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Abstract 
 

This study describes how complex goal-directed 
behavior can be obtained through adaptation in a 
hierarchically organized recurrent neural network 
using a genetic algorithm.  Robot simulations 
showed that different types of dynamic structures 
self-organize in the lower and higher levels of the 
network for the purpose of achieving complex 
navigation tasks.  Behavior primitives are switched 
in a top-down way through lower level parametric 
bifurcation structures. In the higher level, a 
topologically ordered mapping of initial cell 
activation states to motor-primitive sequences self-
organizes by utilizing the initial sensitivity 
characteristics of nonlinear dynamical systems.  The 
biological plausibility of the model’s essential 
principles is discussed. 

 
1.  Introduction 
  
It is widely believed that behavior systems develop certain 
hierarchical or level structures for achieving goal-directed 
complex behaviors, and that these structures should self-
organize through interactions with the environment.  It is 
reasonable to assume that an abstract event sequence is 
represented in a higher level, while its detailed motor 
program is generated in a lower level.  Arbib (1981) 
proposed the idea of movement primitives (also referred to 
as perceptual-motor primitives, motor schemas, or motor 
programs), which are a compact representation of action 
sequences for generalized movements that accomplish a 
goal.  Evidence of such primitives in animals has been 
found (Giszter et al., 1993; Mussa-Ivaldi et al., 1994), and 
human studies also indicate their role in complex movement 
generation (Thoroughman & Shadmehr, 2000).  Once such 
motor primitives develop early in the life of an organism, 
diverse behaviors can emerge by learning to combine them 
in a multitude of complex sequences.   

     A movement primitive can be formalized as a "control 
policy", encoded using a few parameters in the form of a 
parameterized motor controller, for achieving a particular 
task (Schaal, 1999).  The motor primitives are routine motor 
programs that repeatedly appear in the sequences of the 
motor patterns.  Once such motor primitives develop early 
in the life of an organism, diverse behaviors can emerge by 
learning to combine them in a multitude of complex 
sequences.   
     Mataric (2002) showed examples of behavior generation 
through primitive combination in the context of imitation 
learning using a virtual humanoid robot.  In her 
computational architecture, a cluster of motor primitives 
was organized in a lower level.  Then, a Hidden Markov 
model in the higher level learned how the primitives were 
combined into sequences in order to recognize and 
regenerate the human instructor’s behavior patterns.  In 
related work, Amit and Mataric (2002) used Self-
Organizing Maps (SOMs) to hierarchically control postural 
and oscillatory movement primitives in a simulated robotic 
arm. 
     Hochreiter and Schmidhuber (1997) proposed a so-called 
long-term and short-term memory connectionist model for 
hierarchical sequence learning which focuses on the 
problem of sequence segmentation.  The essential idea in 
this study was to learn long and complex sequences by 
dividing them into chunks of sub-sequences.   
     Tani and Nolfi (1999) extended the idea of the Mixture 
of Experts (Jacobs et al., 1991; Jordan & Jacobs, 1994) by 
introducing level structures.  In their experiments with a 
simulated mobile robot, the robot learned to perceive 
sensory-motor flow as hierarchically articulated. In contrast 
to this local representation scheme utilizing expert modules 
for representing primitives, Tani (2003) proposed a 
distributed representation scheme where multiple primitives 
can be embedded in a single recurrent neural network 
(RNN) in terms of a “forward model” (Kawato et al., 
1987).  Each primitive can be accessed by a control 
parameter called the “parametric bias” (PB). The higher 
level RNN combines the lower level primitives in sequences 
by learning and sending the corresponding PB sequences to 
the lower level RNN. 
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                 (a)  
Figure 1:  Conceptual diagram of network architecture.   
 
    However, these neural network schemes seem to have 
some potential drawbacks.  One major problem is that the 
network cannot be adapted dynamically through trial and 
error.  This is due to the fact that the above mentioned 
neural network approaches depend heavily on a supervised 
learning scheme using teaching signals.  In contrast, 
reinforcement learning schemes using “macro-actions”, or 
sequences of primitives, can learn to effectively combine 
primitives to solve sequential tasks simply through 
environment-mediated rewards.  However, inappropriate use 
of macro-actions may retard learning.  Appropriate macro-
actions must generally be tuned manually for specific 
environments, although work is being done to automate the 
process (McGovern et al, 1997, 2001).  
     Another problem is the setting of time constant 
parameters for the network dynamics at each level.  The 
time constant in the lower level has to be determined based 
on the shifting frequency of the lower primitives.  The 
higher level time constant must further be determined based 
on those of the lower level primitives as well as task 
features.  Such parameter setting is usually done manually 
by experimenters, which requires certain a priori knowledge 
about the task environment.  In order to overcome these 
problems, this paper introduces a novel scheme using an 
evolutionary adaptation mechanism through a genetic 
algorithm (GA).  The evolutionary robotics community has 
shown that the GA scheme allows for the self-organization 
of dynamic adaptive behaviors in sensory-motor systems 
(Tucci et al., 2002; Nolfi & Floreano, 2000).   
     In this paper, we study the dynamic adaptation process of 
multiple levels of continuous time recurrent neural networks 
(CTRNNs) applied to a navigation task using a simulated 
robot.  Through the experiments, we will demonstrate that a 
hierarchically organized network can perform well in 
adapting to complex tasks through combination with a 
GA.  We will focus on how motor primitives are self-
organized in the lower level, and how they are manipulated 
in the higher level.  
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2.  Methods 
 
2.1  General Model 
 
The neural network model utilized in the current paper 
consists of two levels of fully connected CTRNN 
(Yamauchi & Beer, 1994; Blynel & Floreano, 2002).  The 
lower level network, as shown in Figure 1, receives sensory 
inputs and generates motor commands as outputs.  This 
network is supposed to encode multiple sensory-motor 
primitives, such as moving straight down a corridor, and 
turning left or right at intersections or to avoid obstacles in 
the navigation task adopted in this study. 
     A set of external neural units, called the “control 
neurons”, are bidirectionally connected to all neurons in the 
lower level network.  The control neurons influence lower 
level network functions and favor the generation of 
particular motor primitives.  Through evolution of both the 
lower level internal synaptic weights (Wl) and the interface 
weights (Wc) between the control neurons and the lower 
level neurons, a mapping between the control neurons’ 
activities and the sensory-motor primitives stored in the 
lower level network is self-organized.  Modulation of the 
control neurons’ activities causes shifts between generating 
one primitive and another.  The scheme is analogous to the 
idea of the parametric bias in Tani (2003) and the command 
neuron concept (Aharonov-Barki et al., 1999; Edwards et 
al., 1999; Teyke et al., 1990).  How might more complex 
tasks, such as navigation in an environment, be generated?  
Such tasks require generating sequences of motor 
primitives.  We propose that a higher level network may 
modulate the activities of the control neurons through time 
to generate sequences of lower level movement primitives 
(Figure 1b).  The higher level network evolves to encode 
abstract behavior sequences utilizing the control neurons. 
It is assumed that the desired sequences will be generated if 
adequate nonlinear dynamics can be self-organized in the 
higher level network.  As will be described in detail later, 
the robot becomes able to navigate to multiple goal 



positions when starting from the same initial position in the 
maze environment.  Therefore, the higher level network has 
to encode multiple sequence patterns, which have to be 
retrieved for the specified goal. 
     We utilize the initial sensitivity characteristics of 
nonlinear dynamic systems in order to initiate different 
sequences.  When the robot is placed at the initial position 
in the environment, the internal values of all the higher level 
neurons are set to 0.0, except for two neurons called the task 
neurons (Figure 1b).  The initial values of the task neurons 
are set corresponding to the specified goal positions.  These 
goal-specific initial task neuron activities were evolved 
through the same genetic algorithm that yielded the 
network’s synaptic weights. 
     We assume that an appropriate sequence pattern that 
enables the robot to navigate to the kth goal can be generated 
by setting adequate initial activities ( kγ ) for the task 
neurons when the higher level internal connective weights 
(Wh) are adequately generated through evolution.  This idea 
of utilizing the initial sensitivity of the network dynamics is 
similar to the studies of Nishimoto & Tani (2003) and 
Blynel (2003).  Further, Tanji & Shima (1994) showed in 
the monkey that the pre-Supplementary Motor Area 
neuronal activities during the motor preparation period 
might encode abstract behavior sequences through the initial 
state values of the network dynamics.  Nishimoto & Tani 
(2003) showed that a Recurrent Neural Network (RNN) 
learns to generate various action sequences by setting 
different initial context unit activities using the back-
propagation learning method.  Blynel (2003) found that goal 
positions can be “remembered” through the activations of 
hidden neurons in a reinforcement learning task when 
Genetic Algorithm evolution is applied to a single level 
CTRNN. 
     Evolution of the two-level network used here goes 
through two phases.  In the first phase (Experiment 1), the 
network shown in Figure 1a evolves to perform collision-
free left and right turns in a T maze environment.  Both the 
lower level internal synaptic weights (Wl) and the control 
neuron interface synaptic weights (Wc) are evolved while 
adequate activation values of the control neurons are 
determined for the left and right turns.  At this stage, there is 
no higher level network with task neurons.  Instead, the 
neuronal activation bias (θ , Equation 2) of the two control 
neurons is free to evolve differently for the left and right 
tasks.  The synaptic weights are identical for the two turn 
directions. 
     In the second phase (Experiment 2), the evolved lower 
level network is extended by adding and evolving the higher 
level network (Figure 1b).  The task of the robot is to find 
ways to reach multiple goals from the same starting 
position.  In this phase, only the higher level internal 
connective weights (Wh) and goal-specific task neuron 
initial activities ( 0γ ) are evolved.  The bottom level internal 
weights and control neuron interface synaptic weights (Wc) 
are kept constant from the first phase’s T maze task.  Thus, 

collision free left or right turning does not need to be re-
evolved.  Instead, the second learning phase focuses solely 
on goal finding through the appropriate turn sequence 
generation. 
 
2.2 Continuous-Time Recurrent Neural 
Networks 
 
All neurons in the simulations presented here used the 
following equations and parameters for a CTRNN, based on 
those of Blynel & Floreano (2002).  In Equation 1, iγ  is the 
internal activation state (cell potential) of the ith neuron.  τ  
is the time constant of the neuron. It affects the rate of 
neuronal activation in response to the kth external sensory 
neuronal activation, Ik, and signals from the jth presynaptic 
neuron with activity Aj.  The signal from the presynaptic 
neuron is weighted by weights wij, and the sensory input is 
weighted by wik.  N is the number of neurons in the network, 
and S is the number of sensory receptors which send input 
signals to the network. 
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The presynaptic neuronal activity (Aj) is defined in 
Equations 2 and 3. θ  is a bias term and σ  is the standard 
logistic function, defined in Equation 3. 
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Numerical integration was carried out using the Forward 
Euler method.  The update rule of the neuronal activation 
state iγ  for each integration time step is given by Equation 

4. n is the iteration step number and  is the time step 
interval, defined as 0.2. 
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Except for the previously mentioned task neurons, whose 
initial activation is dependent on the movement goal, the 
neuronal activation, iγ , is initialized to 0 at the start of 

integration, 0)0( =iγ .   
 
2.3  Genetic Encoding 
 
The following parameters are genetically encoded within the 
following ranges.  τ  is the time constant (Equation 1).  θ  
is the activation bias (Equation 2).  w is the synaptic weight, 



and )0(taskγ  is the initial activation of the task-dependent 
neurons of the higher level network. 
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     Each parameter is encoded using 5 bits and the following 
encoding rule to generate analog parameter values.  Thus, 
each parameter value is generated by a linear scaling of the 
analog value within a given range to the range of 0 to 31 in 
binary code.  The encoded parameter value (Pe) from the 5 
bit string is given in Equation 5.  The analog parameter 
value (Pa) is given by Equation 6 for an analog parameter 
value in the range . max][min,∈aP
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     In the T maze experiment, the network consists of eight 
inputs, five bottom level units, and two control neurons, for 
a total of 515 bits encoding τ , θ  , and w.  In the Eight-
Goal-Maze experiment, the network is as above, except that 
it also includes 4 higher level neurons.  The task neurons’ 
initial activity ( )0(taskγ ) is also encoded, yielding a 
genome length of 715 bits.  
 
2.4  Genetic Algorithm 
 
A standard genetic algorithm (GA) with mutation but 
without crossover was employed to evolve the weights and 
parameters (τ , θ , w, )0(taskγ ) of the network (Mitchell, 
1998; Goldberg, 2002).  The mutation rate per bit was set at 
2% for all simulations reported here.  (Higher mutation rates 
of up to 10% were tried, but the fitness of the resulting 
populations became progressively more unstable without 
improvements in the best robot performance).  The 
population consisted of 80 robots.  The twenty robots with 
the best fitness reproduced each generation.  Each of the 
reproducing robots made 4 copies of itself with mutation.  
Of the best robot’s offspring, one was an exact copy of the 
parent without mutation.  Simulations were generally run 
for 50 to 200 generations, and the performance of the best 
robots was analyzed.     
  
2.5  Network Architecture 
 
In Experiment 1, the network depicted in Figure 1a consists 
of 8 sensory inputs, scaled to a range of 0 to 1, which are 
sent to the bottom level of 5 neurons. The bottom network 
receives from and sends signals to the two control neurons.  
In Experiment 2, the control neurons are further connected 
to the higher level of 4 neurons (Figure 1b).  Two of the 

higher level neurons are the “task neurons”, whose initial 
activities determine the particular turn sequence which will 
be generated to reach a goal.  
     The outputs of the first two bottom level neurons are 
taken as motor command signals to the simulated robot 
wheels.    The actual neuronal outputs are analog signals, 
but the robot controller can use only integer speed 
commands.  The analog signals are therefore rounded to the 
nearest integer.  The simulated wheel speed is in the range 
of 0 to 4, corresponding to speeds of 0 to 0.32cm per 
second.  Note that the wheels are allowed to turn only in a 
forward direction in these experiments for simplicity. 
 
2.6  Experimental Setup 
 
All experiments reported here were executed using a 
simulated Khepera II robot in the Webots 3 robot simulator.  
Simulations were run on a Plathome computer with a 2.0 
GHz processor.  Simulations ran at about 40 times real 
Khepera speed.  Data were analyzed using Matlab Release 
13. 
     Inputs to the neural network consisted of the signals from 
seven infra-red proximity sensors (2 left, 2 front, 2 right, 
and 1 rear) and one downward facing ground sensor 
(illustrated by rays protruding from robot in Figure 2).  The 
input was modified by randomly adding or subtracting 5% 
of its value as noise.  All sensor inputs to the network were 
scaled to a range of 0 to 1.  In all experiments, the robot was 
repositioned to the starting point and the trial was ended if 
the robot either collided with a wall or reached a goal area.  
Goal areas were defined by differently colored floors.  The 
floor sensor was used by the controller to detect when the 
robot found a goal, triggering the appropriate fitness reward, 
ending of the trial, and repositioning of the robot. 
    
3.  Experiments 
 
3.1  Experiment 1: T-Maze Task 
 
Experiment 1 is designed to evolve a bottom level network 
which contains movement primitives of left and right 
turning behavior at intersections as well as collision-free 
straight movement in corridors.  The same lower level and 
control neuron weights are used for both right and left turns.  
The only difference between the left and right turn 
controllers is in the bias values (θ ) of the two control 
neurons.  Intuitively, this might correspond to different sets 
of cortical “control” neurons becoming associated with each 
of the lower level movement primitives.  Parallel 
connections from the bottom level to the control neurons 
might develop, yielding the same weights to both sets of 
control neurons.  Intrinsic differences in the control 
neurons’ responses (as through the different θ  bias values 
used here) to the lower level signals would determine with 



which motor primitives each set of control neurons became 
associated. 
     The evolutionary runs consisted of up to 200 generations 
with 2 epochs and 3 trials per robot of the 80 robot 
population.  Each trial was run for 500 time steps, starting at 
the same position at the bottom of the T maze.   Different 
bias values (θ ) evolved in the control nodes for the left and 
right turning tasks in epochs 1 and 2, respectively.  All other 
parameters were identical in the left and right turning tasks.  
In epoch 1, fitness was awarded to robots that turned to the 
left at the intersection based on the following fitness rule.  
In epoch 2, fitness was awarded to robots that turned to the 
right.  Each robot ran 3 trials per epoch.   
     Experiment 1 uses a two-component fitness rule 
(Equation 7).  The first component (FOA) consists of a 
reward for straight, fast movements with obstacle 
avoidance.  The fitness rule of Floreano & Mondada (1994) 
was adopted for this purpose and is shown in Equation 8.  V 
is the wheel speed scaled to a range of 0 to 1.  V is the 
average speed of the two wheels.  is the absolute value 
of the difference in speeds between the two wheels, and is 
used to reward straight movements.  S

V∆

max is the maximum 
robot sensor value, scaled to a range of 0 to 1, and is used to 
reward obstacle avoidance. 

goalOA FFF +=                        (7) 
 

)1()1( maxSVVFOA −⋅∆−⋅=                      (8)
   
     The second component of the fitness rule, Fgoal, rewards 
the robot for finding a goal.  The goal is located to the left 
of the intersection for epoch 1, and to the right for epoch 2. 
The robot is linearly rewarded, based on its position, for 
approaching and reaching the goal.  Greater reward per time 
step is received linearly as the robot approaches the goal, 
starting at the middle of the top of the T maze. 
     At the start of each trial, the robot was placed at the same 
starting position at the bottom of the T maze.  Three 
different starting orientations (facing 135o, 90o, and 45o; that 
is, left, straight, and right, respectively) were employed, one 
for each of the three trials per epoch.  Further, motor noise 
was added to the wheel speed commands sent to the robot.  
The integer speed command was increased or decreased by 
one with a probability of 20% on each simulation time step.  
The varying starting orientations and motor noise were used 
to ensure that the robot would experience wall collisions 
early during evolution, so that controllers with obstacle 
avoidance would be more likely to evolve.  Both the bottom 
level and control neurons were free to evolve in this 
experiment. 
 
 
3.2  Experiment 2: Eight-Goal Task 
 
The Eight-Goal maze depicted in Figure 2 is a combination 
of T maze-like environments with eight different goals at 
the ends of each T maze component.  Thus, combinations of 

the same turn primitives evolved in experiment 1 should 
allow the robot to reach the different goals.  In experiment 
1, different sets of control neurons with differing internal 
dynamics (due to differing θ  bias values) became 
associated with particular motor primitives, as will be 
described later.  In experiment 2, it is shown how the 
activity of a single set of control neurons can be modulated 
over time to generate a sequence of motor primitives.  
Further, it is shown how varying only the initial activation 
of the task neurons in the higher level network can lead to 
the generation of different network activation time courses 
by which multiple primitive sequences are generated.  Thus, 
the routes to multiple goals can effectively be stored in a 
single network, with a single set of synaptic weights and 
corresponding initial activation values of the task neurons.  
     The bottom level genome, including the weights for the 
connections to the control neurons, from experiment 1 was 
used in this experiment and held constant.  Only a single set 
of synaptic weights and parameters in the higher level 
network, and multiple sets of the initial task neuron 
activities, were free to evolve.  The experiment consisted of 
up to 200 generations, with 12 epochs per generation and 2 
trials per epoch.  Each of the 12 epochs evaluated a different 
set of higher level task neuron initial activities, using the 
fitness rule described below.  Further, each task neuron set 
was run for two trials, in order to evaluate the stability of 
the robot’s goal-finding ability.  Robots which found 
multiple goals repeatedly were rewarded more than those 
which found them only intermittently.  Further, robots 
which found some stable goals tended to be rewarded more 

 
Figure 2:  Eight-Goal Maze environment, showing trajectory for a 
Left, Right, Right sequence.  G= Goal location.  Turns occur at 
steps 200 and 500 in the neuronal activity traces for this sequence 
in Figure 4. 
 
than robots that found more goals haphazardly. As in 
experiment 1, a trial was ended when the robot either found 
a goal or collided with a wall.  The robot was then 
repositioned to the same starting point.  Since the bottom 
level genome from experiment 1 was used here, obstacle 
avoidance and turn primitives were present in the first 
generation.  Therefore, only one starting orientation was 



used (90o, i.e., straight up) and no motor noise was added to 
the speed commands sent to the robot wheels (but sensor 
noise was still present).   
     In experiment 2, the fitness rule (F) consists solely of a 
reward for finding goals consistently (Equation 9).   
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Here, a fixed reward (R) per new goal (g) found is given to 
the robot.  In experiment 2, Ngoals = 8, and Ntasks = 12.   
     Each robot has 12 sets of task neuron initial activities (i) 
which are evaluated.  Each set has two trials in which to 
find a goal.  A robot which finds a goal on both trials 
receives twice the reward of finding the goal on only one 
trial.  If a different set of task neuron initial activities leads 
to the same goal, then the reward is the maximum of the 
reward given to the two different task neuron sets. Thus, a 
robot with multiple task neuron sets that find a goal on only 
one of the two trials will receive less reward than a robot 
with one task neuron set that finds the goal on both trials.   
 
4.  Results/Analysis 
4.1  Experiment 1: T-Maze Task 
 
Collision avoidance and left and right turning behavior 
emerged within 63 generations.  Left turns were generated 
for one set of control neuron bias values, and right turns 
were generated for another set. Although both left and right 
turns could be generated, the robot exhibited oscillatory 
movements after collision avoidance.  That is, it turned 
away from one wall too much and headed towards the 
opposite wall instead of straightening its path through the 
lower part of the T maze.  (As mentioned previously, the 
robot started from three different orientations, leftward, 
straight up, and rightward, requiring it to avoid wall 
collisions early during each trial.)  The controller was 
therefore allowed to evolve further.  By generation 189, 
fewer fluctuations occurred after collision avoidance and the 
lower level genome was used for experiment 2. 
     Control neuron 0 appears to be critical in determining 
whether a left or right turn is generated.  Turns occur at 
approximately time step 200, at which time the control 
neuron activity is 0.2 for the left turn and 0.6 for the right 
turn.  The relation between turn behavior and the activities 
of control neurons 0 and 1 is further quantified in the phase 
plot of Figure 3.  441 trials with different sets of the two 
control neurons’ activities, held constant for each trial, 
(A=[0:1], step size = 0.05) were run and the resulting turn 
directions recorded.  Note that this figure also applies to the 
activity of the control neurons evolved in experiment 2, 
since the same bottom level genome, including the synaptic 
weights between the bottom level and control neurons, was 
used in both experiments 1 and 2.  The turn phase plot of 
Figure 3 shows a clear bifurcation, or appearance of new 
movement behavior with the control neuron activity change, 

with two distinct regions of stability for left (black) and 
right (white) turns, for the corresponding combinations of 
control neuron 0 and neuron 1 activities.  The gray squares 
indicate unstable regions in which wall collisions occur.  In 
both experiments 1 and 2, the evolved control neuron 
weights tend to suppress the activity of control neuron 1.  
The phase plot shows that the smallest region of instability 
between left and right turns occurs for such small control 
neuron 1 activities.  Further, the weights from control 
neuron 0 to the two motor output nodes (wjk= 5.0, -3.4) of 
the bottom level have a greater magnitude than the weights  
 
 
 

 
Figure 3:  Phase analysis of turn direction as a function of control 
neuron activation.  X and Y axes: neuronal activities of control 
neurons 1 and 0, respectively.  Black = Left turn, White = Right 
turn, Grey = Collision with wall. 
 
from control neuron 1 (wjk=-1.1, 2.0).  Thus, control neuron 
0 has the dominant effect on the turn direction of the lower 
level’s output neurons.  It therefore appears that the lower 
level, which receives and processes all sensory inputs, has a 
dominant role in collision avoidance.  Collision avoidance 
competes with the control neurons’ “turn” signals.  In the 
unstable regions of the phase plot (grey in Figure 3), the 
control neurons’ “turn” commands inappropriately override 
the lower level’s collision avoidance, triggering collisions 
when the robot turns toward and collides with a wall. 
 
4.2  Experiment 2: Eight-Goal Task 
 
The best robot became able to reach up to 7 different goals 
stably within 24 generations by evolving the higher level 
network and control neurons.  The turn sequence for each 
goal was determined by a particular set of initial task neuron 
activities ( )0(taskγ ).  Since 12 different sets of )0(taskγ  
were evaluated per robot, multiple sets would sometimes 
lead to the same goal.  Each )0(taskγ  set was evaluated for 

the stability of its goal.  Some values of )0(taskγ  led to 
repeatable goal-finding performance, while others were 
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Figure 4:  Left-Right-Right turn sequence.  Top: Neuronal activity 
of control and task (initial node) neurons; Middle: Lower level 
motor output node activity; Bottom: Left and right sensor 
activities. 
 
unstable, leading to different goals on different trials, or 
even to wall collision.  Although evolution led to controllers 
which could find all 8 goals, the best controller could only 
find 7 goals stably.  The definition of stability used here is 
reaching a particular goal, with the corresponding evolved 

)0(taskγ  values, on at least 70% of trials. 

     Different )0(taskγ  activities led to differently 
fluctuating patterns in the control neuron activities (Figure 
4).  As in the results of experiment 1 reported above, control 
neuron 0 had the greatest influence on turn direction, and 
exhibited the greatest fluctuations during various turn 
sequences.  Left turns were generated when its activity was 
below a threshold of approximately 0.35, and right turns 
were generated when the activity was above the threshold.  
The activity of control neuron 1 tended to be suppressed, 
leading to a smaller region of instability at the transition 
from left to right turns in the phase plot of Figure 3.  Figures 
2 and 4 show the trajectory and neuronal activities, 
respectively, for a left-right-right turn sequence. The results 
shown here are for a controller which learned to reach six 
goals stably in 25 generations.  They show large amplitude 
fluctuations of the control neurons due to a small evolved 
value of the time constant τ  in Equation 1.  

 
Figure 5:  (a) Phase analysis of three-turn sequence generation as a 
function of task neuron initial activity, )0(taskγ .  X and Y axes: 
Initial activities of task neurons 1 and 0, respectively.  Plotted 
numbers correspond to sequences (L=Left, R=Right) as in Table 1.  
 
     The amplitude of the control neurons’ fluctuations is also 
significant because larger amplitude fluctuations may render 
the controller more robust to noise.  Although 5% sensor 
noise was used throughout these experiments, motor noise 
(increasing or decreasing the wheel speed command by 1 
unit with 20% probability) was used only in experiment 1 in 
order to facilitate the development of obstacle avoidance.  
Motor noise was also tested during separate evolutionary 
runs in experiment 2, and found to decrease the number of 
stable goals found from a maximum of 7 (without motor 
noise) to 5 (with motor noise).  Note that the total number of 
goals found was eight, with or without motor noise.  Thus, 
additional noise added to the wheel motor commands 
increases the instability of the turn sequences.   
     Goal instability was most often seen in the final turn 
direction of the three-turn sequences learned.  This final turn 
instability can be appreciated by noting that the control 
neuron activity tends to hover around the turn threshold near 
the end of the trial.  As seen in the phase plot of Figure 3, 
this region is unstable.  
     Figure 5 shows an analysis of the movement sequences 
generated for the range of task neuron initial activities, 

]10,10[)0( −∈taskγ , in the evolved controller of 
experiment 2.  441 sets of initial task neuron activities were 
tested and the resulting turn sequences recorded. The 
numbers in the figure correspond to movement sequences as 
labeled in the figure, e.g., LRL for left, right, and left turns. 
The sequence patterns self-organize into well-defined, 
topologically ordered clusters in the )0(taskγ  space. First, 

the )0(taskγ  space is grossly clustered based on the first 
turn direction, left or right, of the movement sequence, as 
shown by a thick solid line in Figure 5.  Each of these two 
clusters is then further divided into sub-clusters, depending  

LLR LRR 

RRL 

RRR 

LRL 

RLL LLL 



 
 

SEQUENCE BINARY 
CODE 

INTEGER 
VALUE 

LLL 000 0 
LLR 001 1 
LRL 010 2 
LRR 011 3 
RLL 100 4 
RLR 101 5 
RRL 110 6 
RRR 111 7 
Collision --- 9 

Table 1:  Movement Sequence representation used in Figure 5.  
L=Left Turn; R=Right Turn; 0=Left Turn; 1=Right Turn.  
 
on the second turn direction of the movement sequence, as 
shown by a solid line.  These sub-clusters are still further 
divided into smaller clusters, depending on the third turn as 
shown by the dashed lines.  
     Thus, turn sequences are hierarchically ordered into 
progressively smaller regions of the initial task neuron 
activity space, as additional turns are added.   In other 
words, as the complexity of the movement sequence 
increases, so too does the initial sensitivity to the task 
neuron activities.  
     This mapping of initial task neuron activity to particular 
sequences is an emergent property of the evolved controller.  
Different evolutionary runs yield different cluster patterns, 
but the general trend of distinct, topologically ordered 
sequence regions remains. This self-organized, 
topologically ordered mapping of sequences, with 
increasing initial sensitivity to task node activities as 
movement sequence complexity increases, is notable in such 
a small network, and is reminiscent of the fractal 
distribution of sequences mapped in the parameter space of 
Nishimoto & Tani (2003).  Indeed, it would be interesting to 
see if fractal structure could be found in controllers 
branching out to larger numbers of goals.   
 
5.  Discussion/Conclusion 
 
The work presented here describes a novel hierarchical 
model of behavioral sequence memory and generation. It 
recalls in general terms the hierarchical organization of 
movements in the primate spinal cord, brainstem, and 
cortical regions.  Different types of dynamic structures self-
organize in the lower and higher levels of the network.  A 
parametric bifurcation in the control neurons’ interaction 
with the lower level allows top-down behavioral switching 
of the primitives embedded in the lower level. Utilizing the 
initial sensitivity characteristics of nonlinear dynamic 
systems (Fan et al., 1996), a topologically ordered mapping 
of initial task neuron activity to particular behavior 
sequences self-organizes throughout the development of the 
network.  The interplay of task-specific top-down and 

bottom-up processes allows the execution of complex 
navigation tasks.  
     One unique feature of the current model is the 
hierarchical organization of the network and its training.  
The bottom level network represents movement primitives, 
such as collision avoidance and turning at intersections.  
Since it must directly deal with quickly changing 
environmental stimuli, its time constants have become small 
through adaptation so that the neuronal activity of the output 
neurons (τ 0 = 1, τ 1 = 1 in Equation 1) can change rapidly 
to drive the robot’s movement in real time.  In contrast, the 
higher level represents sequences of the lower level 
primitives over longer time spans.  Accordingly, the task 
neuron time constants have adapted to be large (τ task0 = 70, 
τ task1 = 52 in Equation 1) so that neuronal activity changes 
much more gradually and is less affected by short-term 
sensory changes.   
     The neurons of the higher level receive no direct sensory 
inputs, but are gradually influenced by them through the 
control neurons, which are fully connected to the input-
receiving bottom level.  This system is reminiscent of the 
organization of sequence generation in primates, as is 
elucidated by the studies of Tanji & Shima (1994) and 
Ninokura et al. (2003).  In the former study, cellular activity 
in monkeys’ supplementary motor area (SMA) was found to 
be selective for the sequential order of forthcoming 
movements, much as the task neurons’ initial activities 
determine future movement order in the current model.  In 
the latter study, distinct groups of cells in the lateral 
prefrontal cortices (LPFC) of monkeys were found to 
integrate the physical and temporal properties of 
sequentially reached objects, in a manner analogous to 
integration of higher level sequential information and lower 
level sensory input by the control neurons in the present 
model.    
     Although other models of sequence generation have been 
trained in a modular fashion because it was felt necessary to 
achieve the task (Yamauchi & Beer, 1994), the current work 
begins by explicitly evolving simple movement primitives, 
such as straight movements, collision avoidance, and 
turning at corners.  The next level of the hierarchy 
subsequently develops to utilize the lower level primitives 
in complex movement sequences.  One can envision further 
levels of complexity, with higher levels representing 
sequences of sequences for different sets of tasks, in a 
manner analogous to the “chunking” phenomenon observed 
in human memory of data sequences (Sakai et al., 2003). 
The beauty of this system is that the synaptic connections 
need not grow without bound as the number and complexity 
of sequences increases.  As shown here, a single network 
can represent multiple complex movements through 
modulation of the activities of a small number of “task” 
neurons.  
     One may argue that hierarchical structure has been 
imposed on our system, and that no such structure is 
absolutely needed to complete the task.  Indeed, Tucci et al. 
(2002) showed that the sequence generation task, which 



Yamauchi & Beer (1994) felt required a modular approach, 
could indeed be generated with a single, non-modular, 
network.  Further, Siegelmann & Sonntag (1995) showed 
that first and higher order recursive networks are 
computationally equivalent.  However, the theoretical 
possibility that one giant first order network can carry out 
the same tasks as modular, hierarchically structured systems 
implies nothing about the relative ease with which either 
system can be generated artificially or biologically. 
     Although the initial sensitivity of the movement 
sequences generated to task neuron activations was an 
emergent feature of the system found by self-organization of 
network parameters through a genetic algorithm, the model 
architecture was predetermined, and the details of the 
network training influenced the specific functions that were 
assumed by different components of the architecture.  Given 
that the current network architecture is loosely based upon 
the primate motor system’s hierarchical design, one might 
expect it to perform better than a less biologically plausible 
giant first-order network that encompasses both simple 
movement primitives as well as their combination into 
complex sequences.  This assumption will be tested in 
future work.     
     One may further question the need for hierarchical 
training of the current architecture.  Given that humans 
show a clear progression of movement learning, from 
simple to complex movement patterns as they develop 
(Needlman, 2003), one might assume that there is an 
advantage, either in learning rate or the final skill level 
attained, to such an incremental, hierarchical learning 
organization.   
     Future work will test whether such complex movements 
can be learned “from scratch”, without an externally 
imposed succession of increasingly difficult tasks.  Further, 
it will be of great interest to see whether a similarly intricate 
dynamic structure self-organizes in the task-dependent 
neuronal activity of a network without such hierarchical 
movement learning.         
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