
Paine & Tani 2004: Accepted in SAB2004

Adaptive Motor Primitive and Sequence Formation
in a Hierarchical Recurrent Neural Network

Rainer W. Paine Jun Tani

RIKEN Brain Science Institute

Laboratory for Behavior and Dynamic Cognition
2-1 Hirosawa, Wako-shi, Saitama, 351-0198 JAPAN

rpaine@brain.riken.jp; tani@brain.riken.jp

Abstract

This study describes how complex goal-directed
behavior can be obtained through adaptation in a
hierarchically organized recurrent neural network
using a genetic algorithm. Robot simulations
showed that different types of dynamic structures
self-organize in the lower and higher levels of the
network for the purpose of achieving complex
navigation tasks. Behavior primitives are switched
in a top-down way through lower level parametric
bifurcation structures. In the higher level, a
topologically ordered mapping of initial cell
activation states to motor-primitive sequences self-
organizes by utilizing the initial sensitivity
characteristics of nonlinear dynamical systems. The
biological plausibility of the model’s essential
principles is discussed.

1. Introduction

It is widely believed that behavior systems develop certain
hierarchical or level structures for achieving goal-directed
complex behaviors, and that these structures should self-
organize through interactions with the environment. It is
reasonable to assume that an abstract event sequence is
represented in a higher level, while its detailed motor
program is generated in a lower level. Arbib (1981)
proposed the idea of movement primitives (also referred to
as perceptual-motor primitives, motor schemas, or motor
programs), which are a compact representation of action
sequences for generalized movements that accomplish a
goal. Evidence of such primitives in animals has been
found (Giszter et al., 1993; Mussa-Ivaldi et al., 1994), and
human studies also indicate their role in complex movement
generation (Thoroughman & Shadmehr, 2000). Once such
motor primitives develop early in the life of an organism,
diverse behaviors can emerge by learning to combine them
in a multitude of complex sequences.

 A movement primitive can be formalized as a "control
policy", encoded using a few parameters in the form of a
parameterized motor controller, for achieving a particular
task (Schaal, 1999). The motor primitives are routine motor
programs that repeatedly appear in the sequences of the
motor patterns. Once such motor primitives develop early
in the life of an organism, diverse behaviors can emerge by
learning to combine them in a multitude of complex
sequences.
 Mataric (2002) showed examples of behavior generation
through primitive combination in the context of imitation
learning using a virtual humanoid robot. In her
computational architecture, a cluster of motor primitives
was organized in a lower level. Then, a Hidden Markov
model in the higher level learned how the primitives were
combined into sequences in order to recognize and
regenerate the human instructor’s behavior patterns. In
related work, Amit and Mataric (2002) used Self-
Organizing Maps (SOMs) to hierarchically control postural
and oscillatory movement primitives in a simulated robotic
arm.
 Hochreiter and Schmidhuber (1997) proposed a so-called
long-term and short-term memory connectionist model for
hierarchical sequence learning which focuses on the
problem of sequence segmentation. The essential idea in
this study was to learn long and complex sequences by
dividing them into chunks of sub-sequences.
 Tani and Nolfi (1999) extended the idea of the Mixture
of Experts (Jacobs et al., 1991; Jordan & Jacobs, 1994) by
introducing level structures. In their experiments with a
simulated mobile robot, the robot learned to perceive
sensory-motor flow as hierarchically articulated. In contrast
to this local representation scheme utilizing expert modules
for representing primitives, Tani (2003) proposed a
distributed representation scheme where multiple primitives
can be embedded in a single recurrent neural network
(RNN) in terms of a “forward model” (Kawato et al.,
1987). Each primitive can be accessed by a control
parameter called the “parametric bias” (PB). The higher
level RNN combines the lower level primitives in sequences
by learning and sending the corresponding PB sequences to
the lower level RNN.

mailto:rpaine@bdc.brain.riken.jp
mailto:tani@brain.riken.jp

Control Neurons:C

Wl

Wc

Se
nso

ry I
npu

ts:S

Moto
r O

utp
uts

:M{

{

 (a)
Figure 1: Conceptual diagram of network architecture.

 However, these neural network schemes seem to have
some potential drawbacks. One major problem is that the
network cannot be adapted dynamically through trial and
error. This is due to the fact that the above mentioned
neural network approaches depend heavily on a supervised
learning scheme using teaching signals. In contrast,
reinforcement learning schemes using “macro-actions”, or
sequences of primitives, can learn to effectively combine
primitives to solve sequential tasks simply through
environment-mediated rewards. However, inappropriate use
of macro-actions may retard learning. Appropriate macro-
actions must generally be tuned manually for specific
environments, although work is being done to automate the
process (McGovern et al, 1997, 2001).
 Another problem is the setting of time constant
parameters for the network dynamics at each level. The
time constant in the lower level has to be determined based
on the shifting frequency of the lower primitives. The
higher level time constant must further be determined based
on those of the lower level primitives as well as task
features. Such parameter setting is usually done manually
by experimenters, which requires certain a priori knowledge
about the task environment. In order to overcome these
problems, this paper introduces a novel scheme using an
evolutionary adaptation mechanism through a genetic
algorithm (GA). The evolutionary robotics community has
shown that the GA scheme allows for the self-organization
of dynamic adaptive behaviors in sensory-motor systems
(Tucci et al., 2002; Nolfi & Floreano, 2000).
 In this paper, we study the dynamic adaptation process of
multiple levels of continuous time recurrent neural networks
(CTRNNs) applied to a navigation task using a simulated
robot. Through the experiments, we will demonstrate that a
hierarchically organized network can perform well in
adapting to complex tasks through combination with a
GA. We will focus on how motor primitives are self-
organized in the lower level, and how they are manipulated
in the higher level.

Initial state setting
of task neurons

Wh

Wl

Wc

Se
nso

ry I
npu

ts:S

Moto
r O

utp
uts

:M{
{

 (b)

2. Methods

2.1 General Model

The neural network model utilized in the current paper
consists of two levels of fully connected CTRNN
(Yamauchi & Beer, 1994; Blynel & Floreano, 2002). The
lower level network, as shown in Figure 1, receives sensory
inputs and generates motor commands as outputs. This
network is supposed to encode multiple sensory-motor
primitives, such as moving straight down a corridor, and
turning left or right at intersections or to avoid obstacles in
the navigation task adopted in this study.
 A set of external neural units, called the “control
neurons”, are bidirectionally connected to all neurons in the
lower level network. The control neurons influence lower
level network functions and favor the generation of
particular motor primitives. Through evolution of both the
lower level internal synaptic weights (Wl) and the interface
weights (Wc) between the control neurons and the lower
level neurons, a mapping between the control neurons’
activities and the sensory-motor primitives stored in the
lower level network is self-organized. Modulation of the
control neurons’ activities causes shifts between generating
one primitive and another. The scheme is analogous to the
idea of the parametric bias in Tani (2003) and the command
neuron concept (Aharonov-Barki et al., 1999; Edwards et
al., 1999; Teyke et al., 1990). How might more complex
tasks, such as navigation in an environment, be generated?
Such tasks require generating sequences of motor
primitives. We propose that a higher level network may
modulate the activities of the control neurons through time
to generate sequences of lower level movement primitives
(Figure 1b). The higher level network evolves to encode
abstract behavior sequences utilizing the control neurons.
It is assumed that the desired sequences will be generated if
adequate nonlinear dynamics can be self-organized in the
higher level network. As will be described in detail later,
the robot becomes able to navigate to multiple goal

positions when starting from the same initial position in the
maze environment. Therefore, the higher level network has
to encode multiple sequence patterns, which have to be
retrieved for the specified goal.
 We utilize the initial sensitivity characteristics of
nonlinear dynamic systems in order to initiate different
sequences. When the robot is placed at the initial position
in the environment, the internal values of all the higher level
neurons are set to 0.0, except for two neurons called the task
neurons (Figure 1b). The initial values of the task neurons
are set corresponding to the specified goal positions. These
goal-specific initial task neuron activities were evolved
through the same genetic algorithm that yielded the
network’s synaptic weights.
 We assume that an appropriate sequence pattern that
enables the robot to navigate to the kth goal can be generated
by setting adequate initial activities (kγ) for the task
neurons when the higher level internal connective weights
(Wh) are adequately generated through evolution. This idea
of utilizing the initial sensitivity of the network dynamics is
similar to the studies of Nishimoto & Tani (2003) and
Blynel (2003). Further, Tanji & Shima (1994) showed in
the monkey that the pre-Supplementary Motor Area
neuronal activities during the motor preparation period
might encode abstract behavior sequences through the initial
state values of the network dynamics. Nishimoto & Tani
(2003) showed that a Recurrent Neural Network (RNN)
learns to generate various action sequences by setting
different initial context unit activities using the back-
propagation learning method. Blynel (2003) found that goal
positions can be “remembered” through the activations of
hidden neurons in a reinforcement learning task when
Genetic Algorithm evolution is applied to a single level
CTRNN.
 Evolution of the two-level network used here goes
through two phases. In the first phase (Experiment 1), the
network shown in Figure 1a evolves to perform collision-
free left and right turns in a T maze environment. Both the
lower level internal synaptic weights (Wl) and the control
neuron interface synaptic weights (Wc) are evolved while
adequate activation values of the control neurons are
determined for the left and right turns. At this stage, there is
no higher level network with task neurons. Instead, the
neuronal activation bias (θ , Equation 2) of the two control
neurons is free to evolve differently for the left and right
tasks. The synaptic weights are identical for the two turn
directions.
 In the second phase (Experiment 2), the evolved lower
level network is extended by adding and evolving the higher
level network (Figure 1b). The task of the robot is to find
ways to reach multiple goals from the same starting
position. In this phase, only the higher level internal
connective weights (Wh) and goal-specific task neuron
initial activities (0γ) are evolved. The bottom level internal
weights and control neuron interface synaptic weights (Wc)
are kept constant from the first phase’s T maze task. Thus,

collision free left or right turning does not need to be re-
evolved. Instead, the second learning phase focuses solely
on goal finding through the appropriate turn sequence
generation.

2.2 Continuous-Time Recurrent Neural
Networks

All neurons in the simulations presented here used the
following equations and parameters for a CTRNN, based on
those of Blynel & Floreano (2002). In Equation 1, iγ is the
internal activation state (cell potential) of the ith neuron. τ
is the time constant of the neuron. It affects the rate of
neuronal activation in response to the kth external sensory
neuronal activation, Ik, and signals from the jth presynaptic
neuron with activity Aj. The signal from the presynaptic
neuron is weighted by weights wij, and the sensory input is
weighted by wik. N is the number of neurons in the network,
and S is the number of sensory receptors which send input
signals to the network.

)(1
11
∑∑
==

++−=
S

k
kik

N

j
jiji

i

i IwAw
dt
d γ

τ
γ

 (1)

The presynaptic neuronal activity (Aj) is defined in
Equations 2 and 3. θ is a bias term and σ is the standard
logistic function, defined in Equation 3.

)(jjjA θγσ −= (2)

)1/(1)(xex −+=σ (3)
Numerical integration was carried out using the Forward
Euler method. The update rule of the neuronal activation
state iγ for each integration time step is given by Equation

4. n is the iteration step number and is the time step
interval, defined as 0.2.

t∆

=+)1(niγ

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
++−

∆
+ ∑∑

==

S

k
kik

N

j
jiji

i
i IwnAwntn

11
)()()(γ

τ
γ (4)

Except for the previously mentioned task neurons, whose
initial activation is dependent on the movement goal, the
neuronal activation, iγ , is initialized to 0 at the start of

integration, 0)0(=iγ .

2.3 Genetic Encoding

The following parameters are genetically encoded within the
following ranges. τ is the time constant (Equation 1). θ
is the activation bias (Equation 2). w is the synaptic weight,

and)0(taskγ is the initial activation of the task-dependent
neurons of the higher level network.

]70,1[∈τ ;]1,1[−∈θ ; ;]5,5[−∈w]10,10[)0(−∈taskγ

 Each parameter is encoded using 5 bits and the following
encoding rule to generate analog parameter values. Thus,
each parameter value is generated by a linear scaling of the
analog value within a given range to the range of 0 to 31 in
binary code. The encoded parameter value (Pe) from the 5
bit string is given in Equation 5. The analog parameter
value (Pa) is given by Equation 6 for an analog parameter
value in the range . max][min,∈aP

∑
=

−⋅=
5

1

52
i

i
ie bitP (5)

12
min)(maxmin 5 −

−⋅
+= e

a
PP (6)

 In the T maze experiment, the network consists of eight
inputs, five bottom level units, and two control neurons, for
a total of 515 bits encoding τ , θ , and w. In the Eight-
Goal-Maze experiment, the network is as above, except that
it also includes 4 higher level neurons. The task neurons’
initial activity ()0(taskγ) is also encoded, yielding a
genome length of 715 bits.

2.4 Genetic Algorithm

A standard genetic algorithm (GA) with mutation but
without crossover was employed to evolve the weights and
parameters (τ , θ , w,)0(taskγ) of the network (Mitchell,
1998; Goldberg, 2002). The mutation rate per bit was set at
2% for all simulations reported here. (Higher mutation rates
of up to 10% were tried, but the fitness of the resulting
populations became progressively more unstable without
improvements in the best robot performance). The
population consisted of 80 robots. The twenty robots with
the best fitness reproduced each generation. Each of the
reproducing robots made 4 copies of itself with mutation.
Of the best robot’s offspring, one was an exact copy of the
parent without mutation. Simulations were generally run
for 50 to 200 generations, and the performance of the best
robots was analyzed.

2.5 Network Architecture

In Experiment 1, the network depicted in Figure 1a consists
of 8 sensory inputs, scaled to a range of 0 to 1, which are
sent to the bottom level of 5 neurons. The bottom network
receives from and sends signals to the two control neurons.
In Experiment 2, the control neurons are further connected
to the higher level of 4 neurons (Figure 1b). Two of the

higher level neurons are the “task neurons”, whose initial
activities determine the particular turn sequence which will
be generated to reach a goal.
 The outputs of the first two bottom level neurons are
taken as motor command signals to the simulated robot
wheels. The actual neuronal outputs are analog signals,
but the robot controller can use only integer speed
commands. The analog signals are therefore rounded to the
nearest integer. The simulated wheel speed is in the range
of 0 to 4, corresponding to speeds of 0 to 0.32cm per
second. Note that the wheels are allowed to turn only in a
forward direction in these experiments for simplicity.

2.6 Experimental Setup

All experiments reported here were executed using a
simulated Khepera II robot in the Webots 3 robot simulator.
Simulations were run on a Plathome computer with a 2.0
GHz processor. Simulations ran at about 40 times real
Khepera speed. Data were analyzed using Matlab Release
13.
 Inputs to the neural network consisted of the signals from
seven infra-red proximity sensors (2 left, 2 front, 2 right,
and 1 rear) and one downward facing ground sensor
(illustrated by rays protruding from robot in Figure 2). The
input was modified by randomly adding or subtracting 5%
of its value as noise. All sensor inputs to the network were
scaled to a range of 0 to 1. In all experiments, the robot was
repositioned to the starting point and the trial was ended if
the robot either collided with a wall or reached a goal area.
Goal areas were defined by differently colored floors. The
floor sensor was used by the controller to detect when the
robot found a goal, triggering the appropriate fitness reward,
ending of the trial, and repositioning of the robot.

3. Experiments

3.1 Experiment 1: T-Maze Task

Experiment 1 is designed to evolve a bottom level network
which contains movement primitives of left and right
turning behavior at intersections as well as collision-free
straight movement in corridors. The same lower level and
control neuron weights are used for both right and left turns.
The only difference between the left and right turn
controllers is in the bias values (θ) of the two control
neurons. Intuitively, this might correspond to different sets
of cortical “control” neurons becoming associated with each
of the lower level movement primitives. Parallel
connections from the bottom level to the control neurons
might develop, yielding the same weights to both sets of
control neurons. Intrinsic differences in the control
neurons’ responses (as through the different θ bias values
used here) to the lower level signals would determine with

which motor primitives each set of control neurons became
associated.
 The evolutionary runs consisted of up to 200 generations
with 2 epochs and 3 trials per robot of the 80 robot
population. Each trial was run for 500 time steps, starting at
the same position at the bottom of the T maze. Different
bias values (θ) evolved in the control nodes for the left and
right turning tasks in epochs 1 and 2, respectively. All other
parameters were identical in the left and right turning tasks.
In epoch 1, fitness was awarded to robots that turned to the
left at the intersection based on the following fitness rule.
In epoch 2, fitness was awarded to robots that turned to the
right. Each robot ran 3 trials per epoch.
 Experiment 1 uses a two-component fitness rule
(Equation 7). The first component (FOA) consists of a
reward for straight, fast movements with obstacle
avoidance. The fitness rule of Floreano & Mondada (1994)
was adopted for this purpose and is shown in Equation 8. V
is the wheel speed scaled to a range of 0 to 1. V is the
average speed of the two wheels. is the absolute value
of the difference in speeds between the two wheels, and is
used to reward straight movements. S

V∆

max is the maximum
robot sensor value, scaled to a range of 0 to 1, and is used to
reward obstacle avoidance.

goalOA FFF += (7)

)1()1(maxSVVFOA −⋅∆−⋅= (8)

 The second component of the fitness rule, Fgoal, rewards
the robot for finding a goal. The goal is located to the left
of the intersection for epoch 1, and to the right for epoch 2.
The robot is linearly rewarded, based on its position, for
approaching and reaching the goal. Greater reward per time
step is received linearly as the robot approaches the goal,
starting at the middle of the top of the T maze.
 At the start of each trial, the robot was placed at the same
starting position at the bottom of the T maze. Three
different starting orientations (facing 135o, 90o, and 45o; that
is, left, straight, and right, respectively) were employed, one
for each of the three trials per epoch. Further, motor noise
was added to the wheel speed commands sent to the robot.
The integer speed command was increased or decreased by
one with a probability of 20% on each simulation time step.
The varying starting orientations and motor noise were used
to ensure that the robot would experience wall collisions
early during evolution, so that controllers with obstacle
avoidance would be more likely to evolve. Both the bottom
level and control neurons were free to evolve in this
experiment.

3.2 Experiment 2: Eight-Goal Task

The Eight-Goal maze depicted in Figure 2 is a combination
of T maze-like environments with eight different goals at
the ends of each T maze component. Thus, combinations of

the same turn primitives evolved in experiment 1 should
allow the robot to reach the different goals. In experiment
1, different sets of control neurons with differing internal
dynamics (due to differing θ bias values) became
associated with particular motor primitives, as will be
described later. In experiment 2, it is shown how the
activity of a single set of control neurons can be modulated
over time to generate a sequence of motor primitives.
Further, it is shown how varying only the initial activation
of the task neurons in the higher level network can lead to
the generation of different network activation time courses
by which multiple primitive sequences are generated. Thus,
the routes to multiple goals can effectively be stored in a
single network, with a single set of synaptic weights and
corresponding initial activation values of the task neurons.
 The bottom level genome, including the weights for the
connections to the control neurons, from experiment 1 was
used in this experiment and held constant. Only a single set
of synaptic weights and parameters in the higher level
network, and multiple sets of the initial task neuron
activities, were free to evolve. The experiment consisted of
up to 200 generations, with 12 epochs per generation and 2
trials per epoch. Each of the 12 epochs evaluated a different
set of higher level task neuron initial activities, using the
fitness rule described below. Further, each task neuron set
was run for two trials, in order to evaluate the stability of
the robot’s goal-finding ability. Robots which found
multiple goals repeatedly were rewarded more than those
which found them only intermittently. Further, robots
which found some stable goals tended to be rewarded more

Figure 2: Eight-Goal Maze environment, showing trajectory for a
Left, Right, Right sequence. G= Goal location. Turns occur at
steps 200 and 500 in the neuronal activity traces for this sequence
in Figure 4.

than robots that found more goals haphazardly. As in
experiment 1, a trial was ended when the robot either found
a goal or collided with a wall. The robot was then
repositioned to the same starting point. Since the bottom
level genome from experiment 1 was used here, obstacle
avoidance and turn primitives were present in the first
generation. Therefore, only one starting orientation was

used (90o, i.e., straight up) and no motor noise was added to
the speed commands sent to the robot wheels (but sensor
noise was still present).
 In experiment 2, the fitness rule (F) consists solely of a
reward for finding goals consistently (Equation 9).

)(max
1

2

1:1∑ ∑
= =

=
=

Ngoals

g trial
giNtasksi

RF (9)

Here, a fixed reward (R) per new goal (g) found is given to
the robot. In experiment 2, Ngoals = 8, and Ntasks = 12.
 Each robot has 12 sets of task neuron initial activities (i)
which are evaluated. Each set has two trials in which to
find a goal. A robot which finds a goal on both trials
receives twice the reward of finding the goal on only one
trial. If a different set of task neuron initial activities leads
to the same goal, then the reward is the maximum of the
reward given to the two different task neuron sets. Thus, a
robot with multiple task neuron sets that find a goal on only
one of the two trials will receive less reward than a robot
with one task neuron set that finds the goal on both trials.

4. Results/Analysis
4.1 Experiment 1: T-Maze Task

Collision avoidance and left and right turning behavior
emerged within 63 generations. Left turns were generated
for one set of control neuron bias values, and right turns
were generated for another set. Although both left and right
turns could be generated, the robot exhibited oscillatory
movements after collision avoidance. That is, it turned
away from one wall too much and headed towards the
opposite wall instead of straightening its path through the
lower part of the T maze. (As mentioned previously, the
robot started from three different orientations, leftward,
straight up, and rightward, requiring it to avoid wall
collisions early during each trial.) The controller was
therefore allowed to evolve further. By generation 189,
fewer fluctuations occurred after collision avoidance and the
lower level genome was used for experiment 2.
 Control neuron 0 appears to be critical in determining
whether a left or right turn is generated. Turns occur at
approximately time step 200, at which time the control
neuron activity is 0.2 for the left turn and 0.6 for the right
turn. The relation between turn behavior and the activities
of control neurons 0 and 1 is further quantified in the phase
plot of Figure 3. 441 trials with different sets of the two
control neurons’ activities, held constant for each trial,
(A=[0:1], step size = 0.05) were run and the resulting turn
directions recorded. Note that this figure also applies to the
activity of the control neurons evolved in experiment 2,
since the same bottom level genome, including the synaptic
weights between the bottom level and control neurons, was
used in both experiments 1 and 2. The turn phase plot of
Figure 3 shows a clear bifurcation, or appearance of new
movement behavior with the control neuron activity change,

with two distinct regions of stability for left (black) and
right (white) turns, for the corresponding combinations of
control neuron 0 and neuron 1 activities. The gray squares
indicate unstable regions in which wall collisions occur. In
both experiments 1 and 2, the evolved control neuron
weights tend to suppress the activity of control neuron 1.
The phase plot shows that the smallest region of instability
between left and right turns occurs for such small control
neuron 1 activities. Further, the weights from control
neuron 0 to the two motor output nodes (wjk= 5.0, -3.4) of
the bottom level have a greater magnitude than the weights

Figure 3: Phase analysis of turn direction as a function of control
neuron activation. X and Y axes: neuronal activities of control
neurons 1 and 0, respectively. Black = Left turn, White = Right
turn, Grey = Collision with wall.

from control neuron 1 (wjk=-1.1, 2.0). Thus, control neuron
0 has the dominant effect on the turn direction of the lower
level’s output neurons. It therefore appears that the lower
level, which receives and processes all sensory inputs, has a
dominant role in collision avoidance. Collision avoidance
competes with the control neurons’ “turn” signals. In the
unstable regions of the phase plot (grey in Figure 3), the
control neurons’ “turn” commands inappropriately override
the lower level’s collision avoidance, triggering collisions
when the robot turns toward and collides with a wall.

4.2 Experiment 2: Eight-Goal Task

The best robot became able to reach up to 7 different goals
stably within 24 generations by evolving the higher level
network and control neurons. The turn sequence for each
goal was determined by a particular set of initial task neuron
activities ()0(taskγ). Since 12 different sets of)0(taskγ
were evaluated per robot, multiple sets would sometimes
lead to the same goal. Each)0(taskγ set was evaluated for

the stability of its goal. Some values of)0(taskγ led to
repeatable goal-finding performance, while others were

0 100 200 300 400 500 600 700 800 900

0

0.2

0.4

0.6

0.8

1

Integration Step vs. Output Node Activity

Integration Step

O
ut

pu
t N

od
e

A
ct

iv
ity

Left Wheel
Right Wheel

0 100 200 300 400 500 600 700 800 900

0

0.2

0.4

0.6

0.8

1

Integration Step vs. Top Node Activity

Integration Step

T
op

 N
od

e
A

ct
iv

ity

Control node 0
Control node 1
Initial node 4
Initial node 5

0 100 200 300 400 500 600 700 800 900
0

0.2

0.4

0.6

0.8

1

Integration Step vs. Sensor Input

Integration Step

S
en

so
r

A
ct

iv
at

io
n Left Sensor

Right Sensor

Figure 4: Left-Right-Right turn sequence. Top: Neuronal activity
of control and task (initial node) neurons; Middle: Lower level
motor output node activity; Bottom: Left and right sensor
activities.

unstable, leading to different goals on different trials, or
even to wall collision. Although evolution led to controllers
which could find all 8 goals, the best controller could only
find 7 goals stably. The definition of stability used here is
reaching a particular goal, with the corresponding evolved

)0(taskγ values, on at least 70% of trials.

 Different)0(taskγ activities led to differently
fluctuating patterns in the control neuron activities (Figure
4). As in the results of experiment 1 reported above, control
neuron 0 had the greatest influence on turn direction, and
exhibited the greatest fluctuations during various turn
sequences. Left turns were generated when its activity was
below a threshold of approximately 0.35, and right turns
were generated when the activity was above the threshold.
The activity of control neuron 1 tended to be suppressed,
leading to a smaller region of instability at the transition
from left to right turns in the phase plot of Figure 3. Figures
2 and 4 show the trajectory and neuronal activities,
respectively, for a left-right-right turn sequence. The results
shown here are for a controller which learned to reach six
goals stably in 25 generations. They show large amplitude
fluctuations of the control neurons due to a small evolved
value of the time constant τ in Equation 1.

Figure 5: (a) Phase analysis of three-turn sequence generation as a
function of task neuron initial activity,)0(taskγ . X and Y axes:
Initial activities of task neurons 1 and 0, respectively. Plotted
numbers correspond to sequences (L=Left, R=Right) as in Table 1.

 The amplitude of the control neurons’ fluctuations is also
significant because larger amplitude fluctuations may render
the controller more robust to noise. Although 5% sensor
noise was used throughout these experiments, motor noise
(increasing or decreasing the wheel speed command by 1
unit with 20% probability) was used only in experiment 1 in
order to facilitate the development of obstacle avoidance.
Motor noise was also tested during separate evolutionary
runs in experiment 2, and found to decrease the number of
stable goals found from a maximum of 7 (without motor
noise) to 5 (with motor noise). Note that the total number of
goals found was eight, with or without motor noise. Thus,
additional noise added to the wheel motor commands
increases the instability of the turn sequences.
 Goal instability was most often seen in the final turn
direction of the three-turn sequences learned. This final turn
instability can be appreciated by noting that the control
neuron activity tends to hover around the turn threshold near
the end of the trial. As seen in the phase plot of Figure 3,
this region is unstable.
 Figure 5 shows an analysis of the movement sequences
generated for the range of task neuron initial activities,

]10,10[)0(−∈taskγ , in the evolved controller of
experiment 2. 441 sets of initial task neuron activities were
tested and the resulting turn sequences recorded. The
numbers in the figure correspond to movement sequences as
labeled in the figure, e.g., LRL for left, right, and left turns.
The sequence patterns self-organize into well-defined,
topologically ordered clusters in the)0(taskγ space. First,

the)0(taskγ space is grossly clustered based on the first
turn direction, left or right, of the movement sequence, as
shown by a thick solid line in Figure 5. Each of these two
clusters is then further divided into sub-clusters, depending

LLR LRR

RRL

RRR

LRL

RLL LLL

SEQUENCE BINARY
CODE

INTEGER
VALUE

LLL 000 0
LLR 001 1
LRL 010 2
LRR 011 3
RLL 100 4
RLR 101 5
RRL 110 6
RRR 111 7
Collision --- 9

Table 1: Movement Sequence representation used in Figure 5.
L=Left Turn; R=Right Turn; 0=Left Turn; 1=Right Turn.

on the second turn direction of the movement sequence, as
shown by a solid line. These sub-clusters are still further
divided into smaller clusters, depending on the third turn as
shown by the dashed lines.
 Thus, turn sequences are hierarchically ordered into
progressively smaller regions of the initial task neuron
activity space, as additional turns are added. In other
words, as the complexity of the movement sequence
increases, so too does the initial sensitivity to the task
neuron activities.
 This mapping of initial task neuron activity to particular
sequences is an emergent property of the evolved controller.
Different evolutionary runs yield different cluster patterns,
but the general trend of distinct, topologically ordered
sequence regions remains. This self-organized,
topologically ordered mapping of sequences, with
increasing initial sensitivity to task node activities as
movement sequence complexity increases, is notable in such
a small network, and is reminiscent of the fractal
distribution of sequences mapped in the parameter space of
Nishimoto & Tani (2003). Indeed, it would be interesting to
see if fractal structure could be found in controllers
branching out to larger numbers of goals.

5. Discussion/Conclusion

The work presented here describes a novel hierarchical
model of behavioral sequence memory and generation. It
recalls in general terms the hierarchical organization of
movements in the primate spinal cord, brainstem, and
cortical regions. Different types of dynamic structures self-
organize in the lower and higher levels of the network. A
parametric bifurcation in the control neurons’ interaction
with the lower level allows top-down behavioral switching
of the primitives embedded in the lower level. Utilizing the
initial sensitivity characteristics of nonlinear dynamic
systems (Fan et al., 1996), a topologically ordered mapping
of initial task neuron activity to particular behavior
sequences self-organizes throughout the development of the
network. The interplay of task-specific top-down and

bottom-up processes allows the execution of complex
navigation tasks.
 One unique feature of the current model is the
hierarchical organization of the network and its training.
The bottom level network represents movement primitives,
such as collision avoidance and turning at intersections.
Since it must directly deal with quickly changing
environmental stimuli, its time constants have become small
through adaptation so that the neuronal activity of the output
neurons (τ 0 = 1, τ 1 = 1 in Equation 1) can change rapidly
to drive the robot’s movement in real time. In contrast, the
higher level represents sequences of the lower level
primitives over longer time spans. Accordingly, the task
neuron time constants have adapted to be large (τ task0 = 70,
τ task1 = 52 in Equation 1) so that neuronal activity changes
much more gradually and is less affected by short-term
sensory changes.
 The neurons of the higher level receive no direct sensory
inputs, but are gradually influenced by them through the
control neurons, which are fully connected to the input-
receiving bottom level. This system is reminiscent of the
organization of sequence generation in primates, as is
elucidated by the studies of Tanji & Shima (1994) and
Ninokura et al. (2003). In the former study, cellular activity
in monkeys’ supplementary motor area (SMA) was found to
be selective for the sequential order of forthcoming
movements, much as the task neurons’ initial activities
determine future movement order in the current model. In
the latter study, distinct groups of cells in the lateral
prefrontal cortices (LPFC) of monkeys were found to
integrate the physical and temporal properties of
sequentially reached objects, in a manner analogous to
integration of higher level sequential information and lower
level sensory input by the control neurons in the present
model.
 Although other models of sequence generation have been
trained in a modular fashion because it was felt necessary to
achieve the task (Yamauchi & Beer, 1994), the current work
begins by explicitly evolving simple movement primitives,
such as straight movements, collision avoidance, and
turning at corners. The next level of the hierarchy
subsequently develops to utilize the lower level primitives
in complex movement sequences. One can envision further
levels of complexity, with higher levels representing
sequences of sequences for different sets of tasks, in a
manner analogous to the “chunking” phenomenon observed
in human memory of data sequences (Sakai et al., 2003).
The beauty of this system is that the synaptic connections
need not grow without bound as the number and complexity
of sequences increases. As shown here, a single network
can represent multiple complex movements through
modulation of the activities of a small number of “task”
neurons.
 One may argue that hierarchical structure has been
imposed on our system, and that no such structure is
absolutely needed to complete the task. Indeed, Tucci et al.
(2002) showed that the sequence generation task, which

Yamauchi & Beer (1994) felt required a modular approach,
could indeed be generated with a single, non-modular,
network. Further, Siegelmann & Sonntag (1995) showed
that first and higher order recursive networks are
computationally equivalent. However, the theoretical
possibility that one giant first order network can carry out
the same tasks as modular, hierarchically structured systems
implies nothing about the relative ease with which either
system can be generated artificially or biologically.
 Although the initial sensitivity of the movement
sequences generated to task neuron activations was an
emergent feature of the system found by self-organization of
network parameters through a genetic algorithm, the model
architecture was predetermined, and the details of the
network training influenced the specific functions that were
assumed by different components of the architecture. Given
that the current network architecture is loosely based upon
the primate motor system’s hierarchical design, one might
expect it to perform better than a less biologically plausible
giant first-order network that encompasses both simple
movement primitives as well as their combination into
complex sequences. This assumption will be tested in
future work.
 One may further question the need for hierarchical
training of the current architecture. Given that humans
show a clear progression of movement learning, from
simple to complex movement patterns as they develop
(Needlman, 2003), one might assume that there is an
advantage, either in learning rate or the final skill level
attained, to such an incremental, hierarchical learning
organization.
 Future work will test whether such complex movements
can be learned “from scratch”, without an externally
imposed succession of increasingly difficult tasks. Further,
it will be of great interest to see whether a similarly intricate
dynamic structure self-organizes in the task-dependent
neuronal activity of a network without such hierarchical
movement learning.

Acknowledgments

 The authors wish to thank Dario Floreano and Jesper
Blynel, at EPFL in Switzerland, for their help and
hospitality during the early stages of this work. Thanks are
also due to Miki Sagara for her organizational skills and
help in the preparation of this manuscript. This work would
also not have been possible without the technical assistance
of Yuuya Sugita and Ryunosuke Nishimoto.

References

Aharonov-Barki, R., Beker, T., Ruppin, E. (1999)
Spontaneous Evolution of Command Neurons, Place Cells
and Memory Mechanisms in Autonomous Agents
In: Advances in Artificial Life, ECAL ’99, vol. 1674,
Lecture Notes in Artificial Intelligence, Springer Verlag.

Amit, R., Mataric, M. J. (2002)
Parametric Primitives for Motor Representation and Control
Int. Conf. on Robotics and Automation (ICRA), Washington
DC, May 11-15, 2002.

Arbib, M. A. (1981)
Perceptual structures and distributed motor control
In: Brooks, V. B. (Ed.), Handbook of Physiology, Section 2:
The Nervous System (Vol. II, Motor Control, Part 1), pp.
1449-1480, American Physiological Society.

Blynel, J. (2003)
Evolving Reinforcement Learning-Like Abilities for Robots
In: Tyrrell, A, Haddow, P.C., and Torresen, J (Eds.),
Evolvable Systems: From Biology to Hardware: 5th
International Conference, ICES 2003.

Blynel, J., Floreano, D. (2002)
Levels of dynamics and adaptive behavior in evolutionary
neural controllers
In: Hallam, B., Floreano, D., Hallam, J., Hayes, G., Meyer,
J.A. (Eds.), From Animals to Animats 7: Proceedings of the
Seventh International Conference on Simulation of Adaptive
Behavior. MIT Press, Bradford Books, Cambridge, MA.

Edwards, D. H., Heitler, W. J., Krasne, F. B. (1999)
Fifty years of a command neuron: the neurobiology of
escape behavior in the crayfish
Trends in Neurosciences, 22(4), 153-161.

Fan, J., Yao, Q., Tong, H. (1996)
Estimation of Densities and Sensitivity Measures in
Nonlinear Dynamical Systems
Biometrika, 83, 1, 189-206.

Floreano, D., Mondada, F. (1994)
Automatic creation of an autonomous agent: genetic
evolution of a neural-network driven robot
In: Cliff, D., Husbands, P., Meyer, J., Wilson, S.W. (Eds.),
From Animals to Animats 3: Proceedings of the Third
Conference on Simulation of Adaptive Behavior. MIT Press,
Bradford Books, Cambridge, MA.

Giszter, S. F., Mussa-Ivaldi, F. A., Bizzi, E. (1993)
Convergent force fields organized in the frog’s spinal cord
Journal of Neuroscience, 13(2): 467-491.

Goldberg, D.E. (2002)
The Design of Innovation: Lessons from and for Competent
Genetic Algorithms
Kluwer Academic Publishers, Boston, MA.

Hochreiter, S., Schmidhuber, J. (1997)
Long short-term memory
Neural Computation, 9(8), 1735-1780

Jacobs, R., Jordan, M., Nowlan, S., Hinton, G. (1991)

Adaptive mixtures of local experts
Neural Computation, 3(1), 79-87.

Jordan, M., Jacobs, R. (1994)
Hierarchical mixtures of experts and the EM algorithm
Neural Computation, 6(2), 181-214.

Kawato, M., Furukawa, K., Suzuki, R. (1987)
A hierarchical neural network model for the control and
learning of voluntary movement
Biological Cybernetics, 57, 169-185.

Mataric, M. J. (2002)
Sensory-motor primitives as a basis for imitation: Linking
perception to action and biology to robotics
In: Dautenhahn, K., Nehaniv, C. L. (Eds.), Imitation in
Animals and Artifacts, pp. 391-422, MIT Press.

McGovern, A., Barto, A. G. (2001)
Accelerating Reinforcement Learning through the
Discovery of Useful Subgoals
Proceedings of the 6th International Symposium on Artificial
Intelligence, Robotics, and Automation in Space: i-SAIRAS
2001

McGovern, A., Sutton, R. S., Fagg, A. H. (1997)
Roles of macro-actions in accelerating reinforcement
learning
Proceedings of the 1997 Grace Hopper Celebration of
Women in Computing, 13-18.

Mitchell, M. (1998)
An Introduction to Genetic Algorithms
MIT Press, Cambridge, MA.

Mussa-Ivaldi, F. A., Giszter, S. F., Bizzi, E. (1994)
Linear combination of primitives in vertebrate motor control
Proceedings of the National Academy of Sciences, USA, 91:
7535-7538.

Needlman, R.D. (2003)
Growth and Development
In: Behrman, R. E., Kliegman, R. M., Jenson, H. B. (Eds.)
Nelson Textbook of Pediatrics, 17th Ed., Part II, Chapter 10,
p. 33. W. B. Saunders Publishing

Ninokura, Y., Mushiake, H., Tanji, J. (2003)
Integration of Temporal Order and Object Information in
the Monkey Lateral Prefrontal Cortex
Journal of Neurophysiology, 10, 1152.

Nishimoto, R., Tani, J. (2003).
Learning to Generate Combinatorial Action Sequences
Utilizing the Initial Sensitivity of Deterministic Dynamical
Systems

Proc. of the 7th International Work-Conference on Artificial
and Natural Neural Networks (IWANN’03). Springer, pp.
422-429.

Nolfi, S., Floreano, D. (2000)
Evolutionary Robotics: The Biology, Intelligence, and
Technology of Self-Organizing Machines
MIT Press, Bradford Books, Cambridge, MA.

Sakai, K., Kitaguchi, K., Hikosaka, O. (2003)
Chunking during human visuomotor sequence learning
Experimental Brain Research, 152(2), 229-242.

Schaal, S. (1999)
Is imitation learning the route to humanoid robots?
Trends in Cognitive Sciences, 3, 233-242.

Siegelmann, H.T., Sontag, E.D.(1995)
On the computational power of neural nets
Journal of Computer and System Sciences, 50(1), 132-150.

Tani, J. (2003)
Learning to generate articulated behavior through the
bottom-up and the top-down interaction processes
Neural Networks, 16, 1, 11-23.

Tani, J., Nolfi, S. (1999)
Learning to perceive the world as articulated: An approach
for hierarchical learning in sensory-motor systems
Neural Networks, 12: 1131-1141

Tanji, J., Shima, K. (1994)
Role for supplementary motor area cells in planning several
movements ahead
Nature, 371, 413-416.

Teyke, T., Weiss, K. R., Kupfermann, I. (1990)
An identified neuron (CPR) evokes neuronal responses
reflecting food arousal in Aplysia
Science, 247, 85-87.

Thoroughman, K. A., Shadmehr, R. (2000)
Learning of action through combination of motor primitives
Nature, 407, 742-747

Tucci, E., Quinn, M., Harvey, I. (2002)
An Evolutionary Ecological Approach to the Study of
Learning Behavior Using a Robot-Based Model
Adaptive Behavior, 10(3/4), 201-222.

Yamauchi, B., Beer, R.D. (1994)
Sequential behavior and learning in evolved dynamical
neural networks
Adaptive Behavior, 2(3), 219-246.

	An Introduction to Genetic Algorithms

