satisfiability problem for K4 with the universal modality
can be easily reduced (in polynomial time) to the satisfiable problem for K4 itself.
Given the fact that K4 is decidable in PSpace, this shows that K4 with the univer-
ACM Transactions on Computational Logic, Vol. V, No. N, February 2007.
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sal modality is also decidable in PSpace. Our result shows that for the unification
and admissible rules problems there does not even exist a recursive reduction of K4
with the universal modality to K4.

Note that, on the other hand, for ‘reflexive’ modal logics with the universal
modality such as S4, T or Grz the unification problem is trivially decidable (see the
end of Section 2).

The second result of this paper shows that the unification and admissibility prob-
lems are undecidable for multimodal K and K4 (with at least two modal operators)
extended with nominals.

Nominals, that is, additional variables that denote singleton sets, are one of the
basic ingredients of hybrid logics; see, e.g., [Areces and ten Cate 2007] and references
therein. As follows from our second result, for most hybrid logics the unification
and admissibility problems are undecidable.

A particularly interesting consequence of this result is in description logic. Mo-
tivated by applications in the design and maintenance of knowledge bases, Baader
and Narendran [2001] and Baader and Küsters [2001] identify the unification prob-
lem for concept descriptions as an important reasoning service. In its simplest
formulation, this problem is equivalent to the unification problem for modal log-
ics (see Section 5 for more details). Baader and Narendran [2001] and Baader
and Küsters [2001] develop decision procedures for certain sub-Boolean description
logics, leaving the study of unification for Boolean description logics as an open
research problem. It follows from our results that unification is undecidable for
Boolean description logics with nominals such as ALCO, ALCQO, ALCQIO, and
SHIQO. Moreover, if a Boolean description logic has transitive roles, inverse roles
and role hierarchies, then a role box can be used to define a universal role. In this
case our results can be used to show the undecidability of unification relative to
role boxes. This applies, for example, to the logics SHI and SHIQ. These unde-
cidability results cover almost all Boolean description logics used in applications,
in particular, the description logic underlying the OWL DL dialect of the Web On-
tology Language OWL. However, the unification problem for some basic Boolean
description logics such as ALC and ALCQI remains open.

The plan of this paper is as follows. We start by introducing the syntax and
semantics of normal modal logics with the universal modality, in particular K4u

and Ku. Then we prove, using an encoding of Minsky machines, the undecidability
of the unification and admissibility problems for all logics between K4u and Ku. We
also briefly discuss the formulation of this result in terms of equational theories.
Then we introduce modal logics with nominals and show how to modify the proof
in order to establish the undecidability of unification and admissibility for K and K4
with at least two modal operators and nominals. We close with a brief discussion
of consequences for description logics with nominals.

2. UNIFICATION IN MODAL LOGICS WITH THE UNIVERSAL MODALITY

Let L be the propositional language with an infinite set p0, p1, . . . of propositional
variables, the Boolean connectives ∧ and ¬ (and their derivatives such as ∨, →,
and ⊥), and two unary modal operators 2 and A (with their duals 3 and E ). A
normal modal logic L with the universal modality A is any set of L-formulas that
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contains all propositional tautologies, the axioms

2(p→ q) → (2p→ 2q), A (p→ q) → (A p→ A q),
A p→ p, A p→ AA p, p→ AE p, A p→ 2p,

and is closed under modus ponens, the necessitation rules ϕ/2ϕ and ϕ/Aϕ, and
uniform substitution. (So from now on we write ϕ ∈ L instead of L ` ϕ.) Ku is the
smallest normal modal logic with the universal modality. K4u is the smallest normal
modal logic with the universal modality that contains the extra axiom 2p→ 22p.

Ku and K4u as well as many other normal modal logics with the universal modal-
ity are determined by relational structures. A frame for L is a directed graph
F = (W,R), that is, R ⊆ W ×W . A model for L is a pair M = (F,V) where F is
a frame and V a valuation mapping the set of propositional variables to 2W . The
truth-relation (M, x) |= ϕ between points x ∈W of M and L-formulas ϕ is defined
inductively as follows:

(M, x) |= pi iff x ∈ V(pi),
(M, x) |= ¬ψ iff (M, x) 6|= ψ,
(M, x) |= ψ ∧ χ iff (M, x) |= ψ and (M, x) |= χ,
(M, x) |= 2ψ iff (M, y) |= ψ for all y ∈W with xRy,
(M, x) |= Aϕ iff (M, y) |= ϕ for all y ∈W .

Instead of (M, x) |= ϕ we write x |= ϕ if M is clear from the context.
A formula ϕ is valid in a frame F, F |= ϕ in symbols, if ϕ is true at every point

of every model based on F. The following facts are well known (see, for example,
[Goranko and Passy 1992; Spaan 1993; Areces et al. 2000]):

Fact 2.1. Ku is the set of formulas that are valid in all frames. K4u is the
set of formulas that are valid in all transitive frames. The satisfiability problem is
ExpTime-complete for Ku, and PSpace-complete for K4u.

We now formulate the unification problem for normal modal logics with the
universal modality.

Definition 2.2. The unification problem for a normal modal logic L with the uni-
versal modality is to decide, given a formula ϕ, whether there exists a substitution
s such that s(ϕ) ∈ L.

Theorem 2.3. The unification problem for any normal modal logic between Ku

and K4u is undecidable.

The proof proceeds by reduction of some undecidable configuration problem for
Minsky machines.

We remind the reader that a Minsky machine (or a register machine with two
registers; see, e.g., [Minsky 1961; Ebbinghaus et al. 1994]) is a finite set (program)
of instructions for transforming triples 〈s,m, n〉 of natural numbers, called configu-
rations. The intended meaning of the current configuration 〈s,m, n〉 is as follows:
s is the number (label) of the current machine state and m, n represent the current
state of information. Each instruction has one of the four possible forms:

s→ 〈t, 1, 0〉 , s→ 〈t,−1, 0〉 (〈t′, 0, 0〉),
s→ 〈t, 0, 1〉 , s→ 〈t, 0,−1〉 (〈t′, 0, 0〉).

ACM Transactions on Computational Logic, Vol. V, No. N, February 2007.
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Fig. 1. Frame F encoding P and a.

The last of them, for instance, means: transform 〈s,m, n〉 into 〈t,m, n− 1〉 if n > 0
and into 〈t′,m, n〉 if n = 0. We assume that Minsky machines are deterministic,
that is, they can have at most one instruction with a given s in the left-hand side.
For a Minsky machine P , we write P : 〈s,m, n〉 → 〈t, k, l〉 if starting with 〈s,m, n〉
and applying the instructions in P , in finitely many steps (possibly, in 0 steps) we
can reach 〈t, k, l〉.

We will use the well known fact (see, e.g., [Chagrov 1990; Chagrov and Za-
kharyaschev 1997]) that there exist a Minsky program P and a configuration
a = 〈s,m, n〉 such that no algorithm can decide, given a configuration b, whether
P : a → b.

Fix such a pair P and a = 〈s,m, n〉, and consider the transitive frame F = (W,R)
shown in Fig. 1, where the points e(t, k, l) represent configurations 〈t, k, l〉 such
that P : 〈s,m, n〉 → 〈t, k, l〉, e(t, k, l) ‘sees’ the points a0

t , a
1
k, a2

l representing the
components of 〈t, k, l〉, and a is the only reflexive point of F. More precisely,

W = {a, b, g, g1, g2, d, d1, d2} ∪ {ai
j | i ≤ 2, j < ω} ∪

{e(t, k, l) | P : 〈s,m, n〉 → 〈t, k, l〉}

(note that the last set in the union is undecidable) and R is the transitive closure
of the following relation:

{(a, a), (g, a), (g, b), (d, b), (g1, g), (g2, g1), (d1, d), (d2, d1),

(a0
0, g), (a

0
0, d), (a

1
0, g1), (a

1
0, d1), (a2

0, g2), (a
2
0, d2)} ∪

{(ai
j+1, a

i
j) | i ≤ 2, j < ω} ∪

{
(
e(t, k, l), a0

t

)
,
(
e(t, k, l), a1

k

)
,
(
e(t, k, l), a2

l

)
| e(t, k, l) ∈W}.

This frame and the formulas below describing it were introduced by A. Chagrov
in order to construct undecidable modal logics and show that many properties of
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modal logics are undecidable; see [Chagrov and Zakharyaschev 1997; Zakharyaschev
et al. 2001] and references therein.

The following variable free formulas characterise the points in F in the sense
that each of these formulas, denoted by Greek letters with subscripts and/or su-
perscripts, is true in F precisely at the point denoted by the corresponding Roman
letter with the same subscript and/or superscript (and nowhere else):

α = 3> ∧23>, β = 2⊥,
γ = 3α ∧3β ∧ ¬32β, δ = ¬γ ∧3β ∧ ¬32β,

γ1 = 3γ ∧ ¬32γ ∧ ¬3δ, δ1 = 3δ ∧ ¬32δ,

γ2 = 3γ1 ∧ ¬32γ1 ∧ ¬3δ, δ2 = 3δ1 ∧ ¬32δ1,

α0
0 = 3γ ∧3δ ∧ ¬32γ ∧ ¬32δ,

α1
0 = 3γ1 ∧3δ1 ∧ ¬32γ1 ∧ ¬32δ1,

α2
0 = 3γ2 ∧3δ2 ∧ ¬32γ2 ∧ ¬32δ2,

αi
j+1 = 3αi

j ∧ ¬32αi
j ∧

∧
i 6=k

¬3αk
0 ,

where i ∈ {0, 1, 2}, j ≥ 0, and 32ϕ = 33ϕ. It follows immediately from the
definition that the formulas

αi
j → ¬3αi

j and αi
j+1 → 3αi

0 ∧
∧
k 6=i

¬3αk
0 (1)

are valid in all frames for all i ∈ {0, 1, 2}, j ≥ 0. We will use this property in what
follows.

The formulas characterising the points e(t, k, l) in F are denoted by ε(t, α1
k, α

2
l )

and defined as follows, where ϕ and ψ are arbitrary formulas,

ε(t, ϕ, ψ) = 3α0
t ∧ ¬3α0

t+1 ∧3ϕ ∧ ¬32ϕ ∧3ψ ∧ ¬32ψ.

We also require formulas characterising not only fixed but arbitrary configurations
with the help of the propositional variables p1 and p2:

π1 = (3α1
0 ∨ α1

0) ∧ ¬3α0
0 ∧ ¬3α2

0 ∧ p1 ∧ ¬3p1,

π2 = 3α1
0 ∧ ¬3α0

0 ∧ ¬3α2
0 ∧3p1 ∧ ¬32p1,

τ1 = (3α2
0 ∨ α2

0) ∧ ¬3α0
0 ∧ ¬3α1

0 ∧ p2 ∧ ¬3p2,

τ2 = 3α2
0 ∧ ¬3α0

0 ∧ ¬3α1
0 ∧3p2 ∧ ¬32p2.

Observe that in F, under any valuation, π1 can be true in at most one point, and
this point has to be a1

j , for some j ≥ 0. Similarly, π2 can only be true in at most
one point, and this point has to be of the form a1

j , for some j > 0. Moreover, if π1

is true at a1
j , then π2 is true in a1

j+1. The same applies to τ1 and τ2, but with a1
j

replaced by a2
j .

Now we are fully equipped to simulate the behaviour of P on a by means of
modal formulas with the universal modality.

With each instruction I in P we associate a formula AxI by taking:

AxI = E ε(t, π1, τ1) → E ε(t′, π2, τ1)
ACM Transactions on Computational Logic, Vol. V, No. N, February 2007.
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if I is of the form t→ 〈t′, 1, 0〉,

AxI = E ε(t, π1, τ1) → E ε(t′, π1, τ2)

if I is t→ 〈t′, 0, 1〉,

AxI =
(
E ε(t, π2, τ1) → E ε(t′, π1, τ1)

)
∧

(
E ε(t, α1

0, τ1) → E ε(t′′, α1
0, τ1)

)
if I is t→ 〈t′,−1, 0〉 (〈t′′, 0, 0〉), and finally

AxI =
(
E ε(t, π1, τ2) → E ε(t′, π1, τ1)

)
∧

(
E ε(t, π1, α

2
0) → E ε(t′′, π1, α

2
0)

)
if I is t→ 〈t′, 0,−1〉 (〈t′′, 0, 0〉).

The formula simulating P as a whole is

AxP =
∧

I∈P

AxI.

Lemma 2.4. F |= AxP .

Proof of Lemma. We only consider AxI = E ε(t, π1, τ1) → E ε(t′, π2, τ1) for
I = t→ 〈t′, 1, 0〉 and leave the remaining cases to the reader.

Suppose that, for some model M = (F,V) and some x0 from the domain W
of F, we have (M, x0) |= E ε(t, π1, τ1). Then there is a point x ∈ W such that
x |= ε(t, π1, τ1), and so, by the definition of ε(t, π1, τ1), there are three immediate
successors x0, x1, x2 of x in F such that

x0 |= α0
t , x1 |= π1, x2 |= τ1.

But then, as we observed above, x0 = a0
t , x1 = a1

k and x2 = a2
l , for some k, l < ω.

It follows that x = e(t, k, l) is an element of W . By the definition of W , we obtain
that P : 〈s,m, n〉 → 〈t, k, l〉. As t → 〈t′, 1, 0〉 is an instruction of P , we then have
P : 〈s,m, n〉 → 〈t′, k + 1, l〉, and so e(t′, k + 1, l) ∈ W . And since a1

k+1 |= π2, we
obtain e(t′, k + 1, l) |= ε(t′, π2, τ1). Therefore, (M, x0) |= E ε(t′, π2, τ1).

Remark 2.5. Note, by the way, that one can use this lemma to show that if
Ku ⊆ L ⊆ K4u, then the logic L⊕AxP (that is, the minimal normal modal logic con-
taining both L and AxP ) is undecidable. Indeed, we have E ε(t, α1

k, α
2
l ) ∈ L⊕AxP

if, and only if, P : 〈s,m, n〉 → 〈t, k, l〉. A. Chagrov used logics of this sort to prove
that various properties of (finitely axiomatisable) modal logics (say, consistency of
extensions of Ku) are undecidable; see, e.g., [Chagrov 1990; Zakharyaschev et al.
2001] and references therein.

Now, for each b = 〈t, k, l〉, consider the formula

ψ(b) =
(
AxP ∧ E ε(s, α1

m, α
2
n)

)
→ E ε(t, α1

k, α
2
l )

which, intuitively, says that starting with the configuration a = 〈s,m, n〉 and using
the instructions of P , encoded by means of AxP , we can reach b.

Lemma 2.6. Let Ku ⊆ L ⊆ K4u. Then P : a → b iff ψ(b) is unifiable in L.

Proof of Lemma. (⇐) Suppose that P : a 6→ b. Then, by the construction of
the frame F above, we have

F |= AxP ∧ E ε(s, α1
m, α

2
n) and F 6|= E ε(t, α1

k, α
2
l ).

ACM Transactions on Computational Logic, Vol. V, No. N, February 2007.
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As E ε(t, α1
k, α

2
l ) is variable free, all substitution instances of ψ(b) are refuted in F,

and so ψ(b) is not unifiable in any L ⊆ K4u.
(⇒) Conversely, suppose that P : a → b. Our aim is to find a substitution s for

the variables p1 and p2 such that s(ψ(b)) ∈ Ku or, in other words, that G |= s(ψ(b))
for an arbitrary frame G, which, in general, has nothing to do with P or a. To
understand what such a substitution s should do, assume that G |= E ε(s, α1

m, α
2
n)

but G 6|= E ε(t, α1
k, α

2
l ). Clearly, s should ensure that G 6|= s(AxP ). Let

P : a = 〈t0, k0, l0〉
I1→ 〈t1, k1, l1〉

I2→ · · · I`→ 〈t`, k`, l`〉 = b

be the computation of P starting with a and ending with b, where Ij is the instruc-
tion from P that is used to transform 〈tj−1, kj−1, lj−1〉 into 〈tj , kj , lj〉. Take the
smallest number i such that G |= E ε(ti, α1

ki
, α2

li
) and G 6|= E ε(ti+1, α

1
ki+1

, α2
li+1

).
Suppose for definiteness that Ii = ti → 〈ti+1, 1, 0〉. Then in order to refute the
axiom AxIi = E ε(ti, π1, τ1) → E ε(ti+1, π2, τ1) in G, the substitution s should
make sure that s(π1) holds true precisely where α1

ki
is true, and s(τ1) holds true

precisely where α2
li

is true in G. This would give us G |= s(E ε(ti, π1, τ1)) and
G 6|= s(E ε(ti+1, π2, τ1)). We are now in a position to define s.

Consider the formula

defect i = E ε(t0, α1
k0
, α2

l0) ∧ · · · ∧ E ε(ti, α1
ki
, α2

li) ∧ ¬E ε(ti+1, α
1
ki+1

, α2
li+1

) (2)

which ‘says’ that the computation is simulated properly up to the ith step, but
there is no point representing the i+ 1st configuration. Observe that the formula

defect i → ¬E defectj ,

is valid for all i 6= j. In other words, if defect i is true at some point in a model,
then defectj does not hold at any point in the model, for i 6= j.

Define the substitution s we need by taking

s(p1) =
`−1∨
i=0

(defect i ∧ α1
ki

), s(p2) =
`−1∨
i=0

(defect i ∧ α2
li), (3)

where

α1
ki

=

{
α1

ki
if either ki = 0 or Ii+1 6= ti → 〈ti+1,−1, 0〉,

α1
ki−1 if ki 6= 0 and Ii+1 = ti → 〈ti+1,−1, 0〉,

and

α2
li =

{
α2

li
if either li = 0 or Ii+1 6= ti → 〈ti+1, 0,−1〉,

α2
li−1 if li 6= 0 and Ii+1 = ti → 〈ti+1, 0,−1〉.

(Here the case distinction is needed because of the ‘subtracting’ instructions like
I = t → 〈t′,−1, 0〉 (〈t′′, 0, 0〉) and the corresponding axioms AxI.) We show now
that G |= s(ψ(b)) for all frames G, which clearly means that s(ψ(b)) ∈ Ku.

Suppose G = (W,R) is given. As all formulas considered below, in particular
s(ψ(b)), are variable free, we can write x |= ψ to say that ψ is true at x in some/all
models based on G. Moreover, for any Boolean combination ψ of such formulas
starting with E , we have x |= ψ iff x′ |= ψ, for any x, x′ ∈W . Hence, G 6|= ψ means
that x 6|= ψ for all x ∈W .
ACM Transactions on Computational Logic, Vol. V, No. N, February 2007.
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Let us now proceed with the proof. Two cases are possible.
Case 1: G |= ¬E ε(t0, α1

k0
, α2

l0
) ∨ E ε(t`, α1

k`
, α2

l`
). Then clearly G |= s(ψ(b)).

Case 2: G |= E ε(t0, α1
k0
, α2

l0
)∧¬E ε(t`, α1

k`
, α2

l`
). Then there exists some number

i < ` such that G |= defect i. It follows that, for all z ∈W ,

z |= s(p1) iff z |= α1
ki
, and z |= s(p2) iff z |= α2

li . (4)

Claim 2.7. For all z ∈W , we have (i) z |= s(π1) iff z |= α1
ki

, and (ii) z |= s(τ1)
iff z |= α2

li
.

Proof of Claim. Suppose z ∈W is given. We know that

s(π1) = (3α1
0 ∨ α1

0) ∧ ¬3α0
0 ∧ ¬3α2

0 ∧ s(p1) ∧ ¬3s(p1).

Hence, by (4) and (1),

z |= s(π1) iff z |= (3α1
0 ∨ α1

0) ∧ ¬3α0
0 ∧ ¬3α2

0 ∧ α1
ki
∧ ¬3α1

ki
iff z |= α1

ki
.

(ii) is considered analogously.

Claim 2.8. For all z ∈ W , (i) z |= s(π2) iff z |= α1
ki+1, and (ii) z |= s(τ2) iff

z |= α2
li+1.

Proof of Claim. Suppose z ∈W is given. We know that

s(π2) = 3α1
0 ∧ ¬3α0

0 ∧ ¬3α2
0 ∧3s(p1) ∧ ¬32s(p1).

Hence, by (4),

z |= s(π2) iff z |= 3α1
0 ∧ ¬3α0

0 ∧ ¬3α2
0 ∧3α1

ki
∧ ¬32α1

ki
.

But, according to (1), the latter formula is equivalent to the definition of α1
ki+1,

which proves the claim.

We now make a case distinction according to the rule Ii+1 used to transform
〈ti, ki, li〉 into 〈ti+1, ki+1, li+1〉.

Case 1: Ii+1 = ti → 〈ti+1, 1, 0〉. Our aim is to show that

(a) G |= s(E ε(ti, π1, τ1)) and
(b) G 6|= s(E ε(ti+1, π2, τ1)),

for then we would have G 6|= s(AxP ), and so G |= s(ψ(b)).
(a) As G |= E ε(ti, α1

ki
, α2

li
), we have some z ∈W such that

z |= 3α0
ti
∧ ¬3α0

ti+1 ∧3α1
ki
∧ ¬32α1

ki
∧3α2

li ∧ ¬32α2
li .

By Claim 2.7, we then have

z |= 3α0
ti
∧ ¬3α0

ti+1 ∧3s(π1) ∧ ¬32s(π1) ∧3s(τ1) ∧ ¬32s(τ1),

which means that z |= s(ε(ti, π1, τ1)), and so G |= s(E ε(ti, π1, τ1)).
(b) Suppose that G 6|= s(E ε(ti+1, π2, τ1)) does not hold. Then there is x ∈ W

with

x |= ε(ti+1, s(π2), s(τ1)),
ACM Transactions on Computational Logic, Vol. V, No. N, February 2007.
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that is,

x |= 3α0
ti+1

∧ ¬3α0
ti+1+1 ∧3s(π2) ∧ ¬32s(π2) ∧3s(τ1) ∧ ¬32s(τ1).

By Claims 2.7 and 2.8, we then have

x |= 3α0
ti+1

∧ ¬3α0
ti+1+1 ∧3α1

ki+1 ∧ ¬32α1
ki+1 ∧3α2

li ∧ ¬32α2
li

which means

x |= ε(ti+1, α
1
ki+1, α

2
li).

Now recall that α1
ki+1 = α1

ki+1
and αli = αli+1 , that is, we have

x |= ε(ti+1, α
1
ki+1

, α2
li+1

),

and so G |= E ε(ti+1, α
1
ki+1

, α2
li+1

), contrary to G |= defect i.

Case 2: Ii+1 is of the form ti → 〈t′i+1,−1, 0〉(〈t′′i+1, 0, 0〉). Suppose first that
ki = 0, that is, the actual instruction is Ii+1 = ti → 〈ti+1, 0, 0〉. We need to show
that

(a) G |= s(E ε(ti, α1
0, τ1)) and

(b) G 6|= s(E ε(ti+1, α
1
0, τ1)),

which, as before, would imply G |= s(ψ(b)).

(a) As G |= E ε(ti, α1
0, α

2
li
), we have x ∈W such that

x |= 3α0
ti
∧ ¬3α0

ti+1 ∧3α1
0 ∧ ¬32α1

0 ∧3α2
li ∧ ¬32α2

li ,

from which, by Claim 2.7,

x |= 3α0
ti
∧ ¬3α0

ti+1 ∧3α1
0 ∧ ¬32α1

0 ∧3s(τ1) ∧ ¬32s(τ1).

Thus we have x |= s(E ε(ti, α1
0, τ1)). (b) is proved similarly and left to the reader.

Suppose now that ki > 0, that is, the instruction Ii+1 = ti → 〈ti+1,−1, 0〉 was
actually used. This time we need to show that

(a) G |= s(E ε(ti, π2, τ1)) and
(b) G 6|= s(E ε(ti+1, π1, τ1)).

(a) Since G |= E ε(ti, α1
ki
, α2

li
), we have x ∈W such that

x |= 3α0
ti
∧ ¬3α0

ti+1 ∧3α1
ki
∧ ¬32α1

ki
∧3α2

li ∧ ¬32α2
li .

Clearly, it is sufficient to show that

x |= 3α0
ti
∧ ¬3α0

ti+1 ∧3s(π2) ∧ ¬32s(π2) ∧3s(τ1) ∧ ¬32s(τ1).

Observe that in this case α1
ki

= αki−1. Hence, by Claim 2.8, for all z ∈W we have
z |= s(π2) iff z |= α1

ki
. So it remains to use Claims 2.7 and 2.8.

(b) Suppose otherwise, that is, G |= s(E ε(ti+1, π1, τ1)). Then there exists x ∈W
such that

x |= 3α0
ti+1

∧ ¬3α0
ti+1+1 ∧3s(π1) ∧ ¬32s(π1) ∧3s(τ1) ∧ ¬32s(τ1).
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By Claim 2.7, this implies

x |= 3α0
ti+1

∧ ¬3α0
ti+1+1 ∧3α1

ki−1 ∧ ¬32α1
ki−1 ∧3α2

li ∧ ¬32α2
li ,

that is,

x |= ε(ti+1, α
1
ki−1, α

2
li)

which leads to a contradiction, because α1
ki−1 = α1

ki+1
and αli = αli+1 , and therefore

we must have G |= E ε(ti+1, α
1
ki+1

, α2
li+1

).

The remaining two types of instructions (where the third component changes)
are dual to the ones considered above. We leave these cases to the reader.

This completes the proof of Lemma 2.6. Theorem 2.3 follows immediately in
view of the choice of P and α.

Observe that Theorem 2.3 can be proved for multimodal Ku and K4u as well.
In this case, in the frame F considered above, the additional operators can be
interpreted by the empty relation. By a proper modification of the frame F in
Fig. 1, this theorem can also be extended to some logics above K4u, for example,
GLu.

Definition 2.9. The admissibility problem for inference rules for a normal modal
logic L with the universal modality is to decide, given an inference rule ϕ1, . . . , ϕn/ϕ,
whether s(ϕ1) ∈ L, . . . , s(ϕn) ∈ L imply s(ϕ) ∈ L, for every substitution s.

As an immediate consequence of Theorem 2.3 we obtain the following:

Theorem 2.10. The admissibility problem for any normal modal logic L between
Ku and K4u is undecidable.

Minor modifications of the proof above can be used to prove undecidability of the
unification and admissibility problems for various modal logics in which the univer-
sal modality is definable and which, besides the universal modality, have sufficient
expressive power to reason about arbitrary (or at least transitive) relations. An
interesting example is PDL with the converse, i.e., the extension of propositional
dynamic logic with the converse constructor for programs: if α is a program, then
α−1 is a program which is interpreted by the converse of the relation interpreting
α. (We do not provide detailed definitions of the syntax and semantics here but
refer the reader to [Harel et al. 2000].) The undecidability proof for the unification
problem (for substitutions instead of propositional variables rather than atomic pro-
grams!) is carried out by taking an atomic program α and replacing, in the proof
above, the operator 2 with [α] and the universal modality A with [(α ∪ α−1)∗].

It seems worth mentioning, however, that the unification problem is trivially
decidable for any normal modal logic L with ¬2⊥ ∈ L. To see this, recall that a
substitution s is called ground if it replaces each propositional variable by a variable
free formula (that is, a formula constructed from ⊥ and > only). Obviously, it is
always the case that if there exists a substitution s such that s(ϕ) ∈ L, then there
exists a ground substitution s′ with s′(ϕ) ∈ L. But if ¬2⊥ ∈ L, then there are,
up to equivalence in L, only two different variable free formulas, namely, ⊥ and
>. Thus, to decide whether a formula ϕ is unifiable in L it is sufficient to check
whether any of the ground substitutions makes ϕ equivalent to > (which can be
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done in Boolean logic). A well known example of such a logic is S4u, S4 with the
universal modality. Note that the admissibility problem for S4u might nevertheless
be undecidable. We leave this as an interesting open problem.

3. UNIFICATION MODULO EQUATIONAL THEORIES

The results presented above can be reformulated as undecidability results for the
well known notion of unification modulo equational theories [Baader and Siekmann
1994; Baader and Snyder 2001].

Consider the equational theory BAO2 of Boolean algebras with operators 21 and
22, which consists of an axiomatisation BA of the variety of Boolean algebras (say,
in the signature with the binary connective ∧, unary connective ¬ and constant 1)
together with the equations

2i(x ∧ y) = 2ix ∧2iy and 2i1 = 1,

for i = 1, 2. Let T be any set of equations over the signature of Boolean algebras
with two operators. Then the unification problem modulo BAO2 ∪ T is to decide,
given an equation t1 = t2 over the signature of BAO2, whether there exists a
substitution s such that

s(t1) =BAO2∪T s(t2),

that is, whether there exists a substitution s such that the equation s(t1) = s(t2)
is valid in all algebras where the equations in BAO2 ∪ T hold true. For a term t,
let tp denote the propositional modal formula that is obtained from t by replacing
its (individual) variables with (mutually distinct) propositional variables. We may
assume that ·p is a bijection between the terms t over the signature of BAO2 and
the modal formulas with modal operators 21 and 22. Denote by ·−p the inverse of
this function. It is well known (see, e.g., [Venema 2007]) that a modal formula ϕ is
valid in the smallest normal modal logic L containing the formulas

{tp1 ↔ tp2 | t1 = t2 ∈ T}

if, and only if, ϕ−p is valid in all algebras validating BAO2 ∪ T . The appropriate
converse statement is also easily formulated. It follows that the unification problem
modulo BAO2 ∪ T is decidable if, and only if, the unification problem for L is
decidable. Now, let UDISC be the following set of inequalities (saying, in algebraic
terminology, that the equational theory has a unary discriminator term 21)

21x ≤ 22x, 21x ≤ x, 21x ≤ 2121x, x ≤ 21¬21¬x.

Then, as a consequence of Theorem 2.3, we obtain the following result:

Theorem 3.1. The unification problem modulo BAO2 ∪ UDISC is undecidable.

However, it remains an open question whether the unification problem modulo
BAO2 is decidable.

4. UNIFICATION IN MODAL LOGICS WITH NOMINALS

Let us now consider the extension of the language L with nominals. More precisely,
denote by H2 the propositional language constructed from
ACM Transactions on Computational Logic, Vol. V, No. N, February 2007.
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—an infinite list p1, p2, . . . of propositional variables and
—an infinite list n1, n2, . . . of nominals

using the standard Boolean connectives and two modal operators 2 and 2h (instead
of 2 and A in L).1 H2-formulas are interpreted in frames of the form F = (W,R, S)
where R,S ⊆ W ×W . As before, a model is a pair M = (F,V), where V is a
valuation function that assigns to each pi a subset V(pi) of W and to each ni a
singleton subset V(ni) of W . The truth-relation, (M, x) |= ϕ, is defined as above
with two extra clauses:

(M, x) |= ni iff {x} = V(ni),
(M, x) |= 2hψ iff (M, y) |= ψ for all y ∈W with xSy.

Denote by KH2 the set of all H2-formulas that are valid in all frames, and denote
by KH2 ⊕ 45 the set of H2-formulas that are valid in all frames (W,R, S) with
transitive R and S = W × W . A proof of the following result can be found in
[Areces et al. 2000]:

Fact 4.1. The satisfiability problem for both KH2 and KH2 ⊕ 45 is PSpace-
complete.

A substitution s for H2 is a map from the set of propositional variables into
H2. In particular, any substitution leaves nominals intact.2 The unification and
admissibility problems for modal logics with nominals are formulated in exactly the
same way as before.

Theorem 4.2. The unification problem and, therefore, the admissibility problem
for any logic L between KH2 and KH2 ⊕ 45 is undecidable.

The proof of this theorem is similar to the proof of Theorem 2.3. Here we only
show how to modify the encoding of Minsky machine computations from Section 2.
The main difference is that now the language does not contain the universal modal-
ity which can refer to all points in the frame in order to say, e.g., that a certain
configuration is (not) reachable. To overcome this problem, we will use one nomi-
nal, let us call it n, which, if accessible from a point x (via R and S), will be forced
to be accessible from all points located within a certain distance from x. This
trick will provide us with a ‘surrogate’ universal modality which behaves, locally,
similarly to the standard one.

From now on we will be using the following abbreviation, where ϕ is an H2-
formula:

Eϕ = 3h(n ∧3hϕ). (5)

The defined operator E will play the role of our surrogate universal diamond.
Consider again a Minsky program P and a configuration a = 〈s,m, n〉 such

that it is undecidable, given a configuration b, whether P : a → b. The frame
F = (W,R, S) encoding F and a is defined as in Fig. 1, with S = W ×W . For each

1The language with infinitely many modal operators and nominals is often denoted by H and
called the minimal hybrid logic; see, e.g., [Areces and ten Cate 2007].
2Alternatively, we could allow nominals to be substituted by nominals. This would not affect the
undecidability result.
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instruction I, we introduce the formula AxI in precisely the same way as before,
with E defined by (5).

The first important difference between the two constructions is the definition of
AxP . Let Nom denote the conjunction of all H2-formulas of the form

3hn→M3hn and M ′3hn→ 3hn,

where M is any sequence of 2 and 2h of length ≤ 6, and M ′ is any sequence of 3

and 3h of length ≤ 6. To explain the meaning of Nom, consider a model (G,V)
based on some frame G = (W,R, S). Let x0 ∈W . We say that x ∈W is of distance
≤ m from x0 if there exists a sequence

x0S
′x1S

′x2 · · ·xk−1S
′xk = x,

where S′ = R ∪ S and 0 ≤ k ≤ m. Now assume that x0 |= Nom. Then either all
points of distance ≤ 6 from x0 ‘see’ V(n) via S, or no point of distance ≤ 6 from
x0 sees V(n) via S. In particular, x0 |= Eϕ if, and only if, x |= Eϕ for all x of
distance ≤ 6 from x0, and x0 6|= Eϕ if, and only if, x 6|= Eϕ for all x of distance
≤ 6 from x0.

The formula simulating P as a whole in this case is

AxP =
∧

I∈P

AxI ∧Nom.

Consider the frame F = (W,R, S) in Fig. 1 (with S = W ×W ). Then, no matter
which singleton set interprets n, the new operator E is always interpreted by the
universal relation. Hence, as before we have F |= AxP .

Now, for each b = 〈t, k, l〉 consider (as before) the formula

ψ(b) = AxP ∧ E ε(s, α1
m, α

2
n) → E ε(t, α1

k, α
2
l ).

Lemma 4.3. P : a → b iff ψ(b) is unifiable in L, where KH2 ⊆ L ⊆ KH2 ⊕ 45.

Proof of Lemma. The proof of (⇐) is exactly as before.
(⇒) Suppose that P : a → b. Define a substitution s in the same way as in the

proof of Lemma 2.6. More precisely, let

P : a = 〈t0, k0, l0〉
I1→ 〈t1, k1, l1〉

I2→ · · · I`→ 〈t`, k`, l`〉 = b

be the computation of P starting with a and ending with b. Then we define s by
means of (3), where defect i is given by (2).

We have to show that s(ψ(b)) ∈ KH2 , or, in other terms, that for all frames G,
we have G |= s(ψ(b)). Note that now we cannot assume that E is interpreted by
the universal relation.

Suppose that we are given a frame G = (W,R, S), a valuation V in it, and some
x0 ∈ W . We write {nV} for V(n), and x |= ψ for (G,V, x) |= ψ. As before, two
cases are possible.

Case 1: x0 |= ¬E ε(t0, α1
k0
, α2

l0
) ∨ E ε(t`, α1

k`
, α2

l`
). Then clearly x0 |= s(ψ(b)).

Case 2: x0 |= E ε(t0, α1
k0
, α2

l0
)∧¬E ε(t`, α1

k`
, α2

l`
). If x0 6|= s(Nom) then obviously

x0 |= s(ψ(b)), and we are done. So assume that x0 |= s(Nom). Consider the
number i < ` for which x0 |= defect i.
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Claim 4.4. For all points x of distance ≤ 6 from x0, x |= defect i. So, for all
such x, we have x |= s(p1) iff x |= α1

ki
, and x |= s(p2) iff x |= α2

li
.

Proof of Claim. Follows immediately from x0 |= Nom.

Claim 4.5. For all x of distance ≤ 5 from x0, we have (i) x |= s(π1) iff x |= α1
ki

,
and (ii) x |= s(τ1) iff x |= α2

li
.

Proof of Claim. We only prove (i). Suppose x is given. We know that

s(π1) = (3α1
0 ∨ α1

0) ∧ ¬3α0
0 ∧ ¬3α2

0 ∧ s(p1) ∧ ¬3s(p1).

Hence, by Claim 4.4,

x |= s(π1) iff x |= (3α1
0 ∨ α1

0) ∧ ¬3α0
0 ∧ ¬3α2

0 ∧ α1
ki
∧ ¬3α1

ki
.

(Observe that s(p1) occurs within the scope of 3. Hence, we obtain this equivalence
only for points of distance ≤ 5 from x0.) But this is equivalent to x |= α1

ki
.

Claim 4.6. For all x of distance ≤ 4 from x0, (i) x |= s(π2) iff z |= α1
ki+1, and

(ii) x |= s(τ2) iff z |= α2
li+1.

Proof of Claim. We only prove (i). Suppose x is given. We know that

s(π2) = 3α1
0 ∧ ¬3α0

0 ∧ ¬3α2
0 ∧3s(p1) ∧ ¬32s(p1).

Hence, by Claim 4.4,

x |= s(π2) iff x |= 3α1
0 ∧ ¬3α0

0 ∧ ¬3α2
0 ∧3α1

ki
∧ ¬32α1

ki
.

(In this case s(p1) occurs within the scope of 32. Therefore, we obtain this equiva-
lence for points x of distance ≤ 4 from x0.) But this formula is in fact the definition
of α1

ki+1.

As in the proof of Lemma 2.6, we now make a case distinction according to rule
Ii+1 used to transform 〈ti, ki, li〉 to 〈ti+1, ki+1, li+1〉. Here we only consider the case
of Ii+1 = ti → 〈ti+1, 1, 0〉, and leave the remaining three cases to the reader. We
need to show that

(a) x0 |= s(E ε(ti, π1, τ1)) and
(b) x0 6|= s(E ε(ti+1, π2, τ1)),

which, as before, would imply x0 |= s(ψ(b)).
(a) As x0 |= E ε(ti, α1

ki
, α2

li
), we have some z such that x0Sn

VSz and

z |= 3α0
ti
∧ ¬3α0

ti+1 ∧3α1
ki
∧ ¬32α1

ki
∧3α2

li ∧ ¬32α2
li .

Clearly, it is sufficient to show

z |= 3α0
ti
∧ ¬3α0

ti+1 ∧3s(π1) ∧ ¬32s(π1) ∧3s(τ1) ∧ ¬32s(τ1).

But this follows from Claim 4.5: just observe that z is of distance ≤ 2 from x0,
while s(π1) and s(τ1) occur within the scope of 32.

(b) To show x0 6|= s(E ε(ti+1, π2, τ1)), suppose otherwise. Then there is z such
that x0Sn

VSz and

z |= ε(ti+1, s(π2), s(τ1)).
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This means that

z |= 3α0
ti+1

∧ ¬3α0
ti+1+1 ∧3s(π2) ∧ ¬32s(π2) ∧3s(τ1) ∧ ¬32s(τ1).

By Claims 4.5 and 4.6, this implies

z |= 3α0
ti+1

∧ ¬3α0
ti+1+1 ∧3α1

ki+1 ∧ ¬32α1
ki+1 ∧3α2

li ∧ ¬32α2
li .

It follows that

z |= ε(ti+1, α
1
ki+1, α

2
li)

and we arrive at a contradiction, because α1
ki+1 = α1

ki+1
.

This completes the proofs of Lemma 4.3 and Theorem 4.2.

Remark 4.7. One might wonder whether in the proof above we can replace the
nominal n with some fixed formula, say, χ = 2⊥, in order to show that the ad-
missibility problem is actually undecidable for K2. Unfortunately, the proof does
not work in this case because χ may hold at an unbounded number of points of a
frame, which makes it impossible to define the ‘local surrogate’ E .

5. APPLICATIONS TO DESCRIPTION LOGICS

In this section, we briefly comment on the consequences of our results in the context
of description logics [Baader et al. 2003]. We remind the reader that description log-
ics (DLs, for short) are knowledge representation and reasoning formalisms in which
complex concepts are defined in terms of atomic concepts using certain construc-
tors. DLs are then used to represent and reason about various relations between
such complex concepts (typically, the subsumption relation). The basic Boolean
description logic ALC has as its constructors the Boolean connectives and the uni-
versal restriction ∀r, which, for a concept C and a binary relation symbol r, gives
the concept ∀r.C containing precisely those objects x from the underlying domain
for which y ∈ C whenever xry. The language of ALC is a notational variant of the
basic modal logic K with infinitely many modal operators: propositional variables
correspond to atomic concepts, while ∀r.C is interpreted in a relational structure
in the same way as 2r (the modal box interpreted by the accessibility relation r).
We refer the reader to [Baader et al. 2003] for precise definitions and a discussion
of the syntax and semantics of ALC and other description logics.

It has been argued in [Baader and Narendran 2001] that for many applications
of DLs it would be useful to have an algorithm capable of deciding, given two
complex concepts C1 and C2, whether there exists a substitution s (of possibly
complex concepts in place of atomic ones) such that s(C1) is equivalent to s(C2)
in the given DL.3 We call this problem the concept unification problem. A typical
application of such an algorithm is as follows. In many cases, knowledge bases
(ontologies) based on DLs are developed by different knowledge engineers over a
long period. It can therefore happen that some concepts which, intuitively, should
be equivalent, are introduced several times with slightly different definitions. To
detect such redundancies, one can check whether certain concepts can be unified.

3This is the simplest version of the decision problem they consider. More generally, Baader and
Narendran [2001] consider the problem whether there exists such a substitution which leaves
certain atomic concepts intact. We will not consider this more complex decision problem here.
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Unifiability does not necessarily mean that these concepts have indeed been defined
to denote the same class of objects—but this fact can serve as an indicator of a
possible redundancy, so that the knowledge engineer could then ‘double check’ the
meaning of those concepts and change the knowledge base accordingly.

The concept unification problem for ALC is easily seen to be equivalent to the
unification problem for the modal logic K with infinitely many modal operators:
formulated for the modal language, the problem is to decide whether, given two
modal formulas ϕ1 and ϕ2, there exists a substitution s such that, for every Kripke
model M and every point x in it,

(M, x) |= s(ϕ1) iff (M, x) |= s(ϕ2).

This is obviously equivalent to the validity of s(ϕ1 ↔ ϕ2). Baader and Kuesters
[2001] and Baader and Narendran [2001] develop decision procedures for the concept
unification problem for a number of sub-Boolean DLs, that is, DLs which do not
have all the Boolean connectives as constructors and are, therefore, either properly
less expressive than ALC or incomparable with ALC. The investigation of the
concept unification problem for Boolean DLs, that is, ALC and its extensions, is
left as an open research problem.

It should be clear that we have to leave open the decidability status for the con-
cept unification problem for ALC as well. However, it does follow from the result of
the previous section that the unification problem for extensions of ALC with nom-
inals is undecidable. In contemporary description logic research and applications,
nominals play a major role; see e.g., [Horrocks and Sattler 2005] and references
therein. The smallest description logic containing ALC and nominals is known as
ALCO, and by extending the mapping between modal and description languages
indicated above, one can see that ALCO is a straightforward notational variant of
the modal logic with infinitely many modal operators and nominals. Therefore, as
a consequence of Theorem 4.2 we obtain:

Theorem 5.1. The concept unification problem for ALCO is undecidable.

Moreover, the undecidability proof goes through as well for extensions of ALCO
such as, for example, ALCQO and SHIQO, the description logic underlying the
OWL DL dialect of the Web Ontology Language OWL [Horrocks et al. 2003].

Another family of description logics for which the concept unification problem
turns out to be undecidable are those extensions of ALC where the universal role is
definable. The minimal description logic of this sort, widely used in DL applications,
is known nowadays as SHI. Originally, Horrocks and Sattler [1999] introduced this
logic under the name ALCHIR+ . In SHI, the signature of ALC is extended by

—infinitely many relation symbols, which are interpreted by transitive relations,
—and for each relation symbol r, there is a relation symbol r−, which is interpreted

by the inverse of the interpretation of r.

The concept unification problem for SHI remains open. However, when considering
SHI it is not the concept unification problem one is mainly interested in, but its
generalisation to the concept unification relative to role axioms4: in SHI and its

4In description logic, the most useful generalisation of the concept unification problem is unifi-
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extensions one can state in a so-called RBox (role box) that the interpretation of a
relation symbol r is included in the interpretation of a relation symbol s, in symbols
r v s. Now, SHI concepts C and D are called unifiable relative to an RBox R iff
there exists a substitution s (of complex SHI-concepts for atomic ones) such that
s(C) is equivalent to s(D) in every model satisfying the RBox R. It easily seen that
this problem is undecidable. Indeed, consider the RBox R consisting of s v s−,
s− v s, and r v s, where s is a transitive role. Then, in every model for R, s is
transitive, symmetric and contains r. By replacing the operator 2 with ∀r and the
operator A with ∀s in the proof of Theorem 2.3, one can easily show that concept
unification relative to the RBox R is undecidable. Thus we obtain the following:

Theorem 5.2. The concept unification problem relative to role axioms for SHI
is undecidable.

This undecidability proof also goes through for extensions of SHI such as, for
example, SHIN and SHIQ.

6. CONCLUSION

In this paper, we have shown that for two standard constructors of modal logic—the
universal modality and nominals—the unification and admissibility problems are
undecidable. It follows that both unification and admissibility are undecidable for
all standard hybrid logics and many of the most frequently employed description
logics.

Many intriguing problems remain open. The question whether the unification
and admissibility problems for K and multimodal K (or, equivalently, ALC) are
decidable is still one of the major open problems in modal and description logic.
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