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Preface

Il ne suffit pas d’observer, il faut se servir de ses observations, et pour cela il faut
généraliser. [. . . ] Le savant doit ordonner; on fait la science avec des faits comme
une maison avec des pierres; mais une accumulation de faits n’est pas plus une
science qu’un tas de pierres n’est une maison.1

Henri Poincaré (1902) La science et l’hypothèse

Theoretical formulations of applied seismology are substantiated by observable phenomena. Recipro-

cally, our perception and understanding of these phenomena necessitate rigorous descriptions of physical

behaviours. As stated by Bunge in his book on “Philosophy of Science, Vol. I: From problem to theory”,

A nice illustration of the intertwining of empirical and theoretical events in the actual

practice of science is offered by seismology, the study of elastic disturbances of Terra.

[...] In conclusion, in order to “read” a seismogram so that it may become a set of data

regarding an event (e.g., an earthquake) or an evidence relevant to a theory (e.g., about

the inner structure of our planet), the seismologist employs elasticity theory and all the

theories that may enter the design and interpretation of the seismograph.

The present book emphasizes the interdependence of mathematical formulation and physical meaning in

the description of seismic phenomena. Herein, we use aspects of continuum mechanics, wave theory and

ray theory to explain phenomena resulting from the propagation of seismic waves.

The book is divided into three main parts: Elastic continua, Waves and rays and Variational formulation

of rays. There is also a fourth part, which consists of Appendices. In Part 1, we use continuum mechanics

to describe the material through which seismic waves propagate, and to formulate a system of equations

to study the behaviour of such a material. In Part 2, we use these equations to identify the types of body

1

It is not enough to observe. One must use these observations, and for this purpose one must generalize. [...]
The scientist must organize [knowledge]; science is composed of facts as a house is composed of bricks; but
an accumulation of facts is no more a science than a pile of bricks is a house.

To emphasize this statement of Poincaré, let us also consider the following quotation.
As the biggest library if it is in disorder is not as useful as a small but well-arranged one, so you may
accumulate a vast amount of knowledge but it will be of far less value to you than a much smaller amount if
you have not thought it over for yourself; because only through ordering what you know by comparing every
truth with every other truth can you take complete possession of your knowledge and get it into your power.

Arthur Schopenhauer (1851) Parerga and Paralipomena, Volume 2

xxi



xxii PREFACE

waves propagating in elastic continua as well as to express their velocities and displacements in terms of

the properties of these continua. To solve the equations of motion in anisotropic inhomogeneous continua,

we use the high-frequency approximation and, hence, establish the concept of a ray. In Part 3, we show

that, in elastic continua, a ray is tantamount to a trajectory along which a seismic signal propagates in

accordance with the variational principle of stationary traveltime. Consequently, many seismic problems

in elastic continua can be conveniently formulated and solved using the calculus of variations. In Part IV,

we describe two mathematical concepts that are used in the book; namely, homogeneity of a function and

Legendre’s transformation. This part also contains a List of symbols.

The book contains an Index that focuses on technical terms. The purpose of this index is to contribute

to the coherence of the book and to facilitate its use as a study manual and a reference text. Numerous

terms are grouped to indicate the relations among their meanings and nomenclatures. Some references to

selected pages are marked in bold font. These pages contain a defining statement of a given term.

This book is intended for senior undergraduate and graduate students as well as scientists interested in

quantitative seismology. We assume that the reader is familiar with linear algebra, differential and inte-

gral calculus, vector calculus, tensor analysis, as well as ordinary and partial differential equations. The

chapters of this book are intended to be studied in sequence. In that manner, the entire book can be used

as a manual for a single course. If the variational formulation of ray theory is not to be included in such a

course, the entire Part 3 can be omitted.

Each part begins with an Introduction, which situates the topics discussed therein in the overall context of

the book as well as in a broader scientific context. Each chapter begins with Preliminary remarks, which

state the motivation for the specific concepts discussed therein, outline the structure of the chapter and

provide links to other chapters in the book. Each chapter ends with Closing remarks, which specify the

limitations of the concepts discussed and direct the reader to related chapters. Each chapter is followed by

Exercises and their solutions. While some exercises extend the topics covered, others are referred to in the

main text. Reciprocally, the footnotes attached to these latter exercises refer the reader to the sections in

the main text, where a given exercise is mentioned. Often, the exercises referred to in the main text supply

steps that are omitted from the exposition in the text. Also, throughout the book, footnotes refer the reader

to specific sources included in the Bibliography.

“Seismic waves and rays in elastic media” strives to respect the scientific spirit of Rudzki, described in the

following statement2 of Marian Smoluchowski, Rudzki’s colleague and friend.

Tematyka geofizyczna musiała nȩcić Rudzkiego, tak wielkiego, fantastycznego miłośnika

przyrody, z drugiej zaś strony ta właśnie nauka odpowiadała najwybitniejszej właściwości

umysłu Rudzkiego, jego da̧żeniu do matematycznej ścisłości w rozumowaniu.3

2Smoluchowski, M., (1916) Maurycy Rudzki jako geofizyk / Maurycy Rudzki as a geophysicist: Kosmos, 41, 105 – 119
3
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The subject of geophysics must have attracted Rudzki, a great lover of nature. Also, this very science accom-
modated the most outstanding quality of Rudzki’s mind, his striving for mathematical rigour in reasoning.





Changes to this edition

Mathematics gives to science the power of abstraction and generalization, and

a symbolism that says what it has to say with the greatest possible clarity and

economy.

John Lighton Synge and Byron A. Griffith (1949) Principles of mechanics

The conviction expressed by the above quote has inspired both the first and second editions of this book.

Significant additions and modifications have been made to this second edition. These changes came about

as a result of teaching from this text, readers’ enquiries, and research into concepts discussed in the first

edition. Summary of these changes and the purpose for their inclusion are given below.

Part 1:

Chapter 1: To familiarize the reader with the fundamentals that underly the seismic theory, we introduce

in Section 1.2 the three rudimentary concepts of continuum mechanics, namely, material body, manifold

of experience and system of forces.

Chapter 2: To deepen the reader’s understanding of the arguments used to formulate the balance principles

of continuum mechanics, we include in Sections 2.4 and 2.7, the particle-mechanics motivation of the bal-

ance of linear momentum and the balance of angular momentum, respectively. To make the reader aware

of possible extensions within continuum mechanics, we discuss in Section 2.7 the distinction between the

strong and weak forms of Newton’s third law of motion. As a results, we show that the symmetry of the

stress tensor is a consequence of the strong form, and not a fundamental physical law.

Chapter 3: To deepen the reader’s understanding of the fundamentals that underly the formulation of

seismic theory, we introduce in Section 3.1 the three principles of constitutive equations, namely, deter-

minism, local action and objectivity. To provide the background that allows us to emphasize the meaning

of elasticity, we introduce in Section 3.4 constitutive equations of anelastic continua.

Chapter 5: Following a demonstration that only eight classes of the elasticity tensor exist,4 all these classes

are included in this edition. The addition consists of Sections 5.8 and 5.11, where we study trigonal and

cubic continua.

4Readers interested in the existence of the eight symmetry classes might refer to Bóna, A., Bucataru, I., and Slawinski, M.A.,
(2005) Characterization of elasticity-tensor symmetries using SU(2). Journal of Elasticity 75(3), 267 – 289, and to Bóna, A.,
Bucataru, I., and Slawinski, M.A., (2004) Material symmetries of elasticity tensor. The Quarterly Journal of Mechanics and
Applied Mathematics 57(4), 583 – 598.
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xxvi CHANGES TO THIS EDITION

Part 2

Chapter 6: Since this chapter deals with the wave equation, which plays an important role in seismology,

we wish to deepen the reader’s understanding of different aspects of this equation. In Section 6.4, we

discuss well-posedness of the wave equation with its initial conditions. To provide further insight into

the properties of the wave equation, we compare it in Section 6.6 to the evolution equation, which is

ill-posed. Another significant addition consists of the formulation and study of solutions of the wave

equation in two and three spatial dimensions, as presented in Section 6.5. Therein, we discuss also the

range of influence and the domain of dependence of these solutions. To familiarize the reader with the

concepts of reflection and transmission in the context of the wave equation, we study the solutions of

one-dimensional scattering, which is discussed in Section 6.7. To familiarize the reader with the several-

century-long debate concerning the applicabilty of the wave equation, which is a differential equation, in

order to study nondifferentiable solutions, we present the theory of distributions and its application to the

wave equation. The crux of this addition is Section 6.8. Furthermore, in Section 6.9, we elaborate on the

concept of the reduced wave equation and Fourier’s transport of the wave equation, which is used in the

following chapter to discuss trial solutions of the equations of motion.

Chapter 7: Since this chapter deals with the equations of motion whose trial solutions necessitate asymp-

totic methods, we wish to familiarize the reader with the concept of the asymptotic series in the context

of ray theory, which is commonly referred to as the asymptotic ray theory. This addition is contained in

Sections 7.2.3 and 7.2.4.

Chapter 8: Since Hamilton’s ray equations are the basis of ray theory, we wish to deepen the reader’s

understanding of their meaning, as well as the meaning of their solutions. To do so, we present an analytic

solution of Hamilton’s ray equations, which allows us to gain both mathematical and physical insights into

Hamilton’s equations. Furthermore, an equivalent solution is presented using Lagrange’s ray equations.

Hence, this analytic solution allows us to relate the Hamiltonian and Lagrangian formulations of ray theory

— two distinct approaches. The crux of this addition consists of Section 8.5.

Chapter 9: The convexity and detachment of the innermost phase-slowness surface are commonly invoked

in seismology. In this edition, we show particular cases for which this surface is not detached, and we

comment on the fact that detachment is not necessary to prove the convexity of the innermost surface.

Chapter 10: In this edition, we use Newton’s third law of motion — rather than the second one used in

the first edition — to derive in Section 10.2.1, the dynamic boundary conditions on the interface between

two media. Since we are dealing with two media acting on one another, the third law lends itself more

naturally than the second one for which we had to treat the interface as a layer with a vanishing thickness.
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Part 3

Chapter 14: In this edition, the traveltime expression for a signal in a continuum exhibiting an elliptical

velocity dependence with direction and a linear dependence with depth is valid for the entire ray: both the

downgoing and upgoing segments. In the first edition, the expression was valid for a downgoing ray only.

In this edition, the chapter on Lagrange’s ray equations is found at the end of Part 2, rather than im-

mediately after the chapter on Hamilton’s ray equations. This placement of the chapter emphasizes the

physical motivation; namely, we can study the entire ray theory in the context of Hamilton’s ray equations.

Lagrange’s ray equations, on the other hand, open a new path of study to which we devote Part 3.

As a result of teaching from the first edition, the second edition acquired more exercises and figures. There

is also a List of Figures included.

With the above additions, the title of the book has been modified to emphasize the generality of the ap-

proach and the importance of the concept of continuum. Thus, “Seismic waves and rays in elastic media”

became “Waves and rays in elastic continua”.





Part 1

Elastic continua





Introduction to Part 1

One conceives the causes of all natural effects in terms of mechanical motion.
This, in my opinion, we must necessarily do, or else renounce all hopes of ever
comprehending anything in Physics.5

Christian Huygens (1690) Treatise on light: In which are explained the causes of that

which occurs in reflection and refraction

Our focus in this book is the description of seismic phenomena in elastic media.

The physical basis of seismic wave propagation lies in the interaction of grains within the material through

which deformations propagate. It is difficult to individually describe all these interactions among the

grains. However, since our experimental data are the result of a large number of such interactions, we

can consider these interactions as an ensemble and describe seismic wave propagation through a granular

material in terms of wave propagation through a medium that is continuous. We refer to such a medium as

a continuum.

Consequently, in this book, we follow the concepts of continuum mechanics where any material is de-

scribed by a continuum. A continuum is formulated mathematically in terms of continuous functions

representing the average properties of many microscopic objects forming the actual material. In this con-

text, all the associated quantities become scalar, vector or tensor fields, and the formulated problems are

governed by differential equations.

Using the methods of continuum mechanics, we adhere to the following statement of Kennett from his

book “The seismic wavefields”.

We adopt a viewpoint in which the details of the microscopic structure of the medium

through which seismic waves propagate is ignored. The material is supposed to comprise

a continuum of which every subdivision possesses the macroscopic properties.

5Readers interested in the modern view of this statement, in the context of analytical mechanics, might refer to Born, M., and
Wolf, E., (1999) Principles of optics (7th edition): Cambridge University Press, p. xxix. Readers interested in this statement in
the context of variational mechanics, which we will discuss in Section 13.2, might refer to Poincaré, H., (1902/1968) La science
et l’hypothèse: Flammarion, pp. 219 – 225.

Also, readers might refer to Einstein, A., and Infeld, L., (1938) Evolution of physics from early concepts to relativity and
quanta: Simon & Schuster, p. 125:

During the second half of the nineteenth century new and revolutionary ideas were introduced into physics;
they opened the way to a new philosphical view, differing from the mechanical one.

3



4 INTRODUCTION TO PART 1

At the beginning of Part 1, we formulate the methods for describing deformations of continua and we

introduce the concept of strain. This is followed by a description of forces acting within the continuum

and the introduction of the concept of stress. We also derive the fundamental equations; namely, the

equation of continuity and the equations of motion, which result from the conservation of mass and the

balance of linear momentum, respectively.

To supplement these equations and, hence, to formulate a determined system that governs the behaviour

of a continuum, we consider a particular class of continua that is, however, general enough to be of signifi-

cance in applied seismology. Our attention focuses on elastic continua. Any continuum is characterized by

its deformation in response to applied loads. In this book, we assume that this response can be adequately

described by linear stress-strain equations. Also, we assume that all the energy expended on deformation

is transformed into potential energy, which is stored in the deformed continuum. Consequently, upon the

removal of the load, the stored energy — to which we refer to as the strain energy — allows this continuum

to return to its undeformed state.

The original formulation of the theory of continuum mechanics can be dated to the second half of the

eighteenth century and is associated with the work of Leonhard Euler. At the beginning of the nineteenth

century, further development was achieved by Augustin-Louis Cauchy and George Green, as well as sev-

eral other European scientists. The modern development of the theory of continuum mechanics is mainly

associated with the work of American scientists, in particular, the work of Walter Noll, Ronald Rivlin and

Clifford Truesdell, in the second half of the twentieth century.

We should also note that too literal an interpretation of the concept of continuum can lead to inaccurate

conclusions. This can be illustrated by an example given by Schrödinger in his book entitled “Nature and

the Greeks”.

Let a cone be cut in two by a plane parallel to its base; are the two circles, produced by

the cut on the two parts equal or unequal? If unequal, then, since this would hold for any

such a cut, the ascending part of the cone’s surface would not be smooth but covered with

indentations; if you say equal, then for the same reason, would it not mean that all these

parallel sections are equal and thus the cone is a cylinder?

Also, in view of the abstract nature of continuum mechanics, we must carefully consider the definition

of exactness of a solution. While exact mathematical solutions to the equations formulated in continuum

mechanics exist, the equations themselves are not exact representations of nature since they rely on abstract

formulations. Hardy expresses a similar thought in his book entitled “A mathematician’s apology”.

It is quite common for a physicist to claim that he has found a ‘mathematical proof’ that

the physical universe must behave in a particular way. All such claims, if interpreted

literally, are strictly nonsense. It cannot be possible to prove mathematically that there
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will be an eclipse tomorrow, because eclipses, and other physical phenomena, do not

form part of the abstract world of mathematics.

Nevertheless, the notion of continuum, as it pertains to the theory of elasticity, is particularly useful for

seismological purposes because it permits convenient mathematical analysis that gives rise to scientific

theory validated by experimental data.





CHAPTER 1

Deformations

. . . au lieu de considérer la masse donnée comme un assemblage d’une infinité
de points contigus, il faudra, suivant l’esprit du calcul infinitésimal, la considérer
plutôt comme composée d’éléments infiniment petits, qui soient du même ordre
de dimension que la masse entière;1

Joseph-Louis Lagrange (1788) Mécanique Analytique

Preliminary remarks

We begin our study of seismic wave propagation by considering the materials through which these waves

propagate. Physical materials are composed of atoms and, hence, the fundamental treatment of this propa-

gation would require the study of interactions among the atoms. At present, such an approach is impractical

and, perhaps, impossible with the available mathematical tools. Consequently, we seek a more convenient

approach. An alternative approach is offered by continuum mechanics, which allows us to obtain results

consistent with observable phenomena without dealing directly with the discrete properties of the materials

through which seismic waves propagate.

As all mathematical physics, continuum mechanics utilizes abstract concepts to model physical reality.2 In

a seismological context, the Earth is regarded as a continuum that transmits mechanical disturbances. The

notion of continuum allows us to describe the deformations and forces experienced by a deformable body

in terms of strains and stresses within a continuum.

We begin this chapter with an explanation of the notion of continuum followed by a description of defor-

mations within it. In particular, we derive the strain tensor, which allows us to describe both a relative

change in volume and a change in shape within the continuum.

1

. . . instead of considering a given mass as an assembly of an infinity of neighbouring points, one shall –
following the spirit of calculus – consider rather the mass as composed of infinitely small elements, which
would be of the same dimension as the entire body;

2Readers interested in the concept of models and physical understanding might refer to Weinert, F., (2005) The scientist as
philosopher: Springer-Verlag, pp. 45 – 47.

7
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1.1. Notion of continuum

In continuum mechanics, we choose to disregard the atomic structure of matter and the explicit interactions

among particles. The notion of continuum is justified by the assumption that a material is composed of

sufficiently closely spaced particles, so that its descriptive functions can be considered to be continuous. In

other words, the infinitesimal elements of the material are assumed to possess the same physical properties

as the properties observed in macroscopic studies. Although the microscopic structure of real materials is

not consistent with the concept of continuum, this idealization provides a useful platform for mathematical

analysis, which in turn permits us to model physical reality using abstract concepts.3

In the context of the philosophy of science, continuum mechanics is associated with the concept of emer-

gence, which is also called methodological holism. In physics, emergence is used to describe properties,

laws or phenomena that occur at macroscopic scales but not at microscopic ones, in spite of the fact that

a macroscopic system can be viewed as an ensemble of microscopic ones. As an example, let us consider

colour. Elementary particles, such as protons or electrons, have no colour. Colour emerges if these parti-

cles are arranged in atoms, which absorb or emit specific wavelengths of light and can thus be said to have

colour. Emergent concepts in continuum mechanics are elasticity, rigidity, viscosity, friction, and so on.

The approach in which we invoke elementary particles to describe properties of matter belongs to the field

of the condensed-matter physics, and philosophically is associated also with the concept of reductionism

and so-called methodological individualism.

The concept of continuum allows us to consider materials in such a way that their descriptive functions are

continuous and differentiable. In particular, we can define stress at a given point, thereby enabling us to

apply calculus to the study of forces within a continuum. This definition and the subsequent application of

calculus is associated with the work of Augustin-Louis Cauchy in the first half of the nineteenth century.

Instead of studying atomic forces among individual particles, he introduced the notions of stress and strain

in a continuum, which resulted in the equations associated with the theory of elasticity.

Using a continuum-mechanics approach to describe seismic wave propagation raises some concerns. In

continuum mechanics, the behaviour of a multitude of grains in a portion of a material is discussed by

studying the behaviour of the whole ensemble. Consequently, information relating to the grains themselves

is lost in the averaging process. In other words, the application of continuum mechanics raises the question

whether the loss of information about the granular structures of the material allows us to properly represent

the macroscopic behaviour of that material. To answer this question, we state that our ability to formulate

a coherent theory to accurately describe and predict observable seismic phenomena is a key criterion to

justify our usage of the notion of continuum. To gain further insight into our statement, let us consider the

following quote from “La science et l’hypothèse” of Poincaré.

3Readers interested in rigorous mathematical foundations of elasticity might refer to Marsden, J.E., and Hughes, T.J.R.,
(1983/1994) Mathematical foundations of elasticity: Dover. For general aspects of continuum-mechanics formulations, readers
might refer to Malvern, L.E., (1969) Introduction to the mechanics of a continuous medium: Prentice-Hall.
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Dans la plupart des questions, l’analyste suppose, au debut de son calcul, soit que la

matière est continue, soit, inversement, qu’elle est formée d’atomes. Il aurait fait le con-

traire que ses résultats n’en auraient pas été changés; il aurait eu plus de peine à les obtenir,

voilà tout.4

1.2. Rudiments of continuum mechanics

1.2.1. Axiomatic format. Modern continuum mechanics is a physical theory that adopts an axiomatic

format rather than a historical exposition or a heuristic approach. In this format, the structure of the theory

is a hypotheticodeductive system. In other words, it is a system that starts from a set of hypotheses and

proceeds deductively; hence, conclusions are of no greater generality than premises, and conclusions are

as certain as the premises.

To axiomatize a theory, we need to lay down a set of primitive concepts such that there is a sufficient

characterization of basic ideas and a platform for the subsequent statements of the theory. To do so, we

need to use the language of mathematics and the principles of logic. In other words, an axiomatic theory

of physics presupposes both logic and mathematics; it requires them as a formal apparatus of description.

However, this apparatus does not suffice to construct a physical theory because it is devoid of intrinsic

physical meaning. Herein, we might recall that the purpose of physics is to accurately describe physical

phenomena, while the purpose of logic and mathematics is to consistently define abstract concepts. To

axiomatize a physical theory is to articulate its explicitness. Indeed, only explicitly articulated theories can

be tested.

Among the advantages of an axiomatic format are the recognition of presupposition and assumptions con-

tained within the theory, as well as the rigour and consistency, which provide clarity and foster coherent

developments of the theory. Among the inconveniences of an axiomatic approach are the propensity for

formalism at the expense of intuition, as well as the propensity for generality at the expense of concrete-

ness. Since the purpose of this book is concrete — namely, the description of wave phenomena in elastic

continua — we trust that our presentation might enjoy the advantages of the axiomatic format and avoid

its inconveniences.

1.2.2. Primitive concepts of continuum mechanics.

Introductory comments. The primitive basis of a physical theory is a set of formal concepts that are

assigned a physical meaning. These concepts cannot be proven within a given theory but are assumed to be

true.5 The three primitive concepts upon which the continuum mechanics is formed are the material body,

4For most problems, the researcher assumes, at the beginning of his calculations, that either the matter is continuous or,
otherwise, it is composed of atoms. If he makes the other assumption, his results do not change; they will be just more difficult
to obtain.

5Note that, as stated on page 4, only abstract statements can be proven. Herein, the primitive concepts, although abstract,
cannot be proven within the theory whose foundation they form. If they could be proven, they would be a part of the theory and
not its primitive basis.
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the manifold of physical experience, and the system of internal forces.6 These concepts are consistent with

each other since the set they form is free of contradictions. They exhibit a weak deductive completeness

since all known statements within the theory can be formulated in the context of the three primitive con-

cepts, but not every statement is entailed by these three concepts — hence, the development of the theory

can continue to accommodate new ideas and observations.

Material body. The first primitive concept is the material body, B. It is a Euclidean three-dimensional

smooth manifold composed of material points X, where we define a material point as an infinitesimal

element of volume that possesses the same physical properties as the properties observed in macroscopic

studies. This element of volume is sufficiently large that it contains enough discrete particles of matter to

allow us to establish a concept of continuum, while it is sufficiently small to be perceived as a mathematical

point.7 The body manifold possesses the following properties. Every sufficiently smooth portion of a body

is a body. Also, there is a measure called mass, m, which is a nonnegative scalar quantity such that

m (B1 ∪ B2) = m (B1) +m (B2) ,

where B1 and B2 are disjoint subsets of B. In other words, the mass of a body is the sum of the masses of

its parts. Furthermore, mass of a material body occupying volume V is

m (B) =
∫∫∫
V

ρdV,

where ρ is the mass density of the material composing B.

As an abstract entity, B is not accessible to direct observations. We encounter its representations at par-

ticular times, t, and in particular spatial locations, x. Points t and x constitute a manifold of physical

experience, which is the second primitive concept of the theory of continuum mechanics.

Manifold of physical experience. The second primitive concept is the manifold of physical experience.

It is a Euclidean space-time E3 × t, where E3 is composed of points x and is endowed with the Euclidean

metric, while t denotes time. Symbol × stands for the direct product, which is a set of all possible ordered

pairs (x, t), which we can write explicitly as (x1, x2, x3, t). We assume that a given time interval is the

same for all observers — the time is absolute and universal. Also, we assume that the distance between two

given locations is the same for all observers — the space is absolute. These assumptions are tantamount

to limiting our study to nonrelativistic continuum mechanics. In the encounters with B, we consider a

sequence of configurations given by

(1.2.1) x = χ (X, t) ,

6Readers interested in more detail and an elegant exposition might refer to Truesdell, C., (1966) Six lectures on modern
natural philosophy: Springer-Verlag, pp. 2 – 3 and pp. 96 – 97, and to Bunge, M., (1967) Foundations of physics: Springer-
Verlag, pp. 143 – 157.

7According to Coirier, J., (1997) Mécanique des milieux continues: Concepts de base: Cours et exercices corrigés: Dunod,
pp. 4 – 5, the size of such an element of volume is of the order of 10−15 m3 and contains of the order of 1010 molecules.
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where χ is the motion of B given for a fixed t by an isomorphism: a structure-preserving continuous map

between topological spaces that is injective, which means that to every element of one set there corresponds

at most one element of the other set, and surjective, which means that to every element of one set there

corresponds at least one element of the other set; thus the mapping between X and x is one-to-one. Hence,

two distinct elements of B cannot occupy the same point on the manifold of physical experience, and no

single element of B can occupy two distinct points. Since χ is an isomorphism, its inverse is continuous.

Thus, we can write

X = χ−1 (x, t) ,

which allows us to consider the spatial description, as opposed to the material one given by equation

(1.2.1). In a material description, the observer identifies the location of points X ∈ B that are immersed in

E3; material point (X1, X2, X3) and time t are the independent variables of this description. In a spatial

description, the observer cannot identify particular material points but only spatial locations x ∈ E3; in

other words, the observer is unable to follow the displacement of a given material point. In this description,

location (x1, x2, x3) and time t are the independent variables. We will discuss these two descriptions in

more detail in Section 1.3.

Note that the goal of theoretical sciences is to give the best possible conceptual representation of a given

system. The best representation is as close as possible to an isomorphism, which is attainable only in

mathematics. Isomorphism is a perfect formal analogy; herein, whatever happens in X has its isomorphic

image in x, and vice versa. Commonly, the same system can be represented in a variety of inequivalent

ways.

System of internal forces. The third primitive concept is the system of internal forces within body B.

These forces are described by establishing Cauchy’s stress principle, which can be stated in the following

way.

Cauchy’s stress principle: The action of the material occupying a portion within the body that is exterior

to the closed surface on the material within this surface is represented by vector field T.

Vector T is called traction. It acts on a surface whose outward normal unit vector is n. T is assumed to

depend continuously on n. Its physical dimensions are force per unit area. The concept of the stress tensor

that is invoked by the system of internal forces is central to the theory of continuum mechanics. We will

discuss it in detail in Section 2.3.

1.3. Material and spatial descriptions

1.3.1. Fundamental concepts. While using the concept of continuum, which does not involve any

discrete particles, we must carefully consider methods that allow us to describe the displacement of ma-

terial points within the continuum. In continuum mechanics, we can describe such a displacement in at
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least two ways; namely, by studying material and spatial descriptions.8 We can observe the displacement

either by following a given material point — in other words, following an infinitesimal element of the

continuum, which is analogous to following a particle in particle mechanics — or by studying the flow of

the continuum across a fixed position, which does not have an analogue in particle mechanics. As stated in

Section 1.2.2, the first approach is called the material description of motion while the second one is called

the spatial description of motion. These approaches are also known as the Lagrangian description and the

Eulerian description, respectively.9

In global geodynamics, the fundamental laws that govern deformations of the Earth necessitate the distinc-

tion between the equations derived using the material and the spatial formulations. However, in applied

seismology, we can often accurately analyze observable phenomena while ignoring the distinction between

the material and the spatial descriptions.

To gain insight into the meaning of the material and spatial descriptions, consider a moving continuum and

let the observer focus the attention on a given material point within the continuum. Suppose the position

of a material point at initial time t0 is given by vector X. Although position vector X is not a material

point, we will refer to a given material point as “material point X”, which is a concise way of referring to a

material point that at time t0 occupied position X, as shown in Remark 1.6.1, which follows Exercise 1.1.

At a later time t, the position vector of the material point X is given by x. With a certain abuse of notation,

we write expression (1.2.1) as x (X, t); this mapping gives position, x, of material point X at time t. This

is the material description, where variable X identifies the material point. We assumed that, for a given

time t, this mapping is one-to-one and continuous, as well as possessing the continuous inverse. Also, we

have to assume that this mapping and its inverse have continuous partial derivatives to whatever order is

required. Since we assume that the transition of the material point from the initial position to the present

one occurs in a smooth fashion, vector x is a continuous function of time and, by symmetry, its inverse

is also continuous. Again, with a certain abuse of notation, this inverse can be written as X (x, t), which

fixes our attention on a given region in space and takes position, x, and time, t, as independent variables.

To introduce the material and spatial coordinates, consider an orthonormal coordinate system, where

xi = xi (X1, X2, X3, t) , i ∈ {1, 2, 3} ,

and

Xi = Xi (x1, x2, x3, t) , i ∈ {1, 2, 3} ,

with the components xi and Xi being the spatial and material coordinates, respectively.

8Material and spatial descriptions correspond to the referential and spatial descriptions of Malvern, L.E., (1969) Introduction
to the mechanics of a continuous medium: Prentice-Hall, p. 138, where the relative description is also discussed.

9Readers interested in detailed descriptions of these approaches and their consequences might refer to Malvern, L.E., (1969)
Introduction to the mechanics of a continuous medium: Prentice-Hall, pp. 138 – 145. Readers interested in heuristic descriptions
might refer to Snieder, R., (2004) A guided tour of mathematical methods for the physical sciences: Cambridge University Press,
pp. 57 – 61.
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In general, a physical quantity that characterizes a continuum can be described by a function f (x, t),

which is a spatial description of this quantity, or by a function F (X, t), which is a material description of

this quantity. The material and spatial descriptions are consistent with one another. The relation between

f and F is given by f (x (X, t) , t) = F (X, t), or by f (x, t) = F (X (x, t) , t).

1.3.2. Material time derivative. In view of the previous section, we see that either the material or

the spatial description can be used to describe the temporal variation of a given physical quantity. Let us

consider time derivatives in the context of either description.

The material description consists of fixing our attention on a given material point, X, and observing the

variation of the quantity F with time. The time derivative associated with this viewpoint can be written as

(1.3.1)
dF
dt

=
dF (X, t)

dt

∣∣∣∣
X

,

where symbol |X means that the derivative is evaluated at X.

The spatial description consists of fixing our attention on a given spatial location, x, and observing the

variation of quantity f with time. The time derivative associated with this viewpoint can be written as

(1.3.2)
∂f

∂t
=
∂f (x, t)
∂t

∣∣∣∣
x

,

where symbol |x means that the derivative is evaluated at x.

The material and spatial descriptions are related by the chain rule of differentiation. To see this relation,

consider a three-dimensional continuum and explicitly write

(1.3.3) F (X1, X2, X3, t) = f (x1 (X1, X2, X3, t) , x2 (X1, X2, X3, t) , x3 (X1, X2, X3, t) , t) .

Taking the time derivative of both sides, we get

dF
dt

=
[
∂f

∂t
+

∂f

∂x1

∂x1

∂t
+

∂f

∂x2

∂x2

∂t
+

∂f

∂x3

∂x3

∂t

]∣∣∣∣
X

.

Since the derivative is evaluated for a given material point, X, it implies that ∂xi/∂t are the components

of velocity of this point moving in space; we will write these components as vi. Thus,

(1.3.4)
dF
dt

=
∂f

∂t
+

∂f

∂x1
v1 +

∂f

∂x2
v2 +

∂f

∂x3
v3.

As shown in expression (1.3.1), dF/dt describes the temporal variation of a given quantity for a particular

material point within the continuum, and as shown in expression (1.3.2), ∂f/∂t describes the temporal

variation of this quantity at a particular point in space. To discuss the relation between dF/dt and ∂f/∂t,

we write the last three terms on the right-hand side of the above equation as a scalar product to get

dF
dt

=
∂f

∂t
+ [v1, v2, v3] ·

[
∂f

∂x1
,
∂f

∂x2
,
∂f

∂x3

]
.
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Recognizing that the second term in brackets is the gradient of function f , and denoting the velocity vector

by v = [v1, v2, v3], we write
dF
dt

=
∂f

∂t
+ v · ∇f,

which is the relation between the time derivatives of F and f .

We can formally rewrite the right-hand side of the above equation as

(1.3.5)
dF (X, t)

dt
=
(
∂

∂t
+ v · ∇

)
f (x, t) ,

where the term in parentheses is an operator acting on function f , and the material and spatial coordinates

are related by

(1.3.6) x = x (X, t) .

The term in parentheses on the right-hand side of equation (1.3.5) is called the material time-derivative

operator. It can be applied to a scalar, to a vector, or to a tensor function of position and time coordinates.

It is common to denote this operator by D/Dt so as to concisely write equation (1.3.5) as

dF (X, t)
dt

=
Df (x, t)

Dt
,

where D/Dt := ∂/∂t+ v · ∇.

Examining the left-hand side of equation (1.3.5) in view of expression (1.3.1), we conclude that the ma-

terial time derivative is a rate of change associated with a particular element of the continuum. In other

words, it is measured by an observer travelling with this element. Mathematically, the material time deriv-

ative is the time derivative with material coordinates held constant. To consider spatial coordinates in this

context, let us examine the right-hand side of equation (1.3.5). The first term of (∂/∂t+ v · ∇) describes

the time rate of change at the location x, while the second term describes the rate of change associated

with the motion of material points; more explicitly, the second term describes the spatial rate of change of

material point X moving with velocity v. Recalling expression (1.3.3), we can write expression (1.3.4)

with a certain abuse of notation as

dF
dt

=
∂f

∂t

∣∣∣∣
x

+
3∑
i=1

∂f

∂xi

∣∣∣∣
t

vi|X ,

where ∂f/∂t is evaluated at location x, ∂f/∂xi is evaluated at instant t for a given material point X

moving with velocity v.

As we see from the formulation presented above, in general, dF/dt differs from ∂f/∂t by term v · ∇f .10

This term vanishes in the absence of motion, v = 0, or if f does not vary spatially, ∇f = 0. Also, if

10Readers interested in this term and its meaning as the convective derivative might refer to Sedov, L.I., (1971) A course in
continuum mechanics: Wolters-Noordhoff Publishing, Vol. I, pp. 31 – 32.
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this term is negligible, we need not distinguish between the material and spatial descriptions. This is an

important concept that often allows us simplify our approach; we will discuss it in the next section.

1.3.3. Conditions of linearized theory. In general, equations governing wave phenomena in elastic

media are nonlinear. However, seismic experiments indicate that important aspects of wave propagation

can be adequately described by linear equations, which greatly simplify mathematical formulations. The

process of going from nonlinear equations to linear ones is called the linearization process and the resulting

theory is the linearized theory. This linearization is achieved by the fact that, under certain assumptions that

appear to be satisfied for many seismological studies, the material and spatial descriptions are equivalent

to one another.

The linearization allows us to formulate mathematical statements of seismic wave phenomena in a form

that is simpler than it would be otherwise possible. In this section, we briefly discuss the conditions that

allow us to use linearization. A more detailed description of the linearization process is beyond the scope

of this book.11

In applied seismology, we often assume that the displacements of material elements resulting from the

propagation of seismic waves can be considered as infinitesimal. Such an assumption is used in this entire

book. As a consequence of this assumption and in view of the material time derivative, discussed in Section

1.3.2, we can conclude that, while considering displacements, it is unnecessary to distinguish between the

material and spatial descriptions.

To arrive at this conclusion, let us consider the notion of displacement using both the material and spatial

descriptions. Displacement is the difference between the final position and the initial position. Using the

material description, we can write the displacement vector as

(1.3.7) U (X,t) = x (X, t)−X,

while using the spatial description, we note that the displacement vector is

(1.3.8) u (x,t) = x−X (x, t) .

Note that at the initial time, x = X.

Since the same quantity is given by expressions (1.3.7) and (1.3.8), we can write

(1.3.9) U (X,t) = u (x,t) ,

where the material and spatial coordinates are related by equation (1.3.6).

11Readers interested in a thorough analysis of physical quantities in the material and spatial descriptions, and the subsequent
linearization might refer to Achenbach, J.D., (1973) Wave propagation in elastic solids: North Holland, pp. 11 – 21 and 46 – 47,
to Malvern, L.E., (1969) Introduction to the mechanics of a continuous medium: Prentice-Hall, pp. 497 – 565, and to Marsden,
J.E., and Hughes, T.J.R., (1983/1994) Mathematical foundations of elasticity: Dover, pp. 9 – 10 and 226 – 246.
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We can develop each component of U (X,t) into Taylor’s series about x to obtain

Ui (X,t) = Ui (X,t)|X=x

+
[
∂Ui (X,t)
∂X1

∣∣∣∣
X=x

,
∂Ui (X,t)
∂X2

∣∣∣∣
X=x

,
∂Ui (X,t)
∂X3

∣∣∣∣
X=x

]
· (X− x) + . . . ,

where i ∈ {1, 2, 3}. Assuming that the gradient of the displacement, which is shown in brackets, is

vanishingly small, we can consider only the first term of the series. Thus, we can write

(1.3.10) U (X,t) ≈ U (x,t) .

Hence, expression (1.3.7) can be written as

(1.3.11) U (x,t) ≈ x (X, t)−X.

Since in expression (1.3.11) U is a function of x, we rewrite — using expression (1.3.8) — the displace-

ment as a function of x to get

(1.3.12) U (x,t) ≈ x−X (x, t) .

Comparing expressions (1.3.8) and (1.3.12), we see that

U (x,t) ≈ u (x,t) .

Thus, in view of expression (1.3.10), we conclude that — for infinitesimal displacements — we can write

(1.3.13) U (X,t) ≈ u (x,t) .

To gain insight into the meaning of this result, we examine equations (1.3.9) and (1.3.13). Equation (1.3.9)

states that U = u, with x related to X by equation (1.3.6). Equation (1.3.13) states that U ≈ u, where

we can simply replace x by X, without invoking equation (1.3.6). This approximation is illustrated in

Exercise 1.2.Now, let us consider the velocity using both the material and spatial descriptions. To do so,

let the physical quantity considered in the material time derivative be given by displacement. In such a

case, expression (1.3.5) becomes
dU
dt

=
∂u
∂t

+ (v · ∇) u.

If both the gradient of the displacement u and the velocity v are infinitesimal, we can ignore the second

term on the right-hand side to obtain
dU
dt
≈ ∂u

∂t
.

Also, let us consider the acceleration using both the material and spatial descriptions. To do so, let the

physical quantity considered in the material time derivative be given by velocity. In such a case, expression

(1.3.5) becomes
d2U
dt2

=
∂2u
∂t2

+ (v · ∇)
∂u
∂t

.
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If both the gradient of ∂u/∂t and the velocity v are infinitesimal, we can ignore the second term on the

right-hand side to obtain
d2U
dt2
≈ ∂2u

∂t2
.

This property of the time derivative of displacement, which results from the linearized theory, is used, for

instance, in the derivation of equations of motion (2.6.3).

Thus, we can conclude that, under the assumption of infinitesimal displacements of a given element of

the continuum, we do not need to distinguish between either the material and spatial coordinates or the

material and spatial descriptions of displacements. In other words, X ≈ x and U ≈ u. Furthermore, if we

also assume that the velocities of these displacements are infinitesimal, that the gradients of these displace-

ments are infinitesimal, and that the gradients of these velocities are also infinitesimal, there is no need to

distinguish between the material and spatial descriptions while studying velocities and accelerations. In

other words, dU/dt ≈ ∂u/∂t and d2U/dt2 ≈ ∂2u/∂t2, respectively.

It is important to note that the assumptions about the properties of the displacements, gradients of displace-

ments, velocities and gradients of velocities are independent of each other. They result from the physical

context in which we consider a given mathematical formulation. For instance, in the context of applied

seismology, we assume that the displacement amplitude of a material point is small compared to the wave-

length. Also, we assume that the velocity of this displacement is small compared to the wave propagation

velocity.12

In this section, we attempted to justify the linearization by a priori arguments. Let us also mention another

approach that plays an important role in continuum mechanics and consists of an a posteriori justification;

in other words, the results justify the assumptions. Herein, the initial approach could be to try the linear

formulation by ignoring the nonlinear terms without invoking any physical reason; it is common to begin

with a linear formulation and to investigate its applicability. Having developed a theory based on such a

formulation, we would compare the predictions of this theory with experimental results. If the agreement

between the theory and experiments is satisfactory, we could accept the assumptions. In our context, many

seismological measurements agree with theoretical prediction of a linearized theory, thus providing an a

posteriori justification.

Following our decision to make no distinction between the material and spatial descriptions, we follow

the customary notation to describe the coordinates as well as the displacements of a given element of the

continuum using lower-case letters. Also, to avoid any confusion, we note that the velocities denoted by

v and V , in Parts 2 and 3 of the book, refer to the propagation velocities; namely, phase velocity and the

ray velocity, respectively. They are not directly associated with the velocities of displacements of a given

element of the continuum, which we discuss herein.

12Readers interested in details of this linearization might refer to Achenbach, J.D., (1973) Wave propagation in elastic solids:
North Holland, pp. 17 – 21.
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1.4. Strain

1.4.1. Introductory comments13. Seismic waves consist of the propagation of deformations through

a material. To study these waves, we wish to describe the associated deformations of the continuum in the

context of infinitesimal displacements.

Deformation of a continuum is a change of positions of points within it relative to each other. If such a

change occurs, a continuum is said to be strained. This strain is accompanied by stress. The produced

stress resists deformation and attempts to restore the continuum to its unstrained state. The resistance

of a continuum to the deformation and the continuum’s tendency to restore itself to its undeformed state

account for the propagation of seismic waves.

The relation between stress and strain is one of mutual dependence and is an intrinsic concept of elasticity

theory. In this theory, applied forces are formulated in terms of a stress tensor, discussed in Chapter 2,

while the associated deformations are formulated in terms of a strain tensor, discussed below.

1.4.2. Derivation of strain tensor. In this section we show that the strain tensor describes the defor-

mation within the continuum.

The concept of deformation implies that distances among points within the continuum change. To derive

the strain tensor in a three-dimensional continuum, consider two infinitesimally close points therein whose

coordinates are given by [x, y, z] and [x+ dx, y + dy, z + dz]. The square of the distance between these

points is given by

(1.4.1) (ds)2 = (dx)2 + (dy)2 + (dz)2 .

Let the continuum be subjected to deformation. After the deformation, which is described by displacement

vector

u = [ux (x, y, z) , uy (x, y, z) , uz (x, y, z)] ,

the coordinates of the first point are given by

(1.4.2)
[
x+ ux|x,y,z , y + uy|x,y,z , z + uz|x,y,z

]
,

while the coordinates of the second point are given by

(1.4.3)

[
x+ dx+ ux|x+dx,y+dy,z+dz ,

y + dy + uy|x+dx,y+dy,z+dz ,

z + dz + uz|x+dx,y+dy,z+dz

]
,

13Readers interested in a thorough description of strain and deformation might refer to Malvern, L.E., (1969) Introduction to
the mechanics of a continuous medium: Prentice-Hall, Chapter 4: Strain and Deformation.
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where the arguments in the subscripts are the values at which the components of function u are evaluated.

Subtracting the components given in expression (1.4.2) from the corresponding components given in ex-

pression (1.4.3), we obtain the difference between the corresponding coordinates of the two points after

the deformation; namely,

(1.4.4)

[
dx+ ux|x+dx,y+dy,z+dz − ux|x,y,z ,

dy + uy|x+dx,y+dy,z+dz − uy|x,y,z ,

dz + uz|x+dx,y+dy,z+dz − uz|x,y,z
]

.

Examining expression (1.4.4), we can gain insight into the physical meaning of the displacement vector.

In general, ux, uy and uz are each a function of x, y and z. Thus, the length and orientation of vector

u = [ux, uy, uz] depends on position. Hence, in general, the displacement vector at x + dx, y + dy,

z + dz has different length and orientation than it has at x, y, z; for instance, ux|x+dx,y+dy,z+dz differs

from ux|x,y,z . The dependence of u on position results — upon application of u — in a relative change

of positions of points within the continuum. Prior to deformation, the three coordinates of our two points

were separated by dx, dy and dz, respectively. After the deformation, they are separated by different

amounts, as shown in expression (1.4.4). We can get further insight into u by considering special cases. If

u is given by constants, then its components are the same at all positions. In such a case, expression (1.4.4)

reduces to [dx,dy,dz]. This means that there is no change of positions of points within the continuum

relative to each other. In such a case, we can view u as resulting in the translation of the whole medium

without deformation. Other special cases are discussed in Section 1.4.3.Let us return to our derivation. In

view of infinitesimal displacements, the components of u that are evaluated in expression (1.4.4) at x+dx,

y + dy, z + dz can be approximated by the first two terms of Taylor’s series about (x, y, z); namely,

ux|x+dx,y+dy,z+dz ≈ ux|x,y,z +
∂ux
∂x

∣∣∣∣
x,y,z

dx+
∂ux
∂y

∣∣∣∣
x,y,z

dy +
∂ux
∂z

∣∣∣∣
x,y,z

dz,

uy|x+dx,y+dy,z+dz ≈ uy|x,y,z +
∂uy
∂x

∣∣∣∣
x,y,z

dx+
∂uy
∂y

∣∣∣∣
x,y,z

dy +
∂uy
∂z

∣∣∣∣
x,y,z

dz

and

uz|x+dx,y+dy,z+dz ≈ uz|x,y,z +
∂uz
∂x

∣∣∣∣
x,y,z

dx+
∂uz
∂y

∣∣∣∣
x,y,z

dy +
∂uz
∂z

∣∣∣∣
x,y,z

dz.

Inserting these terms into expression (1.4.4) and simplifying, we obtain the approximation for the differ-

ence of the corresponding coordinates of the two points after the deformation; namely,[
dx+ ∂ux

∂x

∣∣
x,y,z

dx+ ∂ux
∂y

∣∣∣
x,y,z

dy + ∂ux
∂z

∣∣
x,y,z

dz,

dy + ∂uy
∂x

∣∣∣
x,y,z

dx+ ∂uy
∂y

∣∣∣
x,y,z

dy + ∂uy
∂z

∣∣∣
x,y,z

dz,

dz + ∂uz
∂x

∣∣
x,y,z

dx+ ∂uz
∂y

∣∣∣
x,y,z

dy + ∂uz
∂z

∣∣
x,y,z

dz
]

.
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Hence, the square of the distance between the two points after the deformation can be approximated by

(ds̆)2 ≈

(
dx+

∂ux
∂x

∣∣∣∣
x,y,z

dx+
∂ux
∂y

∣∣∣∣
x,y,z

dy +
∂ux
∂z

∣∣∣∣
x,y,z

dz

)2

+

(
dy +

∂uy
∂x

∣∣∣∣
x,y,z

dx+
∂uy
∂y

∣∣∣∣
x,y,z

dy +
∂uy
∂z

∣∣∣∣
x,y,z

dz

)2

+

(
dz +

∂uz
∂x

∣∣∣∣
x,y,z

dx+
∂uz
∂y

∣∣∣∣
x,y,z

dy +
∂uz
∂z

∣∣∣∣
x,y,z

dz

)2

.

Squaring the parentheses on the right-hand side and — in view of infinitesimal gradients of the displace-

ment — neglecting the terms that contain the products of two derivatives, we obtain

(ds̆)2 ≈ (dx)2 + (dy)2 + (dz)2(1.4.5)

+ 2

(
∂ux
∂x

∣∣∣∣
x,y,z

(dx)2 +
∂uy
∂y

∣∣∣∣
x,y,z

(dy)2 +
∂uz
∂z

∣∣∣∣
x,y,z

(dz)2

+
∂ux
∂y

∣∣∣∣
x,y,z

dxdy +
∂ux
∂z

∣∣∣∣
x,y,z

dxdz +
∂uy
∂x

∣∣∣∣
x,y,z

dxdy

+
∂uy
∂z

∣∣∣∣
x,y,z

dydz +
∂uz
∂x

∣∣∣∣
x,y,z

dxdz +
∂uz
∂y

∣∣∣∣
x,y,z

dydz

)
,

which is the expression for the square of the distance between the two points after the deformation.

Using expressions (1.4.1) and (1.4.5), we obtain the difference in the square of the distance between the

two points that results from the deformation; namely,

(ds̆)2 − (ds)2 ≈ 2

[
∂ux
∂x

∣∣∣∣
x,y,z

(dx)2 +
∂uy
∂y

∣∣∣∣
x,y,z

(dy)2 +
∂uz
∂z

∣∣∣∣
x,y,z

(dz)2

+

(
∂ux
∂y

∣∣∣∣
x,y,z

+
∂uy
∂x

∣∣∣∣
x,y,z

)
dxdy +

(
∂uy
∂z

∣∣∣∣
x,y,z

+
∂uz
∂y

∣∣∣∣
x,y,z

)
dydz

+

(
∂ux
∂z

∣∣∣∣
x,y,z

+
∂uz
∂x

∣∣∣∣
x,y,z

)
dxdz

]
.

Letting x1 = x, x2 = y and x3 = z, we can can concisely write this expression as

(ds̆)2 − (ds)2 ≈
3∑
i=1

3∑
j=1

(
∂uxi
∂xj

∣∣∣∣
x1,x2,x3

+
∂uxj
∂xi

∣∣∣∣
x1,x2,x3

)
dxidxj ,

The left-hand side is a scalar while dxi and dxj are components of a vector. The term in parentheses on the

right-hand side is a component of a second-rank tensor14, as shown in Exercise 1.4. In elasticity theory,

14Both terms “rank” and “order” are commonly used to describe the number of indices of a tensor. In this book, we use the
former term since it does not appear in any other context, while the latter term is used in the context of differential equations.
Note that although the term “rank” also has a specific meaning in matrix algebra, we do not use it in such a context in this book.
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the term in parentheses is the definition of the strain tensor for infinitesimal displacements; namely,

(1.4.6) εij :=
1
2

(
∂ui
∂xj

+
∂uj
∂xi

)
, i, j ∈ {1, 2, 3} ,

15where ui = uxi , uj = uxj and the partial derivatives are evaluated at x = [x1, x2, x3].16 As indicated

above, the strain tensor is a second-rank tensor.

Thus, if we suppose that a continuum is deformed in such a way that points are displaced by vector

u (x), then, the strain tensor is defined by expression (1.4.6). Considering infinitesimal displacements, the

components of this tensor allow us to describe the deformation associated with any such a displacement.

Examining expression (1.4.6), we see that in the particular case discussed on page 19, where u is given

by constants, εij = 0 for all i and j. In other words, according to the strain tensor, the continuum is not

deformed, as expected in view of our discussion on page 19.

In view of its definition, the strain tensor is symmetric; namely, εij = εji. Consequently, in a three-

dimensional continuum, there are only six independent components. Also, in view of its definition, the

strain tensor is dimensionless.

Note the following analogy between vector calculus and tensor calculus. The gradient operator applied to

the scalar field f (x1, x2, x3) results in a vector field described by three components; namely,

∇f (x1, x2, x3) :=
[
∂f

∂x1
,
∂f

∂x2
,
∂f

∂x3

]
.

As shown in the derivation of expression (1.4.6), the gradient operator applied to the vector field u =

[u1, u2, u3] results in a second-rank tensor field described by nine components of the form ∂ui/∂xj , where

i, j ∈ {1, 2, 3}.

1.4.3. Physical meaning of strain tensor.

Introductory comments. The strain tensor describes two types of deformation. Firstly, the sides of a

volume element within a continuum can change in length. This can result in a change of volume without,

necessarily, a change in shape. Components of the strain tensor, which we use to describe such deforma-

tions, are dimensionless quantities given by a change in length per unit length. Secondly, the sides of an

element within a continuum can change orientation with respect to each other. This results in a change

of shape without, necessarily, a change in volume. Components of the corresponding strain tensor are

measured in radians and describe the change in angles before and after the deformation. Thus, the strain

tensor describes relative linear displacement and relative angular displacement.

15In this book, symbol := refers to a definition. In particular, ”:=” is read as ”is defined by” and ”=:” as ”defines”.
16Readers interested in formulation of the strain tensor leading to its form that is valid for curvilinear coordinates might refer

to Synge, J.L., and Schild, A., (1949/1978) Tensor calculus: Dover, pp. 202 – 205.
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Relative change in length. To illustrate a length change expressed by a strain tensor, we revisit the

derivation shown in Section 1.4.2 and consider the one-dimensional case.

Let x = [x1, 0, 0] and x+ dx = [x1 + dx1, 0, 0] be two close points on the x1-axis prior to deformation.

During deformation, these points may be removed from the x1-axis, however, their coordinates along this

axis after the deformation are

(1.4.7) x̆1 = x1 + u1|x1,0,0
,

and

(1.4.8) x̆1 + dx̆1 = x1 + dx1 + u1|x1+dx1,0,0
.

The distance between their components along the x1-axis after the deformation is given by the difference

between expressions (1.4.7) and (1.4.8); namely,

(1.4.9) dx̆1 = dx1 + u1|x1+dx1,0,0
− u1|x1,0,0

.

Taylor’s series of the middle term on the right-hand side can be written as

u1|x1+dx1,0,0
= u1|x1,0,0

+
∂u1

∂x1

∣∣∣∣
x1,0,0

dx1 +
1
2
∂2u1

∂x2
1

∣∣∣∣
x1,0,0

(dx1)2 + . . . .

Using the approximation consisting of the first two terms, we can write expression (1.4.9) as

dx̆1 ≈ dx1 +
∂u1

∂x1

∣∣∣∣
x1,0,0

dx1,

which can be restated as

dx̆1 ≈
(

1 +
∂u1

∂x1

)
dx1.

Hence, in view of definition (1.4.6), we can write the distance between the two points after deformation as

(1.4.10) dx̆1 ≈ (1 + ε11) dx1,

where dx1 is the distance between these two points prior to deformation.

Thus, ε11 is a relative elongation or contraction along the x1-axis. Similarly, ∂u2/∂x2 = ε22 and

∂u3/∂x3 = ε33 correspond to relative elongations or contractions along the x2-axis and the x3-axis,

respectively.

To pictorially see the meaning of εii, where i ∈ {1, 2, 3}, consider Figure 1.4.1 with axes defined in terms

of the material coordinates that correspond to the configuration of the element of the continuum before

deformation. The relative elongation along the X1-axis can be written as

(1.4.11)
∆X1 + ∆u1

∆X1
= 1 +

∆u1

∆X1
.
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FIGURE 1.4.1. Deformation: Uniaxial extension in the X1-axis direction

Considering infinitesimal gradients of the displacement, discussed in Section 1.3.3, and in view of Exercise

1.5, we can restate expression (1.4.11) as

(1.4.12) 1 +
∂u1

∂x1
.

Expression (1.4.12) is a relative change in length due to deformation. Now, recall equation (1.4.10), which

we can restate as

(1.4.13)
dx̆1

dx1
≈ 1 + ε11,

to describe a relative change in length due to deformation. Hence, examining expressions (1.4.12) and

(1.4.13), we conclude that ε11 ≡ ∂u1/∂x1, as expected.

Relative change in volume. Having formulated the relative change in length, we can express a relative

change in volume.

Consider a rectangular box with edge lengths ∆x1, ∆x2, and ∆x3, along the x1-axis, the x2-axis and the

x3-axis, respectively. Its volume is

(1.4.14) V = ∆x1∆x2∆x3.

After the deformation, following expression (1.4.10), the edge lengths become (1 + ε11) ∆x1, (1 + ε22) ∆x2

and (1 + ε33) ∆x3, respectively, and, the volume becomes

(1.4.15) V̆ = (1 + ε11) (1 + ε22) (1 + ε33)V .

Note that to state V̆ as written in expression (1.4.15), we require that after the deformation the original

rectangular box remains rectangular. In the context of our study, where the deformations are assumed to be

small, the errors resulting from departing from this requirement are considered to be negligible. In other

words, we use expression (1.4.15) even if ∆x1, ∆x2 and ∆x3 are no longer parallel to the corresponding

axes.
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Assuming small deformations and, consequently, retaining only first-order strain-component terms result-

ing from the triple product, the volume of the deformed rectangular box can be written as

(1.4.16) V̆ ≈ (1 + ε11 + ε22 + ε33)V .

Thus, using expressions (1.4.14) and (1.4.16), we can state the relative change in volume as

(1.4.17)
V̆ − V
V

≈ ε11 + ε22 + ε33 =: ϕ.

We refer to ϕ as dilatation.

Using vector calculus, we can conveniently state the relative change in volume in terms of the displacement

vector, u. In view of definition (1.4.6), expression (1.4.17) can be stated as divergence, since we can write

(1.4.18) ϕ =
∂u1

∂x1
+
∂u2

∂x2
+
∂u3

∂x3
= ∇ · u.

To gain insight into the physical meaning of ϕ, we can revisit a special case discussed on page 19. If u is

given by constants, there is no deformation and, hence, no change in volume, as expected. Also, if u =

[u1 (x2, x3) , u2 (x1, x3) , u3 (x1, x2)], then ϕ = 0. Such a displacement vector causes an infinitesimal

deformation that results in change of shape, as discussed in the next section, but not in change of volume.

The dilatation will appear in stress-strain equations (5.12.4). It will also appear in the wave equation for P

waves given in expression (6.1.12). Since dilatation is associated with a change in volume, P waves can

be viewed as the propagation of compression within the continuum.

Note that, in terms of tensor algebra, expression (1.4.17) is the trace of the strain tensor, tr (εij); namely,

the sum of the diagonal terms. The trace of a second-rank tensor is a scalar; hence, it is invariant under the

coordinate transformations, as proved in Exercise 1.6. Thus, as expected, the description of the change in

volume is independent of the choice of the coordinate system. Relative change in volume in the context of

material properties is shown in Exercise 5.10.

Change in shape. The strain tensor also describes deformations leading to a change in shape. To

gain geometrical insight, consider Figure 1.4.2 with axes defined in terms of the material coordinates that

correspond to the configuration of the element of the continuum before deformation. A rectangular element

of the continuum is deformed into a parallelogram. In other words, the original right angle is reduced to

angle α. We can write this reduction as

π

2
− α = β1 + β2,

where β1 and β2 are the angles measured with respect to the X1-axis and the X2-axis, respectively. As-

suming that angles β1 and β2 are small and measured in radians, we can approximate them by the corre-

sponding tangents. Hence, examining Figure 1.4.2, we can write

(1.4.19) β1 + β2 ≈
∆u2

∆X1
+

∆u1

∆X2
.
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FIGURE 1.4.2. Deformation: Relative change in angles

Considering infinitesimal displacements, discussed in Section 1.3.3, and in view of Exercise 1.5, we can

write equation (1.4.19) as

(1.4.20) β1 + β2 ≈
∂u2

∂x1
+
∂u1

∂x2
= 2ε21 = 2ε12,

where we assume the equivalence between Xi and xi. In other words, a function of coordinates that is

evaluated at a point corresponding to the original configuration is approximately equal to this function

evaluated at a point corresponding to the final position.17

Examining Figure 1.4.2, we see that equation (1.4.20) implies that the original segments are deviated by

small angles β1 and β2 that can be stated as ∂u2/∂x1 and ∂u1/∂x2, respectively. Consequently, the initial

right angle between segments, coinciding with the two axes, is changed by the sum of these two angles.18

1.5. Rotation tensor and rotation vector

In Section 1.4.3, we defined dilatation, ϕ, which allows us to describe a relative change in volume using

the divergence operator and the displacement vector, as shown in expression (1.4.18). In this section, we

will associate a change in shape with the displacement vector by using the curl operator.

Let us define a tensor given by

(1.5.1) ξij :=
1
2

(
∂ui
∂xj
− ∂uj
∂xi

)
, i, j ∈ {1, 2, 3} .

In view of definition (1.5.1), ξ11 = ξ22 = ξ33 = 0, and tensor ξij has only three independent components;

namely, ξ23 = −ξ32, ξ13 = −ξ31 and ξ12 = −ξ21. Thus, ξij is an antisymmetric tensor. We refer to ξij as

the rotation tensor. As discussed in Section 1.4.3 and illustrated in Figure 1.4.2, the quantities ∂ui/∂xj ,

17Readers interested in more details associated with the strain tensor in the context of the material and the spatial coordinates
might refer to Malvern, L.E., (1969) Introduction to the mechanics of a continuous medium: Prentice-Hall, pp. 120 – 135.

18Readers interested in a geometrical interpretation of the strain-tensor components might refer to Fung, Y.C., (1977) A first
course in continuum mechanics: Prentice-Hall, Inc., pp. 129 – 130.
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where i 6= j, are tantamount to the small deviation angles. Following the properties of the curl operator,

we can associate tensor (1.5.1) with a vector given by

(1.5.2) Ψ = ∇× u,

as shown in Exercise 1.7. We refer to Ψ as the rotation vector.19

Rotation vector (1.5.2) will be used in formulating the wave equation involving S waves, as shown in

expression (6.1.16). In other words, S waves can be viewed as the propagation of rotation within the

continuum.

Note that we can use tensor calculus to relate the components of the strain tensor, the components of the

rotation tensor and the components of the gradient of the displacement vector. Using expressions (1.4.6)

and (1.5.1), we can write the partial derivative of a component of displacement as

(1.5.3)
∂ui
∂xj

= εij + ξij , i, j ∈ {1, 2, 3} .

Equation (1.5.3) corresponds to the fact that any second-rank tensor can be written as a sum of symmetric

and antisymmetric tensors.

Closing remarks

Formulations of continuum mechanics allow us to describe deformation in a three-dimensional continuum.

In subsequent chapters, these formulations will allow us to study and describe phenomena associated with

wave propagation. In this study, we will use the linearized theory of elasticity. Although linearization

results in a loss of subtle details, the agreement between the theory and experiments is satisfactory for our

purposes.

19Readers interested in a relation between the rotation tensor and rotation vector might also refer to Fung, Y.C., (1977) A first
course in continuum mechanics: Prentice-Hall, Inc., pp. 130 – 132.
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1.6. Exercises

EXERCISE 1.1. 20Given a material description of motion,

(1.6.1) x (X, t) =


x1 = X1e

t +X3

(
et − 1

)
x2 = X2 +X3

(
et − e−t

)
x3 = X3

,

verify that the transformation between the material, X, and spatial, x, coordinates exists, and find the

spatial description of this motion.21

SOLUTION 1.1. The transformation between the material and spatial coordinates exists if and only if the

Jacobian, which is given by

(1.6.2) J := det


∂x1
∂X1

∂x1
∂X2

∂x1
∂X3

∂x2
∂X1

∂x2
∂X2

∂x2
∂X3

∂x3
∂X1

∂x3
∂X2

∂x3
∂X3

 ,

does not vanish. Using equations (1.6.1), we obtain

J = det

 et 0 et − 1

0 1 et − e−t

0 0 1

 = et 6= 0.

Thus, the transformation exists. Since, in this exercise, mapping x = x (X, t) is linear, we can write it

using matrix notation x = AX. We can explicitly write, x1

x2

x3

 =

 et 0 et − 1

0 1 et − e−t

0 0 1


 X1

X2

X3

 ,

where A is the transformation matrix. Since det A = J 6= 0, transformation matrix A has an inverse.

Thus, the spatial description of motion, namely, X = X (x, t), is X = A−1x. In other words, X1

X2

X3

 =

 e−t 0 e−t
(
1− et

)
0 1 e−t

(
1− e2t

)
0 0 1


 x1

x2

x3

 .

REMARK 1.6.1. Note that at t = 0, A = A−1 = I; hence, X (0) = x (0). In other words, at the initial

time, both material and spatial descriptions of motion coincide. At a later time, the material point that

occupied position X at time t = 0, occupies position x.

20See also Section 1.3.1.
21In this book, e(·) and exp (·) are used as synonymous notations.
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EXERCISE 1.2. 22Consider

(1.6.3) F (X) = a sin
X

b
,

where a and b are constants. Let the change of variables be given by X = x− u (x). Show that if both a

and u (x) are infinitesimal while b is finite, we obtain

F (X) = F (x) .

SOLUTION 1.2. Considering the given change of variables, we can write expression (1.6.3) as

F (X (x)) = a sin
x− u (x)

b

= a

(
sin

x

b
cos

u (x)
b
− sin

u (x)
b

cos
x

b

)
.

Since u (x) is an infinitesimal quantity and b is finite

lim
(u/b)→0

cos
u (x)
b

= 1

and

lim
(u/b)→0

sin
u (x)
b

= 0.

Thus, we can write

F (X (x)) ≈ a sin
x

b
= F (x) ,

as required.

REMARK 1.6.2. The result of Exercise 1.2, as well as the equivalence of the material and spatial coor-

dinates for the infinitesimal displacements, is quite intuitive. In other words, considering the change of

variables given by X = x− u (x), we get X ≈ x, for infinitesimal values of u (x).

EXERCISE 1.3. A bar of length l would have an elongation u1 due to strain ε1, that is, u1 = ε1l. The

same bar would have another elongation u2 due to strain ε2, that is, u2 = ε2l. Show that considering only

linear terms, under the assumption of small strains, the total elongation due to both strains is equal to the

sum of both elongations.

SOLUTION 1.3. Assume that ε1 is applied first. This results in the elongation,

u1 = ε1l.

Hence, the new length of the bar is

l + u1 = l + ε1l = l (1 + ε1) .

22See also Section 1.3.3.
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Subsequently, applying strain, ε2, we obtain the final elongation,

uf = u1 + ε2l (1 + ε1) = u1 + ε2l + ε1ε2l = u1 + u2 + ε1ε2l.

Assuming that the value of the product, ε1ε2l, is small compared with the values of both ε1l and ε2l — in

other words, both ε1 and ε2 are much smaller than unity — we obtain

uf ≈ u1 + u2.

REMARK 1.6.3. The same result is obtained if the order is reversed, or if ε1 and ε2 are applied simultane-

ously. This is the illustration of the fact that the principle of superposition is applicable to linear systems

— a commonly used property in mathematical physics.23

EXERCISE 1.4. 24Using definition (1.4.6) and considering orthonormal coordinate systems, show that

strain, εij , which is given in terms of first partial derivatives of a vector, is a second-rank tensor.

NOTATION 1.6.4. The repeated-index summation notation is used in this solution. Any term in which an

index appears twice stands for the sum of all such terms as the index assumes values 1, 2 and 3.

SOLUTION 1.4. Following definition (1.4.6), consider ∂ûi/∂x̂j ,where ûi are the components of the dis-

placement vector, u, in the transformed coordinates x̂j . The transformation rule of the coordinate points

is given by

(1.6.4) x̂j = ajlxl, j ∈ {1, 2, 3} ,

where the entries of matrix a are the projections between the transformed and original axes. Matrix a is

an orthogonal matrix, which means that its inverse is equal to its transpose. Hence,

xj = alj x̂l, j ∈ {1, 2, 3} .

Consequently, we obtain

(1.6.5)
∂xj
∂x̂l

= alj .

Since u is a vector, its components transform according to the rule

ûi = aikuk, i ∈ {1, 2, 3} .

Thus, we can write
∂ûi
∂x̂l

= aik
∂uk
∂x̂l

, i, l ∈ {1, 2, 3} ,

which can be restated as
∂ûi
∂x̂l

= aik
∂uk
∂xj

∂xj
∂x̂l

, i, l ∈ {1, 2, 3} .

23Readers interested in the epistemological justification of linearity and the principle of superposition might refer to Steiner,
M., (1998) The applicability of mathematics as a philosophical problem: Harvard University Press , pp. 30 – 32.

24See also Sections 1.4.2, 5.1.1 and 5.2.3.
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Hence, in view of equation (1.6.5), we can write

(1.6.6)
∂ûi
∂x̂l

= aikalj
∂uk
∂xj

, i, l ∈ {1, 2, 3} ,

which is a transformation rule for the second-rank tensors. Consequently, since the sum of second-rank

tensors is a second-rank tensor, an entity given by εij := (∂ui/∂xj + ∂uj/∂xi) /2 is a second-rank tensor.

EXERCISE 1.5. 25Considering the one-dimensional case and assuming infinitesimal displacement gradi-

ents, in view of expressions (1.3.7) and (1.3.8), show that

(1.6.7)
∂u

∂x
≈ ∂U

∂X
.

SOLUTION 1.5. Consider the one-dimensional case of expressions (1.3.7) and (1.3.8), namely
U (X, t) = x (X, t)−X

u (x, t) = x−X (x, t)

.

Taking partial derivatives with respect to the first arguments, we obtain

(1.6.8)


∂U
∂X = ∂x

∂X − 1

∂u
∂x = 1− ∂X

∂x

.

Since x (X, t) andX (x, t) are inverses of one another, we use the properties of the derivative of an inverse

to obtain
∂x

∂X
=

1
∂X
∂x

.

Hence, we can write expression (1.6.8) as 
∂U
∂X = 1

∂X
∂x

− 1

∂u
∂x = 1− ∂X

∂x

.

Solving both equations for ∂X/∂x, we obtain
∂X
∂x = 1

∂U
∂X

+1

∂X
∂x = 1− ∂u

∂x

.

Equating the right-hand sides and solving for ∂u/∂x, we get

(1.6.9)
∂u

∂x
=

∂U
∂X

∂U
∂X + 1

.

25See also Section 1.4.3.
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Examining equation (1.6.9), we notice that for the infinitesimal displacement gradients, namely, ∂U/∂X <<

1, we can write ∂u/∂x ≈ ∂U/∂X , which is expression (1.6.7), as required.

EXERCISE 1.6. 26Prove the following theorem.

THEOREM 1.6.5. The sum of diagonal elements of a second-rank tensor is invariant under orthogonal

transformations of the coordinate system.

SOLUTION 1.6. PROOF. By definition, the components of the second-rank tensor εlm transform to

the components ε̂ik, which are expressed in another coordinate system, according to the rule given by

ε̂ik =
3∑
l=1

3∑
m=1

bilbkmεlm, i, k ∈ {1, 2, 3} ,

where b is an orthogonal transformation matrix. Setting k = i, we obtain the sum of the components

along the main diagonal; namely,

3∑
i=1

ε̂ii =
3∑
i=1

3∑
l=1

3∑
m=1

bilbimεlm.

Hence, by orthogonality of b, we have

3∑
i=1

bilbim = δlm, l,m ∈ {1, 2, 3} .

Thus, we can write
3∑
i=1

ε̂ii =
3∑
l=1

3∑
m=1

δlmεlm =
3∑

m=1

εmm.

Since both i and m are the summation indices, we are allowed to write

3∑
j=1

ε̂jj =
3∑
j=1

εjj .

This implies that the value of the sum of the diagonal elements is invariant under orthogonal transforma-

tions of the coordinate system. The sum of the diagonal elements of a second-rank tensor is a scalar. �

REMARK 1.6.6. Following Exercise 1.4, we can see that dilatation, ϕ, defined by expression (1.4.18) is

the sum of diagonal elements of the second-rank tensor, namely, the trace of the strain tensor, εij :=

(∂ui/∂xj + ∂uj/∂xi) /2. Consequently, as shown in Exercise 1.6, we can prove that dilatation is a scalar

quantity. This is expected because of the physical meaning of dilatation. In other words, the change of

volume must be independent of the coordinate system.

26See also Section 1.4.3.
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EXERCISE 1.7. 27In view of the properties of vector operators, show that the components of the second-

rank tensor, given by expression (1.5.1), namely,

ξij :=
1
2

(
∂ui
∂xj
− ∂uj
∂xi

)
, i, j ∈ {1, 2, 3} ,

are associated with rotation vector (1.5.2).

SOLUTION 1.7. Consider the displacement vector u = [u1, u2, u3]. We can write its curl as

∇× u =
(
∂u3

∂x2
− ∂u2

∂x3

)
e1 +

(
∂u1

∂x3
− ∂u3

∂x1

)
e2 +

(
∂u2

∂x1
− ∂u1

∂x2

)
e3,

where ei denotes a unit vector along the xi-axis. Following expression (1.5.1), we can rewrite the curl as

∇× u = [2ξ32, 2ξ13, 2ξ21] .

Thus, ξij can be viewed as the components of the vector that results from the rotation of u/2. Denoting

Ψ = [2ξ32, 2ξ13, 2ξ21], we obtain definition (1.5.2).

REMARK 1.6.7. The association between the components of the second-rank tensor ξij and the compo-

nents of vector Ψ is due to the antisymmetry of this tensor that results in only three independent compo-

nents.

27See also Section 1.5.



CHAPTER 2

Forces and balance principles

It is as necessary to science as to pure mathematics that the fundamental principles

should be clearly stated and that the conclusions shall follow from them. But in

science it is also necessary that the principles taken as fundamental should be as

closely related to observation as possible.

Harold Jeffreys and Bertha Jeffreys (1946) Methods of mathematical physics

Preliminary remarks

In the context of continuum mechanics, seismic waves are deformations that propagate in a continuum.

These deformations are associated with forces. In order to describe the propagation of deformations, we

now seek to formulate the equations that relate these deformations to forces acting within the continuum.

In general, the fundamental principles of continuum mechanics consist of the conservation of mass, bal-

ance of linear momentum, balance of angular momentum, balance of energy, balance of electric charge,

balance of magnetic flux, and the principle of irreversibility: entropy. In this book, in which we work

within the theory of linear elasticity, we need to invoke explicitly only a few of these principles.

We begin this chapter with the study of the conservation of mass, which is associated with the motion of

mass within the continuum. Using the conservation of mass, we derive the equation of continuity. Then

we formulate the balance of linear momentum. Subsequently, in order to take into account the forces

acting within the continuum, we formulate the stress tensor. Using the balance of linear momentum and

the concept of stress, we derive Cauchy’s equations of motion. To obtain all fundamental equations that

relate the unknowns that appear in the equation of continuity and in Cauchy’s equations of motion, we also

invoke the balance of angular momentum. These three balance principles lead to a system of equations

that is associated with the propagation of deformations in an elastic continuum

2.1. Conservation of mass

2.1.1. Introductory comments. A fundamental principle in which our description of continuum me-

chanics must be rooted is the conservation of mass. We use this principle to derive an equation that relates

mass density, ρ, and displacement vector, u.

33
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Note that, in general, conservation principles are special cases of the corresponding balance principles.

Herein, discussing the balance of mass, we wish to emphasize that we do not consider production or de-

struction of mass and, hence, the total amount of mass is conserved. Discussing the balance of linear

momentum and the balance of angular momentum in Sections 2.4 and 2.7, respectively, we wish to em-

phasize that — for a given portion of continuum — the total amount of these momenta changes and these

changes are balanced by forces acting within the continuum.

2.1.2. Integral equation. The amount of mass, m, occupying a fixed volume, V , at an instant of time

is given by

(2.1.1) m (t) =
∫∫∫
V

ρ (x, t) dV ,

where ρ denotes mass density. The rate of change of mass contained in this volume is given by the

differentiation of equation (2.1.1) with respect to time; namely,

(2.1.2)
d
dt
m (t) =

d
dt

∫∫∫
V

ρ (x, t) dV .

Furthermore, for an arbitrary volume that is fixed, V , we can rewrite expression (2.1.2) as

(2.1.3)
d
dt
m (t) =

∫∫∫
V

∂ρ (x, t)
∂t

dV .

We can also express dm/dt in a different way. Since we assume that there is no production or destruction

of mass, the rate of change of mass contained in a fixed volume is only a function of the mass flowing

through this volume. In other words, the rate of change of mass contained in volume V is equal to the

amount of mass that passes through the surface, S, bounding this volume. This can be written as

(2.1.4)
d
dt
m (t) = −

∫∫
S

ρ (x, t) v · n dS,

where v represents the velocity of a portion of mass that passes through this surface, and where n denotes

an outward normal vector to this surface. The negative sign results from the fact that the vector normal to

the surface points away from volume V . Herein, we assume the element dS to be sufficiently small that it

might be considered as a plane and to have the same mass flow across all its points.

Expressions (2.1.3) and (2.1.4) describe the same quantity; namely,∫∫∫
V

∂ρ (x, t)
∂t

dV = −
∫∫
S

ρ (x, t) v · n dS,

which means that the rate of change of the amount of material inside a closed surface is equal to the net rate

with which this material flows through this surface. To combine expressions (2.1.3) and (2.1.4), we will

express the right-hand side of equation (2.1.4) as a volume integral. Invoking the divergence theorem —



2.1. CONSERVATION OF MASS 35

according to which the surface integral of vector field ρ (x, t) v (x) over a closed surface can be expressed

as the volume integral of the divergence of this vector field integrated over the volume enclosed by this

surface — we write

(2.1.5)
∫∫
S

ρv · n dS =
∫∫∫
V

∇ · (ρv) dV .

Equating the right-hand sides of equations (2.1.3) and (2.1.4), and using expression (2.1.5) in the latter

one, we obtain ∫∫∫
V

∂ρ

∂t
dV = −

∫∫∫
V

∇ · (ρv) dV ,

Combining the two volume integrals, we write

(2.1.6)
∫∫∫
V

[
∂ρ

∂t
+∇ · (ρv)

]
dV = 0,

which is a statement of the conservation of mass for a fixed volume V .

Note that in this derivation of equation (2.1.6), the change in the amount of mass in a volume at any

instant is balanced by the mass flowing through the surface that encloses this volume. Consequently,

considering a given volume, one could refer to equation (2.1.6) as a balance-of-mass equation rather than

a conservation-of-mass equation. However, as stated above, we choose to use only the latter term. Our

choice is also justified by the fact that discussing the balance of linear momentum and the balance of

angular momentum in Sections 2.4 and 2.7, respectively, we consider a moving volume that consistently

contains the same portion of the continuum, as discussed in Section 2.2; in such a case, there is no mass

flowing through the surface that encloses this moving volume. Recalling our discussion in Section 1.3, we

might note that for conservation of mass we used the spatial point of view, while for balances of linear and

angular momenta we will use the material point of view.

2.1.3. Equation of continuity. The equation of continuity is a differential equation expressing the

conservation of mass within the continuum. To derive the equation of continuity, consider integral equation

(2.1.6). For this equation to be true for an arbitrary fixed volume, the integrand must be identically zero.

Thus, we require

(2.1.7)
∂ρ

∂t
+∇ · (ρv) = 0.

Note that if there were a point where the integrand were nonzero, we could consider a sufficiently small

volume around that point. This would result in a nonzero value of the integral, as illustrated in Exercise

2.1.



36 2. FORCES AND BALANCE PRINCIPLES

Since v = ∂u/∂t, where u denotes the displacement vector, we can write equation (2.1.7) as

(2.1.8)
∂ρ

∂t
+∇ ·

(
ρ
∂u
∂t

)
= 0.

This is the equation of continuity.

Note that we could rewrite equation (2.1.8) as[
∂

∂t
,
∂

∂x1
,
∂

∂x2
,
∂

∂x3

]
· [ρ, ρu1, ρu2, ρu3] = 0,

where the differential operator is a divergence in the four-dimenional space-time. This is a typical form of

a fundamental conservation principle.1

2.2. Time derivative of volume integral

To derive the remaining two balance principles, namely, the balance of linear momentum and the balance

of angular momentum, we use the concept of the time derivative of a moving-volume integral, which is

associated with the conservation of mass. For this purpose, let us consider a moving volume that con-

sistently contains the same portion of the continuum. In other words, there is no mass transport through

the surface encompassing this volume. In such a case, the portion of the continuum possessing a given

velocity and acceleration is identifiable. Hence, such a description lends itself to a convenient extension

of particle mechanics and, therefore, allows us to use Newton’s laws of motion.

To consider the temporal variation of a physical quantity enclosed in a moving volume, we will study

(2.2.1)
d
dt

∫∫∫
V (t)

ρ (x, t)A (x, t) dV ,

where ρ is mass density, A is a scalar, a vector or a tensor that describes a physical quantity of interest,

while V (t) is a volume that varies with time but always contains the same portion of the continuum. The

temporal variation of A in V (t) can be also expressed in a different way; namely,

(2.2.2)
∫∫∫
V (t)

∂

∂t
(ρA) dV +

∫∫
S(t)

ρA
3∑
j=1

vjnjdS.

Herein, the volume integral describes the change of the amount of A due to its creation or destruction

within the volume, and the surface integral describes the net change of the amount of A due to its flow

across the surface; vj are the components of the velocity vector with which A flows across the surface

whose normal is n = [n1, n2, n3]. Since expressions (2.2.1) and (2.2.2) describe the same entity, we can

1Readers interested in fundamentals of conservation principles might refer to Bunge, M., (1967) Foundations of physics:
Springer-Verlag, pp. 47 – 51.
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equate them to write

(2.2.3)
d
dt

∫∫∫
V (t)

ρ (x, t)A (x, t) dV =
∫∫∫
V (t)

∂

∂t
(ρA) dV +

∫∫
S(t)

ρA
3∑
j=1

vjnjdS,

and proceed to express the right-hand side in terms of volume integrals.

Note that the above formulation is analogous to the one presented in Section 2.1. Expressions (2.2.1)

and (2.2.2) are analogous to expressions (2.1.2) and (2.1.4), respectively. The key difference between

expressions (2.1.4) and (2.2.2) is the the appearance of
∫∫∫

V (t) ∂ (ρA) /∂tdV in the latter one, which is

due to the fact that, although mass cannot be created or destroyed in classical physics, no such restriction

governs quantity A.

To express the right-hand side in terms of volume integrals, we invoke the divergence theorem to write

equation (2.2.3) as

d
dt

∫∫∫
V (t)

ρAdV =
∫∫∫
V (t)

∂

∂t
(ρA) dV +

∫∫∫
V (t)

3∑
j=1

∂ (ρAvj)
∂xj

dV .

Differentiating and rearranging, we get

d
dt

∫∫∫
V (t)

ρAdV =
∫∫∫
V (t)

{
ρ

(
∂A
∂t

+ v · ∇A
)

+A
[
∂ρ

∂t
+∇ · (ρv)

]}
dV .

We note that the term in brackets vanishes due to equation of continuity (2.1.7). Thus, we write

d
dt

∫∫∫
V (t)

ρAdV =
∫∫∫
V (t)

ρ

(
∂A
∂t

+ v · ∇A
)

dV ,

which can be restated as

(2.2.4)
d
dt

∫∫∫
V (t)

ρAdV =
∫∫∫
V (t)

ρ

(
∂

∂t
+ v · ∇

)
AdV .

In view of expression (1.3.5), we note that the operator in parentheses in expression (2.2.4) is the material

time-derivative operator acting on A (x, t), namely, dA (X, t) /dt, where A is the material description of

A. In accordance with the linearization discussed in Section 1.3.3, we let A (X, t) be approximated by

A (x, t). Hence, we obtain

(2.2.5)
d
dt

∫∫∫
V (t)

ρ (x, t)A (x, t) dV =
∫∫∫
V (t)

ρ (x, t)
DA (x, t)

Dt
dV,

which is the desired result. Symbol D/Dt on the right-hand side denotes the material time-derivative oper-

ator. Also, we can view the time derivative of a moving-volume integral as a case of Leibniz’s integration

rule, as illustrated in Exercise 2.3.
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2.3. Stress

2.3.1. Stress as description of surface forces. We wish to analyze the internal forces acting among

the adjacent material elements within the continuum. For this purpose, we introduce the concept of stress.

The concept of stress sets continuum mechanics apart from particle mechanics. Stress, as a mathematical

entity, was introduced by Cauchy in 1827 to express the interaction of a material with the surrounding

material in terms of surface forces.2

When a material is subjected to loads, internal forces are induced within it. Deformation of this material

is a function of the distribution of these forces. In a continuum, stress is associated with internal surface

forces that an element of the continuum exerts on another element of the continuum across an imaginary

surface that separates them. Stress is a system of surface forces producing strain within a continuum. Ow-

ing to the mutual dependence of stress and strain, strains cannot be produced without inducing stresses, and

stresses cannot be induced without producing, or tending to produce, strains. This interrelation between

stress and strain is an intrinsic property of the elasticity theory.

2.3.2. Traction. As a result of forces being transmitted within the continuum, the portion of the

continuum enclosed by an imaginary surface interacts with the portion of the continuum outside of this

surface, as discussed on page 11. Let ∆F be the force exerted on the surface element ∆S by the continuum

on either side of this surface. The average force per unit area can be written in terms of the ratio given by

(2.3.1) T̄ =
∆F
∆S

.

Cauchy’s stress principle — the fundamental principle of continuum mechanics stated on page 11 —

implies that as ∆S → 0, ratio (2.3.1) tends to a finite limit.3 The resulting traction vector is given by

(2.3.2) T(n) = lim
∆S→0

∆F
∆S

=
dF
dS

,

where the superscript, n, specifies the surface element, ∆S, upon which the traction is acting by stating

unit vector n that is normal to this surface element. Thus, traction is a vector that describes the contact

force with which the elements at each side of an internal surface within the continuum act upon each other.

Since the value of traction is finite even if the element of the surface area becomes infinitesimal, we can

describe forces at any given point within the continuum. Also, since the traction is explicitly dependent

on the orientation of the surface element, as indicated by vector n, we can describe forces in any given

direction within the continuum. Consequently, we can study both inhomogeneity and anisotropy of the

continuum.

2Interested readers might refer to Cauchy, A. L., (1827) De la pression ou tension dans un corps solide: Ex. de Math, 2, pp.
42 – 56.

3Interested readers might refer to Malvern, L.E., (1969) Introduction to the mechanics of a continuous medium: Prentice-
Hall, p. 70.
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2.4. Balance of linear momentum

In general, the forces acting within a continuum are classified as either surface forces or body forces

according to their mode of application. Surface forces are transmitted by direct mechanical contacts across

imaginary surfaces separating given portions of the continuum. Body forces, such as gravitational force,

are assumed to behave as an action-at-a-distance, which is the instantaneous action between two bodies

in spatial separation. In general, this is not the case, as illustrated by the electromagnetism or general

relativity.

Consider a portion of a continuum contained in volume V and subjected to time-varying and space-varying

forces. The surface forces are given as the traction vector shown in expression (2.3.2); namely,

T =
dF
dS

,

and the body forces are given by

f = f (x, t) .

Consequently, the total force is

(2.4.1) FT =
∫∫
S

T dS +
∫∫∫
V

f dV ,

where S is the surface enclosing volume V .

Note that T and f have units of force per area and force per volume, respectively. Hence, both integrals

have units of force, as required.

To study the effect of this force, we choose to consider a moving volume that consistently contains the

same portion of the continuum. Hence, invoking Newton’s second law of motion, we can write

(2.4.2)
d
dt

∫∫∫
V (t)

ρ
du
dt

dV =
∫∫
S(t)

T dS +
∫∫∫
V (t)

f dV ,

where the displacement,

(2.4.3) u = [u1 (x, t) , u2 (x, t) , u3 (x, t)] ,

is a function of both space and time. This integral equation states the balance of linear momentum: The

rate of change of the linear momentum of an element within the continuum is equal to the sum of the

external forces acting upon this element. This statement is analogous to Newton’s second law of motion

in particle mechanics.

To see this analogy, let us consider a system of n particles whose masses are mi. For such a system, we

can write Newton’s second law of motion as

(2.4.4)
d
dt

n∑
i=1

mi
dxi
dt

=
n∑
i=1

Fi +
n∑
i=1

n∑
j=1

Fji.
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The sum on the left-hand side is the linear momentum of the system of particles. The first sum on the

right-hand side denotes the external forces acting on the particles of the system. The second sum on the

right-hand side denotes the internal forces among the particles of the system; Fji is the force on the the

ith particle due to the jth particle. Since i and j are summation indices, we can rewrite the second sum on

the right-hand side as
1
2

n∑
i=1

n∑
j=1

(Fji + Fij) .

Now, let us invoke Newton’s third law of motion: Forces between particles are equal in magnitude and

opposite in direction, Fji = −Fij . Also, in classical mechanics, it is assumed — though seldom explicitly

stated — that a point particle exerts no force on itself, only on other particles; thus, Fii = 0. Consequently,

the double sum vanishes and, hence, we can write Newton’s second law of motion for a system of particles

as
d
dt

n∑
i=1

mi
dxi
dt

=
n∑
i=1

Fi.

In other words, only the external forces affect the change of linear momentum. This means that the system

itself cannot change its own linear momentum. In equation (2.4.2), the external forces are T and f ; these

forces are external to the portion of a continuum contained in volume V .

Also, in applying Newton’s third law of motion, we assume that the two particles remain in constant

contact.4 This assumption allows us to avoid the physically undesirable concept of action-at-a-distance.

Let us return to equation (2.4.2). Invoking expression (2.2.5) and letting A = du/dt, we can rewrite

equation (2.4.2) as

(2.4.5)
∫∫∫
V (t)

ρ
d2u
dt2

dV =
∫∫
S(t)

T dS +
∫∫∫
V (t)

f dV .

Herein, d2/dt2 is the material time-derivative operator, which is shown in expression (1.3.5). One could

rewrite equations (2.4.2) and (2.4.5) using D/Dt rather than d/dt inside the volume integrals. For the

purpose of this book, we choose to use the more familiar notation, and to explicitly state the material

time-derivative operator every time it is invoked.

In Section 2.5.2, we will use the balance of linear momentum to formulate the stress tensor. In Section 2.6,

following the formulation of the stress tensor, we will use equation (2.4.5) to derive Cauchy’s equations of

motion.

4Readers interested in an insightful explanation for the requirement of the constant contact might refer to Schutz, B., (2003)
Gravity from the ground up: Cambridge University Press, p. 12.
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2.5. Stress tensor

2.5.1. Traction on coordinate planes. We wish to describe the state of stress at a given point in a

continuum. At an arbitrary point within a continuum, Cauchy’s stress principle associates a traction and

a unit normal of a surface element on which this vector is acting. Consider a fixed coordinate system

with the orthonormal vectors given by e1, e2 and e3. The traction acting on the ith coordinate plane is

represented by a vector, which can be written as

T(ei) = T
(ei)
1 e1 + T

(ei)
2 e2 + T

(ei)
3 e3,

where T (ei)
j are the components of this vector along the xj-axis. At a given point, the three tractions

associated with the three mutually orthogonal planes can be explicitly written as three vectors given by

(2.5.1)

 T(e1)

T(e2)

T(e3)

 =

 T
(e1)
1 T

(e1)
2 T

(e1)
3

T
(e2)
1 T

(e2)
2 T

(e2)
3

T
(e3)
1 T

(e3)
2 T

(e3)
3


 e1

e2

e3

 .

Considering the traction components shown in the 3 × 3 matrix, we see that the subscript refers to the

component of a given traction, while the superscript identifies the plane on which this traction is acting.

For instance, T (e1)
2 is the x2-component of a traction acting on the plane normal to the x1-axis. For

convenience, we write the square matrix in equations (2.5.1) as

(2.5.2) σ =

 σ11 σ12 σ13

σ21 σ22 σ23

σ31 σ32 σ33

 .

By examining expressions (2.5.1) and (2.5.2), we immediately see that σij represents the jth component of

the surface force acting on the surface whose normal is parallel to the xi-axis. This index convention, which

allows us to describe the direction of the force and the orientation of the surface on which it is acting, is also

illustrated in Figure 2.5.1.5 We also wish to distinguish between tension and compression for the traction

components normal to a given face, as well as denote the direction of the traction components tangential to

a given face. For this purpose, we adopt the following sign convention. On a surface whose outward normal

points in the positive direction of the corresponding coordinate axis, all traction components that act in the

positive direction of a given axis are positive. On a surface whose outward normal points in the negative

direction of the corresponding coordinate axis, all traction components that act in the negative direction

of a given axis are positive. This convention applies to both the normal and the tangential components.

Examining Figure 2.5.1, we see that all the traction components on each of the six faces illustrated therein

5This index convention is consistent with Malvern, L.E., (1969) Introduction to the mechanics of a continuous medium:
Prentice-Hall, p. 80, and with Aki, K., and Richards, P.G., (2002) Quantitative seismology (2nd edition): University Science
Books, pp. 17 – 18.

One can also use the opposite convention; for instance, Kolsky, H., (1953/1963) Stress waves in solids: Dover, p. 5, and Sheriff,
R.E., and Geldart, L.P., (1982) Exploration Seismology: Cambridge University Press, Vol. I, p. 33.
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FIGURE 2.5.1. Index convention for σij components: Symbol σij represents the jth com-
ponent of the surface force acting on the surface whose normal is parallel to the xi-axis.
All components shown herein are positive.

are positive. In the context of the normal components, our sign convention implies that tension is positive

while compression is negative.6

Note that, if we wished, we could reverse our sign convention without affecting Newton’s third law of

motion. In other words,

(2.5.3) T(n) = −T(−n)

is always true; herein, T(n) is due to the force acting on the plane whose outward normal is n, and−T(−n)

is due to the force acting on the other side of this plane.

As formulated herein, the entries of matrix (2.5.2) determine the stress state within a continuum at a given

point with respect to the coordinate planes. As shown in Section 2.5.2, these entries can also be used to

describe the stress state with respect to an arbitrary plane within the continuum.

2.5.2. Traction on arbitrary planes. To study forces within the continuum, we wish to describe

them with respect to a plane of arbitrary orientation. For this purpose, consider an element of a continuum

in the form of a tetrahedron; such a construction is also called Cauchy’s tetrahedron. Let the tetrahedron be

spanned by four points O (0, 0, 0), A (a, 0, 0), B (0, b, 0) and C (0, 0, c), as shown in Figure 2.5.2. Thus,

6This sign convention is consistent with Aki, K. and Richards, P.G., (2002) Quantitative seismology (2nd edition): University
Science Books, p. 15.
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the four faces of the tetrahedron consist of the oblique face, namely, ABC, and of three orthogonal faces,

namely, OAB, OBC and OAC.

We seek to determine the force, ∆F, acting on the oblique face whose area is ∆S and whose unit normal

is n.

The key statement of this derivation relies on the balance of linear momentum, discussed in Section 2.4,

and the fact that the tetrahedron is subjected to both surface and body forces. In view of equation (2.4.5),

for a finite-size tetrahedron, we can write

(2.5.4) ∆F + ∆F(e1) + ∆F(e2) + ∆F(e3) + f̄∆V = ρ̄∆V
dv̄
dt

,

where ∆F is the surface force acting on the oblique face, ∆F(ei) is the surface force acting on the or-

thogonal face normal to the xi-axis, and f̄ refers to the body force acting on the tetrahedron with volume

∆V and mass density ρ̄. Thus, the left-hand side of equation (2.5.4) gives the sum of forces, while the

right-hand side gives the rate of change of linear momentum with v̄ denoting velocity. The bars above a

given symbol denote the average value of the corresponding quantity for this finite-size tetrahedron.

In view of expression (2.3.1), we can write

(2.5.5) ∆F = T̄(n)∆S.

Using expressions (2.5.3) and (2.5.5), we can rewrite equation (2.5.4) as

(2.5.6) T̄(n)∆S − T̄(e1)∆S1 − T̄(e2)∆S2 − T̄(e3)∆S3 + f̄∆V = ρ̄∆V
dv̄
dt

,

where ∆S is the area of the oblique face and ∆Si is the area of an orthogonal face normal to the xi-axis.

In equation (2.5.6), T̄(·) is a resultant traction that corresponds to a given face. Note that the orthogonal

faces have unit outward normals parallel and opposite in sign to the unit vectors of the coordinate axes, ei.

Hence, in view of Newton’s third law, we introduced the negative signs in the summation.

The surface forces, which are used in equation (2.5.6), are illustrated in Figure 2.5.2.

To study equation (2.5.6), we wish to geometrically relate the surface areas of the tetrahedron, ∆S and

∆Si, where i ∈ {1, 2, 3}, and its volume, V .The areas of the orthogonal faces are

(2.5.7) ∆Si = ni∆S, i ∈ {1, 2, 3} ,

where ni are the components of the unit vector, n, which is normal to the oblique face. Using expression

(2.5.7), we can rewrite equation (2.5.6) as

(2.5.8) T̄(n)∆S − T̄(e1)n1∆S − T̄(e2)n2∆S − T̄(e3)n3∆S + f̄∆V = ρ̄∆V
dv̄
dt

.
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FIGURE 2.5.2. Cauchy’s tetrahedron: Tetrahedron used in the formulation of the stress tensor

Now, we wish to relate the volume, ∆V , to the area of the oblique face, ∆S. Considering the oblique face

as the base of the tetrahedron, we can state its volume as

(2.5.9) ∆V =
h

3
∆S,

where h is the height of the tetrahedron. Hence, using expression (2.5.9), we can rewrite equation (2.5.8)

as

(2.5.10) T̄(n)∆S − T̄(e1)n1∆S − T̄(e2)n2∆S − T̄(e3)n3∆S +
f̄h
3

∆S =
ρ̄h

3
∆S

dv̄
dt

.

Dividing both sides of equation (2.5.10) by ∆S, we obtain

(2.5.11) T̄(n) − T̄(e1)n1 − T̄(e2)n2 − T̄(e3)n3 +
f̄h
3

=
ρ̄h

3
dv̄
dt

.

To describe the state of stress at a point within the continuum, we let h→ 0 in such a way that the areas of

all faces simultaneously approach zero, the orientation of the height, h, does not change, and the origin of

the coordinate system does not move. In other words, the finite-size tetrahedron reduces to an infinitesimal

tetrahedron at point O (0, 0, 0). Thus, we obtain

(2.5.12) T(n) = T(e1)n1 + T(e2)n2 + T(e3)n3.

Note that in equation (2.5.12), the tractions no longer correspond to the average values but to the local

values at point O (0, 0, 0). This also implies that equation (2.5.12) is valid for any coordinate system.
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Equation (2.5.12) can be viewed as an equilibrium equation of an infinitesimal element within the con-

tinuum. Note, however, that the derivation of this equation stems from the balance of linear momentum

without a priori assuming such an equilibrium.7

Expressing the orthogonal-face tractions in terms of their components, equation (2.5.12) can be explicitly

written as

T(n) =

 T
(e1)
1

T
(e1)
2

T
(e1)
3

n1 +

 T
(e2)
1

T
(e2)
2

T
(e2)
3

n2 +

 T
(e3)
1

T
(e3)
2

T
(e3)
3

n3

=

 T
(e1)
1 T

(e2)
1 T

(e3)
1

T
(e1)
2 T

(e2)
2 T

(e3)
2

T
(e1)
3 T

(e2)
3 T

(e3)
3


 n1

n2

n3

 .(2.5.13)

Equation (2.5.13) states that, at a given point, we can determine traction T(n) that acts on an arbitrary plane

through that point, provided we know the tractions at this point that act on the three mutually orthogonal

planes. Examining expressions (2.5.1) and (2.5.13), we conclude that

(2.5.14) T(n) = σTn,

where σ is given in expression (2.5.2) and T denotes transpose. In the context of an arbitrary plane, we see

that the entries of matrix σ are the components of a second-rank tensor. The fact that σ is a second-rank

tensor is shown in Exercise 2.4.

Tensor σij is called the stress tensor. This tensor is also known as Cauchy’s stress tensor. The stress tensor

allows us to determine the stress state associated with an infinitesimal plane of arbitrary orientation. The

stress tensor takes into account both the direction of the traction and the orientation of the surface upon

which the traction is acting.

In view of expression (2.5.2), we can rewrite equation (2.5.14) as

T(n) =

 σ11 σ21 σ31

σ12 σ22 σ32

σ13 σ23 σ33


 n1

n2

n3

 ,

which can be concisely stated as

(2.5.15) T
(n)
i =

3∑
j=1

σjinj , i ∈ {1, 2, 3} .

Expression (2.5.15) is an important statement of elasticity theory in the context of continuum mechanics.

It relates the components of forces acting within the continuum to the orientation of the plane upon which

7Readers interested in the theorem relating the stress tensor and the balance of linear momentum might refer to Marsden,
J.E., and Hughes, T.J.R., (1983/1994) Mathematical foundations of elasticity: Dover, pp. 132 – 135.
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the forces are acting. In other words, two vectorial properties, namely, traction, T(n), and surface-normal

vector, n, are uniquely related by the stress tensor, σij . The derivation performed in this section shows that

in order to describe a traction related to an arbitrary plane, it is enough to consider tractions on three planes

with linearly independent normals. The main-diagonal entries describe the components acting along the

surface-normal vector. Hence, in view of the sign convention stated on page 41, if σii is positive, it is a

tensile component; if it is negative, it is a compressional component. The nondiagonal entries describe

shear components.8

2.6. Cauchy’s equations of motion

2.6.1. General formulation. In order to formulate the equations of motion, we consider the balance

of linear momentum and the concept of the stress tensor.

In view of expression (2.5.15), we can write the balance of linear momentum, stated in equation (2.4.5),

in terms of components, as∫∫∫
V (t)

ρ
d2ui
dt2

dV =
∫∫
S(t)

3∑
j=1

σjinj dS +
∫∫∫
V (t)

fi dV , i ∈ {1, 2, 3} .

In this integral equation, we wish to express all integrals as volume integrals. Hence, invoking the diver-

gence theorem, we can write∫∫∫
V (t)

ρ
d2ui
dt2

dV =
∫∫∫
V (t)

3∑
j=1

∂σji
∂xj

dV +
∫∫∫
V (t)

fi dV , i ∈ {1, 2, 3} .

Using the linearity of the integral operator, we can rewrite this equation as

(2.6.1)
∫∫∫
V (t)

 3∑
j=1

∂σji
∂xj

+ fi − ρ
d2ui
dt2

 dV = 0, i ∈ {1, 2, 3} ,

which states the balance of linear momentum, as long as the portion of the continuum contained in volume

V (t) remains the same.

To derive Cauchy’s equations of motion, consider equation (2.6.1). For this integral equation to be satisfied

for an arbitrary volume that contains the same portion of the continuum, the integrand must be identically

zero. Thus, we require

(2.6.2)
3∑
j=1

∂σji
∂xj

+ fi = ρ
d2ui
dt2

, i ∈ {1, 2, 3} .

8Readers interested in formulation of the stress tensor as a generalization of the concept of hydrostatic pressure might refer
to Synge, J.L., and Schild, A., (1949/1978) Tensor calculus: Dover, pp. 205 – 208.
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In view of equation (2.4.5), d2/dt2 refers to the material time-derivative operator. However, in this book,

as discussed in Section 1.3.3, we use the linearized formulation and we can rewrite equations (2.6.2) as9

(2.6.3)
3∑
j=1

∂σji
∂xj

+ fi = ρ
∂2ui
∂t2

, i ∈ {1, 2, 3} .

These are Cauchy’s equations of motion. As shown in Exercise 2.6, the SI units of Cauchy’s equations of

motion are N/m3.10 These equations are also known as Cauchy’s first law of motion.11

Cauchy’s equations of motion relate two vectorial quantities, namely, the surface force — which corre-

sponds to the summation term defining the divergence of tensor σji — and the body force, to the accelera-

tion vector. In other words, Cauchy’s equations of motion state that the acceleration of an element within

a continuum results from the application of surface and body forces.

If the acceleration term vanishes in equations of motion (2.6.3), we obtain the equations of static equilib-

rium,

(2.6.4)
3∑
j=1

∂σji
∂xj

+ fi = 0, i ∈ {1, 2, 3} .

These equations describe the equilibrium state of an element of the continuum arising from the application

of forces whose resultant is zero. Equations (2.6.4) are used to illustrate the symmetry of the stress tensor,

as shown in Exercise 2.7. Equations (2.6.4) are also valid for rectilinear, constant-velocity motion.

Consider a system composed of equation of continuity (2.1.8) and Cauchy’s equations of motion (2.6.3) in

a three-dimensional continuum. This system contains four equations and sixteen unknowns, namely, mass

density, ρ, stress-tensor components, σ11, σ12, σ13, σ21, σ22, σ23, σ31, σ32, σ33, body-force components,

f1, f2, f3, and displacement-vector components, u1, u2, u3.

Note that if we consider conservative systems, the three body-force components are derived from a single

scalar function. In other words, f = ∇U (x).

In our subsequent studies, we will reduce the discrepancy between the number of equations and the number

of unknowns. In Section 2.7, we will show that the stress tensor is symmetric, which results in only six

independent stress-tensor components. Also, we will ignore the body force, f = [f1, f2, f3], for the

following two reasons.

9Readers interested in this approximation might refer to Grant, F.S., and West, G.F., (1965) Interpretation theory in applied
geophysics: McGraw-Hill Inc., pp. 28 – 29, and to Graff, K.F., (1975/1991) Wave motion in elastic solids: Dover, pp. 586 – 587.

10Readers interested in formulation of Cauchy’s equations of motion as a generalization of equations of motion for a perfect
fluid might refer to Synge, J.L., and Schild, A., (1949/1978) Tensor calculus: Dover, p. 208.

11Readers interested in an insightful interpretation of Cauchy’s first law of motion might refer to Bunge, M., (1967) Founda-
tions of physics: Springer-Verlag, pp. 152 – 154.
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The body force is irrelevant when we consider an infinitesimal element of the continuum, as we do in

Part 1. We can see this in view of the tetrahedron argument, discussed in Section 2.5.2; in particular, by

examining the step between equations (2.5.11) and (2.5.12).

The effects of the body forces are negligible as compared to the effects of the surface forces if we consider

sufficiently high frequencies, which is the case of applied seismology discussed in Part 2 and Part 3. In

other words, the effects of gravitation are negligible as compared to the effects of elasticity.12

2.6.2. Example: Surface-forces formulation. To gain insight into the equations of motion without

body forces, we rederive equations (2.6.3) without using the divergence theorem, which relates surface

and volume integrals.

Consider the force acting in the positive direction of the x1-axis on each coordinate plane. In view of

definition (2.3.2), we can write the force acting along the x1-axis as

(2.6.5) T
(e1)
1 dx2dx3 + T

(e2)
1 dx1dx3 + T

(e3)
1 dx1dx2,

where ei denotes the unit normal to the coordinate plane on which T (ei)
1 is acting, and dxjdxk is the

surface area of this planar element. Following expression (2.5.2), expression (2.6.5) can be rewritten as

(2.6.6) σ11 dx2dx3 + σ21 dx1dx3 + σ31 dx1dx2.

Now, consider a small rectangular box subjected to stresses. Let the rectangular box be spanned by dx1,

dx2 and dx3, with its sides being parallel to the orthonormal coordinate axes.

Consider the force acting in the positive direction of the x1-axis on each face of the rectangular box. The

resultant force along the x1-axis is a sum of forces acting on the three sets of the parallel faces of the

rectangular box. Within each set, the two parallel faces are separated by a distance dxi. By convention,

stated in Section 2.5.1, a stress component is positive if it acts in the positive direction of the coordinate

axis and on the plane whose outward normal points in the positive coordinate direction. For each set of

the two parallel faces of the aforementioned rectangular box, one face exhibits an outward normal that

points in the positive coordinate direction while the other face exhibits an outward normal that points in

the negative coordinate direction. Thus, in view of expression (2.6.6), we can write the resultant force

12Readers interested in the effect of gravitation on seismic wave propagation might refer to Udías, A., (1999) Principles of
seismology: Cambridge University Press, pp. 39 – 40.

Let us note here that term ’gravity’ is often used carelessly. One should use ’gravitation’ to refer to the universal attraction
between masses, and ’gravity’ to refer to the downward acceleration experienced by a mass at rest in a reference frame rotating
with the Earth; gravity is the vector resultant of gravitation and centrifugal force.
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FIGURE 2.6.1. Surface forces: Two forces acting along the x1-axis on faces that are
normal to it

along the x1-axis as

dF1 =
[(
σ11 +

∂σ11

∂x1
dx1

)
dx2dx3 + (−σ11 dx2dx3)

]
(2.6.7)

+
[(
σ21 +

∂σ21

∂x2
dx2

)
dx1dx3 + (−σ21 dx1dx3)

]
+
[(
σ31 +

∂σ31

∂x3
dx3

)
dx1dx2 + (−σ31 dx1dx2)

]
,

which, for a given direction, contains all six separate forces acting on all the faces of the rectangular

box. The expressions in brackets correspond to the sum of the two forces along the x1-axis acting on

faces orthogonal to the x1-axis, the x2-axis, and the x3-axis, respectively. In other words, the first bracket

denotes a sum of the two forces acting along the x1-axis on the faces normal to it, as shown in Figure

2.6.1, while the second and the third brackets denote the sums of forces acting along the x1-axis on the

faces parallel to it.

Note that, in view of terms σi1 + (∂σi1/∂xi) dxi, expression (2.6.7) is a first-order approximation. This

approximation is consistent with our study in the context of linearized theory.

Expression (2.6.7) immediately simplifies to

(2.6.8) dF1 =
(
∂σ11

∂x1
+
∂σ21

∂x2
+
∂σ31

∂x3

)
dx1dx2dx3.

Invoking Newton’s second law of motion in the form given by

dF1 = ρdx1dx2dx3
d2u1

dt2
,

where ρ is the mass density of the small rectangular box and u1 is the displacement in the x1-direction, we

can write expression (2.6.8) as

(2.6.9) ρ
d2u1

dt2
=
∂σ11

∂x1
+
∂σ21

∂x2
+
∂σ31

∂x3
.
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Analogously, for the displacement-vector component along the x2-axis and the displacement-vector com-

ponent along the x3-axis, we can write

(2.6.10) ρ
d2u2

dt2
=
∂σ12

∂x1
+
∂σ22

∂x2
+
∂σ32

∂x3

and

(2.6.11) ρ
d2u3

dt2
=
∂σ13

∂x1
+
∂σ23

∂x2
+
∂σ33

∂x3
,

respectively.

In view of linearization discussed in Section 1.3.3, total derivatives with respect to time are equivalent

to partial derivatives. Consequently, expressions (2.6.9), (2.6.10) and (2.6.11) are equivalent to Cauchy’s

equations of motion (2.6.3) with no body forces.

2.7. Balance of angular momentum

2.7.1. Introductory comments. Above we postulated that the continuum obeys the conservation of

mass and the balance of linear momentum. In this section, we will formulate the balance of angular

momentum in the context of the conservation of mass, the balance of linear momentum and Newton’s third

law of motion. To obtain the balance of angular momentum, we use the fact that the time rate of change of

angular momentum for a given system is equal to the vector sum of the torques due to the external forces

acting on that system. This property allows us to study the behaviour of a system without investigating

the details of its internal behaviour. In the context of particle mechanics, we can formulate such a system

by assuming that each two particles act on one another with forces of equal magnitude that are collinear

and have opposite directions; such forces are called the central forces. In view of this assumption, all the

internal forces within the system cancel out, which means that the system cannot change its own angular

momentum.

To see this formulation in the context of particle mechanics, let us return to the Newton’s second law of

motion for a system of particles as stated by equation (2.4.4). Multiplying both sides by vector ri, which

is the vector between a reference point and the ith particle, we get

d
dt

n∑
i=1

ri ×mi
dxi
dt

=
n∑
i=1

ri × Fi +
n∑
i=1

n∑
j=1

ri × Fji.

The sum on the left-hand side is the angular momentum of the system of n particles. The first sum on the

right-hand side is the torque on the system due to external forces. The second sum on the right-hand side

is the torque due to the forces within the system. In a manner analogous to the one used in Section 2.4, we

wish to eliminate the second sum. Since i and j are summation indices, we can rewrite the double sum as
n∑
i=1

n∑
j=1

ri × Fji =
1
2

n∑
i=1

n∑
j=1

(ri × Fji + rj × Fij) .
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Invoking Newton’s third law of motion, Fji = −Fij , together with Fii = 0, we can rewrite this sum as
n∑
i=1

n∑
j=1

ri × Fji =
1
2

n∑
i=1

n∑
j=1

[(ri − rj)× Fji] .

Since ri is the vector between the reference point and the ith particle while rj is the vector between the

reference point and the jth particle, ri− rj is the vector between the two particles. For this sum to vanish,

we require that ri − rj be parallel to Fji. This means that we require the forces between the particles to

be central forces.13 This formulation relies on the strong form of Newton’s third law of motion: Forces

between particles are equal in magnitude and opposite in direction as well as act along the line joining the

particles. Notably, the particle-mechanics analogue that we used in Section 2.4 for the balance of linear

momentum required only the weak form of Newton’s third law of motion; the forces are not required to

act along the line joining the particles. Herein, in view of the strong form of Newton’s third law of motion,

we write the balance of angular momentum for the system of particles as

(2.7.1)
d
dt

n∑
i=1

ri ×mi
dxi
dt

=
n∑
i=1

ri × Fi.

We will also use the strong form of Newton’s third law of motion for a continuum. This means that

for our formulation we will consider only central forces; we will not consider couple stresses within the

continuum.14

2.7.2. Integral equation. Considering only the central forces acting within the continuum, we can

state the balance of angular momentum as

(2.7.2)
d
dt

∫∫∫
V (t)

(
x× ρdu

dt

)
dV =

∫∫
S(t)

(x×T) dS +
∫∫∫
V (t)

(x× f) dV ,

where V (t) is a volume that moves while always containing the same portion of the continuum and S (t)

is the surface enclosing this volume.15 In other words, the rate of change of the angular momentum of

an element within the continuum is equal to the sum of torques acting upon this element. The integrand

on the left-hand side is the angular momentum, namely, the vector product of the distance, x, between a

reference point and the element of the continuum with the linear-momentum density, ρdu/dt. The first

13Readers interested in more details of such formulations in the context of particle mechanics might refer to Doran, C., and
Lasenby, A., (2003) Geometric algebra for physicists, Cambridge University Press, pp. 57 – 61, Feynman, R.P., Leighton, R.B.,
and Sands, M., (1963/1989) Feynman’s lectures on physics: Addison-Wesley Publishing Co. Vol. I, p. 18-7, to Goldstein, H.,
(1950/1980) Classical mechanics: Addison-Wesley Publishing Co. pp. 5 – 9, and to Radin, S.H., and Folk, R.T., (1982) Physics
for scientists and engineers: Prentice-Hall, Inc., pp. 156 – 159, 164.

Readers interested in a formulation that invokes Lagrange’s equations of motion, which we will discuss in Section 13.2, might
refer to Landau, L.D., and Lifshitz, E.M., (1969) Course of theoretical physics, Vol. 1: Mechanics: Elsevier, pp. 18 – 19. Therein,
the balance of angular momentum is derived as a fundamental consequence of the inertial frame of reference.

14Readers interested in a description of couple stresses might refer to Malvern, L.E., (1969) Introduction to the mechanics of
a continuous medium: Prentice-Hall, pp. 215 – 220.

15Readers interested in the balance of angular momentum that includes couple stresses might refer to Malvern, L.E., (1969)
Introduction to the mechanics of a continuous medium: Prentice-Hall, pp. 218 – 219.
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integrand on the right-hand side is the vector product of this distance and force per unit area, T, associated

with this element, while the second integrand on the right-hand side is the vector product of that distance

and force per unit volume, f , associated with this element.

This integral equation states the balance of angular momentum: The rate of change of the angular momen-

tum of an element within the continuum is equal to the sum of torques due to the external forces acting

upon this element. x×T and x× f in equation (2.7.2) are torque densities per unit area and unit volume,

respectively; the forces, T and f , causing the torques are external to the portion of the continuum contained

in volume V . The sum of the two integrals on the right-hand side of equation (2.7.2) is analogous to the

sum on the right-hand side in equation (2.7.1).

The balance of angular momentum stated in equation (2.7.2) is valid only for the strong form of Newton’s

third law of motion.

Note that we have arrived at the balance of angular momentum as a consequence of the conservation of

mass, balance of linear momentum and the strong form of Newton’s third law of motion. It is worth noting

that one could adopt the balance of angular momentum as an independent postulate.

2.7.3. Symmetry of stress tensor. Considering the conservation of mass and the balance of linear

momentum — together with the balance of angular momentum under the assumption of only central forces

acting within the continuum — we obtain an important consequence of these laws: The stress tensor is

symmetric. In deriving the equations resulting from the balance of angular momentum, we will implicitly

use the conservation of mass — by invoking time derivative of volume integral — and explicitly use the

balance of linear momentum.

THEOREM 2.7.1. Consider a linearized formulation of displacement and its associated quantities in a

three-dimensional continuum. Let the principles of the conservation of mass and the balance of linear

momentum hold. Then, the balance of angular momentum stated in expression (2.7.2) holds if

σij = σji,

where i, j ∈ {1, 2, 3}.

NOTATION 2.7.2. The repeated-index summation notation is used in this proof. Any term in which an

index appears twice stands for the sum of all such terms as the index assumes values 1, 2 and 3.

The time-derivative operators, d/dt, inside the volume integrals are the material time-derivative operators.

PROOF. Since ρ is a scalar, we can rewrite expression (2.7.2) as

(2.7.3)
d
dt

∫∫∫
V (t)

[
ρ

(
x× du

dt

)]
dV =

∫∫
S(t)

(x×T) dS +
∫∫∫
V (t)

(x× f) dV .
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Invoking the time derivative of a moving-volume integral, which is given by expression (2.2.5) and where

we let A = x×du/dt, we can restate expression (2.7.3) as

(2.7.4)
∫∫∫
V (t)

ρ

(
x× d2u

dt2

)
dV =

∫∫
S(t)

(x×T) dS +
∫∫∫
V (t)

(x× f) dV .

In view of the linearized formulation discussed in Section 1.3.3, we can rewrite expression (2.7.4) as

(2.7.5)
∫∫∫
V (t)

ρ

(
x× ∂2u

∂t2

)
dV =

∫∫
S(t)

(x×T) dS +
∫∫∫
V (t)

(x× f) dV .

Using the stress tensor given in expression (2.5.14), invoking the divergence theorem, and requiring ex-

pression (2.7.5) to be valid for an arbitrary volume that consistently contains the same portion of the

continuum, we obtain the differential equation given by

(2.7.6) ρ

(
x× ∂2u

∂t2

)
= ∇ ·

(
x× σT

)
+ x× f ,

where T denotes transpose. Consider the first term on the right-hand side in equation (2.7.6). The expres-

sion in parentheses is a second-rank tensor whose ilth component can be written as(
x× σT

)
il

=εijkxjσlk, i, l ∈ {1, 2, 3} ,

where εijk is the permutation symbol and where we reversed the subscripts of the stress tensor to consider

its transpose. Taking the ith component of the divergence and using the product rule, we obtain[
∇ ·
(
x× σT

)]
i

=
∂

∂xl
(εijkxjσlk)

=
(
x×∇ · σT

)
i
+ εijkδjlσlk, i ∈ {1, 2, 3} .(2.7.7)

Substituting expression (2.7.7) into equation (2.7.6), we obtain

ρ

(
x× ∂2u

∂t2

)
i

=
(
x×∇ · σT

)
i
+ εijkδjlσlk + (x× f)i , i ∈ {1, 2, 3} .

Using the linearity of the cross-product operator, we can rearrange the above equation and write[
x×

(
ρ
∂2u
∂t2

)]
i

−
(
x×∇ · σT

)
i
− (x× f)i =

[
x×

(
ρ
∂2u
∂t2
−∇ · σT − f

)]
i

(2.7.8)

= εijkδjlσlk, i ∈ {1, 2, 3} .

Now, we invoke Cauchy’s equations of motion (2.6.3), which can be written as

ρ
∂2u
∂t2
−∇ · σT − f = 0;

hence, the term in brackets in equation (2.7.8) vanishes. This implies

εijkδjlσlk = 0, i ∈ {1, 2, 3} .
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Using the properties of Kronecker’s delta, we can rewrite this equation as

εijkσjk = 0, i ∈ {1, 2, 3} ,

which, in view of the properties of the permutation symbol, represents the equation given by

σjk = σkj ,

as required. �

REMARK 2.7.3. εijkσjk = 0 is a summation of terms for a given i. For instance, for i = 1, the summation

can be written as
3∑
j=1

3∑
k=1

ε1jkσjk = 0.

By the properties of the permutation symbol, εijk, only two terms are nonzero; they are σ23 and σ32. Also

by the properties of the permutation symbol, these terms exhibit opposite signs. Thus we obtain

σ23 − σ32 = 0.

Thus, in view of the balance of angular momentum given by equation (2.7.2), we see that the stress tensor

is symmetric. Herein, this symmetry is established without explicitly assuming the equilibrium of an

element within the continuum; this assumption is explicitly invoked in Exercise 2.7. We conclude that the

symmetry of stress tensor is a general property for any continuum as long as we impose the strong form of

Newton’s third law of motion; otherwise, the stress tensor is not symmetric.

Herein, due to its symmetry, the stress tensor has only six independent components and, in view of Section

2.5.2, these components are sufficient to determine the state of stress at any given point within a continuum.

Thus, the constraints imposed by the balance of angular momentum reduced the number of unknowns.

The symmetry of stress tensor is also known as Cauchy’s second law of motion. It is one of the key tenets

of classical continuum mechanics. 16There are generalizations of the classical theory that depart from

Cauchy’s second law of motion; these generalizations are not discussed in this book.17

Now, considering the system of fundamental equations and not including the body forces, we have four

equations and ten unknowns.

16Readers interested in an insightful interpretation of Cauchy’s second law of motion within classical continuum mechanics
might refer to Bunge, M., (1967) Foundations of physics: Springer-Verlag, pp. 153 – 154. Readers interested in the symmetry
of stress tensor in the context of classical field theories might refer to Landau, L.D., and Lifshitz, E.M., Course of theoretical
physics: Elsevier, Vol. 7 (1986): Theory of elasticity, p. 7, and Vol. 2 (1975): The classical theory of fields, pp. 82 – 85.

17Readers interested in the generalizations of classical continuum mechanics might refer to Malvern, L.E., (1969) Introduction
to the mechanics of a continuous medium: Prentice-Hall, pp. 217 – 220, to Rymarz, C., (1993) Mechanika ośrodkow ciągłych:
PWN, pp. 109 – 112, to Truesdell, C., (1966) Six lectures on modern natural philosophy: Springer-Verlag, Lecture II: Polar and
oriented media, and study Eringen, A.C., (1999) Microcontinuum field theories I: Foundations and solids: Springer-Verlag, and
Forest, S., (2006) Milieux continus généralisés et matériaux hétérogènes: Mines Paris, as well as the books referenced therein.
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2.8. Fundamental equations

The conservation of mass, the balance of linear momentum and the balance of angular momentum are the

only three fundamental principles that relate the unknowns in our system. No other balance principles fur-

nish us with additional constraints. For instance, the balance of energy, which deals with thermodynamic

processes, does not add another fundamental equation or reduce the number of unknowns since we assume

that the heat generated by the deformation is negligible and does not affect the process of deformation. The

balance of energy does, however, play a key role in the formulation of the constitutive equations, which

are discussed in Chapters 3 and 4.

Let us summarize the fundamental equations that describe the motion within a continuum.

In view of the symmetry of the stress tensor, the system of equations formed by expressions (2.1.8), (2.6.9),

(2.6.10) and (2.6.11) consists of four equations, namely, the equation of continuity,

∂ρ

∂t
+

3∑
i=1

∂

∂xi

(
ρ
∂ui
∂t

)
= 0,

and the three Cauchy’s equations of motion with no body forces,

(2.8.1)
3∑
j=1

∂σij
∂xj

= ρ
∂2ui
∂t2

, i ∈ {1, 2, 3} ,

where σij = σji, with i, j ∈ {1, 2, 3}. Explicitly, these equations can be written as

(2.8.2)
∂ρ

∂t
+

∂

∂x1

(
ρ
∂u1

∂t

)
+

∂

∂x2

(
ρ
∂u2

∂t

)
+

∂

∂x3

(
ρ
∂u3

∂t

)
= 0,

and

(2.8.3)
∂σ11

∂x1
+
∂σ12

∂x2
+
∂σ13

∂x3
− ρ∂

2u1

∂t2
= 0,

(2.8.4)
∂σ12

∂x1
+
∂σ22

∂x2
+
∂σ23

∂x3
− ρ∂

2u2

∂t2
= 0,

(2.8.5)
∂σ13

∂x1
+
∂σ23

∂x2
+
∂σ33

∂x3
− ρ∂

2u3

∂t2
= 0.

The resulting system of four equations contains ten unknowns; namely, ρ, u1, u2, u3, σ11, σ12, σ13, σ22,

σ23 and σ33. This system of equations is underdetermined; there are not enough equations to uniquely

determine the behaviour of the continuum. To render the system determined, we turn to constitutive

equations, which we will discuss in Chapter 3.

To further motivate the formulation of constitutive equation, let us examine again equations (2.8.1). We

see that — given σ and ρ — we can obtain ∂2u/∂t2. However, given the mass density and acceleration,

we can obtain only the divergence of the stress tensor and not the stress tensor itself, which would allow us
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to describe the internal forces. Notably, the same accelerations associated with two different materials of

the same mass density might result in two different responses. Hence, the general principles do not suffice

to determine internal forces.

Closing remarks

In Chapter 3, in order to complete the system of equations containing Cauchy’s equations of motion and

the equation of continuity, we will introduce the constitutive equations describing the relation between

stress and strain in an elastic continuum. These constitutive equations will also allow us to associate the

fundamental equations formulated in Chapter 2 with the specific properties of elastic materials. Notably,

the wave equation and the eikonal equation, used extensively throughout the book, are rooted in Cauchy’s

equations of motion and the constitutive equations for elastic continua.
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2.9. Exercises

EXERCISE 2.1. 18Several physical laws discussed in this book are stated as the vanishing of a definite

integral, which is tantamount to the vanishing of the integrand. Justify this equivalence using a one-

dimensional case.

SOLUTION 2.1. Consider an integral equation given by

B∫
A

f (x) dx = 0.

Let f (x) be a continuous function in the interval [A,B] and let f (x0) 6= 0, for x0 ∈ [A,B]. Because of the

continuity, f (x) 6= 0 in the neighbourhood of x0, and, hence, the integral taken over this neighbourhood

does not vanish. Since we require
∫ B
A f (x) dx = 0 for arbitrary limits of integration, we must require that

f (x) = 0, for all x ∈ [A,B].

EXERCISE 2.2. 19Show that equation of continuity (2.1.7), namely,

(2.9.1)
∂ρ (x, t)
∂t

+∇ · (ρv) = 0,

can be written as

(2.9.2)
Dρ (x, t)

Dt
+ ρ∇ · v (x, t) = 0,

where D/Dt stands for the material time-derivative operator, namely,

(2.9.3)
D
Dt

:=
∂

∂t
+ v (x, t) · ∇

SOLUTION 2.2. Taking the divergence on the right-hand side of equation (2.9.1), we write

∂ρ (x, t)
∂t

+∇ · (ρv) ≡ ∂ρ

∂t
+∇ · (ρv1, ρv2, ρv3) =

∂ρ

∂t
+
∂ (ρv1)
∂x1

+
∂ (ρv2)
∂x2

+
∂ (ρv3)
∂x3

= 0.

Using the product rule and gathering similar terms, we get

∂ρ

∂t
+ ρ

(
∂v1

∂x1
+
∂v2

∂x2
+
∂v3

∂x3

)
+ [v1, v2, v3] ·

[
∂

∂x1
,
∂

∂x2
,
∂

∂x3

]
ρ = 0.

Recognizing the divergence of v and the gradient operator, we rewrite this expression as

∂ρ (x, t)
∂t

+ ρ∇ · v (x, t) + v · ∇ρ =
[
∂

∂t
+ v · ∇

]
ρ (x, t) + ρ∇ · v (x, t) = 0.

Invoking expression (2.9.3), we obtain

Dρ (x, t)
Dt

+ ρ∇ · v (x, t) = 0,

18See also Section 2.1.2.
19See also Section 2.1.3.
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which is equation (2.9.2), as required.

EXERCISE 2.3. Using a single spatial dimension, show that equation (2.2.5) is a case of Leibniz’s integral

rule; namely,

(2.9.4)
d
dt

b(t)∫
a(t)

f (x, t) dx =

b(t)∫
a(t)

∂f (x, t)
∂t

dx+ f (b (t) , t)
db
dt
− f (a (t) , t)

da
dt
.

SOLUTION 2.3. Let us write equation (2.2.5) in a single spatial dimension; namely,

d
dt

b(t)∫
a(t)

ρ (x, t)A (x, t) dx =

b(t)∫
a(t)

ρ (x, t)
DA (x, t)

Dt
dx,

where D/Dt stands for the material time-derivative operator. Invoking its definition (1.3.5) for a single

spatial dimension, we write explicitly

d
dt

b(t)∫
a(t)

ρ (x, t)A (x, t) dx =

b(t)∫
a(t)

ρ (x, t)
(
∂

∂t
+ v (x, t)

∂

∂x

)
A (x, t) dx

=

b(t)∫
a(t)

[
ρ (x, t)

∂A (x, t)
∂t

+ ρ (x, t) v (x, t)
∂A (x, t)
∂x

]
dx.

In view of expression (2.9.4) and anticipating the substitution given by f (x, t) = ρ (x, t)A (x, t), let us

rewrite the right-hand side of the above equation as

b(t)∫
a(t)

[
ρ (x, t)

∂A (x, t)
∂t

+
∂ρ (x, t)
∂t

A (x, t) + ρ (x, t) v (x, t)
∂A (x, t)
∂x

+
∂ρ (x, t) v (x, t)

∂x
A (x, t)

−∂ρ (x, t)
∂t

A (x, t)− ∂ρ (x, t) v (x, t)
∂x

A (x, t) dx
]
.

Recognizing the product rule of differentiation, we write

b(t)∫
a(t)

{
∂

∂t
[ρ (x, t)A (x, t)] +

∂

∂x
[ρ (x, t) v (x, t)A (x, t)]−

[
∂ρ (x, t)
∂t

+
∂ρ (x, t) v (x, t)

∂x

]
A (x, t)

}
dx.

Recognizing that the third bracketed term is equation of continuity (2.1.7) in a single spatial dimension,

we get
b(t)∫
a(t)

{
∂

∂t
[ρ (x, t)A (x, t)] +

∂

∂x
[ρ (x, t) v (x, t)A (x, t)]

}
dx,
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which we can write as the sum of two integrals to obtain

b(t)∫
a(t)

∂

∂t
[ρ (x, t)A (x, t)] dx+

b(t)∫
a(t)

∂

∂x
[ρ (x, t) v (x, t)A (x, t)] dx

=

b(t)∫
a(t)

∂

∂t
[ρ (x, t)A (x, t)] dx+ [ρ (x, t) v (x, t)A (x, t)]x=b(t)

x=a(t) .

Using the fact that v (x, t) = dx/dt, we write the above result as

b(t)∫
a(t)

∂

∂t
[ρ (x, t)A (x, t)] dx+ ρ (b (t) , t)

db (t)
dt
A (b (t) , t)− ρ (a (t) , t)

da (t)
dt
A (a (t) , t) .

Letting f (x, t) = ρ (x, t)A (x, t), we write

d
dt

b(t)∫
a(t)

f (x, t) dx =

b(t)∫
a(t)

∂f (x, t)
∂t

dx+ f (b (t) , t)
db (t)

dt
− f (a (t) , t)

da (t)
dt

,

which is equation (2.9.4), as required.

EXERCISE 2.4. 20Using the stress tensor, prove the particular case of the following theorem.

THEOREM 2.9.1. If an mth-rank tensor is linearly related to an nth-rank tensor through a quantity that

possesses n+m indices, then this quantity is an (n+m)th-rank tensor.

SOLUTION 2.4. Consider the stress tensor that relates two vectors, namely, the traction and the unit normal

vector. Thus, two first-rank tensors are linearly related by a second-rank tensor.

NOTATION 2.9.2. The repeated-index summation notation is used in this proof. Any term in which an

index appears twice stands for the sum of all such terms as the index assumes values 1, 2 and 3.

PROOF. The relationship between the components of the traction, T, in two coordinate systems can

be stated as

T̂i = aikTk, i ∈ {1, 2, 3} ,

where aij are the entries of the transformation matrix. Also, the components of the traction, T, are related

to the components of the normal vector, n, by the quantity σ, as

Tk = σkjnj , k ∈ {1, 2, 3} .

Combining both expressions, we can write

T̂i = aikσkjnj , i ∈ {1, 2, 3} .

20See also Sections 2.5.2 and 5.2.2.
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Since n is a vector, it obeys the inverse transformation laws, namely,

nj = amjn̂m, j ∈ {1, 2, 3} .

Thus, we can write

T̂i = aikσkjamjn̂m, i ∈ {1, 2, 3} .

Since the relationship between the components of the traction, T, and the components of the normal vector,

n, are valid for all coordinate systems, we can formally write

T̂i = σ̂imn̂m, i ∈ {1, 2, 3} .

Subtracting the two equations for T ∗i from one another, we obtain

(aikσkjamj − σ̂im) n̂m = 0, i ∈ {1, 2, 3} .

Since the result must hold for any orientation of vector n, as required by the physical argument discussed

in this chapter, we get

aikσkjamj − σ̂im = 0, i,m ∈ {1, 2, 3} ,

and we can restate it as

(2.9.5) σ̂im = aikamjσkj , i,m ∈ {1, 2, 3} .

The last expression shows that σ obeys standard transformation rules for a second-rank tensor. Conse-

quently, σ, which linearly relates two vectors, is a second-rank tensor. �

REMARK 2.9.3. The quotient rule, stated in this theorem, is also exemplified by the stress-strain equations

(3.2.1), where two second-rank tensors are linearly related by a fourth-rank elasticity tensor, namely,

σij = cijklεkl, i, j ∈ {1, 2, 3} ,

with εkl denoting the strain tensor, and where the repeated index assumes values 1, 2 and 3.

EXERCISE 2.5. Using expressions (2.5.1) and (2.5.13), obtain the components of the traction vector acting

on the plane whose normal is parallel to the x1-axis. Compare the results to expression (2.5.14).

SOLUTION 2.5. Following expression (2.5.1), we can immediately write the components of the traction

vectors acting on the plane whose normal is parallel to the x1-axis as
[
T

(e1)
1 , T

(e1)
2 , T

(e1)
3

]
. In view of

definition (2.5.2), we can rewrite these components as [σ11, σ12, σ13]. Using equation (2.5.13), the traction

vector acting on the plane whose unit normal is parallel to the x1-axis is given by T
(e1)
1 T

(e2)
1 T

(e3)
1

T
(e1)
2 T

(e2)
2 T

(e3)
2

T
(e1)
3 T

(e2)
3 T

(e3)
3


 1

0

0

 =

 T
(e1)
1

T
(e1)
2

T
(e1)
3

 .
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FIGURE 2.9.1. Angular momentum: An x1x2-cross-section of a rectangular box,
∆x1∆x2∆x3, with the moment-producing forces, F12 and F21. The directions of the
two forces are perpendicular to one another and their magnitudes are equal.

In view of definition (2.5.2), we can rewrite these components as σ11

σ12

σ13

 ,

as expected from the property stated in expression (2.5.14).

EXERCISE 2.6. 21Find the physical SI units of equations of motion (2.6.3). Show that these units are

consistent for all terms involved.

SOLUTION 2.6. Consider equations (2.6.3); namely,

3∑
j=1

∂σij
∂xj

+ fi = ρ
∂2ui
∂t2

, i ∈ {1, 2, 3} .

Following the definition of stress as force per unit area, the units of stress tensor are
[
N/m2

]
. Conse-

quently, the units of the first term of the left-hand side are
[
N/m3

]
. In view of fi being the components

of force per unit volume, the units are also
[
N/m3

]
. On the right-hand side, the units of mass density are[

kg/m3
]
, while the units of acceleration are

[
m/s2

]
, resulting in

[
kg/

(
m2s2

)]
. Since [N ] =

[
kgm/s2

]
,

the units of the right-hand side are also
[
N/m3

]
, as expected. Thus, the physical units of equations (2.6.3)

are
[
N/m3

]
.

EXERCISE 2.7. 22Using Figure 2.9.1, prove the following theorem.

THEOREM 2.9.4. The stress tensor is symmetric; namely, σij = σji, where i, j ∈ {1, 2, 3}.

21See also Section 2.6.1.
22See also Section 2.7.3.
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SOLUTION 2.7. PROOF. 23Consider a rectangular box that is an element within a continuum. Let the

volume of this box, whose edges are parallel to the coordinate axes, be

∆V = ∆x1∆x2∆x3.

We require that this element of volume does not rotate within the continuum; in other words, we assume

this element to be in equilibrium. This requirement implies that the sum of moments acting on this box

must be zero. The sum of moments about the x3-axis is zero if

(2.9.6) ∆F12∆x1 = ∆F21∆x2.

Using formulations of traction and the stress-tensor components, we can write σ1j = ∆F1j/∆S1. Thus,

we have

(2.9.7) ∆F12 = σ12∆S1 = σ12∆x2∆x3,

and

(2.9.8) ∆F21 = σ21∆S2 = σ21∆x1∆x3.

Inserting expressions (2.9.7) and (2.9.8) into equation (2.9.6), we obtain

σ12∆x1∆x2∆x3 = σ21∆x1∆x2∆x3,

which implies

σ12 = σ21.

Hence, together with the equality of the sum of moments about the x1-axis and the x2-axis, we can write

σij = σji, i, j ∈ {1, 2, 3} ,

as required. �

23Readers interested in more details of the argument used herein as well as the consequences of this symmetry might refer to
Malvern, L.E., (1969) Introduction to the mechanics of a continuous medium: Prentice-Hall, pp. 77 – 79.



CHAPTER 3

Stress-strain equations

. . . there is a conjecture that two sets of small motions may be superimposed with-

out interfering with each other in a nonlinear fashion. Another conjecture is that

the seismic motions set up by some physical source should be uniquely determined

by the combined properties of that source and of the medium of wave propagation.

These conjectures, and many others that are generally assumed by seismologists

to be true, are properties of infinitesimal motion in classical continuum mechanics

for an elastic medium with a linear stress-strain relation;

Keiiti Aki and Paul G. Richards (1980) Quantitative seismology: Theory and methods

Preliminary remarks

The equations resulting from the fundamental principles discussed in Chapter 2 are valid for any continuum

irrespective of its constitution. In other words, they do not explicitly account for distinctive properties of a

particular material. Also, these equations constitute a system of differential equations that contains more

unknowns than equations.

In order to consider the properties of a particular material and to formulate a determined system of equa-

tions that describes the propagation of deformations within that material, we turn our attention to empir-

ical relations that can be expressed as constitutive equations. These equations are based on experimental

observations of actual materials. An elastic continuum is defined by the constitutive equations that, in

accordance with experimental observations, state that for elastic materials, forces are linearly related to

small deformations.

We begin this chapter with a brief discussion of the rudiments of constitutive equations. Subsequently, we

formulate the linear stress-strain equations, which underlie the theory of elasticity used in this book. We

express these equations in both tensor and matrix forms.

3.1. Rudiments of constitutive equations

Fundamentally, a constitutive equation is a relation between two physical quantities that is specific to a

material of a given composition. This relation does not stem from any fundamental physical principle but

is not contradictory with such principles. In the context of this book, the two physical quantities being

63



64 3. STRESS-STRAIN EQUATIONS

related by the constitutive equation are the stress and strain tensors. The key objective of constitutive

equations is the determination of stress within the continuum and the representation of the variety of

materials. Furthermore, we need these equations to verify the theory of continuum mechanics. In other

words, for an empirical validation of the theory, we have to enrich the general theory with constitutive

equations that allow us to predict experimental results.

1There are three principles that constitutive equations must obey. First, the principle of determinism re-

quires that the stresses within a body be determined uniquely by the history of its deformation. Secondly,

the principle of local action requires that the deformation outside an arbitrarily small neighbourhood of a

point may be disregarded in determining stresses at that point. This means that there is no need to invoke

action-at-a-distance between stress and strain or to consider a delay due to spatial separation, which would

require relativistic continuum mechanics.

These two principles are satisfied trivially in the theory of linear elasticity discussed in this book, where

a stress at a given instant does not depend on the history of deformation, and only tractional forces are

involved. Thirdly, the principle of objectivity, also known as the principle of material frame indifference,

requires that any two observers find the same stress within a given body. In other words, constitutive

equations must be invariant under changes of a reference frame that preserves the essential structure of

the manifold of physical experience discussed on page 10; the principle of objectivity limits our study to

nonrelativistic continuum mechanics. 2For further insight, let us quote an example stated in Truesdell’s

“Six lectures on modern natural philosophy” that is particularly applicable to the theory of elasticity.

Take a spring, and on one end hang a weight of one pound. The spring lengthens, say

by one inch. Now, lay a spring on a horizontal table, fastening one end to the center, and

leaving the weight attached to the other end. Spin the table, and adjust the angular speed

until the spring again stretches exactly one inch. [...] For an observer standing on the floor

as well as for an observer seated upon that table [...] one inch of extension corresponds to

one poundal of force.3

Unlike the general principles, the constitutive equations can be, and often are, contradictory among each

other. Their limited validity results in specialized theories, as exemplified by elasticity and by fluid me-

chanics.

1Readers interested in more detail and elegant exposition might refer to Truesdell, C., (1966) Six lectures on modern natural
philosophy: Springer-Verlag, pp. 3 – 6.

2Readers interested in a rigorous formulation of the principle of material frame indifference might refer to Marsden, J.E., and
Hughes, T.J.R., (1983/1994) Mathematical foundations of elasticity: Dover, p. 8 and pp. 189 – 199.

3Readers interested in the equality of inertial mass and gravitational mass, which is invoked in the above example, might
refer to Bunge, M., (1967) Foundations of physics: Springer-Verlag, pp. 207 – 210.
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3.2. Formulation of stress-strain equations: Hookean solid

3.2.1. Introductory comments. Perhaps the best-known constitutive equation is based on Hooke’s

law of elasticity discovered by Robert Hooke in the middle of the seventeenth century.4 This law furnishes

us with the physical justification for the mathematical theory of linear elasticity.

Ut tensio sic vis — “as the extension, so the force” is a famous statement from Hooke’s work of 1676. He

described it in more detail by writing that

the power of any spring is in the same proportion with the tension thereof: that is, if one

power stretch or bend it in one space, two will bend in two, three will bend in three, and

so forward. And this is the rule or law of Nature, upon which all manner of restituent or

springing motion doth proceed.

In an earlier paper, “De potentia restitutiva”, Hooke published the results of his experiments with elastic

materials and stated that

it is very evident that the rule or law of Nature in every springing body is, that the force or

power thereof to restore itself to its natural position is always proportional to the distance

or space it is removed therefrom. . . .

In the modern terminology of continuum mechanics and in view of Chapters 1 and 2, the linearity of

Hooke’s law can be stated in the following manner.

At any point of a continuum, each component of the stress tensor is a linear function of

all the components of the strain tensor.

This statement is used to formulate stress-strain equations, which are introduced in this chapter. The

restoring force is discussed in Chapter 4.

The mathematical justification of Hooke’s law and the resulting linear theory stems from the assumption

of small deformations since every function is linear on the infinitesimal level. We also assume that the

stress tensor is zero for the undeformed state, which corresponds to the strain tensor being zero; there are

no constant terms in the stress-strain equations.

4Readers interested in a historical comments about Hooke’s law might refer to Love, A.E.H., (1892/1944) A treatise on the
mathematical theory of elasticity: Dover, p. 2.
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3.2.2. Tensor form.

Stress-strain equations. At a given point of a three-dimensional continuum, Hooke’s law — which

linearly relates each stress-tensor component , σij , to all the strain-tensor components, εkl — can be

written as

(3.2.1) σij =
3∑

k=1

3∑
l=1

cijklεkl, i, j ∈ {1, 2, 3} ,

where cijkl are the components of a tensor, known as the elasticity tensor.5 Equations (3.2.1) are the

constitutive equations of a linearly elastic continuum. Since the units of the stress-tensor components are

N/m2, and the strain-tensor components are dimensionless, the units of the elasticity-tensor components

are N/m2.

The essence of the above formulation is the assumption of a functional relationship given by σij =

σij (εij); in other words, stress is only a function of strain, and vice versa. If we develop this function

in a power series, set the constant term and all the nonlinear terms to zero, we obtain expression (3.2.1).

As stated above, the justification for setting the constant term to zero is the assumption of no initial stress,

and the justification of setting the nonlinear terms to zero is the assumption of infinitesimal displacements.

Such a formulation of stress-strain equations (3.2.1) is referred to as Cauchy’s approach. We could also

formulate these equations in a manner stated on page 80, and referred to as Green’s approach.

Tensor cijkl relates two second-rank tensors. Hence, in view of tensor algebra, the elasticity tensor must

be a fourth-rank tensor. Consequently, in a three-dimensional continuum, it has 34 = 81 components.

However, in view of the symmetries of the stress and strain tensors, the number of independent components

is thirty-six, as shown below. The physical meaning of the rank of a tensor can be viewed as the number of

directions necessary to measure the corresponding property. Tensor cijkl relates four directions necessary

to measure elasticity: two directions of the stress tensor and two directions of the strain tensor, which are

the direction of the force together with the normal to the face on which the force is acting and the direction

of the displacement vector together with the orientation of the measurement axis, respectively.

The elasticity tensor describes properties of the continuum; hence, it is a property tensor in the study of

elasticity in the same manner as a dielectric tensor is a property tensor in the study of electricity. The

stress and strain tensors are not property tensors since we can apply various forces to, or cause different

deformations of, a given material to study its elasticity. In the same manner, we can apply various electric

fields and displacements to study material’s ability to store electric charge.6

5Elasticity tensor is also commonly referred to as the stiffness tensor. Our nomenclature is consistent with Marsden, J.E., and
Hughes, T.J.R., (1983/1994) Mathematical foundations of elasticity: Dover, pp. 9 – 10, and with Marsden, J.E., and Ratiu, T.S.,
(1999) Introduction to mechanics and symmetry: A basic exposition of classical mechanical systems (2nd edition): Springer-
Verlag, p. 113.

6Readers interested in analogies among mechanical, electrical and thermal variables might refer to Heckmann’s diagrams,
e.g., Newnham, R.E., (2005) Properties of materials: Anisotropy, symmetry, structure: Oxford University Press, pp. 1 – 3.
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Stress-tensor and strain-tensor symmetries. At every point of a continuum, the stress tensor is sym-

metric, namely, σij = σji, and consequently has six independent components, as shown in Section 2.7 in

the context of the balance of angular momentum. Also, the strain tensor is symmetric, namely, εkl = εlk,

by its definition (1.4.6), and also has only six independent components. To investigate the number of inde-

pendent components of tensor cijkl, which relates the stress and strain tensors, let us consider stress-strain

equations (3.2.1).

Consider the symmetry of the stress tensor. In view of this symmetry, we can write stress-strain equations

(3.2.1) as

(3.2.2)
3∑

k=1

3∑
l=1

cijklεkl = σij = σji =
3∑

k=1

3∑
l=1

cjiklεkl, i, j ∈ {1, 2, 3} .

In other words, each double-summation term gives the same value of the stress-tensor component at the

given point.Subtracting the first double-summation term from the second one, we can write

3∑
k=1

3∑
l=1

cjiklεkl −
3∑

k=1

3∑
l=1

cijklεkl =
3∑

k=1

3∑
l=1

(cijkl − cjikl) εkl = 0,

where i, j ∈ {1, 2, 3}. Thus, for this equation to be satisfied for all strain-tensor components, we require

(3.2.3) cijkl = cjikl, i, j, k, l ∈ {1, 2, 3} .

Hence, due to the symmetry of the stress tensor, the elasticity tensor is invariant under permutations in the

first pair of subscripts. Consider the symmetry of the strain tensor. The order of k and l has no effect on

stress-strain equations (3.2.1) since they are the summation indices. Hence, we can write

3∑
k=1

3∑
l=1

cijklεkl =
3∑

k=1

3∑
l=1

cijlkεlk, i, j ∈ {1, 2, 3} .

In view of the symmetry of the strain tensor, we can rewrite it as

3∑
k=1

3∑
l=1

cijklεkl =
3∑

k=1

3∑
l=1

cijlkεkl, i, j ∈ {1, 2, 3} ,

which, we can also state as

3∑
k=1

3∑
l=1

cijklεkl −
3∑

k=1

3∑
l=1

cijlkεkl =
3∑

k=1

3∑
l=1

(cijkl − cijlk) εkl = 0,

where i, j ∈ {1, 2, 3}. For this equation to be satisfied for all strain-tensor components, we require

(3.2.4) cijkl = cijlk, i, j, k, l ∈ {1, 2, 3} .

Hence, due to the symmetry of the strain tensor, the elasticity tensor is invariant under permutations in the

second pair of subscripts.
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In view of equalities (3.2.3) and (3.2.4), the number of independent components of the elasticity tensor is

thirty-six.

Anisotropy and inhomogeneity. In this book, we study continua that are described by stress-strain

equations (3.2.1).7 To understand the description of a continuum that is provided by cijkl, consider these

stress-strain equations. In view of Chapters 1 and 2, tensors σij and εkl are direction-dependent. Hence,

the values of cijkl are intrinsically direction-dependent. Consequently, at a given point of a continuum,

these values determine the anisotropic properties of the continuum at this point. Furthermore, if the values

of cijkl depend on position, x, the continuum is inhomogeneous. This is explicitly used in stress-strain

equations (7.1.2).

Note the following distinction between the continuum model and real materials. While studying anisotropy

and inhomogeneity in real materials, we observe that anisotropy is rooted in the inhomogeneity of the ma-

terial. Intrinsically, anisotropy results from the inhomogeneity exhibited by an atomic structure or crystal

lattice. In a seismological context, anisotropy results from the arrangement of grains, layers or fractures

in the materials through which seismic waves propagate. Hence, physically, at some scale, anisotropy is

linked to inhomogeneity. In the mathematical context of continuum mechanics, however, anisotropy and

inhomogeneity are two distinct properties.

3.2.3. Matrix form.

Introductory comments. Due to the symmetries of the stress and strain tensors, constitutive equations

(3.2.1) can be conveniently written in a matrix form containing six independent equations. This form,

which allows us to express elasticity tensor (3.2.1) as an elasticity matrix, is often used in this book.

Note that, although, in some particular cases, the components of a tensor can be written as the entries of a

matrix, the matrices and the tensors are distinct mathematical entities.

Elasticity matrix. The thirty-six components of the elasticity tensor that are independent of each other

in spite of the symmetries of stress and strain can be written as entries Cmn of a 6 × 6 elasticity matrix,

which relates each independent stress-tensor component to the six independent strain-tensor components.

To construct this matrix, in view of symmetries (3.2.3) and (3.2.4), it is enough to consider the pairs of

(i, j) and (k, l) for i ≤ j and k ≤ l, respectively.

Consider such pairs (i, j), where i, j ∈ {1, 2, 3}. Let us arrange them in the order given by

(1, 1) , (2, 2) , (3, 3) , (2, 3) , (1, 3) , (1, 2) .

7Readers interested in detailed formulations of elasticity, hyperelasticity, linear elasticity, etc., might refer to Marsden, J.E.,
and Hughes, T.J.R., (1983/1994) Mathematical foundations of elasticity: Dover.
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Now, we can replace each pair by a single number m that gives the position of the pair in this list; thus,

m ∈ {1, . . . , 6}. In other words, we make the following replacement (i, j)→ m:

(1, 1)→ 1, (2, 2)→ 2, (3, 3)→ 3,

(2, 3)→ 4, (1, 3)→ 5, (1, 2)→ 6.

We can concisely write this replacement as

(3.2.5)

{
m = i

m = 9− (i+ j)

if

if

i = j

i 6= j
, i, j ∈ {1, 2, 3} .

Considering the analogous pairs (k, l), where k, l ∈ {1, 2, 3}, we see that identical replacements can be

made. Consequently, we can replace cijkl, where i, j, k, l ∈ {1, 2, 3}, by Cmn, where m,n ∈ {1, . . . , 6},
to obtain the elasticity matrix given by

(3.2.6) C =



C11 C12 C13 C14 C15 C16

C21 C22 C23 C24 C25 C26

C31 C32 C33 C34 C35 C36

C41 C42 C43 C44 C45 C46

C51 C52 C53 C54 C55 C56

C61 C62 C63 C64 C65 C66


,

which we use below to write the matrix form of the stress-strain equations.

Stress-strain equations. Using matrix (3.2.6) and in view of the symmetries of the stress and strain

tensors, equations (3.2.1) can be restated as

(3.2.7)



σ11

σ22

σ33

σ23

σ13

σ12


=



C11 C12 C13 C14 C15 C16

C21 C22 C23 C24 C25 C26

C31 C32 C33 C34 C35 C36

C41 C42 C43 C44 C45 C46

C51 C52 C53 C54 C55 C56

C61 C62 C63 C64 C65 C66





ε11

ε22

ε33

2ε23

2ε13

2ε12


.

The factors of 2 result from the symmetry of the strain tensor: for each k 6= l, the corresponding strain-

tensor component appears twice in the summation on the right-hand side of equations (3.2.1) — as εkl
and as εlk — as shown in Exercise 3.1. Also, due to the symmetry of the stress tensor, it is sufficient to

consider only six of the nine equations stated in expression (3.2.1). Using formula (3.2.5), we could have

replaced the pairs of subscripts for εkl and σij by single subscripts. However, we keep the original notation

of these components in order that their physical meaning remains apparent, as discussed in Sections 1.4.3

and 2.5.1. In a concise notation, we write stress-strain equations (3.2.7) as

(3.2.8) σ = Cε,
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where σ and ε are six-entry single-column matrices, composed of the stress-tensor and the strain-tensor

components, respectively, while C is a 6× 6 matrix.

Writing the stress-strain equations in a matrix notation, as shown in expression (3.2.7), is a convenient

way to display the stress-tensor, strain-tensor and elasticity-tensor components. We will use this notation

extensively in Chapter 5.

3.3. Determined system

Stress-strain equations furnish us with six additional equations and no new unknowns for the system dis-

cussed in Chapter 2. The system is no longer underdetermined.

Note that the strain-tensor components, in accordance with definition (1.4.6), may be expressed in terms

of the displacement-vector components, ui, where i ∈ {1, 2, 3}, which are the unknowns used in the equa-

tions of motion and the equation of continuity, as illustrated in Exercise 3.2. Thus, in a three-dimensional

continuum, we have a system of ten equations for ten unknowns. These equations are the equation of

continuity, given by expression (2.8.2), the three equations of motion, given by expressions (2.8.3), (2.8.4)

and (2.8.5), and six constitutive equations.

Note that the consistency of this system requires the linearized theory that allows us to ignore the fact that,

in principle, equations of motion (2.6.3) refer to the spatial coordinates while definition (1.4.6), which is

used in formulating stress-strain equations, refers to the material coordinates. In other words, we ignore

the distinction between the spatial and the material coordinates and use the equations of motion and the

stress-strain equations in the same system of equations.

3.4. Anelasticity: Example

3.4.1. Introductory comments. For the study presented in this book, we will use constitutive equa-

tions (3.2.1). In other words, we will study physical phenomena in the context of linear elasticity. To see

this choice in the scope of other possibilities, we will briefly discuss the concept of viscoelasticity.

3.4.2. Viscosity: Stokesian fluid. Constitutive equations (3.2.1) state that deformation is propor-

tional to the applied load; they define a Hookean solid. We could also state that deformation is proportional

to the rate of the application of the load. With a certain abuse of notation, let us formally write

(3.4.1) σ (t) = η
dε (t)

dt
,

where η is the viscosity parameter. Constitutive equation (3.4.1) defines a Stokesian fluid, named in

deference to George Gabriel Stokes, an English physicist. Integrating both sides of this equation, we can

rewrite it as

(3.4.2) ε (t) =
1
η

∫
σ (t) dt.
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If we submit an elastic continuum, σ = cε, to a constant load, σ0, it deforms instantaneously to ε = σ0/c,

where c is the elasticity parameter. Thereafter, the elastic continuum remains deformed at σ0/c as long

as the load is applied, and immediately returns to its undeformed state upon the removal of the load; this

behaviour is shown in Exercise 3.3.

To study the effect of the constant load on a viscous continuum, let us first write such a load as

(3.4.3) σ (t) = σ0h (t) ,

where h is Heaviside’s function, which is defined by

h (t) =

{
0,

1,

t < 0

t > 0
.

To subject a viscous continuum — represented by a Stokesian fluid — to the constant load, we insert

expression (3.4.3) into equation (3.4.2) to get

(3.4.4) ε (t) =
σ0

η

∫
h (t) dt =

σ0

η

t∫
0

dτ =
σ0

η
t.

Since (σ0/η) t is a straight line whose slope is σ0/η, this result means that the deformation increases

linearly as long as the load is applied. If we remove the load at time t1, the deformation remains at

(σ0/η) t1, as shown in Exercise 3.4.

3.4.3. Viscoelasticity: Kelvin-Voigt model. To model real media, it is possible to combine elastic

and viscous elements.8 A common combination, called the Kelvin-Voigt model, consists of combining

in parallel elastic and viscous elements, which can be represented by a spring and dashpot, respectively.

Before continuing our study, let us gain a perspective on the meaning of arrangements of springs and

dashpots by quoting Coleman and Noll.

We feel that the physicist’s confidence in the usefulness of the theory of infinitesimal

viscoelasticity does not stem from the belief that the materials to which the theory is

applied are really composed of microscopic networks of springs and dashpots, but comes

rather from other considerations. First, there is the observation that the theory works

for many real materials. But second, and perhaps more important, is the fact that the

theory looks plausible because it seems to be a mathematization of little more than certain

intuitive prejudices about smoothness in macroscopic phenomena.

8Readers interested in a description of several such combinations might refer to Ben-Menahem, A., and Singh, S.J.,
(1981/2000) Seismic waves and sources: Dover, pp. 850 – 865.
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Hence, in the spirit of continuum mechanics, we write the constitutive equation of the Kelvin-Voigt model

as

(3.4.5) σ (t) = cε (t) + η
dε (t)

dt
.

Herein, ε is the same for both elements. This would not be the case if we connected these two elements

in series, which is known as the Maxwell model. Examining equation (3.4.5), we see that it reduces to

σ = cε, if η = 0, and to σ = ηdε/dt, if c = 0. In other words, the Hookean solid and the Stokesian fluid

can be viewed as the two extreme cases of the viscoelastic continuum given by the Kelvin-Voigt model.

Let us examine the behaviour of the Kelvin-Voigt model under load, σ. Given σ, we can solve differential

equation (3.4.5) to get

(3.4.6) ε (t) =
ε (0)

exp
(
c
η t
) +

1
η

t∫
0

σ (τ)

exp
[
c
η (t− τ)

]dτ,

as shown in Exercise 3.5.

Let us consider a constant load, σ0, applied at t0 and removed at t1. We can express such a load as

(3.4.7) σ (t) = σ0 [h (t)− h (t− t1)] ,

where h is Heaviside’s function. Inserting this expression into expression (3.4.6) and assuming that ε (0) =

0, which means that there is no deformation prior to t = 0, we get

(3.4.8) ε (t) =
σ0

c

1− 1

exp
(
c
η t
)
 ,

for 0 < t < t1, which describes the process of deformation, and

(3.4.9) ε (t) = ε (t1)
1

exp
[
c
η (t− t1)

] ,
for t > t1, which describes the process of recovery.

Let us discuss these results. Investigating equation (3.4.8), we see that, if η tends to zero for 0 < t < t1,

ε (t) = σ0/c. Investigating equation (3.4.9), we see that if η tends to zero for t > t1, ε (t) = 0. These

cases correspond to the behaviour exhibited by elasticity. If c tends to zero, equation (3.4.8) reduces to

ε (t) = (σ0/η) t, as can be seen by invoking de l’Hôpital’s rule to differentiate both the numerator and

denominator with respect to c. If c tends to zero, equation (3.4.9) reduces to ε (t) = ε (t1). The two latter

results correspond to the behaviour exhibited by viscosity, as described in Section 3.4.2.

If we take the derivative of expression (3.4.8) and evaluate it at t = 0, we get dε/dt|t=0 = σ0/η, which

is the rate of deformation of the viscous element, as shown in equation (3.4.4). If we take the limit

of the same expression as t tends to infinity, we get ε (t) = σ0/c, which is the deformation of the elastic
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element — as t tends to infinity, the deformation asymptotically approaches the state that would be reached

instantaneously by the elastic element alone. Thus, initially, the stress is sustained by the viscous element

and then it is carried by the elastic element.

If we take the limit of expression (3.4.9) as t tends to infinity, we get ε (t) = 0. This means that upon the

removal of the load, the model asymptotically approaches its undeformed state, which would be reached

instantaneously by the elastic element alone.

The viscous element slows down the processes of deformation and recovery. In this book, we assume these

two processes to be instantaneous by using equations (3.2.1).

Closing remarks

We use constitutive equations, namely, stress-strain equations (3.2.1) or, equivalently, equations (3.2.7)

to obtain a determined system of equations that describes the propagation of deformations in elastic con-

tinua. For many seismological studies, the linear equations relating the stress-tensor components and the

strain-tensor components agree, within sufficient accuracy, with experimental observations involving small

deformations.

Stress-strain equations (3.2.1), (3.2.7) or (5.14.7) link the fundamental principles with the properties of

a particular elastic material. Notably, this link allows us to investigate Cauchy’s equations of motion in

the context of elastic materials, which leads to the wave equation and the eikonal equation, discussed in

Chapters 6 and 7, respectively.

Stress-strain equations (3.2.1) or (3.2.7) describe the continuum whose deformations are linearly related

to loads. Also, examining these equations, we see that the vanishing of stress in this continuum is ac-

companied by the disappearance of strain therein, as illustrated in Exercise 3.3. For such a continuum to

represent an elastic material, we require the existence of the restoring force that allows, upon the removal

of the load, the return to the undeformed state. In Chapter 4, we investigate the effects of this requirement

upon parameters cijkl and Cmn.
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3.5. Exercises

EXERCISE 3.1. Using stress-strain equations (3.2.1) exemplify the presence of the factor 2 in stress-strain

equations (3.2.7).

SOLUTION 3.1. Using stress-strain equations (3.2.1), namely,

σij =
3∑

k=1

3∑
l=1

cijklεkl, i, j ∈ {1, 2, 3} ,

we explicitly write

σ23 = c2311ε11 + c2312ε12 + c2313ε13 + c2321ε21 + c2322ε22 + c2323ε23 + c2331ε31 + c2332ε32 + c2333ε33.

In view of the symmetry of the strain tensor, εij = εji, which implies that c23ij = c23ji, we can write

σ23 = c2311ε11 + c2322ε22 + c2333ε33 + 2c2323ε23 + 2c2313ε13 + 2c2312ε12.

Using formula (3.2.5), we restate this equation in the matrix form, namely,

σ23 =
[
C41 C42 C43 C44 C45 C46

]


ε11

ε22

ε33

2ε23

2ε13

2ε12


,

with the factor 2, as required.

EXERCISE 3.2. 9Consider a one-dimensional homogeneous continuum. Using stress-strain equations

(3.2.7), equation of continuity (2.1.8) and Cauchy’s equations of motion (2.6.3) with no body force, write

the resulting system of two differential equations.

SOLUTION 3.2. Following equations (3.2.7) and considering a one-dimensional continuum that coincides

with the x1-axis, we can write

σ11 = C11ε11,

which, in view of definition (1.4.6) can be written as

(3.5.1) σ11 = C11
∂u1 (x, t)
∂x1

,

where, due to the homogeneity of the continuum, C11 is a constant. The corresponding equation of conti-

nuity, whose general form is given by expression (2.1.8), is

(3.5.2)
∂ρ (x, t)
∂t

+
∂

∂x1

[
ρ (x, t)

∂u1 (x, t)
∂t

]
= 0,

9See also Sections 3.3 and 4.4.2.
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and Cauchy’s equation of motion, whose general form is given by expression (2.6.3), is

(3.5.3)
∂σ11

∂x1
= ρ (x, t)

∂2u1 (x, t)
∂t2

.

Inserting expression (3.5.1) into equation (3.5.3), differentiating and rearranging, we obtain

(3.5.4)
∂2u1 (x, t)

∂x2
1

=
ρ (x, t)
C11

∂2u1 (x, t)
∂t2

.

Equations (3.5.2) and (3.5.4) constitute the required system of two differential equations in two unknowns,

namely, u1 (x, t) and ρ (x, t), whose variables are x and t.

REMARK 3.5.1. If the mass-density function, ρ (x, t), is given by a constant, equation (3.5.4) is a one-

dimensional wave equation, discussed in Chapter 6.

EXERCISE 3.3. Consider the stress-strain equation for an elastic continuum written formally as

σ (t) = cε (t) .

Examine deformation ε that results from the load given by

(3.5.5) σ (t) = σ0 [h (t)− h (t− t1)] ,

where h is Heaviside’s function.

REMARK 3.5.2. Expression (3.5.5) describes a load whose magnitude is equal to σ0. This load is applied

at t = 0 and removed at t = t1.

SOLUTION 3.3. Let us write strain as a function of stress; in other words,

ε (t) =
1
c
σ (t) .

Inserting herein expression (3.5.5), we obtain

ε (t) =
σ0

c
[h (t)− h (t− t1)] .

Examining this result in view of the definition of Heaviside’s function, we see that the continuum is

deformed by the value of ε = σ0/c at t = 0, and it returns to its undeformed state — namely, ε = 0 —

at t = t1. We also see that in the idealized material described by Hooke’s law, both the deformation and

return to the undeformed state are instantaneous.

EXERCISE 3.4. Show that for a viscous element the deformation remains at (σ0/η) t1 upon the removal

of load at time t1.

SOLUTION 3.4. Inserting expression (3.5.5) into expression (3.4.2), we write

ε (t) =
σ0

η

∫
[h (t)− h (t− t1)] dt.
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Following the properties of Heaviside’s function, we get

ε (t) =
σ0

η

 t∫
0

dτ −
t∫

t1

dτ

 =
σ0

η
[t− (t− t1)] =

σ0

η
t1,

as required.

EXERCISE 3.5. Given function σ, solve equation (3.4.5), namely,

σ (t) = cε (t) + η
dε (t)

dt
,

where c and η are constants.

SOLUTION 3.5. This is a linear first-order ordinary differential equation. We would like to integrate dε/dt

to obtain ε (t). To achieve that, we multiply both sides by ς (t) to get

(3.5.6)
1
η
σ (t) ς (t) =

dε (t)
dt

ς (t) + ε (t)
c

η
ς (t) .

Then, we consider

(3.5.7)
d
dt

[ε (t) ς (t)] =
dε (t)

dt
ς (t) + ε (t)

dς (t)
dt

.

We wish to find η such that the right-hand sides of these equations are equal to one another. Thus, we

require
dς (t)

dt
=
c

η
ς (t) ,

which we can rewrite as
dς(t)

dt

ς (t)
=
c

η
.

Integrating both sides, we get

ln |ς (t)| = c

η
t+ C,

where C is the integration constant. Solving for ς , we get

(3.5.8) ς (t) = exp
(
c

η
t+ C

)
= K exp

(
c

η
t

)
,

where K = expC; for our use of ς , we can let C = 0, and hence K = 1. Since the right-hand sides of

equations (3.5.6) and (3.5.7) are equal to one another, if ς = exp [(c/η) t], we can equate also the left-hand

sides of these equations by writing

d
dt

[
ε (t) exp

(
c

η
t

)]
=

1
η

exp
(
c

η
t

)
σ (t) .

Integrating both sides with respect to the integration variable, τ , we get

ε (τ) exp
(
c

η
τ

)∣∣∣∣t
0

=
1
η

t∫
0

exp
(
c

η
τ

)
σ (τ) dτ,
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with the lower limit of integration referring to the onset of load at t = 0. Evaluating the left-hand side, we

get

ε (t) exp
(
c

η
t

)
− ε (0) =

1
η

t∫
0

exp
(
c

η
τ

)
σ (τ) dτ.

Solving for ε (t), we obtain

ε (t) =
ε (0)

exp
(
c
η t
) +

1
η

t∫
0

σ (τ)

exp
[
c
η (t− τ)

]dτ,

which is the required solution.





CHAPTER 4

Strain energy

Ce qui fait la beauté d’une œuvre d’art, ce n’est pas la simplicité de ses par-
ties, c’est plutôt une sorte d’harmonie globale qui donne à l’ensemble un aspect
d’unité et d’homogénéité malgré la complication parfois très grande des détails.
[. . . ] La beauté des théories scientifiques nous paraît essentiellement de la même
nature: elle s’impose quand, dominant sans cesse les raisonnements et les calculs,
se retrouve partout une même idée centrale qui unifie et vivifie tout le corps de la
doctrine.1

Louis de Broglie (1941) Continue et discontinue en physique moderne

Preliminary remarks

When a material undergoes a deformation, energy is expended to deform it. In view of balance of energy,

the energy expended must be converted into another form of energy. Elasticity of an actual material results

from the fact that a large part of the expended energy associated with the deformation is converted to

potential energy stored within the deformed material. For elastic continua, we assume that all the expended

energy is stored within the strained continuum. We refer to this energy as strain energy.

It is important to emphasize that the existence of strain energy, which allows the strained continuum to

regain its initial state upon the removal of the load, is the defining property of an elastic continuum. The

mathematical expression of this physical entity is the strain-energy function.

We begin this chapter with the derivation of the strain-energy function. Subsequently, in view of this

function, we obtain another symmetry of the elasticity tensor, beyond the ones shown in Chapter 3. Then

we derive the physical constraints on the components of the elasticity tensor; these constraints arise from

the strain-energy function. This chapter concludes with the system of equations describing the behaviour

of elastic continua.

1

What makes the beauty of a work of art is not the simplicity of its parts, it is rather a kind of global harmony
that gives to the whole an aspect of unity and homogeneity in spite of, at times, very large complications of
details. [...] The beauty of scientific theories is of the same nature: this beauty is striking when, constantly
dominating the reasoning and the calculations, one finds everywhere the same central idea that unifies and
inspires the entire body of the formulation.

79
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4.1. Strain-energy function

For elastic continua, we assume that all the expended energy is stored in the strained continuum as a

potential energy. In other words, we are dealing with a conservative system. We wish to formulate the

corresponding potential-energy function.

To motivate our formulation, consider a force, F, acting on a conservative system to increase the potential

energy, U (x), of this system. We can write the components of such a force as ∂U/∂xi = Fi, where

i ∈ {1, 2, 3}. By analogy, let us postulate

(4.1.1)
∂W (ε)
∂εij

= σij , i, j ∈ {1, 2, 3} ,

where — in the context of elasticity theory —W is the potential-energy function of a conservative system.

In other words, we postulate that the stress tensor is derived from this scalar function.

To emphasize the fundamental importance of expression (4.1.1), let us comment on stress-strain equations

(3.2.1). To obtain these equations in Chapter 3, we used Cauchy’s approach, which assumes the existence

of a function given by σij = σij (εij). Also, we could view expression (4.1.1) as another point of departure;

such a method is called Green’s approach. The essence of such a formulation is the existence of function

W , which underlies the concept of elasticity. For Green’s approach, we would expandW in a power series

of εij , and retain only the quadratic terms.2

Herein, to obtain the explicit expression for W , we use stress-strain equations (3.2.1) to write expression

(4.1.1) as

(4.1.2)
∂W (ε)
∂εij

=
3∑

k=1

3∑
l=1

cijklεkl, i, j ∈ {1, 2, 3} .

Integrating both sides of equations (4.1.2) with respect to εij , we obtain

(4.1.3) W (ε) =
1
2

3∑
i=1

3∑
j=1

3∑
k=1

3∑
l=1

cijklεklεij ,

where we set the integration constant to zero. The vanishing of this constant results from the convention

that, for unstrained continua, W = 0.

W in expression (4.1.3) is the strain-energy function. It is the desired potential-energy function that

corresponds to elastic continua subjected to infinitesimal strains.3

Note that W has the units of energy per volume.

2Readers interested in similarities and distinctions between Cauchy’s and Green’s approaches to formulate stress-strain equa-
tions (3.2.1) might refer to Graff, K.F., (1975/1991) Wave motion in elastic solids: Dover, pp. 590 – 591.

3Readers interested in a general formulation for finite strains might refer to Malvern, L.E., (1969) Introduction to the me-
chanics of a continuous medium: Prentice-Hall., pp. 282 – 285.
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Examining expression (4.1.3), we recognize that strain energy is given by a homogeneous function of

degree 2 in the strain-tensor components.4 The fact that the strain-energy function is homogeneous of

degree 2 in the εij , follows from Definition A.1.1, which is discussed in Appendix A. This property of the

strain-energy function is illustrated in Exercise 4.2. As shown in this exercise, expression (4.1.3) can be

viewed as a second-degree polynomial in the strain-tensor components where both the constant term and

the linear term vanish. A mathematical application of the homogeneity of W is illustrated in Exercise 4.3.

4.2. Strain-energy function and elasticity-tensor symmetry

4.2.1. Fundamental considerations. The existence of the strain-energy function, which defines an

elastic continuum, implies the invariance of the elasticity tensor, cijkl, under permutations of pairs of

subscripts ij and kl. This can be derived in the following manner.

Let us return to equations (4.1.2). Differentiating both sides of these equations with respect to εkl, we

obtain

(4.2.1)
∂2W (ε)
∂εkl∂εij

= cijkl, i, j, k, l ∈ {1, 2, 3} .

Now, let us invoke the equality of mixed partial derivatives, which states that, if W is a well-behaved

function, the order of differentiation is interchangeable.5 In view of expression (4.2.1), this implies that

(4.2.2) cijkl = cklij , i, j, k, l ∈ {1, 2, 3} .

Hence, we conclude that the elasticity tensor is invariant under permutations of pairs of subscripts ij and

kl.

We can also justify symmetry cijkl = cklij in the following manner.6 Recalling that σij and εij are

associated with force and displacement, respectively, we can write the element of work as

3∑
i=1

3∑
j=1

σij dεij .

4Both terms “degree” and “order” are commonly used to describe the homogeneity of a function. In this book, we use the
former term since it refers to the value of the exponent and, hence, is consistent with other uses of this term, such as “degree of a
polynomial”.

5The equality of mixed partial derivatives is often used in this book. We can state it by the following theorem.

THEOREM 4.2.1. Let f = f (x, y). Assume that the partial derivatives ∂f/∂x, ∂f/∂y, ∂2f/∂x∂y and ∂2f/∂y∂x exist and
are continuous. Then

∂2f

∂x∂y
=

∂2f

∂y∂x
.

Readers interested in the proof of this theorem might refer to Lang, S., (1973) Calculus of several variables: Addison-Wesley
Publishing Co., pp. 110 – 111, or to Stewart, J., (1995), Multivariable calculus (3rd edition): Brooks/Cole Publishing Co., p. A2.

6Readers interested in this formulation might also refer to Ting, T.C.T., (1996) Anisotropic elasticity: Theory and applica-
tions: Oxford University Press, p. 33.
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In view of the balance of energy, this element of work equals the total differential of W ; namely,

(4.2.3) dW =
3∑
i=1

3∑
j=1

σij dεij .

Note that the requirement for the element of work to be a total differential results from the fact that the

value of work must be independent of the integration path. The physical justification for this is that the

work cannot depend on the path of deformations, but only on the difference between the initial and final

states. Otherwise, we could deform the material following one path and let it return to its initial state along

a different path. If the amount of energy were not the same for all paths, we could create or destroy energy

by this process.

Invoking stress-strain equations (3.2.1), we can rewrite expression (4.2.3) as

(4.2.4) dW =
3∑
i=1

3∑
j=1

3∑
k=1

3∑
l=1

cijklεkl dεij .

Since this has to be a total differential, we require that7

∂

∂εst

3∑
k=1

3∑
l=1

cijklεkl =
∂

∂εij

3∑
k=1

3∑
l=1

cstklεkl, i, j, s, t ∈ {1, 2, 3} ,

which gives

cijst = cstij , i, j, s, t ∈ {1, 2, 3} .

Upon renaming the indices, we can write

(4.2.5) cijkl = cklij , i, j, k, l ∈ {1, 2, 3} ,

which are equations (4.2.2). Hence, we rederived equations (4.2.2).

Also, in view of conditions (4.2.5), we can integrate both sides of equation (4.2.4) to obtain

(4.2.6) W =
1
2

3∑
i=1

3∑
j=1

3∑
k=1

3∑
l=1

cijklεklεij ,

which is expression (4.1.3), as expected.

4.2.2. Elasticity parameters. In view of the symmetries of the stress and strain tensors, the eighty-

one components of the elasticity tensor, cijkl, consist of only thirty-six independent components, as shown

in Section 3.2.2. Furthermore, since every elastic continuum must obey equations (4.1.1), conditions

(4.2.2) provide additional constraints on this tensor. Specifically, in view of the strain-energy function and

the resulting symmetry stated in expression (4.2.2), the number of independent components is twenty-one.

7Readers interested in this requirement might refer to Courant, R., and John, F., (1974/1989) Introduction to calculus and
analysis: Springer-Verlag, Vol. II, p. 84, or to Zill, D.G., and Cullen, M.R., (1997) Differential equations with boundary-value
problems (4th edition): Brooks/Cole Publishing Company, p. 39.
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Since there are no more reductions in the number of independent components of the elasticity tensor that

stem from the fundamental equations, we refer to these remaining twenty-one independent components

as the elasticity parameters. These parameters — together with mass density — fully describe a linearly

elastic continuum.

4.2.3. Matrix form of stress-strain equations. As shown in Sections 3.2.2 and 3.2.3, we can express

stress-strain equations in both the tensor and matrix forms. Recalling expressions (3.2.5) and (4.2.2), we

see that cijkl = cklij implies Cmn = Cnm since switching ij with kl is tantamount to switching m with n.

In other words, the elasticity matrix is symmetric; namely,

(4.2.7) C =



C11 C12 C13 C14 C15 C16

C12 C22 C23 C24 C25 C26

C13 C23 C33 C34 C35 C36

C14 C24 C34 C44 C45 C46

C15 C25 C35 C45 C55 C56

C16 C26 C36 C46 C56 C66


.

Thus, the number of independent entries of C is reduced from thirty-six, used in equations (3.2.7), to

twenty-one, stated in matrix (4.2.7).

In view of conditions (4.2.2) and resulting matrix (4.2.7), stress-strain equations (3.2.7) become

(4.2.8)



σ11

σ22

σ33

σ23

σ13

σ12


=



C11 C12 C13 C14 C15 C16

C12 C22 C23 C24 C25 C26

C13 C23 C33 C34 C35 C36

C14 C24 C34 C44 C45 C46

C15 C25 C35 C45 C55 C56

C16 C26 C36 C46 C56 C66





ε11

ε22

ε33

2ε23

2ε13

2ε12


.

Equations (4.2.8) are the matrix form of the stress-strain equations for a general elastic continuum that

obeys Hooke’s law.

4.2.4. Coordinate transformations. The strain energy, W , is a scalar quantity and, hence, its value

is invariant under coordinate transformations. To achieve this invariance, in general, the values of the

parameters cijkl or Cmn depend on the orientation of the coordinate system. In other words, the values

of these parameters ensure that W is invariant under coordinate transformations. Hence, for an elastic

continuum, expression (4.2.6) that contains a given set of elasticity parameters holds only for one ori-

entation of the coordinate system.8 If, for a particular continuum, expression (4.2.6) with a given set of

8Interested readers might refer to Malvern, L.E., (1969) Introduction to the mechanics of a continuous medium: Prentice-
Hall, p. 285.
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elasticity parameters holds for several orientations of the coordinate system, this continuum possesses par-

ticular symmetries, which lead to further simplifications of matrix (4.2.7). Such symmetries are discussed

in Chapter 5. The invariance of W under coordinate transformations will be explicitly used in Section

5.10.2.

4.3. Stability conditions

4.3.1. Physical justification. Strain-energy function, W , given in expression (4.1.3), is formulated

in terms of parameters cijkl, where i, j, k, l ∈ {1, 2, 3}. This function provides the sole fundamental

constraints on these parameters. These constraints are called stability conditions since they constitute a

mathematical statement of the fact that it is necessary to expend energy in order to deform a material. In

other words, if energy is not expended, the material remains stable in its undeformed state.

In general, energy is a positive quantity. By convention, the strain energy of an undeformed continuum is

zero. Thus, the strain-energy function must be a positive quantity that vanishes only in the undeformed

state.9

4.3.2. Mathematical formulation. Mathematically, the stability conditions are equivalent to the positive-

definiteness of the elasticity matrix. This can be derived in the following manner.

In view of expression (4.1.3) and by equivalence of stress-strain equations (3.2.1) and (3.2.7), we can write

the strain-energy function as

(4.3.1) W =
1
2

(Cε) · ε,

where C is matrix (4.2.7), and ε is the strain matrix, shown explicitly in equation (3.2.7). In view of

Section 4.3.1, we require that

(4.3.2) (Cε) · ε ≥ 0,

where the equality sign corresponds to the case where ε = 0. Expression (4.3.2) states the positive-

definiteness of matrix C. In other words, matrix C is positive-definite if and only if (Cε) · ε > 0, for all

ε, such that ε 6= 0.

4.3.3. Constraints on elasticity parameters. To formulate the conditions of positive-definiteness of

the elasticity matrix, we can use either of the following theorems of linear algebra10; namely,

9Readers interested in a more detailed description might refer to Musgrave, M.J.P., (1990) On the constraints of positive-
definite strain energy in anisotropic media: Q.J.Mech.appl.Math., 43, Part 4, 605 – 621.

10Readers interested in proofs of Theorem 4.3.1 and Theorem 4.3.2 might refer to Ayres, F., (1962) Matrices: Schaum’s
Outlines, McGraw-Hill, Inc., p. 142, and to Morse P.M., and Feshbach H., (1953) Methods of theoretical physics: McGraw-Hill,
Inc., pp. 771 – 774, respectively.

Note that — in view of the fact that every symmetric matrix can be diagonalized — Theorem 4.3.2 follows from Theorem
4.3.1.
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THEOREM 4.3.1. A real symmetric matrix is positive-definite if and only if the determinants of all its

leading principal minors, including the determinant of the matrix itself, are positive.

or

THEOREM 4.3.2. A real symmetric matrix is positive-definite if and only if all its eigenvalues are positive.

Since matrix (4.2.7) is symmetric, the stability conditions can be conveniently formulated based on Theo-

rems 4.3.1 and 4.3.2, as shown in Exercises 5.5 and 5.14, respectively. Among these conditions, we find

that

(4.3.3) Cmm > 0, m ∈ {1, . . . , 6} ,

which implies that all the main-diagonal entries of the elasticity matrix must be positive, as shown in

Exercise 4.5.11

Stability conditions cannot be violated. However, as shown in Exercise 5.14, interesting and, perhaps,

nonintuitive results are allowable within the stability conditions.

4.4. System of equations for elastic continua

4.4.1. Elastic continua. In order to state a complete system of equations describing behaviour of our

continua, we note that linearly elastic continua are defined by stress-strain equations (3.2.1), namely,

(4.4.1) σij =
3∑

k=1

3∑
l=1

cijklεkl, i, j ∈ {1, 2, 3} ,

where, in view of equations (3.2.3), (3.2.4) and (4.2.2), we require

(4.4.2) cijkl = cjikl = cijlk = cklij , i, j, k, l ∈ {1, 2, 3} .

We recall that symmetries (4.4.2) result from definition (1.4.6), which implies εkl = εlk, as well as from

the balance of angular momentum, stated in expression (2.7.2), namely,

d
dt

∫∫∫
V (t)

(
x× ρdu

dt

)
dV =

∫∫
S(t)

(x×T) dS +
∫∫∫
V (t)

(x× f) dV ,

which implies σij = σji. Symmetries (4.4.2) also result from the existence of the strain-energy function

that is given by expression (4.1.3), namely,

(4.4.3) W (ε) =
1
2

3∑
i=1

3∑
j=1

3∑
k=1

3∑
l=1

cijklεklεij ,

11Readers interested in the expressions for the stability conditions for particular continua may derive them from the corre-
sponding stiffness matrices, shown in Chapter 5, or refer to Fedorov, F.I., (1968) Theory of elastic waves in crystals: Plenum
Press, New York, p. 16 and p. 33.
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and must satisfy equation (4.1.1); namely,

(4.4.4)
∂W (ε)
∂εij

= σij , i, j ∈ {1, 2, 3} .

As expected, this formulation is consistent with the following statement from the classic book of Augustus

Edward Hugh Love (1892) “A treatise on the mathematical theory of elasticity”.

When a body is slightly strained by gradual application of a load, and the temperature

remains constant, the stress components are linear functions of the strain components

[equations (4.4.1)], and they are also partial differential coefficients of a function W of

the strain components [equations (4.4.4)]. The strain-energy function, W , is therefore a

homogeneous quadratic function of the strain components [equations (4.4.3)].

4.4.2. Governing equations. We can now show that the behaviour of the continuum discussed in this

book is governed by a system of ten equations and ten unknowns. The unknowns of this system are ρ, u1,

u2, u3, σ11, σ12, σ13, σ22, σ23, σ33, while a given continuum is defined in terms of twenty-one elasticity

parameters, Cmn = Cnm, where m,n ∈ {1, . . . , 6}.

Note that four among ten equations result from the fundamental principles, which are given by the conser-

vation of mass, stated in equation (2.1.6), namely,∫
V

[
∂ρ

∂t
+∇ · (ρv)

]
dV = 0,

and the balance of linear momentum, stated in equation (2.4.5), namely,∫∫∫
V (t)

ρ
d2u
dt2

dV =
∫∫
S(t)

T dS +
∫∫∫
V (t)

f dV .

The remaining six equations are constitutive equations, which provide a phenomenological description of

actual materials.
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Explicitly, we can write this system as

(4.4.5)



∂
∂tρ = −

[
∂
∂x1

(
ρ ∂∂tu1

)
+ ∂

∂x2

(
ρ ∂∂tu2

)
+ ∂

∂x3

(
ρ ∂∂tu3

)]
ρ ∂

2

∂t2
u1 = ∂

∂x1
σ11 + ∂

∂x2
σ12 + ∂

∂x3
σ13

ρ ∂
2

∂t2
u2 = ∂

∂x1
σ12 + ∂

∂x2
σ22 + ∂

∂x3
σ23

ρ ∂
2

∂t2
u3 = ∂

∂x1
σ13 + ∂

∂x2
σ23 + ∂

∂x3
σ33

σ11 = C11ε11 + C12ε22 + C13ε33 + 2C14ε23 + 2C15ε13 + 2C16ε12

σ22 = C12ε11 + C22ε22 + C23ε33 + 2C24ε23 + 2C25ε13 + 2C26ε12

σ33 = C13ε11 + C23ε22 + C33ε33 + 2C34ε23 + 2C35ε13 + 2C36ε12

σ23 = C14ε11 + C24ε22 + C34ε33 + 2C44ε23 + 2C45ε13 + 2C46ε12

σ13 = C15ε11 + C25ε22 + C35ε33 + 2C45ε23 + 2C55ε13 + 2C56ε12

σ12 = C16ε11 + C26ε22 + C36ε33 + 2C46ε23 + 2C56ε13 + 2C66ε12

,

where, by definition (1.4.6), εij = (∂ui/∂xj + ∂uj/∂xi) /2. The first equation is equation of continuity

(2.8.2), which results from the conservation of mass. The following three equations are Cauchy’s equations

of motion (2.8.3), (2.8.4) and (2.8.5), which result from the balance of linear momentum. The last six

equations are stress-strain equations (4.2.8), which contain the elasticity parameters that describe a given

continuum.

Note that, invoking system (4.4.5) to study actual materials, we can consider directly only Cmn and ρ as

properties of a continuum that represents a given material. Indirectly, the values of Cmn and ρ can indicate

other properties, such as layering and fractures.

In a properly chosen coordinate system, which we will discuss in Section 5.6.3, different materials exhibit

different values of the elasticity parameters. These values are determined experimentally and characterize

a given material. Often, the goal of our seismological studies is to determine the values of the elasticity

parameters and mass density of the subsurface based on the theoretical formulation and the experimental

data.

Note that the last six equations of system (4.4.5) can be substituted into the second, the third and the fourth

equations to obtain a system of four partial differential equations for four unknowns, namely, ρ (x, t),

u1 (x, t), u2 (x, t), u3 (x, t) in the position variables, x = [x1, x2, x3], and the time variable, t. For a

one-dimensional case, a system of partial differential equations is exemplified in Exercise 3.2. Also, this

substitution of stress-strain equations into Cauchy’s equations of motion is used extensively in Chapters 6

and 7 to formulate equations of motions specifically for elastic continua.

Closing remarks

For linearly elastic continua, stress is a linear function of strain, which depends on twenty-one elasticity

parameters, as shown in expressions (4.2.8). Furthermore, these elastic continua possess strain energy,

which is expressed as a quadratic function of strain, shown in expression (4.1.3). Thus, for instance,
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doubling the strain within the continuum doubles the stress within it, while it quadruples the energy stored

within.

In our studies, we assume that the elasticity parameters have no temperature dependence, which is tan-

tamount to our assuming in formulating system (4.4.5) that the process of deformation is isothermal. In

other words, this process occurs at a constant temperature. Due to low thermal conductivity of most sub-

surface materials, we could argue that seismic wave propagation is better approximated by an adiabatic

process, where no heat enters or leaves the element of volume. However, we choose the simplicity of the

isothermal approach since the difference in experimental determination of elasticity parameters between

the isothermal and adiabatic approaches is only of the order of one percent.12

Our formulation of elasticity parameters is rooted in the mathematical concept of a continuum. The con-

tinuum formulation of these parameters is also consistent with that of condensed-matter physics where,

according to common physical knowledge, materials are composed of nuclei and electrons. Physically,

the elasticity parameters are functions of the interactions among the nuclei and electrons within a material.

They can be calculated by considering the total energy associated with the changes of volume and shape,

which result from forces acting on every atom.13

A given elastic continuum can possess particular symmetries, which further reduce the number of inde-

pendent elasticity parameters required to describe it. Such symmetries are discussed in Chapter 5.

12Interested readers might refer to Brekhovskikh, L.M., and Goncharov, V., (1982/1994) Mechanics of continua and wave
dynamics: Springer-Verlag, pp. 45 – 47, to Fung, Y.C., (1977) A first course in continuum mechanics: Prentice-Hall, Inc., pp.
169 – 170, to Grant, F.S., and West, G.F., (1965) Interpretation theory in applied geophysics: McGraw-Hill Book Co., pp. 30 –
31, and to Timoshenko, S.P., and Goodier, J.N., (1934/1987) Theory of elasticity: McGraw-Hill Publishing Company, p. 244.

13Readers interested in certain relationships between the continuum formulations and the atomic scale associated with the
study of condensed-matter physics might refer to Aoki, H., Syono, Y., and Hemley, R.J., (editors), (2000) Physics meets miner-
alogy: Condensed-matter physics in geosciences: Cambridge University Press.
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4.5. Exercises

EXERCISE 4.1. Using the one-dimensional case illustrated by a spring constant, k, show that for, elastic

continua, strain energy is equal to the area below the graph of F = kx.

SOLUTION 4.1. Following the definition of work and energy in a conservative system, we can write

(4.5.1) W =
∫

F · dx,

where F denotes force and dx denotes an element of displacement. The one-dimensional stress-strain

equation can be written as F = kx, where k is an elasticity parameter, commonly known as the spring

constant. Thus,

W =

∆x∫
0

kx dx =
1
2
k (∆x)2 ,

where x = 0 corresponds to the unstrained state while x = ∆x corresponds to the strained state. This is

equal to the triangular area below the straight line, kx, spanned between x = 0 and x = ∆x.

NOTATION 4.5.1. In Exercise 4.2, for convenience, we denote the strain-tensor components using single

subscripts.

EXERCISE 4.2. 14Consider the strain-energy function to be a second-degree polynomial given by

(4.5.2) W = C0 +
6∑

n=1

Cnεn +
1
2

6∑
n=1

6∑
m=1

Cnmεnεm,

where εl is an entry of matrix ε, given in equation (3.2.7). Show explicitly that the first two terms vanish

and, hence, W is homogeneous of degree 2 in the strain-tensor components. Note that since tensor εij is

symmetric, we only need one index, i = 1, 2, . . . , 6, to represent all components.

SOLUTION 4.2. Expression (4.5.2) can be explicitly written as

W = C0

+ C1ε1 + C2ε2 + C3ε3 + C4ε4 + C5ε5 + C6ε6

+
1
2

(C11ε
2
1 + C21ε2ε1 + C31ε3ε1 + C41ε4ε1 + C51ε5ε1 + C61ε6ε1

+ C12ε1ε2 + C22ε
2
2 + C32ε3ε2 + C42ε4ε2 + C52ε5ε2 + C62ε6ε2

+ C13ε1ε3 + C23ε2ε3 + C33ε
2
3 + C43ε4ε3 + C35ε5ε3 + C63ε6ε3

+ C14ε1ε4 + C24ε2ε4 + C34ε3ε4 + C44ε
2
4 + C54ε5ε4 + C64ε6ε4

+ C15ε1ε5 + C25ε2ε5 + C35ε3ε5 + C45ε4ε5 + C55ε
2
5 + C65ε6ε5

+ C16ε1ε6 + C26ε2ε6 + C36ε3ε6 + C46ε4ε6 + C56ε5ε6 + C66ε
2
6).

14See also Section 4.1.
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We assume that W vanishes for the unstrained state. Thus, ε1 = ε2 = ε3 = ε4 = ε5 = ε6 = 0, implies

W = 0; consequently, C0 = 0. Also, following expression (4.1.1) we require that σm = ∂W/∂εm.

Consider, for instance, m = 5; we can specifically write

σ5 =
∂W

∂ε5

= C5 +
1
2

[(C15 + C51) ε1 + (C25 + C52) ε2 + (C35 + C53) ε3

+ (C45 + C54) ε4 + 2C55ε5 + (C56 + C65) ε6].

No strain implies no stress and, hence, ε1 = ε2 = ε3 = ε4 = ε5 = ε6 = 0 =⇒ σ5 = 0. Thus, it follows

that C5 = 0. Analogously, considering σ1, σ2, σ3, σ4 and σ6, we obtain C1 = C2 = C3 = C4 = C6 = 0.

Thus,

W (εm) =
1
2

(C11ε
2
1 + C21ε2ε1 + C31ε3ε1 + C41ε4ε1 + C51ε5ε1 + C61ε6ε1

+ C12ε1ε2 + C22ε
2
2 + C32ε3ε2 + C42ε4ε2 + C52ε5ε2 + C62ε6ε2

+ C13ε1ε3 + C23ε2ε3 + C33ε
2
3 + C43ε4ε3 + C35ε5ε3 + C63ε6ε3

+ C14ε1ε4 + C24ε2ε4 + C34ε3ε4 + C44ε
2
4 + C54ε5ε4 + C64ε6ε4

+ C15ε1ε5 + C25ε2ε5 + C35ε3ε5 + C45ε4ε5 + C55ε
2
5 + C65ε6ε5

+ C16ε1ε6 + C26ε2ε6 + C36ε3ε6 + C46ε4ε6 + C56ε5ε6 + C66ε
2
6),(4.5.3)

which is a homogeneous function of degree 2 in the εm, as required.

REMARK 4.5.2. Examining expression (4.5.3), we observe that

W (cεm) = c2W (εm) ,

where c is a real number. Hence, in view of Definition A.1.1 stated in Appendix A, W is homogeneous of

degree 2 in the εm.

EXERCISE 4.3. 15Using the property of the strain-energy function, W , stated in expression (4.1.1), and in

view of W being homogeneous of degree 2 in the εij , show that

(4.5.4) W =
1
2

3∑
i=1

3∑
j=1

σijεij .

SOLUTION 4.3. Since W is homogeneous of degree 2 in the εij , by Theorem A.2.1 stated in Appendix A,

we can write
3∑
i=1

3∑
j=1

∂W

∂εij
εij = 2W .

15See also Section 4.1.
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In view of expression (4.1.1), we can rewrite the above expression as

3∑
i=1

3∑
j=1

σijεij = 2W ,

which immediately yields expression (4.5.4), as required.

EXERCISE 4.4. Assuming that cijkl = cklij , derive expression (4.1.1), namely,

∂W

∂εij
= σij , i, j ∈ {1, 2, 3} ,

directly from expression (4.5.4).

SOLUTION 4.4. Differentiating expression (4.5.4) with respect to a particular strain-tensor component εkl,

and recalling that stress is a function of strain, we obtain

∂W

∂εkl
=

1
2

3∑
i=1

3∑
j=1

(
∂σij
∂εkl

εij + σij
∂εij
∂εkl

)

=
1
2

3∑
i=1

3∑
j=1

(
∂σij
∂εkl

εij + σijδikδjl

)
, k, l ∈ {1, 2, 3} .

Using stress-strain equations (3.2.1), and recalling that cijkl are independent of strain, we can write

∂σij
∂εkl

= cijkl, i, j, k, l ∈ {1, 2, 3} .

Consequently, using the fact that cijkl = cklij , we obtain

∂W

∂εkl
=

1
2

3∑
i=1

3∑
j=1

(cijklεij + σijδikδjl) =
1
2

 3∑
i=1

3∑
j=1

cklijεij +
3∑
i=1

3∑
j=1

σijδikδjl

 ,

where k, l ∈ {1, 2, 3}. Again, in view of equations (3.2.1) and (4.2.2) as well as using the properties of

Kronecker’s delta, we obtain

∂W

∂εkl
=

1
2

(σkl + σkl) = σkl, k, l ∈ {1, 2, 3} ,

where, in view of the arbitrariness of the subscript symbol, we obtain expression (4.1.1), as required.

EXERCISE 4.5. 16Using expression (4.3.1), justify that the main-diagonal entries of the elasticity matrix

must be always positive.

16See also Section 4.3.3.



92 4. STRAIN ENERGY

SOLUTION 4.5. Consider expression (4.3.1). In view of equations (4.2.8), we can write

W =
1
2





C11 C12 C13 C14 C15 C16

C12 C22 C23 C24 C25 C26

C13 C23 C33 C34 C35 C36

C14 C24 C34 C44 C45 C46

C15 C25 C35 C45 C55 C56

C16 C26 C36 C46 C56 C66





ε11

ε22

ε33

2ε23

2ε13

2ε12




·



ε11

ε22

ε33

2ε23

2ε13

2ε12


.

Let the strain matrix, ε, have only one nonzero entry. For instance, we can write

W =
1
2





C11 C12 C13 C14 C15 C16

C12 C22 C23 C24 C25 C26

C13 C23 C33 C34 C35 C36

C14 C24 C34 C44 C45 C46

C15 C25 C35 C45 C55 C56

C16 C26 C36 C46 C56 C66





0

0

0

1

0

0




·



0

0

0

1

0

0


=

1
2

[C14, C24, C34, C44, C45, C46] · [0, 0, 0, 1, 0, 0]T =
1
2
C44.

Similarly, for all other single, nonzero entries, W = Cii/2. Hence, the positive value of the strain-energy

function for all possible nonzero strains requires Cii > 0.



CHAPTER 5

Material symmetry

Symmetry is a vast subject, significant in art and nature. Mathematics lies at its

root, and it would be hard to find a better one on which to demonstrate the working

of the mathematical intellect.

Hermann Weyl (1952) Symmetry

Preliminary remarks

1Materials can possess certain symmetries. In the context of our studies, this means that we can measure a

property of a material in several different orientations of the coordinate system and obtain the same result

each time. In other words, we are unable to detect the transformations of the reference coordinate system

by mechanical experiments. This invariance to the orientation of the coordinate system is called material

symmetry. In a properly chosen coordinate system, the form of the elasticity matrix allows us to recognize

the symmetry of this continuum. This symmetry is indicative of the properties exhibited by the material

represented by this continuum.

We begin this chapter with the formulation of transformations of the coordinate system and the effect of

these transformations on the stress-strain equations. Then we formulate the condition that allows us to

obtain the elasticity matrix of a continuum that is invariant under a given transformation of coordinates.

Subsequently, we study the eight symmetries of an elastic continuum, which are all the possible symme-

tries of the elasticity tensor.

5.1. Orthogonal transformations

5.1.1. Transformation matrix. To study material symmetries, we wish to use transformation of an

orthonormal coordinate system in the x1x2x3-space. A change of an orthonormal coordinate system in

our three-dimensional space is given by

(5.1.1) x̂ = Ax,

1This chapter is based on the work that was published by Bos, L.P., Gibson, P.C., Kotchetov, M., and Slawinski, M.A., (2004)
Classes of anisotropic media: a tutorial: Studia geophysica and geodætica, 48, pp. 265 – 287.

93
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where x = [x1, x2, x3]T and x̂ = [x̂1, x̂2, x̂3]T are the original and transformed coordinate systems,

respectively, and A is the transformation matrix. Equation (5.1.1) is the matrix form of equations (1.6.4),

shown in Exercise 1.4.

We are interested specifically in distance-preserving transformations, namely, rotations and reflections. In

other words, these transformations allow us to change the orientation of the continuum without deforming

it. Such transformations are represented by orthogonal matrices, that is, by square matrices given by

(5.1.2) A =

 A11 A12 A13

A21 A22 A23

A31 A32 A33


that satisfy the orthogonality condition, namely, ATA = I, which is equivalent to AT = A−1, where T

denotes transform. This orthogonality condition is discussed in Exercise 5.2.

Note that the determinants of these transformation matrices are the Jacobians of the coordinate transfor-

mations. This is illustrated in Exercise 5.1.

5.1.2. Symmetry group. Expressing the elasticity matrix of a given continuum in a conveniently

chosen orthonormal coordinate system allows us to recognize the material symmetries of that continuum,

as discussed in Sections 5.5 – 5.12. In other words, we can recognize the transformations that belong to

the symmetry group of that continuum, which can be stated by the following definition.

DEFINITION 5.1.1. The set of all orthogonal transformations given by matrices A to which the elastic

properties of a given continuum are invariant is called the symmetry group of that continuum.

According to the group theory, if the elastic properties are invariant under orthogonal transformations

given by matrices A1 and A2, they are also invariant to product A1A2. Furthermore, if these properties

are invariant to A, they are also invariant to A−1. These invariances are the reason for our invoking the

notion of a group in Definition 5.1.1.2

5.2. Transformation of coordinates

5.2.1. Introductory comments. Recall that the properties of our continuum are formulated in terms

of the stress-strain equations. To investigate the material symmetries of a given continuum, we study

the stress-strain equations in the context of the orthogonal transformations of the orthonormal coordinate

system.

2Readers interested in physical aspects of the group theory, which is the study of invariants and symmetries, might refer to
Arfken, G.B, and Weber, H.J., (2001) Mathematical methods for physicists (5th edition): Harcourt/Academic Press, pp. 237 –
301.
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5.2.2. Transformation of stress-tensor components. The components of the stress tensor expressed

as a 3× 3 matrix transform according to

(5.2.1) σ̂ = AσAT ,

where A stands for matrix (5.1.2) and the accent symbolizes the transformed entity. This is the matrix

form of transformation (2.9.5), which is proved in Exercise 2.4.

Following matrix (2.5.2), the stress-tensor components can be written as a square matrix given by

(5.2.2) σ =

 σ11 σ12 σ13

σ12 σ22 σ23

σ13 σ23 σ33

 ,

which, herein — in view of Theorem 2.7.1 — is symmetric; σ̂ looks analogous to σ.

Note that since a second-rank tensor has two indices, it is convenient to write it as a matrix, even though

tensors and matrices are distinct mathematical entities. Herein, we use the fact that under the orthogonal

transformations, the entries of a matrix behave like the components of a second-rank tensor.

In this chapter, we would like to use the elasticity matrix, which is given in expression (4.2.7). The

corresponding stress-strain equations are given in expression (4.2.8) and involve stress-tensor components

as a single-column matrix, σ, namely,

(5.2.3) σ = [σ11, σ22, σ33, σ23, σ13,σ12]T .

Thus, we wish to obtain a transformation equation for σ that is equivalent to equation (5.2.1). Since

transformation (5.2.1) is linear, it can be rewritten as a multiplication of σ by a matrix. In other words, we

can write

(5.2.4) σ̂ = Aσ,

where A is a 6 × 6 transformation matrix. To find the entries of A, we substitute the elements of the

standard basis of the space of symmetric 3× 3 matrices for σ.3

Consider the first element of the basis, namely,

σ = E11,

where Eij denotes the matrix with unity in the position (i, j) and with zeros elsewhere. In other words,

we write

(5.2.5) σ =

 1 0 0

0 0 0

0 0 0

 .

3Readers interested in the underlying aspects of linear algebra might refer to Anton, H., (1973) Elementary linear algebra:
John Wiley & Sons, pp. 237 – 238, and to Ayres, F., (1962) Matrices: Schaum’s Outlines, McGraw-Hill, p. 88 and p. 94.
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Now, using equation (5.2.1) and matrix (5.1.2), we can compute the corresponding entries of σ̂ as

σ̂ =

 A11 A12 A13

A21 A22 A23

A31 A32 A33


 1 0 0

0 0 0

0 0 0


 A11 A12 A13

A21 A22 A23

A31 A32 A33


T

=

 A11A11 A11A21 A11A31

A11A21 A21A21 A21A31

A11A31 A21A31 A31A31

 .(5.2.6)

For conciseness, using Kronecker’s delta, we can begin by writing the entries of matrix (5.2.5) as

σij = δi1δj1, i, j ∈ {1, 2, 3} ,

and, hence, write relation (5.2.6) as

σ̂kl =
3∑
i=1

3∑
j=1

AkiσijA
T
jl =

3∑
i=1

3∑
j=1

Akiδi1δj1Alj

= Ak1Al1, k, l ∈ {1, 2, 3} .

To consider the matrix form of stress-strain equations, in view of expression (5.2.3) and taking (k, l) =

(1, 1), (2, 2), (3, 3), (2, 3), (1, 3), (1, 2), we obtain

(5.2.7) σ̂ =



A11A11

A21A21

A31A31

A21A31

A11A31

A11A21


.

Column matrix (5.2.7) is the result of unfolding the entries of the rightmost square matrix in expression

(5.2.6) in the order given by (1, 1), (2, 2), (3, 3), (2, 3), (1, 3) and (1, 2).

Since, herein, σ is chosen as shown in expression (5.2.5), we write

σ = [1, 0, 0, 0, 0, 0]T .

In view of equation (5.2.4), σ̂ given in expression (5.2.7) is the first column of A. Analogously, we can

compute the second and the third columns of A by considering σ = E22 and σ = E33, respectively.

To find the fourth column of A, we use

σ = E23 + E32,
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which is equivalent to

(5.2.8) σ =

 0 0 0

0 0 1

0 1 0

 .

Using Kronecker’s delta, we can write the entries of matrix (5.2.8), as

σij = δi2δj3 + δi3δj2, i, j ∈ {1, 2, 3} .

Then, using equation (5.2.1), the corresponding entries for σ̂ can be computed as

σ̂kl =
3∑
i=1

3∑
j=1

AkiσijA
T
jl =

3∑
i=1

3∑
j=1

Akiδi2δj3Alj +
3∑
i=1

3∑
j=1

Akiδi3δj2Alj

= Ak2Al3 +Ak3Al2, k, l ∈ {1, 2, 3} .

To consider the matrix form of stress-strain equations, in view of expression (5.2.3) and taking (k, l) =

(1, 1), (2, 2), (3, 3), (2, 3), (1, 3), (1, 2), we obtain

σ̂ =



2A12A13

2A22A23

2A32A33

A22A33+A23A32

A12A33+A13A32

A12A23+A13A22


,

which is the fourth column of A. Analogously, we can compute the fifth and the sixth columns of A by

considering σ = E13 + E31 and σ = E12 + E21, respectively.

Now, putting together the six columns of A, we obtain

A =(5.2.9) 

A11A11 A12A12 A13A13 2A12A13 2A11A13 2A11A12

A21A21 A22A22 A23A23 2A22A23 2A21A23 2A21A22

A31A31 A32A32 A33A33 2A32A33 2A31A33 2A31A32

A21A31 A22A32 A23A33 A22A33+A23A32 A21A33+A23A31 A21A32+A22A31

A11A31 A12A32 A13A33 A12A33+A13A32 A11A33+A13A31 A11A32+A12A31

A11A21 A12A22 A13A23 A12A23+A13A22 A11A23+A13A21 A11A22+A12A21


,

which is the desired transformation matrix for the stress-tensor components given by matrix (5.2.3). Thus,

given transformation matrix (5.1.2), whose entries are Aij , we can immediately write the corresponding

A using matrix (5.2.9). Matrix (5.2.9) was also formulated by Bond (1943).
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5.2.3. Transformation of strain-tensor components. The components of the strain-tensor expressed

as a 3× 3 matrix transform according to

(5.2.10) ε̂ = AεAT ,

where A stands for matrix (5.1.2) and the accent symbolizes the transformed entity. Equation (5.2.10) is

the matrix form of equation (1.6.6), which is shown in Exercise 1.4. Herein, the strain-tensor components

are a square matrix given by

ε =

 ε11 ε12 ε13

ε12 ε22 ε23

ε13 ε23 ε33

 ,

whose symmetry results from definition (1.4.6); ε̂ looks analogous to ε.

To consider the matrix form of stress-strain equations, we wish to rewrite the strain-tensor components

as a single-column matrix in a manner similar to that shown in Section 5.2.2. As shown in stress-strain

equations (4.2.8), the single column matrix, ε, is formulated with factors of 2; namely,

(5.2.11) ε = [ε11, ε22, ε33, 2ε23, 2ε13,2ε12]T .

Hence, the corresponding transformation matrix differs from expression (5.2.9).4 To account for the factors

of 2, we can write

(5.2.12) ε̂ = FA F−1 ε,

where A is matrix (5.2.9) and

F =



1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 2 0 0

0 0 0 0 2 0

0 0 0 0 0 2


.

4If the stress-strain equations were written as a vector equation in the six-dimensional space, we would not require two distinct
transformation matrices. Interested readers might refer to Chapman, C., (2004) Fundamentals of seismic wave propagation:
Cambridge University Press, pp. 92 – 94, and to the footnote on page 102.
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Thus, the transformation matrix for the strain-tensor components, given by matrix (5.2.11), can be explic-

itly written as

MA = FA F−1 =(5.2.13) 

A11A11 A12A12 A13A13 A12A13 A11A13 A11A12

A21A21 A22A22 A23A23 A22A23 A21A23 A21A22

A31A31 A32A32 A33A33 A32A33 A31A33 A31A32

2A21A31 2A22A32 2A23A33 A22A33+A23A32 A21A33+A23A31 A21A32+A22A31

2A11A31 2A12A32 2A13A33 A12A33+A13A32 A11A33+A13A31 A11A32+A12A31

2A11A21 2A12A22 2A13A23 A12A23+A13A22 A11A23+A13A21 A11A22+A12A21


and expression (5.2.12) can be restated as

(5.2.14) ε̂ = MA ε.

Consequently, given transformation matrix (5.1.2), whose entries are Aij , we can immediately write the

corresponding MA using matrix (5.2.13).

5.2.4. Stress-strain equations in transformed coordinates. Now, having formulated σ̂ and ε̂, which

are given by expressions (5.2.4) and (5.2.14), respectively, we can formally write the stress-strain equations

in transformed coordinates as

σ̂ = Ĉε̂.

Explicitly, we can write these equations as

(5.2.15)



σ̂11

σ̂22

σ̂33

σ̂23

σ̂13

σ̂12


=



Ĉ11 Ĉ12 Ĉ13 Ĉ14 Ĉ15 Ĉ16

Ĉ12 Ĉ22 Ĉ23 Ĉ24 Ĉ25 Ĉ26

Ĉ13 Ĉ23 Ĉ33 Ĉ34 Ĉ35 Ĉ36

Ĉ14 Ĉ24 Ĉ34 Ĉ44 Ĉ45 Ĉ46

Ĉ15 Ĉ25 Ĉ35 Ĉ45 Ĉ55 Ĉ56

Ĉ16 Ĉ26 Ĉ36 Ĉ46 Ĉ56 Ĉ66





ε̂11

ε̂22

ε̂33

2ε̂23

2ε̂13

2ε̂12


,

where, as discussed in Chapter 4, the elasticity matrix is symmetric due to the strain-energy function.

Recall that a continuum is formulated in terms of the stress-strain equations. Consequently, an examination

of equations (4.2.8) and (5.2.15) leads to the following definition.

DEFINITION 5.2.1. The elastic properties of a continuum are invariant under an orthogonal transformation

if C = Ĉ, in other words, if the transformed elasticity matrix is identical to the original elasticity matrix.

Thus, material symmetry is exhibited by a change of the reference coordinate system that is undetectable

by any mechanical experiment.
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5.3. Condition for material symmetry

In view of Definition 5.2.1, the invariance to an orthogonal transformation imposes certain conditions on

the elasticity matrix. For the transformed and the original matrices to be identical to one another, they

must possess a particular form. Herein, we study a method where, given an orthogonal transformation, we

can find the elasticity matrix that is invariant under this transformation and, hence, describe the material

symmetry exhibited by a particular continuum. This method is stated in the following theorem.

THEOREM 5.3.1. The elastic properties of a continuum are invariant under an orthogonal transformation,

given by matrix A, if and only if

(5.3.1) C = MT
AC MA,

where C is the elasticity matrix and MA is matrix (5.2.13).

PROOF. Consider stress-strain equations (3.2.8); namely,

(5.3.2) σ = C ε,

which are expressed in terms of the original coordinate system. In the transformed coordinate system,

these equations are written as

(5.3.3) σ̂ = Ĉ ε̂.

Consider equation (5.3.3). Substituting expressions (5.2.4) and (5.2.14) into equation (5.3.3), we obtain

Aσ = Ĉ MA ε.

Multiplying both sides by A−1, we get

σ = A−1Ĉ MA ε.

According to Lemma 5.3.2 shown below, A−1 = MT
A. Hence, we can write

(5.3.4) σ = MT
AĈ MA ε.

Examining equations (5.3.2) and (5.3.4), we conclude that they both hold for any ε, if and only if

C = MT
AĈ MA,

which is the relation between C and Ĉ under transformation matrix A. In view of Definition 5.2.1,

invariance with respect to A means that

C = MT
AC MA,

which is expression (5.3.1), as required. �
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LEMMA 5.3.2. Let A be given by matrix (5.2.9) and MA be given by matrix (5.2.13). It follows that

A−1 = MT
A.

PROOF. Recall that A is an orthogonal matrix. Let x̂ = Ax be the transformed coordinate system. Con-

sider expression σx, which, in view of expression (5.2.1), can be stated in the x̂-coordinates as (AσAT)x̂.

Thus, in terms of the x̂-coordinates, the stress-tensor components become

(5.3.5) σ̂ = AσAT .

Let us calculate A−1. Since A is an orthogonal matrix, namely, AT = A−1, we can rewrite equation

(5.3.5) as

(5.3.6) σ = AT σ̂A.

Thus, in a manner analogous to that used to obtain expression (5.2.4), we can rewrite expression (5.3.6) in

the desired notation, as

(5.3.7) σ = AT σ̂,

where AT is constructed as matrix (5.2.9), but with the entries ATij = Aji of AT used in place of the

entries Aij of A. Note that the order of operations matters; namely, AT 6= AT . Comparing expression

(5.2.4) with expression (5.3.7), we see that AT = A−1. Hence, we can write the inverse of matrix A

explicitly, as

A−1 =(5.3.8) 

A11A11 A21A21 A31A31 2A21A31 2A11A31 2A11A21

A12A12 A22A22 A32A32 2A22A32 2A12A32 2A12A22

A13A13 A23A23 A33A33 2A23A33 2A13A33 2A13A23

A12A13 A22A23 A32A33 A22A33+A32A23 A12A33+A23A31 A21A32+A22A31

A11A13 A21A23 A31A33 A21A33+A31A23 A11A33+A31A13 A11A23+A21A13

A11A12 A21A22 A31A32 A21A32+A31A22 A11A32+A31A12 A11A22+A21A12


.

Comparing the entries of matrices (5.3.8) and (5.2.13), we notice that the former one is equal to the

transpose of the latter, as required. �

Expression (5.3.1) is a concise statement of conditions that the entries of the elasticity matrix must obey

in order for the continuum described by stress-strain equations (4.2.8) to be invariant under an orthogonal

transformation. Given transformation (5.1.2), expression (5.3.1) is convenient to apply since it contains

twenty-one linear equations for Cmn. Furthermore, considering transformations (5.8.1) and (5.6.1), which

are discussed below, matrix MA is significantly simplified, since A13 = A23 = A31 = A32 = 0, while

A33 = ±1.

In our formulation of the material-symmetry condition, we could have avoided different transformation

matrices for stress and strain, which are given in expressions (5.2.9) and (5.2.13), respectively, if we used
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the stress-strain equations formulated in Exercise 5.3, below. Such an approach would have resulted in a

different form of matrix M in expression (5.3.1).5 Our choice of equations (4.2.8) was motivated by the

simplicity of the elasticity matrix therein, which does not have factors
√

2 and 2, which appear in elasticity

matrix (5.14.6) in Exercise 5.3.

5.4. Point symmetry

Let us illustrate condition (5.3.1) by describing the material symmetry that is valid for all continua de-

scribed by stress-strain equations (4.2.8). In the following theorem, we show that at every point, an elastic

continuum is invariant under the reflection through the origin of the coordinate system located at this point.

Such a reflection is described by the transformation matrix given by

(5.4.1) A−I :=

 −1 0 0

0 −1 0

0 0 −1

 = −I.

THEOREM 5.4.1. At every point, a continuum given by stress-strain equations (4.2.8) is invariant under

the reflection about the origin of a coordinate system that is located at that point.

PROOF. Consider transformation matrix (5.4.1). Matrix (5.2.13) becomes

MA−I
=



1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1


= I.

Hence, condition (5.3.1) becomes

C = ITC I,

which is identically satisfied for any C. �

This means that the symmetry group of every continuum contains A−I.

5Readers interested in the material-symmetry condition in the context of stress-strain equations discussed in Exercise 5.3
might refer to Chapman, C., (2004) Fundamentals of seismic wave propagation: Cambridge University Press, pp. 92 – 94.
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5.5. Generally anisotropic continuum

A generally anisotropic continuum is the most general continuum describable by stress-strain equations

(4.2.8). The elasticity matrix of a generally anisotropic continuum is given by

(5.5.1) CGEN =



C11 C12 C13 C14 C15 C16

C12 C22 C23 C24 C25 C26

C13 C23 C33 C34 C35 C36

C14 C24 C34 C44 C45 C46

C15 C25 C35 C45 C55 C56

C16 C26 C36 C46 C56 C66


.

The only symmetry exhibited by a generally anisotropic continuum is point symmetry. Hence, a generally

anisotropic continuum is described by an elasticity matrix that contains twenty-one independent entries.

5.6. Monoclinic continuum

5.6.1. Elasticity matrix. A continuum whose symmetry group contains a reflection about a plane

through the origin is said to be monoclinic. For convenience, let us choose the coordinate system such that

this reflection takes place about the x1x2-plane, which means, along the x3-axis.

Consider the orthogonal transformation that is represented by matrix (5.1.2) in the form given by

(5.6.1) A =

 cos Θ sin Θ 0

− sin Θ cos Θ 0

0 0 −1

 .

Matrix (5.6.1), whose determinant is equal to negative unity, corresponds to the composition of two trans-

formations, namely, rotation by angle Θ about the x3-axis and reflection about the x1x2-plane. To consider

the reflection alone, we let Θ = 0 to obtain

(5.6.2) A3 =

 1 0 0

0 1 0

0 0 −1

 .

Following expression (5.2.13), the corresponding matrix MA is

MA3 =



1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 −1 0 0

0 0 0 0 −1 0

0 0 0 0 0 1


.
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Theorem 5.3.1 requires that the elasticity matrix satisfies condition (5.3.1). This condition requires that

C = MT
A3

C MA3 ,

which we can explicitly write as

C11 C12 C13 C14 C15 C16

C12 C22 C23 C24 C25 C26

C13 C23 C33 C34 C35 C36

C14 C24 C34 C44 C45 C46

C15 C25 C35 C45 C55 C56

C16 C26 C36 C46 C56 C66


=



C11 C12 C13 −C14 −C15 C16

C12 C22 C23 −C24 −C25 C26

C13 C23 C33 −C34 −C35 C36

−C14 −C24 −C34 C44 C45 −C46

−C15 −C25 −C35 C45 C55 −C56

C16 C26 C36 −C46 −C56 C66


.

The equality of these two matrices implies that

(5.6.3) C14 = C15 = C24 = C25 = C34 = C35 = C46 = C56 = 0.

Thus, the elasticity matrix of a continuum that possesses a reflection symmetry along the x3-axis is

(5.6.4) CMONOx3 =



C11 C12 C13 0 0 C16

C12 C22 C23 0 0 C26

C13 C23 C33 0 0 C36

0 0 0 C44 C45 0

0 0 0 C45 C55 0

C16 C26 C36 0 0 C66


.

Hence, a monoclinic continuum is described by an elasticity matrix that contains thirteen independent

entries.

5.6.2. Vanishing of tensor components. We can recognize the pattern of the vanishing elasticity

parameters in Section 5.6.1 by considering the elasticity tensor rather than the elasticity matrix. Recalling

expression (3.2.5), we can write expression (5.6.3) as

(5.6.5) c1123 = c1113 = c2223 = c2213 = c3323 = c3313 = c2312 = c1312 = 0.

Examining this result, we see that all the components that disappear as a consequence of the invariance to

the reflection along the x3-axis have an odd number of subscript 3.

We can exemplify this pattern in view of tensor algebra. In general, the elasticity tensor transforms ac-

cording to the rule given by

ĉmnpr =
3∑
i=1

3∑
j=1

3∑
k=1

3∑
l=1

AmiAnjApkArlcijkl, m,n, p, r ∈ {1, 2, 3} ,
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where A is a transformation matrix and ĉmnpr denotes the components of the elasticity tensor in the

transformed coordinates. In our case, due to the invariance resulting from the symmetry of the elasticity

tensor, ĉmnpr = cmnpr, as stated in Definition 5.2.1, we write

cmnpr =
3∑
i=1

3∑
j=1

3∑
k=1

3∑
l=1

AmiAnjApkArlcijkl, m,n, p, r ∈ {1, 2, 3} ,

which is the tensor form of condition (5.3.1). To illustrate the vanishing of a component, let us consider,

for instance, c1113. We can write

c1113 =
3∑
i=1

3∑
j=1

3∑
k=1

3∑
l=1

A1iA1jA1kA3lcijkl.

Since matrix (5.6.1) is a diagonal matrix, let us write only the nonzero entries of A to get

c1113 = A11A11A11A33c1113.

Specifically, we obtain

c1113 = (1) (1) (1) (−1) c1113 = −c1113.

This equality requires that c1113 = 0, as expected.

5.6.3. Natural coordinate system. In general, in an arbitrary coordinate system, all the entries of an

elasticity matrix are nonzero. A natural coordinate system is a particular system within which an elasticity

matrix has the fewest possible number of nonzero independent entries.

For any continuum, there exists at least three natural coordinate systems.6 Hence, in principle, we could

also rotate our orthonormal coordinate system so as to find a natural coordinate system for a generally

anisotropic continuum, discussed above in Section 5.5. This, however, is not a simple task. Yet, in a

natural coordinate system, a generally anisotropic continuum can be described by eighteen independent

elasticity parameters and three Euler’s angles that specify the orientation of this system.

A monoclinic continuum can be conveniently used to illustrate the concept of a natural coordinate system.

The coordinate system that is used to formulate matrix (5.6.4) has the x3-axis coinciding with the normal

to the symmetry plane of the continuum. In other words, the x1x2-plane coincides with the symmetry

plane. The rotation of the coordinate system about the x3-axis allows us to further reduce the number of

elasticity parameters needed to describe a monoclinic continuum. An appropriate rotation reduces matrix

(5.6.4) to a new matrix that contains only twelve parameters. This orientation of the coordinate system is

a natural coordinate system for a monoclinic continuum.

6Interested readers might refer to Fedorov, F.I., (1968) Theory of elastic waves in crystals: Plenum Press, New York, p.
25 and pp. 110 – 111, to Helbig, K., (1994) Foundations of anisotropy for exploration seismics: Pergamon, pp. 163 – 170, to
Lanczos, C., (1949/1986) The variational principles of mechanics: Dover, p. 373, to Schouten, J.A. (1951/1989) Tensor analysis
for physicists: Dover, p. 162., and to Winterstein, D.F., (1990) Velocity anisotropy terminology for geophysicists: Geophysics,
55, 1070 – 1088.
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Rotation of the coordinate axes about the x3-axis by angle Θ, where the angle is given by

(5.6.6) tan (2Θ) =
2C45

C44 − C55
,

leads to a new set of elasticity parameters, which we denote by Ĉmn.7 In the new set, Ĉ45 vanishes and

elasticity matrix (5.6.4) is reduced to

(5.6.7) ĈMONO =



Ĉ11 Ĉ12 Ĉ13 0 0 Ĉ16

Ĉ12 Ĉ22 Ĉ23 0 0 Ĉ26

Ĉ13 Ĉ23 Ĉ33 0 0 Ĉ36

0 0 0 Ĉ44 0 0

0 0 0 0 Ĉ55 0

Ĉ16 Ĉ26 Ĉ36 0 0 Ĉ66


.

Hence, in a natural coordinate system, a monoclinic continuum is described by twelve independent elas-

ticity parameters and the angle Θ that describes the orientation of the coordinate system and corresponds

to Euler’s angle.

We can obtain equation (5.6.6) by using the rotation in the x1x2-plane to diagonalize the submatrix of

interest in matrix (5.6.4); namely,

(5.6.8)

[
Ĉ44 0

0 Ĉ55

]
=

[
cos Θ sin Θ

− sin Θ cos Θ

][
C44 C45

C45 C55

][
cos Θ − sin Θ

sin Θ cos Θ

]
.

We note that considering matrices (5.6.4) and (5.6.7), Cmn 6= Ĉmn, where m,n ∈ {1, . . . , 6}. In other

words, the rotation about the x3-axis by the angle (5.6.6) results in a new elasticity matrix to describe the

same continuum.

Let us comment on the natural coordinate systems in view of our subsequent work. The orthotropic

continuum discussed in Section 5.7 possesses three orthogonal symmetry planes; hence, in accordance

with our use of the orthonormal coordinate system, we will consider it, ab initio, in its natural coordinate

system. While discussing the trigonal continuum, in Section 5.8, we will again search for its natural

coordinate system. The tetragonal continuum, discussed in Section 5.9, will be obtained as a special

case of the orthotropic one; hence, it will be already in its natural coordinate system. For a transversely

isotropic continuum, which we will discuss in Section 5.10, due to its property of rotation invariance, all

orthonormal coordinate systems whose one axis coincides with the rotation axis are natural coordinate

systems. Hence, our initial formulation will be already set in a natural coordinate system. The cubic

continuum, discussed in Section 5.11, can be viewed as a special case of the tetragonal continuum; hence,

it will be already in its natural coordinate system. Finally, for an isotropic continuum, discussed in Section

5.12, all orthonormal coordinate systems are natural.

7Readers interested in the formulation of expression (5.6.6), in the context presented herein, might refer to Helbig, K., (1994)
Foundations of anisotropy for exploration seismics: Pergamon, pp. 82 – 83, 94 – 95 and 110 – 116.
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In the context of ray theory, natural coordinate systems are associated with pure-mode directions, as dis-

cussed in Section 9.2.2. In particular, in Section 9.2.2, expression (5.6.6) is obtained by considering the

displacement directions of the three types of waves that propagate along the x3-axis in a monoclinic con-

tinuum.

5.7. Orthotropic continuum

An orthotropic continuum is a continuum that possesses three orthogonal symmetry planes. For conve-

nience, let us choose the coordinate system such that the symmetry planes coincide with the coordinate

planes. This is a natural coordinate system for an orthotropic continuum. Hence, the transformation ma-

trices are given by

(5.7.1) A1 =

 −1 0 0

0 1 0

0 0 1

 ,

(5.7.2) A2 =

 1 0 0

0 −1 0

0 0 1

 ,

and A3, given by matrix (5.6.2), which correspond to the reflections along the x1-axis, the x2-axis and the

x3-axis, respectively.

In view of the properties of the symmetry group, the elasticity matrix of an orthotropic continuum can be

obtained using any two of the three symmetry planes. This is shown by the following theorem.

THEOREM 5.7.1. If a continuum given by stress-strain equations (4.2.8) is invariant under the reflection

about two orthogonal planes, it must also be invariant under the reflection about the third orthogonal

plane.

PROOF. Consider a continuum that is invariant under the reflections along the x1-axis and along the

x3-axis. The corresponding orthogonal transformations are given by matrices (5.7.1) and (5.6.2), respec-

tively. Also, following Theorem 5.4.1, all continua possess point symmetry. In other words, they are

invariant under the transformation given by matrix (5.4.1). Since all these transformations belong to the

symmetry group of an orthotropic continuum, their products also belong to this group. Consider

(A1) (A3) (A−I) =

 1 0 0

0 −1 0

0 0 1

 ,
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which we recognize to be matrix (5.7.2) corresponding to the reflections along the x2-axis. Thus, in view

of point symmetry, invariance to the reflections about two orthogonal planes also implies invariance to the

reflection about the third orthogonal plane. �

Therefore, to obtain the elasticity matrix of an orthotropic continuum, let us use matrices (5.6.2) and

(5.7.2). Matrix (5.6.2) is also used in Section 5.6 where we obtain the relations given in expression (5.6.3);

namely,

(5.7.3) C14 = C15 = C24 = C25 = C34 = C35 = C46 = C56 = 0.

Using matrix (5.7.2), we write condition (5.3.1) as

(5.7.4) C = MT
A2

CMA2 ,

where, using matrix (5.2.13), we explicitly write matrix MA2 as

(5.7.5) MA2 =



1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 −1 0 0

0 0 0 0 1 0

0 0 0 0 0 −1


.

Let us also use — in this condition — C given by CMONOx3 , which is the matrix stated in expression

(5.6.4). Thus, solving equation (5.7.4), we get the vanishing entries of C that distinguish the monoclinic

continuum from the orthotropic continuum; they are

(5.7.6) C16 = C26 = C36 = C45 = 0.

Combining relations (5.7.3) and (5.7.6), we can write the elasticity matrix for an orthotropic continuum as

(5.7.7) CORTHOx1x2x3 =



C11 C12 C13 0 0 0

C12 C22 C23 0 0 0

C13 C23 C33 0 0 0

0 0 0 C44 0 0

0 0 0 0 C55 0

0 0 0 0 0 C66


.

Hence, in a natural coordinate system, an orthotropic continuum is described by nine independent elasticity

parameters.

To conclude, in view of Section 5.6.2, we can rewrite expression (5.7.6) as

(5.7.8) c1112 = c2221 = c3312 = c2313 = 0.
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Examining this result, we see that all the elasticity-tensor components that disappear as a result of the in-

variance under the reflection along the x2-axis have an odd number of subscript 2, as expected. Combining

expressions (5.6.5) and (5.7.8), which — in view of Theorem 5.7.1 — correspond to the elasticity tensor

that is invariant under reflections along the x1-axis, the x2-axis and the x3-axis, we see that each vanishing

component has two occurrences of an odd number of subscript 1, 2 or 3. This is consistent with Theorem

5.7.1, which implies that each component vanishes independently twice; in other words, it vanishes for

reflections along two, among the three axes. Also, while examining expressions (5.6.5) and (5.7.8), we

can write the components that vanish as a result of the invariance under the reflection along the x1-axis;

they are: c1113, c2213, c3313, c2312, c1112, c2221, c3312 and c2313.

5.8. Trigonal continuum

5.8.1. Elasticity matrix. A trigonal continuum is a continuum whose symmetry group contains ro-

tations about an axis by Θ, where Θ =2π/3 and Θ =4π/3. To obtain the elasticity matrix for this

continuum, we consider the orthogonal transformation that is represented by matrix (5.1.2) in the form

given by

(5.8.1) Ax3Θ =

 cos Θ sin Θ 0

− sin Θ cos Θ 0

0 0 1

 .

Matrix (5.8.1), whose determinant is equal to unity, corresponds to rotation by angle Θ about the x3-axis.

Therefore, considering Θ =2π/3, we obtain

Ax32π/3 =

 cos 2π
3 sin 2π

3 0

− sin 2π
3 cos 2π

3 0

0 0 1

 .

Following expression (5.2.13), we write the corresponding 6× 6 transformation matrix, which is

(5.8.2)

MAx32π/3
=



cos2 2π
3 sin2 2π

3 0 0 0 cos 2π
3 sin 2π

3

sin2 2π
3 cos2 2π

3 0 0 0 − sin 2π
3 cos 2π

3

0 0 1 0 0 0

0 0 0 cos 2π
3 − sin 2π

3 0

0 0 0 sin 2π
3 cos 2π

3 0

−2 cos 2π
3 sin 2π

3 2 sin 2π
3 cos 2π

3 0 0 0 cos2 2π
3 − sin2 2π

3


.

Using matrix (5.8.2) in condition (5.3.1), we obtain

(5.8.3) C16 = C26 = C34 = C35 = C36 = C45 = 0
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and

(5.8.4) C11 = C22, C13 = C23, C14 = −C56 = −C24,

C66 =
1
2

(C22 − C12), C15 = C46 = −C25, C44 = C55.

We do not need to repeat this process for Θ =4π/3 since for invariance under a such rotation we would

obtain the results identical to the ones shown in expressions (5.8.3) and (5.8.4). This is so, because Ax34π/3

is a morphism of groups Ax32π/3 and Ax32π/3. In other words,

MAx34π/3
= MAx32π/3

MAx32π/3
,

where MAx32π/3
is matrix (5.8.2).

Thus, using expressions (5.8.3) and (5.8.4), we can already write the elasticity matrix for the trigonal

continuum as

(5.8.5) CTRIGONALx3
=



C11 C12 C13 C14 C15 0

C12 C11 C13 −C14 −C15 0

C13 C13 C33 0 0 0

C14 C14 0 C44 0 −C15

C15 −C15 0 0 C44 C14

0 0 0 −C15 C14
C11−C12

2


.

Examining matrix (5.8.5), we see that the trigonal continuum is described by an elasticity matrix with

seven independent entries.

5.8.2. Natural coordinate system. With an appropriate rotation of the coordinate system about the

x3-axis, matrix (5.8.5) can be further reduced to a new matrix with only six independent entries. This

rotation is given by

tan(3Θ) =
C14

C15
.

As a result of this rotation, C14 vanishes and matrix (5.8.5) becomes

ĈTRIGONAL =



Ĉ11 Ĉ12 Ĉ13 0 Ĉ15 0

Ĉ12 Ĉ11 Ĉ13 0 −Ĉ15 0

Ĉ13 Ĉ13 Ĉ33 0 0 0

0 0 0 Ĉ44 0 −Ĉ15

Ĉ15 −Ĉ15 0 0 Ĉ44 0

0 0 0 −Ĉ15 0 Ĉ11−Ĉ12
2


.

Therefore, in a natural coordinate system, the trigonal continuum is described by six independent elasticity

parameters.
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5.9. Tetragonal continuum

A tetragonal continuum is a continuum whose symmetry group contains a four-fold rotation and a reflec-

tion through the plane that contains the axis of rotation. For convenience, let us choose the coordinate

system such that the x3-axis is the axis of rotation, while the reflection is along the x2-axis. This is a

natural coordinate system for a tetragonal continuum.

The transformation matrices of a tetragonal continuum are given by

(5.9.1) Ax3π/2 =

 0 1 0

−1 0 0

0 0 1

 ,

which is matrix (5.8.1) with Θ = π/2, and by matrix (5.7.2). These matrices correspond to the rotation

about the x3-axis and to the reflections along the x2-axis, respectively.

Matrix (5.7.2) also belongs to the symmetry group of an orthotropic continuum discussed in Section 5.7,

where we obtained the relations given in expression (5.7.6); namely,

(5.9.2) C16 = C26 = C36 = C45 = 0.

These relations also apply to a tetragonal continuum. The additional relations result from matrix (5.9.1).

Using matrix (5.9.1), condition (5.3.1) becomes

C = MT
Ax3π/2

CMAx3π/2

and results in relations given by

(5.9.3) C22 = C11, C23 = C13, C55 = C44.

Combining relations (5.9.2) and (5.9.3), we obtain the elasticity matrix of a tetragonal continuum; namely,

(5.9.4) CTETRA =



C11 C12 C13 0 0 0

C12 C11 C13 0 0 0

C13 C13 C33 0 0 0

0 0 0 C44 0 0

0 0 0 0 C44 0

0 0 0 0 0 C66


.

Thus, in a natural coordinate system, only six independent elasticity parameters are needed to describe a

tetragonal continuum.

Note that, as expected, matrix (5.9.4) is a special case of matrix (5.7.7) with additional relations given by

expression (5.9.3).
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5.10. Transversely isotropic continuum

5.10.1. Elasticity matrix. Now we will consider a particularly interesting case. Suppose that a con-

tinuum is invariant with respect to a single rotation given by matrix (5.8.1) where Θ is smaller than π/2.

Let us consider, for example, Θ = 2π/5, and, hence, assume that the symmetry group contains

(5.10.1) Ax32π/5 =


cos 2π

5 sin 2π
5 0

− sin 2π
5 cos 2π

5 0

0 0 1

 .

Following condition (5.3.1), the elasticity matrix, C, satisfies the equation given by

(5.10.2) C = MT
Ax32π/5

CMAx32π/5
.

The entries of matrix MAx32π/5
are more complicated than the entries of the transformation matrices used

in the previous sections, but equation (5.10.2) can still be solved directly to give relations among the entries

of C. The solution to condition (5.10.2) is the matrix given by

(5.10.3) CTRANS =



C11 C12 C13 0 0 0

C12 C11 C13 0 0 0

C13 C13 C33 0 0 0

0 0 0 C44 0 0

0 0 0 0 C44 0

0 0 0 0 0 C11−C12
2


.

Thus, the requirements that the symmetry group contains Ax32π/5 results in a continuum that is described

by only five independent elasticity parameters.

5.10.2. Rotation invariance. A particularly important property of matrix (5.10.3) is the fact that for

any angle Θ, this matrix, without any further simplification, satisfies the equation given by

(5.10.4) C = MT
Ax3Θ

CMAx3Θ
,

where Ax3Θ is given by matrix (5.8.1). This property of matrix (5.10.3) can be directly verified by sub-

stituting MAx3Θ
, without specifying the value of Θ, and CTRANS into the right-hand side of equation

(5.10.4). The resulting expression reduces to CTRANS. Therefore, the invariance of CTRANS to the five-

fold rotation about a given axis implies invariance to the rotation by any angle about this axis. As stated in

Theorem 5.10.1, below, there is nothing special about 2π/5; we could choose any angle smaller than π/2

to obtain the same elasticity matrix.

To prove Theorem 5.10.1 below, and to see the reason behind it, consider the fact that the material sym-

metry of a continuum is equivalent to the symmetry of the strain-energy function, W (ε), as discussed
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in Section 4.2.4.8 Since strain energy is a scalar, its value must be the same for all orientations of the

coordinate system. In view of expression (4.1.3), namely,

(5.10.5) W (ε) =
1
2

3∑
i=1

3∑
j=1

3∑
k=1

3∑
l=1

cijklεijεkl,

this is, in general, achieved by the values of the components of cijkl, which are different for different

orientations of the coordinate system in such a way that the value of W remains the same. If a continuum

exhibits a given material symmetry, the same values of the components of cijkl give the same value of W

for more than one orientation of the coordinate system.

We wish to express the effect of an orthogonal transformation, A, on the strain-energy function. Since the

value of strain energy must be the same for the original and the transformed coordinate systems, we can

write

(5.10.6) Ŵ (ε̂) = W (ε) ,

where the transformed strain-tensor components are given by expression (5.2.10), namely,

(5.10.7) ε̂ = AεAT ,

which, for brevity, we denote by A ◦ ε, with ◦ standing for the orthogonal-transformation operator.

Note that equation (5.10.6) is always satisfied. Consequently, this equation provides no information about

the material symmetry of the continuum. The material symmetry requires that the strain-energy function

be invariant under A, namely,

W (ε̂) = W (ε) ,

which we can write as W (ε) = W (A ◦ ε). In other words, material symmetry requires that the strain-

energy function be the same for both ε and ε̂.

Herein, we are interested in rotations of the coordinate system; hence, we consider transformation Ax3Θ,

which is given by expression (5.8.1). In view of expressions (5.8.1) and (5.10.7), ε̂ can be regarded as a

quadratic trigonometric polynomial in Θ. Hence, W (Ax3Θ ◦ ε) is a quartic trigonometric polynomial in

Θ.9

Now, let the material symmetry be the invariance under rotation by Θ = 2π/n, where n ≥ 5. Hence,

consider the strain-energy function that is invariant under such rotation. Since the symmetries of a

8Readers interested in the treatment of symmetries that is based on the strain-energy function might refer to Carcione, J.M.,
(2001) Wave fields in real media: wave propagation in anisotropic, anelastic and porous media: Pergamon, pp. 2 – 3, to Epstein,
M., and Slawinski, M.A., (1998) On some aspects of the continuum-mechanics context. Revue de l’Institut Français du Pétrole,
53, No. 5, pp. 673 – 674, to Lanczos, C., (1949/1986) The variational principles of mechanics: Dover, pp. 373 – 374, and to
Macelwane, J.B., and Sohon, F.W., (1936) Introduction to theoretical seismology, Part I: Geodynamics: John Wiley and Sons,
Inc., pp. 77 – 78.

9Readers interested in trigonometric polynomials might refer to Courant, R., and Hilbert, D., (1924/1989) Methods of math-
ematical physics: John Wiley & Sons, Vol. I, p. 69 – 70.
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continuum form a group, we conclude that W (ε) is also invariant under rotations by 2mπ/n, where

m ∈ {0, 1, . . . , n− 1}. In other words, the symmetry group contains rotations given by

(5.10.8) Ax32mπ/n=


cos 2mπ

n sin 2mπ
n 0

− sin 2mπ
n cos 2mπ

n 0

0 0 1

 ,
n ≥ 5

m ∈ {0, 1, . . . , n− 1}
.

So, we can write

(5.10.9) W (ε) = W
(
Ax32mπ/n ◦ ε

)
,

n ≥ 5

m ∈ {0, 1, . . . , n− 1}
,

which implies that

(5.10.10) W (ε) =
1
n

n−1∑
m=0

W
(
Ax32mπ/n ◦ ε

)
, n ≥ 5.

In other words, since equation (5.10.9) holds for any allowable value of m, the sum on the right-hand side

of equation (5.10.10) is composed of the identical values of W .

Note that for any W (ε), not necessarily invariant under transformations (5.10.8), the right-hand side of

equation (5.10.10) is called the symmetrization of W with respect to the group of these transformations.

Hence, equation (5.10.10) means that if W (ε) is invariant under rotations (5.10.8), it is equal to its sym-

metrization with respect to these rotations.

Now we can introduce the key statement that explains why an elasticity matrix invariant to a five-fold

rotation about a given axis is necessarily invariant to any rotation about this axis. Since W (Ax3Θ ◦ ε) is

a quartic trigonometric polynomial, it follows that, for n ≥ 5, we can apply Lemma 5.10.2, below, and

rewrite the right-hand side of equation (5.10.10) as

1
n

n−1∑
m=0

W
(
Ax32mπ/n ◦ ε

)
=

1
2π

2π∫
0

W (Ax3Θ ◦ ε) dΘ, n ≥ 5,

which immediately allows us to write

(5.10.11) W (ε) =
1

2π

2π∫
0

W (Ax3Θ ◦ ε) dΘ.

Equation (5.10.11) states that W (ε) is equal to its symmetrization over all possible rotations. This implies

that W (ε) is invariant under all rotations. Hence, we conclude with the following theorem.

THEOREM 5.10.1. If W (ε) is invariant under rotations by angle 2π/n about a given axis, where n ≥ 5,

it is invariant under any rotation about this axis.
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To complete the proof of this theorem, consider the following lemma.

LEMMA 5.10.2. If f is a trigonometric polynomial of at most degree n− 1, then

(5.10.12)
1
n

n−1∑
m=0

f

(
2mπ
n

)
=

1
2π

2π∫
0

f (Θ) dΘ.

PROOF. Consider a basis of the space of trigonometric polynomials of at most degree n− 1 given by

fr (Θ) = eirΘ, r ∈ {− (n− 1) , . . . , n− 1} .

In view of linearity, to prove equation (5.10.12) for f , it suffices to prove it for fr, where

r ∈ {− (n− 1) , . . . , n− 1} .

Set

(5.10.13) z = eir
2π
n , r ∈ {− (n− 1) , . . . , n− 1} .

Then, we can write

(5.10.14)
1
n

n−1∑
m=0

fr

(
2mπ
n

)
=

1
n

n−1∑
m=0

zm, r ∈ {− (n− 1) , . . . , n− 1} .

Examining expression (5.10.13) for the case of r = 0, we note that z = 1 and, thus, the right-hand side

of expression (5.10.14) is equal to 1. Now, for r 6= 0, z 6= 1 and we can write the right-hand side of

expression (5.10.14) as

(5.10.15)
1
n

n−1∑
m=0

zm =
1
n

zn − 1
z − 1

.

Examining expression (5.10.13), we also note that zn = 1 and, thus, the right-hand side of expression

(5.10.15) is equal to 0. To summarize, we can write the left-hand side of equation (5.10.12) as

(5.10.16)
1
n

n−1∑
m=0

fr

(
2mπ
n

)
=

{
0

1

if r 6= 0

if r = 0
.

Performing the integration on the right-hand side of equation (5.10.12), we obtain

(5.10.17)
1

2π

2π∫
0

eirΘdΘ =

{
0

1

if r 6= 0

if r = 0
.

Thus, for r ∈ {− (n− 1) , . . . , n− 1}, expressions (5.10.16) and (5.10.17) are equal to one another and,

hence, equation (5.10.12) is valid for polynomials of at most degree n− 1, as required. �

Note that in the proof of Theorem 5.10.1 we used the fact that W (ε) is a quadratic polynomial in the

strain-tensor components and, hence, W (Ax3Θ ◦ ε) is a quartic trigonometric polynomial in Θ. This
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corresponds to the fact that Theorem 5.10.1 is associated with cijkl, which is a fourth-rank tensor. This

theorem can be extended to the higher-rank tensors if they are subject to similar transformations. In

general, such a rotation invariance was given by Herman in 1945, and is shown in Exercise 5.6.

Since the symmetry ofW (ε) is tantamount to the symmetry of a continuum, we conclude that a continuum

described by matrix (5.10.3) is transversely isotropic.

5.11. Cubic continuum

A cubic continuum is a continuum whose symmetry group contains rotations by Θ = π/2 about two axes

that are orthogonal to one another. Herein, let us choose the x3-axis and x1-axis.

To consider the rotation about the x3-axis, we set Θ = π/2 in matrix (5.8.1) to get

Ax3π/2 =

 0 1 0

−1 0 0

0 0 1

 ,

which is matrix (5.9.1) used already in Section 5.9 to discuss the tetragonal continuum. Following expres-

sion (5.2.13), we write the corresponding 6× 6 transformation matrix, which is

(5.11.1) MAx3π/2
=



0 1 0 0 0 0

1 0 0 0 0 0

0 0 1 0 0 0

0 0 0 0 −1 0

0 0 0 1 0 0

0 0 0 0 0 −1


.

Using matrix (5.11.1) in condition (5.3.1), we obtain

(5.11.2) C14 = C15 = C24 = C25 = C34 = C35 = C36 = C45 = C46 = C56 = 0

and

(5.11.3) C11 = C22, C13 = C23, C16 = −C26, C44 = C55.

To consider the rotation about the x1-axis, we use the transformation matrix given by

Ax1Θ =

 1 0 0

0 cos Θ − sin Θ

0 sin Θ cos Θ

 ,
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which — when evaluated for Θ = π/2 — becomes

Ax1π/2 =

 1 0 0

0 0 −1

0 1 0

 .

The corresponding 6× 6 transformation matrix is

(5.11.4) MAx1π/2
=



1 0 0 0 0 0

0 0 1 0 0 0

0 1 0 0 0 0

0 0 0 −1 0 0

0 0 0 0 0 1

0 0 0 0 −1 0


.

Using matrix (5.11.4) in condition (5.3.1), we obtain

(5.11.5) C14 = C15 = C16 = C25 = C26 = C35 = C36 = C45 = C46 = C56 = 0

and

(5.11.6) C12 = C13, C22 = C33, C24 = −C34, C55 = C66.

Combining expressions (5.11.2), (5.11.3), (5.11.5) and (5.11.6), we obtain the elasticity matrix for the

cubic continuum. This matrix is

CCUBICx1x3
=



C11 C13 C13 0 0 0

C13 C11 C13 0 0 0

C13 C13 C11 0 0 0

0 0 0 C44 0 0

0 0 0 0 C44 0

0 0 0 0 0 C44


,

which contains three independent elasticity parameters.

Examining this derivation, we see that cubic symmetry can be viewed as resulting from combining two

tetragonal symmetries for the two rotation axes that are orthogonal to one another.

In view of work presented in the sections above, we see that the cubic continuum is a special case of the

tetragonal continuum, tetragonal continuum is a special case of the orthotropic continuum, which in turn

is a special case of the monoclinic continuum. In other words, the symmetry group of the monoclinic

continuum is contained in the symmetry group of the cubic continuum. In Section 5.13, we will study the

relations among all symmetry classes.
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5.12. Isotropic continuum

5.12.1. Elasticity matrix. A continuum whose symmetry group contains all orthogonal transforma-

tions is said to be isotropic. For an isotropic continuum, all coordinate systems are natural coordinate

systems and, hence, no particular orientation is required.

Since the symmetry group of an isotropic continuum contains all orthogonal transformations, it must

contain all rotations about the x3-axis. Thus, the elasticity matrix of an isotropic continuum has, at least,

the simplicity of the form shown in matrix (5.10.3). Consider also the invariance to the transformation that

exchanges the x1 and x3 coordinates; namely,

Ax1x3 =

 0 0 1

0 1 0

1 0 0

 .

Following condition (5.3.1), we obtain the equation given by

C = MT
Ax1x3

CMAx1x3
,

which imposes the additional relations; namely,

C11 = C33, C12 = C13, C44 = C66.

Incorporating these relations into matrix (5.10.3), we obtain

(5.12.1) CISO =



C11 C11 − 2C44 C11 − 2C44 0 0 0

C11 − 2C44 C11 C11 − 2C44 0 0 0

C11 − 2C44 C11 − 2C44 C11 0 0 0

0 0 0 C44 0 0

0 0 0 0 C44 0

0 0 0 0 0 C44


.

Hence, the elasticity matrix of an isotropic continuum contains only two independent elasticity parame-

ters; namely, C11 and C44. Furthermore, as shown in Exercise 5.7, the elasticity matrix of an isotropic

continuum is symmetric without invoking the existence of the strain-energy function.

5.12.2. Lamé’s parameters. The two independent elasticity parameters that describe an isotropic

continuum are often expressed as

(5.12.2)

{
λ := C11 − 2C44

µ := C44

.

The two parameters, λ and µ, are called Lamé’s parameters. Their physical meaning is described in

Section 5.12.4. Mathematically, these two parameters are closely related to the eigenvalues of elasticity
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matrix (5.12.1). If we write matrix (5.12.1) in the form discussed in Exercise 5.3, namely,

C11 C11 − 2C44 C11 − 2C44 0 0 0

C11 − 2C44 C11 C11 − 2C44 0 0 0

C11 − 2C44 C11 − 2C44 C11 0 0 0

0 0 0 2C44 0 0

0 0 0 0 2C44 0

0 0 0 0 0 2C44


,

its eigenvalues are given by 3C11 − 4C44 and by 2C44, which is repeated five times. In general, for

the anisotropic continua, the eigenvalues of an elasticity matrix play an important role in identifying the

symmetry class since — unlike the elasticity parameters — they are invariant under the orthogonal trans-

formations.10

Using the definition of Lamé’s parameters (5.12.2), we can rewrite matrix (5.12.1) as

(5.12.3) CLAMÉ =



λ+ 2µ λ λ 0 0 0

λ λ+ 2µ λ 0 0 0

λ λ λ+ 2µ 0 0 0

0 0 0 µ 0 0

0 0 0 0 µ 0

0 0 0 0 0 µ


.

5.12.3. Tensor formulation. Using matrix (5.12.3) and in view of equations (3.2.1), we can write the

stress-strain equations for an isotropic continuum as

(5.12.4) σij = λδij

3∑
k=1

εkk + 2µεij , i, j ∈ {1, 2, 3} ,

where
∑
εkk is the dilatation defined in expression (1.4.18). This formulation is used to derive the wave

equation in Chapter 6.

Since, in equations (3.2.1), the elasticity tensor, cijkl, is a fourth-rank tensor, the number of elasticity

parameters for an isotropic continuum can also be derived directly from the mathematical properties of a

fourth-rank tensor and the concept of an isotropic tensor.

Note that an isotropic tensor is a tensor whose components are the same in all coordinate systems.

The general form of an isotropic fourth-rank tensor is

(5.12.5) aijkl = λδijδkl + ξδikδjl + ηδilδjk, i, j, k, l ∈ {1, 2, 3} ,

10Readers interested in the use of the eigenvalues of the elasticity matrix for identifying the symmetry class might refer to
Bóna, A., Bucataru, I., Slawinski, M.A. (2007) Coordinate-free classification of elasticity tensor: Journal of Elasticity 87(2-3),
109–132, and to Rychlewski, J., (1985) On Hooke’s law: Prikl. Matem. Mekhan., 48 (3), 420 – 435.



120 5. MATERIAL SYMMETRY

where λ, ξ and η are constants. In other words, an isotropic fourth-rank tensor is stated in terms of three

constants that do not depend on the choice of the coordinate system. In elasticity theory, since the strain

tensor is symmetric, the most general isotropic elasticity tensor is given by expression (5.12.4), which

contains only two constants, λ and µ, where, as shown in Exercise 5.8, µ := (ξ + η) /2.

By examining stress-strain equations (5.12.4) in the context of tensor analysis, we can see that they corre-

spond to the isotropic formulation since they retain the same form for all orthogonal transformations. To

gain insight into this statement, we rewrite these equations using definition (1.4.6) as

(5.12.6) σij = λδij

3∑
k=1

∂uk
∂xk

+ µ

(
∂ui
∂xj

+
∂uj
∂xi

)
, i, j ∈ {1, 2, 3} .

Equations (5.12.6) are invariant under the coordinate transformations. We immediately see that the sum-

mation term is ∇ · u, which — being a scalar — is invariant under all coordinate transformations. Using

transformation rules for the components of a second-rank tensor, we can also show that, upon the coordi-

nate transformation, the term in parentheses retains the same form. Since both the summation term and

the term in parentheses are invariant under the coordinate transformations, stress-strain equations (5.12.4)

correspond to isotropic continua.

5.12.4. Physical meaning of Lamé’s parameters. We can obtain the physical meaning of Lamé’s

parameters, λ and µ, by examining stress-strain equations (5.12.4).

Lamé’s parameter µ is a measure of rigidity. We can see that by setting λ = 0 and considering εij with

i 6= j. Thus, we can write expressions (5.12.4) as

σij = 2µεij ,
i 6= j

i, j ∈ {1, 2, 3}
,

which, using definition (1.4.6), we can rewrite as

σij = µ

(
∂ui
∂xj

+
∂uj
∂xi

)
,

i 6= j

i, j ∈ {1, 2, 3}
.

In view of Section 1.4.3, we see that µ is a coefficient that relates stress to a change in shape. Thus, Lamé’s

parameter µ describes the rigidity of the continuum.

The physical meaning of Lamé’s parameter λ is less immediate. If we let µ vanish and consider i = j,

equations (5.12.4) become

(5.12.7) lim
µ→0+

σij = λ

3∑
k=1

εkk = λ (ε11 + ε22 + ε33) = λϕ,
i = j

i, j ∈ {1, 2, 3}
,

where ϕ is the dilatation defined in expression (1.4.18). Examination of expression (5.12.7), which can be

viewed as corresponding to a fluid, shows that Lamé’s parameter λ is akin to the compressibility, κ. Note

however that, in view of the positive-definiteness of elasticity matrix (5.12.3), as required by the stability
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conditions for an elastic solid, discussed in Section 4.3, we require µ > 0. Hence, we treat the vanishing

of µ as a limit.

To study a proper solid, we consider a finite value of µ. We still consider εij with i = j and we further

assume ε11 = ε22 = ε33. For convenience, let εii ≡ ε̃/3, where i ∈ {1, 2, 3}. Thus, we can write

stress-strain equations (5.12.4) as

(5.12.8) σij = λε̃+
2
3
µε̃ =

(
λ+

2
3
µ

)
ε̃,

i = j

i, j ∈ {1, 2, 3}
.

In view of expression (1.4.17) and letting ∆V := V̆ − V , we can write

ε̃ =
∆V
V

.

Also, σii is equal to −P , where P denotes the difference in hydrostatic pressure. In other words, P

is a pressure difference between the pressure associated with the deformation and the pressure at the

undeformed state. Thus, we can write expression (5.12.8) as

(5.12.9) −P =
(
λ+

2
3
µ

)
∆V
V

.

To gain insight into the physical meaning of λ, we use the concept of compressibility, κ, that is defined as

the relative decrease of volume produced by unit pressure; namely,

(5.12.10) κ := − 1
P

∆V
V

.

Using expression (5.12.9), we can rewrite the compressibility as

κ =
1

λ+ 2
3µ

.

Solving for λ, we obtain

λ =
1
κ
− 2

3
µ.

Thus, in the case of vanishing rigidity, µ→ 0+, Lamé’s parameter λ is the reciprocal of the compressibil-

ity, while, in general, λ has a more complicated physical significance given in terms of both the rigidity

and compressibility.

5.13. Relations among symmetry classes

The eight symmetry classes are related to each other. In this section, we will briefly discuss certain aspects

of these relations.

The symmetry group of an isotropic continuum contains all orthogonal transformations. Hence it con-

tains, as its subgroups, all other symmetry classes. The symmetry group of the generally anisotropic

continuum contains only two orthogonal transformations: the identity and the point symmetry. These two
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Generally anisotropic

Transversely isotropic

Monoclinic Orthotropic

Tetragonal

Cubic

Trigonal 

Isotropic

FIGURE 5.13.1. Relations among symmetry classes: The arrows state the subgroup re-
lations; for example, Orthotropic is a subgroup of Tetragonal.

transformations are contained, as a subgroup, in all symmetry classes. However, not all pairs among the

classes possess such a subgroup relation; for instance, neither cubic symmetry is a subgroup of transversely

isotropic symmetry nor vice versa. The set where not all pairs of elements exhibit the property that one is

a subgroup of the other is called partial ordering. The set of the symmetry classes of an elastic continuum,

which is shown in Figure 5.13.1, is a partially ordered set. The eight symmetry classes discussed above

are related to Curie’s symmetry groups, which can be represented geometrically as spheres, cylinders and

cones.11

Another important aspect of a given symmetry class is the number of independent elasticity parameters.

However, arranging the classes according to this number has its limitations. We can illustrate these limi-

tations with two examples. A transversely isotropic continuum exhibits five elasticity parameters while a

cubic one exhibits only three. Yet, as shown above, ordering according to this number cannot be viewed as

ordering in terms of the symmetry group. Secondly, both the trigonal and tetragonal continua are described

by the same number of independent elasticity parameters, namely six. However, they are distinct continua;

their symmetry groups are different from one another and, hence, so are their elasticity matrices.12

Closing remarks

In this chapter, by studying the elasticity matrix, we investigated all eight symmetries of the elasticity

tensor. In other words, we investigated the elasticity tensors that correspond to generally anisotropic,

monoclinic, orthotropic, trigonal, tetragonal, transversely isotropic, cubic and isotropic continua.13

11Interested readers might refer to Newnham, R.E., (2005) Properties of materials: Anisotropy, symmetry, structure: Oxford
University Press, pp. 26 – 28.

12Readers interested in the classification of symmetries for the elasticity tensor might refer to Ting, T.C.T., (1996) Anisotropic
elasticity: Theory and applications: Oxford University Press, pp. 40 – 51.

13Readers interested in the existence of the eight symmetry classes might refer to Bóna, A., Bucataru, I., and Slawinski, M.A.,
(2005) Characterization of elasticity-tensor symmetries using SU(2). Journal of Elasticity 75(3), 267 – 289, and to Bóna, A.,
Bucataru, I., and Slawinski, M.A., (2004) Material symmetries of elasticity tensor. The Quarterly Journal of Mechanics and
Applied Mathematics 57(4), 583 – 598.
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Studying the symmetries of a continuum provides us with information about the material it represents. For

instance, by analyzing seismic data, we can infer information about layering and fractures. Also, knowing

the smallest number of independent elasticity parameters required to describe a given continuum provides

us with a convenient way to study wave propagation in specific materials. For instance, explicit expressions

for wave velocities in a generally anisotropic continuum are complicated. However, if we know that a given

material can be adequately described by a continuum that possesses particular symmetries, we reduce the

complication of these expressions. Explicit expressions for wave velocities in a transversely isotropic

continuum are derived in Chapter 9.

The nomenclature commonly used to describe the material symmetries originates in crystallography. How-

ever, since we are studying symmetries of continua, intuitive and heuristic descriptions associated with

crystal lattices are not always appropriate in this context.
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5.14. Exercises

EXERCISE 5.1. 14Show that the Jacobian that is associated with matrix (5.8.1) is equal to unity.

SOLUTION 5.1. Using matrix (5.8.1), we can write the transformation of coordinates as

(5.14.1)

 x̂1

x̂2

x̂3

 =

 cos Θ sin Θ 0

− sin Θ cos Θ 0

0 0 1


 x1

x2

x3

 ,

where x and x̂ are the original and the transformed coordinates, respectively. The Jacobian is given by

(5.14.2) J := det


∂x̂1
∂x1

∂x̂1
∂x2

∂x̂1
∂x3

∂x̂2
∂x1

∂x̂2
∂x2

∂x̂2
∂x3

∂x̂3
∂x1

∂x̂3
∂x2

∂x̂3
∂x3

 .

Thus, examining equations (5.14.1) and (5.14.2), we see that the determinant of matrix (5.8.1) is the

Jacobian. Hence, we immediately obtain

J = det

 cos Θ sin Θ 0

− sin Θ cos Θ 0

0 0 1

 = cos2 Θ + sin2 Θ = 1,

as required.

EXERCISE 5.2. 15Formulate the condition that a transformation matrix must obey in order to preserve the

scalar product. Provide a physical interpretation of the result.

SOLUTION 5.2. The scalar product is preserved if, for any two vectors, we can write

v̂ · û = v · u.

In other words, the value of the product is the same in the original and transformed coordinate systems.

Using expression (5.1.1), we can rewrite this condition as

(5.14.3) Av ·Au = v · u,

where A is a transformation matrix. In terms of components, we write the left-hand side of equation

(5.14.3) as

Av ·Au =
3∑
i=1

3∑
j=1

3∑
k=1

AijvjAikuk.

14See also Section 5.1.1.
15See also Section 5.1.1.
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We can change the order of this summation to write

Av ·Au =
3∑
i=1

3∑
j=1

3∑
k=1

AijAikvjuk.

To state this summation in terms of matrix multiplication, we write

Av ·Au =
3∑
i=1

3∑
j=1

3∑
k=1

(
AT
)
ji
Aikvjuk =

(
ATA

)
v · u.

Thus, we can write equation (5.14.3) as

Av ·Au =
(
ATA

)
v · u = v · u.

Since this equality must be valid for any u, we require that(
ATA

)
v = v,

which implies that ATA = I. This is the condition that a transformation matrix must obey in order

to preserve the scalar product; we refer to ATA = I as the orthogonality condition. Physically, since

the distance is expressed in terms of the scalar product, the transformations that obey the orthogonality

condition are distance-preserving.

EXERCISE 5.3. Rewrite stress-strain equations (4.2.8) in such a manner that both the matrix containing

the stress-tensor components and the matrix containing the strain-tensor components have the same form.

SOLUTION 5.3. Both matrices will have the same form if we multiply σ and ε by
[√

2I
]

and
[(

1/
√

2
)
I
]
,

respectively, where I is the 6× 6 identity matrix. Let us consider equations (4.2.8), which we write as

σ = Cε.

Since we can perform the same operation to both sides of an equation, let us write[√
2I
]
σ =

[√
2I
]
Cε.

Since we can multiply either side of this equation by the identity matrix, let us write

(5.14.4)
[√

2I
]
σ =

[√
2I
]

CIε,

and let the identity matrix in front of ε have a particular form; namely,

I =
[√

2I
] [√

2I
]−1

=
[√

2I
] [ 1√

2
I
]
.

Thus, we can write equation (5.14.4) as

(5.14.5)
[√

2I
]
σ =

[√
2I
]

C
[√

2I
] [ 1√

2
I
]
ε,
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where, explicitly,

[√
2I
]
σ =



σ11

σ22

σ33√
2σ23√
2σ13√
2σ12


and

[
1√
2
I
]
ε =



ε11

ε22

ε33√
2ε23√
2ε13√
2ε12


.

In other words, both the matrix containing the stress-tensor components and the matrix containing the

strain-tensor components have the same form, as required. Completing the matrix multiplications, we

obtain

(5.14.6)
[√

2I
]
C
[√

2I
]

=



C11 C12 C13

√
2C14

√
2C15

√
2C16

C12 C22 C23

√
2C24

√
2C25

√
2C26

C13 C23 C33

√
2C34

√
2C35

√
2C36√

2C14

√
2C24

√
2C34 2C44 2C45 2C46√

2C15

√
2C25

√
2C35 2C45 2C55 2C56√

2C16

√
2C26

√
2C36 2C46 2C56 2C66


,

which is the corresponding elasticity matrix. Thus, another form of stress-strain equations (4.2.8) can be

written as

(5.14.7)



σ11

σ22

σ33√
2σ23√
2σ13√
2σ12


=



C11 C12 C13

√
2C14

√
2C15

√
2C16

C12 C22 C23

√
2C24

√
2C25

√
2C26

C13 C23 C33

√
2C34

√
2C35

√
2C36√

2C14

√
2C24

√
2C34 2C44 2C45 2C46√

2C15

√
2C25

√
2C35 2C45 2C55 2C56√

2C16

√
2C26

√
2C36 2C46 2C56 2C66





ε11

ε22

ε33√
2ε23√
2ε13√
2ε12


.

It is convenient to use equations (5.14.7) to investigate eigenvalues of the corresponding elasticity matrix

to gain an insight into invariants of the stress-strain equations.16

16Interested readers might refer to Bóna, A., Bucataru, I., Slawinski, M.A. (2007) Coordinate-free classification of elasticity
tensor: Journal of Elasticity 87(2-3), 109–132, and to Rychlewski, J., (1985) On Hooke’s law: Prikl. Matem. Mekhan., 48 (3),
420 – 435.
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EXERCISE 5.4. Consider a continuum whose symmetry group contains the reflection about the x2x3-

plane. This reflection implies that ε12 = −ε̂12 and ε13 = −ε̂13, as well as σ12 = −σ̂12 and σ13 = −σ̂13.

Using stress-strain equations (4.2.8), show that

C15 = C16 = C25 = C26 = C35 = C36 = C45 = C46 = 0,

and state the resulting elasticity matrix CMONOx1 .

SOLUTION 5.4. Consider the stress-tensor components σ12 and σ̂12. Using stress-strain equations (4.2.8),

we can write

(5.14.8) σ12 = C16ε11 + C26ε22 + C36ε33 + 2C46ε23 + 2C56ε13 + 2C66ε12,

and

σ̂12 = C16ε̂11 + C26ε̂22 + C36ε̂33 + 2C46ε̂23 + 2C56ε̂13 + 2C66ε̂12.

The second equation can be expressed in terms of the original strain components as

σ̂12 = C16ε11 + C26ε22 + C36ε33 + 2C46ε23 − 2C56ε13 − 2C66ε12.

In view of relations σ12 = −σ̂12, and the equality of the stress-strain equations required in view of the

assumed symmetry, we obtain

(5.14.9) σ12 = −σ̂12 = −C16ε11 − C26ε22 − C36ε33 − 2C46ε23 + 2C56ε13 + 2C66ε12.

Equality between (5.14.8) and (5.14.9) requires

C16 = C26 = C36 = C46 = 0.

Similarly, for σ13 = −σ̂13, we require

C15 = C25 = C35 = C45 = 0.

Thus, we obtain

(5.14.10) CMONOx1 =



C11 C12 C13 C14 0 0

C12 C22 C23 C24 0 0

C13 C23 C33 C34 0 0

C14 C24 C34 C44 0 0

0 0 0 0 C55 C56

0 0 0 0 C56 C66


,

as required.

EXERCISE 5.5. 17Find the stability conditions for a transversely isotropic continuum described by matrix

(5.10.3).

17See also Section 4.3.3.
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SOLUTION 5.5. In view of Section 4.3, the stability conditions require that matrix (5.10.3) be positive-

definite. Recalling equations (4.3.3), we obtain

(5.14.11) C11 > 0,

(5.14.12) C33 > 0,

(5.14.13) C44 > 0,

and

(5.14.14) C11 > C12.

We notice that matrix (5.10.3) is a direct sum of two submatrices given by

C1 =

 C11 C12 C13

C12 C11 C13

C13 C13 C33

 ,

and

C2 =

 C44 0 0

0 C44 0

0 0 C11−C12
2

 .

Conditions (5.14.13) and (5.14.14) ensure that matrix C2 is positive-definite. In view of condition (5.14.11),

the remaining conditions for the positive-definiteness of matrix C1 are

(5.14.15) det

[
C11 C12

C12 C11

]
> 0,

and

(5.14.16) det

 C11 C12 C13

C12 C11 C13

C13 C13 C33

 > 0.

The condition resulting from determinant (5.14.15) is

(5.14.17) C11 > |C12| ,

while the condition resulting from determinant (5.14.16) is

C33 (C11 − C12) (C11 + C12) > 2C2
13 (C11 − C12) .

In view of expression (5.14.14), we can rewrite the latter condition as

(5.14.18) C33 (C11 + C12) > 2C2
13.
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Also, in view of condition (5.14.12), we have C11 + C12 > 0. Consequently, condition (5.14.17) follows

from conditions (5.14.12) and (5.14.18). Thus, all the stability conditions for a transversely isotropic

continuum are given by expressions (5.14.11), (5.14.12), (5.14.13), (5.14.14) and (5.14.18).

REMARK 5.14.1. Note that if matrix C1 is positive-definite, we also have

(5.14.19) det

[
C11 C13

C13 C33

]
> 0,

which we can write as

(5.14.20) C11C33 > C2
13.

Herein, we will show that condition (5.14.20) is a consequence of condition (5.14.18). Let us rewrite

condition (5.14.18) as

C33 (C11 + C12)− 2C2
13 > 0,

which we restate as

a+ b > 0,

where

a := C11C33 − C2
13,

and

b := C12C33 − C2
13.

Using this notation, we can write condition (5.14.20) as a > 0. To show that condition (5.14.20) is a

consequence of condition (5.14.18), we first show that a > b, which is equivalent to showing that

(5.14.21) C11C33 > C12C33.

Inequality (5.14.21) is true due to conditions (5.14.12) and (5.14.14). Hence, since a+b > 0 and a−b > 0,

by summation we get 2a > 0, which immediately implies that a > 0, as required.

EXERCISE 5.6. 18Using the formula for the change of coordinates for the components of a tensor as well

as Lemma 5.14.2 below, show that if a tensor of rank n, given by Ti1...in , is invariant under the (n+ 1)-fold

rotation about a given axis, it is invariant under any rotation about this axis.

LEMMA 5.14.2. Let P (Θ) be a trigonometric polynomial of at most degree n. If P (Θ) has a period of

2π/ (n+ 1), then P (Θ) ≡ const.

PROOF. Consider a basis of the space of trigonometric polynomials of at most degree n, given by

(5.14.22) fr (Θ) = eirΘ, r ∈ {−n, . . . , n} .

18See also Section 5.10.2.
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We can uniquely write

(5.14.23) P (Θ) =
n∑

r=−n
αrfr (Θ) ,

where αr are complex numbers. In view of expressions (5.14.22) and (5.14.23), we can write

(5.14.24) P

(
Θ +

2π
n+ 1

)
=

n∑
r=−n

αrfr

(
Θ +

2π
n+ 1

)
=

n∑
r=−n

αre
ir2π/(n+1)fr (Θ) .

Since P (Θ) has a period of 2π/ (n+ 1), examining equations (5.14.23) and (5.14.24), we obtain

αr = αre
ir2π/(n+1), r ∈ {−n, . . . , n} .

Observing that eir2π/(n+1) 6= 1 for all r ∈ {−n, . . . , n}, except r = 0, we conclude that αr = 0, except,

possibly, α0. Hence, P (Θ) is constant. �

SOLUTION 5.6. Consider transformation matrix (5.8.1); namely,

(5.14.25) A =

 cos Θ sin Θ 0

− sin Θ cos Θ 0

0 0 1

 .

The transformed tensor components are given by

T̂i1...in =
3∑

j1=1

. . .

3∑
jn=1

Ai1j1 . . . AinjnTj1...jn , i1, . . . , in ∈ {1, 2, 3} .

In view of matrix (5.14.25), we see that T̂i1...in = T̂i1...in (Θ) is a trigonometric polynomial in Θ of at

most degree n. Since tensor Ti1...in is invariant under the rotation by the angle 2π/ (n+ 1), polynomial

T̂i1...in (Θ) has a period of 2π/ (n+ 1). Since T̂i1...in (Θ) is at most of degree n, it follows from Lemma

5.14.2 that this trigonometric polynomial is constant. This means that Ti1...in is invariant under any rota-

tion, as required.

EXERCISE 5.7. 19Show that the elasticity matrix of an isotropic continuum is symmetric even without

invoking the strain-energy function.

NOTATION 5.14.3. The repeated-index summation notation is used in this solution. Any term in which an

index appears twice stands for the sum of all such terms as the index assumes values 1, 2 and 3.

SOLUTION 5.7. In view of Section 4.2, to show the symmetry of the elasticity matrix, Cmn = Cnm,

where, m,n ∈ {1, . . . , 6}, it suffices to show that

cijkl = cklij , i, j, k, l ∈ {1, 2, 3} .

19See also Section 5.12.1.
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Recall stress-strain equations (3.2.1); namely,

(5.14.26) σij = cijklεkl, i, j ∈ {1, 2, 3} ,

as well as a particular case of these equations that corresponds to isotropic continua and is given by

equations (5.12.4), namely,

(5.14.27) σij = λδijεkk + 2µεij , i, j ∈ {1, 2, 3} ,

where λ and µ are Lamé’s parameters. Equating the right-hand sides of equations (5.14.26) and (5.14.27),

we can write

(5.14.28) cijklεkl − (λδijεkk + 2µεij) = 0, i, j ∈ {1, 2, 3} .

Let us factor out the strain-tensor components, εkl. Using the properties of Kronecker’s delta, we can write

εkk = δklεkl and εij = δikδjlεkl, where i, j ∈ {1, 2, 3}. Thus, we can rewrite equations (5.14.28) as

[cijkl − (λδijδkl + 2µδikδjl)] εkl = 0, i, j ∈ {1, 2, 3} .(5.14.29)

In general, εkl is not zero. Thus, for equations (5.14.29) to be always true, we require the expression in

brackets to be zero. In other words,

cijkl = λδijδkl + 2µδikδjl, i, j, k, l ∈ {1, 2, 3} .

By the commutativity of Kronecker’s delta, δijδkl = δklδij , while by its symmetry, δikδjl = δkiδlj .

Consequently, we can write

cijkl = λδijδkl + 2µδikδjl

= λδklδij + 2µδkiδlj = cklij , i, j, k, l ∈ {1, 2, 3} ,

as required.

EXERCISE 5.8. 20Using Lemma 5.14.5, prove Theorem 5.14.6, stated below.

NOTATION 5.14.4. Repeated-index summation is used in this exercise. Any term in which an index ap-

pears twice stands for the sum of all such terms as the index assumes values 1, 2 and 3.

LEMMA 5.14.5. 21The general isotropic fourth-rank tensor is

(5.14.30) aijkl = λδijδkl + ξδikδjl + ηδilδjk, i, j, k, l ∈ {1, 2, 3} .

THEOREM 5.14.6. Given the symmetry of the strain tensor, defined in expression (1.4.6), the stress-strain

equations for a three-dimensional isotropic continuum are given by expression (5.12.4), namely,

σij = λδijεkk + 2µεij , i, j ∈ {1, 2, 3} ,

20See also Section 5.12.3.
21Readers interested in a proof of Lemma 5.14.5 might refer to Matthews, P.C., (1998) Vector calculus: Springer, pp. 124 –

125.
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where 2µ = ξ + η.

SOLUTION 5.8. PROOF. Consider stress-strain equations (3.2.1), namely

σij = cijklεkl, i, j ∈ {1, 2, 3} .

Inserting expression (5.14.30) for cijkl, and using the properties of Kronecker’s delta, in view of Lemma

5.14.5, we can write

σij = (λδijδkl + ξδikδjl + ηδilδjk) εkl

= λδijεkk + ξεij + ηεji, i, j ∈ {1, 2, 3} .

Since, by its definition, the strain tensor, εkl, is symmetric, we can write

σij = λδijεkk + (ξ + η) εij , i, j ∈ {1, 2, 3} ,

and, hence, there are only two independent constants in the stress-strain equations for an isotropic contin-

uum. Since the constants are arbitrary, we can set 2µ = ξ + η, and write

σij = λδijεkk + 2µεij , i, j ∈ {1, 2, 3} ,

as required. �

REMARK 5.14.7. While studying isotropic materials it is common to express the two elasticity parameters,

shown in matrices (5.12.1) and (5.12.3), in terms of quantities that possess an immediate physical meaning.

In Exercises 5.9 – 5.14, we will use Poisson’s ratio, which is defined as

(5.14.31) ν := −εxx
εzz

= −εyy
εzz

,

and Young’s modulus, which is defined as

E :=
σxx
εxx

=
σyy
εyy

=
σzz
εzz

.

The relations among Poisson’s ratio, Young’s modulus and Lamé’s parameters are given by

(5.14.32) λ =
Eν

(1 + ν) (1− 2ν)
,

and

(5.14.33) µ =
E

2 (1 + ν)
.

EXERCISE 5.9. Consider an isotropic continuum. Subjecting this continuum to a uniaxial stress along the

z-axis so that σxx = σyy = σxy = σyz = σzx = 0, show that Poisson’s ratio is given by

(5.14.34) ν =
λ

2 (λ+ µ)
,

where λ and µ are Lamé’s parameters.
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SOLUTION 5.9. Following stress-strain equations (5.12.4), which describe isotropic continua, we can write

σxx = λ (εxx + εyy + εzz) + 2µεxx = (λ+ 2µ) εxx + λεyy + λεzz = 0.

Dividing both sides by εzz , we obtain

(λ+ 2µ)
εxx
εzz

+ λ
εyy
εzz

+ λ = 0.

Invoking the definition of Poisson’s ratio given in expression (5.14.31), we can rewrite the above expres-

sion as

− (λ+ 2µ) ν − λν + λ = −2 (λ+ µ) ν + λ = 0.

Hence, solving for ν, we get

ν =
λ

2 (λ+ µ)
,

which is expression (5.14.34), as required.

EXERCISE 5.10. 22Consider an isotropic continuum under a uniaxial stress that leads to small deforma-

tions. Using expression (5.14.34), show that no change in volume implies no resistance to change in shape,

as stated by µ = 0.

SOLUTION 5.10. Consider a rectangular box with initial dimensions x1, x2, and x3. Its volume is V =

x1x2x3. Let the dimensions after deformation be x1 + ∆x1, x2 + ∆x2, and x3 + ∆x3, where, after the

deformation, the original rectangular box remains rectangular. Thus, the volume after deformation is

V̆ = (x1 + ∆x1) (x2 + ∆x2) (x3 + ∆x3)

≈ x1x2x3 + x2x3∆x1 + x1x3∆x2 + x1x2∆x3,(5.14.35)

where the approximation stems from the assumption of small deformations and, consequently, from ne-

glecting the second-order and the third-order terms involving ∆xi, where i ∈ {1, 2, 3}. No change in

volume implies

V̆ − V = 0.

Using expression (5.14.35), we can write

V̆ − V = x2x3∆x1 + x1x3∆x2 + x1x2∆x3 = 0.

Dividing both sides by V = x1x2x3, we get

V̆ − V
V

=
∆x1

x1
+

∆x2

x2
+

∆x3

x3
= 0.

In view of expression (1.4.17) and denoting ε11 := ∆x1/x1, ε22 := ∆x2/x2, ε33 := ∆x3/x3, we obtain

V̆ − V
V

= ε11 + ε22 + ε33 = 0.

22See also Section 1.4.3.
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Dividing both sides by ε33 and invoking the definition of Poisson’s ratio, given in expression (5.14.31), we

can write
ε11

ε33
+
ε22

ε33
+ 1 = −ν − ν + 1 = 0,

which implies that the corresponding Poisson’s ratio is ν = 1/2. Using expression (5.14.34), we obtain

µ =
1− 2ν

2ν
λ = 0,

as required.

EXERCISE 5.11. Using equations (5.12.4), show that in an isotropic continuum, the strain-tensor compo-

nents, εij , can be expressed in terms of the stress-tensor components, σij , as

(5.14.36) εij =
1 + ν

E
σij −

ν

E
δij

3∑
k=1

σkk, i, j ∈ {1, 2, 3} ,

where ν is Poisson’s ratio and E is Young’s modulus.

SOLUTION 5.11. Using expressions (5.14.32) and (5.14.33), we can write stress-strain equations (5.12.4)

as

σij =
Eν

(1 + ν) (1− 2ν)
δij

3∑
k=1

εkk +
E

1 + ν
εij , i, j ∈ {1, 2, 3} .

Solving for εij , we obtain

(5.14.37) εij =
1 + ν

E
σij −

ν

1− 2ν
δij

3∑
k=1

εkk, i, j ∈ {1, 2, 3} .

Now, we seek to express strains
∑3

k=1 εkk in terms of stresses. In view of Kronecker’s delta and stress-

strain equations (5.12.4), we can write all stress-tensor components for which δij
∑3

k=1 εkk does not van-

ish. They are

σii = λ
3∑

k=1

εkk + 2µεii, i ∈ {1, 2, 3} .

Writing these three equations explicitly, we get

σ11 = λ
3∑

k=1

εkk + 2µε11

σ22 = λ
3∑

k=1

εkk + 2µε22

σ33 = λ
3∑

k=1

εkk + 2µε33

.
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Summing these three equations, we obtain

σ11 + σ22 + σ33 = 3λ
3∑

k=1

εkk + 2µ (ε11 + ε22 + ε33)

= 3λ
3∑

k=1

εkk + 2µ
3∑

k=1

εkk = (3λ+ 2µ)
3∑

k=1

εkk.

Expressing the left-hand side as a summation, we can write the sought expression

(5.14.38)
3∑

k=1

εkk =

3∑
k=1

σkk

3λ+ 2µ
.

Using expression (5.14.38), we can write expression (5.14.37) as

(5.14.39) εij =
1 + ν

E
σij −

ν

(1− 2ν) (3λ+ 2µ)
δij

3∑
k=1

σkk, i, j ∈ {1, 2, 3} .

Consider the term in parentheses that contains λ and µ. Using expressions (5.14.32) and (5.14.33), we can

write this term as

3λ+ 2µ = 3
Eν

(1 + ν) (1− 2ν)
+

E
1 + ν

=
E

1− 2ν
.

Hence, expression (5.14.39) becomes

εij =
1 + ν

E
σij −

ν

E
δij

3∑
k=1

σkk, i, j ∈ {1, 2, 3} ,

which is expression (5.14.36), as required.

EXERCISE 5.12. Using expression (4.5.4), show that for isotropic continua the strain-energy function can

be expressed in terms of the strain-tensor components as

(5.14.40) W =
λ

2

3∑
i=1

3∑
j=1

εiiεjj + µ
3∑
i=1

3∑
j=1

εijεij ,

where λ and µ are Lamé’s parameters.

SOLUTION 5.12. Recall expression (4.5.4); namely,

(5.14.41) W =
1
2

3∑
i=1

3∑
j=1

σijεij .

Also, recall that for an isotropic continuum the stress-strain equations are given by expression (5.12.4);

namely,

(5.14.42) σij = λδij

3∑
k=1

εkk + 2µεij , i, j ∈ {1, 2, 3} .
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Inserting expression (5.14.42) into expression (5.14.41), we obtain

W =
1
2

3∑
i=1

3∑
j=1

[(
λδij

3∑
k=1

εkk + 2µεij

)
εij

]
.

The properties of Kronecker’s delta imply that

W =
λ

2

3∑
i=1

3∑
j=1

εiiεjj + µ
3∑
i=1

3∑
j=1

εijεij ,

which is expression (5.14.40), as required.

EXERCISE 5.13. Using expression (4.5.4), show that, for isotropic continua, the strain-energy function

can be expressed in terms of the stress-tensor components as

(5.14.43) W =
1

2E

(1 + ν)
3∑
i=1

3∑
j=1

σijσij − ν
3∑
i=1

3∑
j=1

σiiσjj

 ,

where λ and µ are Lamé’s parameters, ν is Poisson’s ratio, and E is Young’s modulus.

SOLUTION 5.13. Recall expression (4.5.4); namely,

(5.14.44) W =
1
2

3∑
i=1

3∑
j=1

σijεij .

Also, recall expression (5.14.36); namely,

(5.14.45) εij =
1 + ν

E
σij −

ν

E
δij

3∑
k=1

σkk, i, j ∈ {1, 2, 3} ,

where ν and E are Poisson’s ratio and Young’s modulus, respectively. Inserting expression (5.14.45) into

expression (5.14.44), we obtain

W =
1
2

3∑
i=1

3∑
j=1

[
σij

(
1 + ν

E
σij −

ν

E
δij

3∑
k=1

σkk

)]
.

The properties of Kronecker’s delta, δij , imply

W =
1

2E

(1 + ν)
3∑
i=1

3∑
j=1

σijσij − ν
3∑
i=1

3∑
j=1

σiiσjj

 ,

which is expression (5.14.43), as required.

EXERCISE 5.14. 23Consider elasticity matrix (5.12.3). Find the range of values for Lamé’s parameters

that is required by the stability conditions. Express this range in terms of Poisson’s ratio. Provide a

physical interpretation of this result.

23See also Section 4.3.3.
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SOLUTION 5.14. Stability conditions require the elasticity matrix to be positive-definite. Matrix (5.12.3)

is symmetric. As stated in Theorem 4.3.2, for the positive-definiteness we require all eigenvalues to be

positive. Consider the two submatrices, namely, λ+ 2µ λ λ

λ λ+ 2µ λ

λ λ λ+ 2µ

 and

 µ 0 0

0 µ 0

0 0 µ

 .

We obtain the eigenvalues, Λi, by solving

det


 λ+ 2µ λ λ

λ λ+ 2µ λ

λ λ λ+ 2µ

− Λ

 1 0 0

0 1 0

0 0 1


 = 0,

and

det

µ
 1 0 0

0 1 0

0 0 1

− Λ

 1 0 0

0 1 0

0 0 1


 = 0.

The eigenvalues are Λ1,2 = 2µ, Λ3 = 3λ + 2µ, and Λ4,5 ,6 = µ. Positiveness of the eigenvalues means

that µ > 0 and λ > −2
3µ. Recalling expression (5.14.34), we obtain the range of physically acceptable

values of Poisson’s ratio, namely,

ν ∈
[
−1,

1
2

]
.

Physically, for a cylindrical sample and in view of ν := −εxx/εzz , the negative value of Poisson’s ratio

implies that the diminishing of the length of the cylinder along the z-axis is accompanied by the shortening

of the radius along the x-axis. For most solids, we would expect a more limited range, namely, ν ∈
[0, 1/2], where the diminishing of the length is accompanied by the extension of the radius.





Part 2

Waves and rays





Introduction to Part 2

The solution of the equation of motion for an elastic medium results in the exis-

tence of elastic waves in its interior. The wave phenomenon is a way of transport-

ing energy without transport of matter. The propagation of energy is, then, a very

important aspect of wave propagation.

Agustín Udías (1999) Principles of seismology

In Part 1, we derived Cauchy’s equations of motion, the equation of continuity, and formulated the stress-

strain equations for elastic continua. These equations form a determined system, which allows us to

describe the behaviour of such continua.

In Part 2, we combine Cauchy’s equations of motion with the stress-strain equations to formulate the

equations of motion in elastic continua. In the particular case of isotropic homogeneous continua, these

equations are wave equations, which possess analytic solutions. However, in anisotropic inhomogeneous

continua, we are unable to formulate equations of motion that possess analytic solutions. Hence, we

choose to study these equations in terms of the high-frequency approximation, which results in ray theory.

This approach allows us to study rays, wavefronts, traveltimes and amplitudes of signals that propagate

within such a continuum. Although the resulting expressions are exact only for the case of an infinitely

high frequency of a signal, the experimental results agree well with the theoretical predictions, provided

that the properties of the continuum do not change significantly within the wavelength of the signal.

Ray methods form an important theoretical platform for seismological studies. They allow us to formulate

problems in the context of such mathematical tools as differential geometry and the calculus of variations.

While referring to the ray solution in their volumes on “Quantitative seismology: Theory and methods”,

Aki and Richards state that

[it] provides the basis for routine interpretation of most seismic body waves, and it always

provides a guide to more sophisticated methods, should they be necessary.

However, in view of this being an approximate solution, we must be aware of its limitations. Grant and

West, in their book on “Interpretation theory in applied geophysics”, state that

it is often surprising to observe how uncritically their [ray methods] validity in seismolog-

ical problems is accepted.

141
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Rays, as a scientific entity, can be traced to the work of Willebrord Snell who, at the turn of the sixteenth

and seventeenth century, formulated the law of refraction. The mathematical underpinnings of ray theory

were established by William Rowan Hamilton in the first half of the nineteenth century.24 The formulation

of rays in terms of asymptotic series, which is the platform for our studies, is associated with the work

of Carl Runge, Arnold Sommerfeld and Pieter Debye, at the beginning of twentieth century, as well as

Vassily M. Babich and Joseph B. Keller in the middle of the twentieth century. Further work, specifically

in the context of seismic rays, was done by Vlastislav Červený.

24Readers interested in Hamilton’s formulation of the ray theory might refer to Hankins, T.L., (1980) Sir William Rowan
Hamilton: The Johns Hopkins University Press, pp. 59 – 95.



CHAPTER 6

Equations of motion: Isotropic homogeneous continua

From the study of nature there arose that class of partial differential equations

that is at the present time the most thoroughly investigated and probably the most

important in the general structure of human knowledge, namely, the equations of

mathematical physics.

Sergei L. Sobolev and Olga A. Ladyzenskaya (1969) Partial differential equations in Math-

ematics (editors: Aleksandrov, et al.)

Preliminary remarks

Having formulated system (4.4.5) — a system of equations to describe the behaviour of an elastic con-

tinuum — we wish to write Cauchy’s equations of motion explicitly in the context of the stress-strain

equations for such a continuum. This way, we commence our study of wave phenomena in an elastic

continuum.

We begin by choosing the simplest type of elastic continuum, namely an isotropic homogeneous one, and,

hence, we derive the corresponding equations of motion, which lead to the wave equations. In the process

of formulating these equations, we learn about the existence of the two types of waves that can propagate

in isotropic continua. Furthermore, we obtain the expressions for the speed of these waves as functions of

the properties of the continuum.

We begin this chapter by combining Cauchy’s equations of motion (2.8.1) with constitutive equations

(5.12.4). This formulation results in the derivation of the wave equations. To gain insight into these

equations, we study them in the context of plane waves and displacement potentials. We also investigate

the solutions of the wave equations, including solutions in various spatial dimensions and nondifferentiable

solutions. We conclude this chapter with examples of extensions of the standard form of the wave equation

that take into account aspects of anisotropy and of inhomogeneity.

6.1. Wave equations

6.1.1. Equation of motion. To derive the wave equation, assume that a given three-dimensional con-

tinuum is isotropic and homogeneous. Thus, we consider the corresponding stress-strain equations given

143
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by expression (5.12.4), namely,

(6.1.1) σij = λδij

3∑
k=1

εkk + 2µεij , i, j ∈ {1, 2, 3} ,

where λ and µ are constants. We also consider Cauchy’s equations of motion (2.8.1), namely,

(6.1.2)
3∑
j=1

∂σij
∂xj

= ρ
∂2ui
∂t2

, i ∈ {1, 2, 3} .

We wish to combine stress-strain equations (6.1.1) with equations of motion (6.1.2) to get the equations

of motion in an isotropic homogeneous continuum. In other words, we substitute expression (6.1.1) into

equations (6.1.2) to obtain

ρ
∂2ui
∂t2

=
3∑
j=1

∂

∂xj

(
λδij

3∑
k=1

εkk + 2µεij

)
(6.1.3)

=
3∑
j=1

(
δijλ

3∑
k=1

∂εkk
∂xj

+ 2µ
∂εij
∂xj

)
, i ∈ {1, 2, 3} .

Now, we wish to express the right-hand side of equations (6.1.3) in terms of the displacement vector, u.

Invoking the definition of the strain tensor, given in expression (1.4.6), we can rewrite equations (6.1.3) as

ρ
∂2ui
∂t2

=
3∑
j=1

[
δijλ

3∑
k=1

∂

∂xj

(
∂uk
∂xk

)
+ µ

∂

∂xj

(
∂ui
∂xj

+
∂uj
∂xi

)]
, i ∈ {1, 2, 3} .

Using the property of Kronecker’s delta, we obtain

ρ
∂2ui
∂t2

= λ

3∑
k=1

∂

∂xi

(
∂uk
∂xk

)
+ µ

3∑
j=1

∂

∂xj

(
∂ui
∂xj

+
∂uj
∂xi

)
, i ∈ {1, 2, 3} .

Using the linearity of the differential operators, we can rewrite these equations as

ρ
∂2ui
∂t2

= λ
3∑
j=1

∂2uj
∂xi∂xj

+ µ
3∑
j=1

∂2ui
∂x2

j

+ µ
3∑
j=1

∂2uj
∂xj∂xi

, i ∈ {1, 2, 3} ,

where, in the first summation, for the summation indices, we let k = j. Using the equality of mixed partial

derivatives, we obtain

ρ
∂2ui
∂t2

= (λ+ µ)
3∑
j=1

∂2uj
∂xi∂xj

+ µ

3∑
j=1

∂2ui
∂x2

j

= (λ+ µ)
∂

∂xi

3∑
j=1

∂uj
∂xj

+ µ

 3∑
j=1

∂2

∂x2
j

ui, i ∈ {1, 2, 3} .(6.1.4)
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We can use vector calculus to concisely state equations (6.1.4). Consider the right-hand side of these

equations. The first summation term is the divergence of u, namely, ∇ · u, while the second summation

term is Laplace’s operator, namely,∇2. Consequently, we can rewrite equations (6.1.4) as

(6.1.5) ρ
∂2ui
∂t2

= (λ+ µ)
∂

∂xi
∇ · u + µ∇2ui, i ∈ {1, 2, 3} .

We can explicitly write the three equations stated in expression (6.1.5) as

ρ
∂2

∂t2

 u1

u2

u3

 = (λ+ µ)


∂(∇·u)
∂x1

∂(∇·u)
∂x2

∂(∇·u)
∂x3

+ µ∇2

 u1

u2

u3

 .

Noticing that the first matrix on the right-hand side involves the gradient operator, we can concisely state

the three equations shown in expression (6.1.5) as

(6.1.6) ρ
∂2u
∂t2

= (λ+ µ)∇ (∇ · u) + µ∇2u.

This is the equation of motion that applies to isotropic homogeneous continua.

We wish to write equation (6.1.6) in a form that allows us to express it in terms of the dilatation and the

rotation vector, in accordance with their definitions stated in Chapter 1. Using the vector identity given by

(6.1.7) ∇2a = ∇ (∇ · a)−∇× (∇× a) ,

and letting a = u, we can rewrite equation (6.1.6) as

(6.1.8) ρ
∂2u
∂t2

= (λ+ 2µ)∇ (∇ · u)− µ∇× (∇× u) .

Equation (6.1.8) contains information about the deformations expressed in terms of the divergence and

the curl operators. Recalling the definitions of the dilatation and the rotation vector, given by expressions

(1.4.18) and (1.5.2), respectively, we can immediately write

(6.1.9) ρ
∂2u
∂t2

= (λ+ 2µ)∇ϕ− µ∇×Ψ.

Equation (6.1.9) describes the propagation of the deformations in terms of both dilatation and the rotation

vector in an isotropic homogeneous continuum. It describes the propagation related to both the change in

volume and the change in shape. The divergence operator is associated with the change of volume while

the curl operator is associated with the change in shape.

Note that ∇2u behaves as a vector only with respect to the change of orthonormal coordinates. This is

due to the fact that, in general,∇2 is defined for vectors whose direction is set. For vector fields, however,
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this direction changes from point to point. Since u (x, t) is a vector field, equation (6.1.6) is valid only for

orthonormal coordinates.1 Equation (6.1.8), however, is valid for curvilinear coordinates.

6.1.2. Wave equation for P waves. To gain insight into the types of waves that propagate in an

isotropic homogeneous continuum, we wish to split equation (6.1.9) into its parts, which are associated

with the dilatation and with the rotation vector.

To obtain the wave equation for P waves, we take the divergence of equation (6.1.9). Since in a homoge-

neous continuum λ and µ are constants, we can write

(6.1.10) ∇ ·
[
ρ
∂2u
∂t2

]
= (λ+ 2µ)∇ · ∇ϕ− µ∇ · ∇ ×Ψ.

The factor of µ disappears since∇ ·∇×Ψ = 0 for all Ψ. Considering the factor of λ+ 2µ and invoking

the definition of Laplace’s operator, we can write

∇ · ∇ϕ =
[
∂

∂x1
,
∂

∂x2
,
∂

∂x3

]
·
[
∂

∂x1
,
∂

∂x2
,
∂

∂x3

]
ϕ = ∇2ϕ.

Consequently, equation (6.1.10) becomes

(6.1.11) ∇ ·
[
ρ
∂2u
∂t2

]
= (λ+ 2µ)∇2ϕ.

Let us consider the left-hand side of equation (6.1.11). In a homogeneous continuum, the mass density, ρ,

is a constant. Hence — in view on the linearity of the differential operators — we can take ρ outside of

the divergence. Also — in view of the the equality of mixed partial derivatives — we can interchange time

and space derivatives. Thus, we get

ρ
∂2ϕ

∂t2
= (λ+ 2µ)∇2ϕ,

where, on the left-hand side, we used again definition (1.4.18). Rearranging, we obtain

(6.1.12) ∇2ϕ =
1

λ+2µ
ρ

∂2ϕ

∂t2
,

which is the wave equation whose wave function is given by dilatation, ϕ (x, t) = ∇ · u (x, t).

Equation (6.1.12) is the wave equation wave for P waves. As shown in Section 6.4,

(6.1.13) v :=

√
λ+ 2µ
ρ

is the propagation speed. In view of Section 5.12, the presence of both Lamé’s parameters in expression

(6.1.13) suggests that P waves subject the continuum to both a change in volume and a change in shape.

1Readers interested in this statement might refer to Feynman, R.P., Leighton, R.B., and Sands, M., (1963/1989) Feynman’s
lectures on physics: Addison-Wesley Publishing Co., Vol. II, p. 2-12.
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In view of definition (1.4.18), P waves are sometimes referred to as dilatational waves. Also, since the

dilatation, ϕ, is the relative change in volume, they are sometimes referred to as pressure waves. Further-

more, since the speed of P waves is always greater than the speed of S waves, which are discussed below,

in earthquake observations, P waves are sometimes referred to as primary waves.

6.1.3. Wave equation for S waves. To obtain the wave equation for S waves, we take the curl of

equation (6.1.9) and write

(6.1.14) ∇×
[
ρ
∂2u
∂t2

]
= (λ+ 2µ)∇×∇ϕ− µ∇×∇×Ψ.

The factor of λ+ 2µ disappears since∇×∇ϕ = 0 for all ϕ. Recalling definition (1.5.2) and considering

the constancy of the mass density, ρ — in view of the linearity of the differential operators as well as the

equality of mixed partial derivatives — we get

(6.1.15) ρ
∂2Ψ
∂t2

= −µ∇× [∇×Ψ] .

Invoking vector-calculus identity (6.1.7) and letting a = Ψ, we can write equation (6.1.15) as

ρ
∂2Ψ
∂t2

= −µ
[
∇ (∇ ·Ψ)−∇2Ψ

]
.

In view of definition (1.5.2) and the vanishing of the divergence of a curl, the first term in brackets disap-

pears. Hence, we obtain

(6.1.16) ∇2Ψ =
1
µ
ρ

∂2Ψ
∂t2

,

which is the wave equation whose wave function is given by the rotation vector, Ψ (x, t) = ∇× u (x, t).

Equation (6.1.16) is the wave equation wave for S waves. As shown in Section 6.4,

(6.1.17) v :=
√
µ

ρ

is the propagation speed. In view of Section 5.12, the presence of the single Lamé’s parameter, namely, µ,

in expression (6.1.17), suggests that S waves subject the continuum to a change in shape. Also, due to the

vanishing of rigidity in fluids, we can conclude that the propagation of S waves is limited to solids.

In view of definition (1.5.2), S waves are sometimes referred to as rotational waves. Since the rotation

vector is given by Ψ = ∇×u, we conclude that∇·Ψ = 0. If the divergence of a vector field vanishes, this

vector field is volume-preserving; hence, S waves are sometimes referred to as the equivoluminal waves.

In English, the justification for the letter S is due to the fact that these waves are often referred to as shear

waves. Also, due to the fact that the speed of S waves is always smaller than the speed of P waves, in

earthquake observations, S waves are sometimes referred to as secondary waves.
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6.2. Plane waves

In general, equations (6.1.4) are complicated partial differential equations. This shows that even in

isotropic homogeneous continua, the description of wave phenomena constitutes a serious mathematical

problem. We can simplify these equations by introducing certain abstract mathematical entities that allow

us to describe particular aspects of wave phenomena. While studying wave propagation in homogeneous

media, we can consider plane waves. These are the waves for which the components of the displacement

vector are functions of the direction of propagation only.

To gain insight into the concept of plane waves, let us revisit equations (6.1.12) and (6.1.16). Let the

plane waves propagate along the x1-axis. Thus, in view of the properties of plane waves and following

expression (2.4.3), we write the displacement vector as

u = [u1 (x1, t) , u2 (x1, t) , u3 (x1, t)] .

Since all the partial derivatives of u with respect to x2 and x3 vanish, equations (6.1.4) become

ρ
∂2u1

∂t2
= (λ+ 2µ)

∂2u1

∂x2
1

,

ρ
∂2u2

∂t2
= µ

∂2u2

∂x2
1

,

and

ρ
∂2u3

∂t2
= µ

∂2u3

∂x2
1

.

After algebraic manipulations, we can write

(6.2.1)
∂2u1

∂x2
1

=
1

λ+2µ
ρ

∂2u1

∂t2
,

(6.2.2)
∂2u2

∂x2
1

=
1
µ
ρ

∂2u2

∂t2
,

and

(6.2.3)
∂2u3

∂x2
1

=
1
µ
ρ

∂2u3

∂t2
.

Consider equation (6.2.1). Recall expression (1.4.18), which in this case becomes

(6.2.4) ϕ =
∂u1

∂x1
.

Taking the derivative of equation (6.2.1) with respect to x1, we obtain

(6.2.5)
∂3u1

∂x3
1

=
1

λ+2µ
ρ

∂3u1

∂x1 ∂t2
.



6.3. DISPLACEMENT POTENTIALS 149

Using expression (6.2.4) in equation (6.2.5), we obtain

(6.2.6)
∂2ϕ

∂x2
1

=
1

λ+2µ
ρ

∂2ϕ

∂t2
,

which is a plane-wave form of equation (6.1.12). Examining equations (6.2.4) and (6.2.6), we recognize

that the displacement and the direction of propagation are parallel to one another, which is the key property

of P waves in isotropic continua. This property is also shown in Exercise 9.4.

Now, consider equations (6.2.2) and (6.2.3). Recall expression (1.5.2), which in this case becomes

(6.2.7) Ψ =
[
0,−∂u3

∂x1
,
∂u2

∂x1

]
.

Taking the derivative of equations (6.2.3) and (6.2.2) with respect to x1, and writing them as a vector, we

obtain 
0

−∂3u3

∂x3
1

∂3u2

∂x3
1

 =
1
µ
ρ


0

− ∂3u3
∂x1 ∂t2

∂3u2
∂x1 ∂t2

 .

Using the equality of mixed partial derivatives and expression (6.2.7), we obtain

(6.2.8)
∂2Ψ
∂x2

1

=
1
µ
ρ

∂2Ψ
∂t2

,

which is a plane-wave form of equation (6.1.16). Examining equations (6.2.7) and (6.2.8), we recognize

that the displacements and the direction of propagation are orthogonal to each other, which is the key

property of S waves in isotropic continua. This property is also shown in Exercise 9.6.

Plane waves are an approximation that allows us to study, in homogeneous media, a wavefield that results

from a distant source. Notably, in Chapter 10, we will use plane waves to study reflection and transmission

of waves at an interface separating two anisotropic homogeneous halfspaces. For close sources, we can

construct a wavefield as a superposition of plane waves. In such an approach, there is a constructive

interference in the regions where the plane waves coincide and a destructive interference outside of these

regions.

While studying inhomogeneous media, the behaviour of seismic waves cannot be conveniently described

using plane waves and their superposition. For such studies, we will introduce in Section 6.10.4 another

abstract mathematical entity — a seismic ray, which belongs to the realm of asymptotic methods and

provides us with a different perspective to study seismic wavefields.

6.3. Displacement potentials

6.3.1. Helmholtz’s decomposition. In Sections 6.1.2 and 6.1.3, we derived the wave equations for P

and S waves, respectively. To derive the wave equation for P waves, which we expressed in terms of scalar
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function ϕ, we took the divergence of Cauchy’s equations of motion. To derive the wave equation for S

waves, which we expressed in terms of vector function Ψ, we took the curl of these equations. Herein,

we will obtain equations that correspond to P and S waves by using Helmholtz’s method of separating

a vector function into its scalar and vector potentials. We will obtain these equations by inserting the

potentials into Cauchy’s equations of motion.

According to Helmholtz’s theorem2, a differentiable function u (x, t) can be decomposed into

(6.3.1) u (x, t) = ∇P (x, t) +∇× S (x, t) ,

where P and S = [S1, S2, S3] are called the scalar and vector potentials, respectively. Following the

definitions of the gradient and curl operators, we can explicitly write the components of u as

u1 (x, t) =
∂P
∂x1

+
∂S3

∂x2
− ∂S2

∂x3
,

u2 (x, t) =
∂P
∂x2

+
∂S1

∂x3
− ∂S3

∂x1

and

u3 (x, t) =
∂P
∂x3

+
∂S2

∂x1
− ∂S1

∂x2
,

which constitute a system of differential equations. This system does not have a unique solution. It is

common to consider also another equation; namely,

(6.3.2) ∇ · S (x, t) = 0.

since we can always find P and S that satisfy the system composed of equations (6.3.1) and (6.3.2).3

Introducing equation (6.3.2) does not result in a unique determination of S. It only reduces possible

choices of this vector, as shown below.

We will use expressions (6.3.1) and (6.3.2) in Sections 6.3.3 and 6.3.4. In the next section, we will justify

our introducing equation (6.3.2).

6.3.2. Gauge transformation. Let us consider equation (6.3.2) in the context of equation (6.3.1). We

are allowed to set∇ ·S = 0 since, in view of properties of the vector operators, S used in equation (6.3.1)

is determined up to a gradient, ∇f , where f (x) is any differentiable function. In mathematical physics,

changing S by adding∇f to it is called a gauge transformation. Let

(6.3.3) S̃ = S +∇f .

2Readers interested in Helmholtz’s theorem might refer to Arfken, G.B, and Weber, H.J., (2001) Mathematical methods for
physicists (5th edition): Harcourt/Academic Press, pp. 96 – 101.

3Interested readers might refer to Box 4.2 in Aki, K., and Richards, P.G., (2002) Quantitative seismology (2nd edition):
University Science Books.
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Taking the curl of both sides of equation (6.3.3), using the linearity of the differential operator and the

vanishing of the curl of a gradient, we obtain

∇× S̃ = ∇× (S +∇f) = ∇× S.

Examining this result in the context of expression (6.3.1), we see that the same u is obtained using either

S or S +∇f . We can use this freedom of choice to set ∇ · S̃ = 0. This is tantamount to finding f such

that ∇2f = −∇ · S. To reach this conclusion, we took the divergence of both sides of equation (6.3.3) to

get

(6.3.4) ∇ · S̃ = ∇· (S +∇f (x)) = ∇ · S +∇2f = 0.

Since both S̃ and S result in the same u, we have justified our adding equation (6.3.2) to system (6.3.1).

In particular, it is interesting to notice by examining equation (6.3.4), that if f is a harmonic function —

in other words, if f is a solution of ∇2f = 0 — then, ∇ · S̃ = ∇ · S. Consequently, in view of equation

(6.3.3), we can always add to S the gradient of a harmonic function.

6.3.3. Equation of motion. To study the equations of motion in terms of the displacement potentials,

we insert expression (6.3.1) into equation (6.1.6) and write

ρ
∂2 (∇P +∇× S)

∂t2
= (λ+ µ)∇ [∇ · (∇P +∇× S)] + µ∇2 (∇P +∇× S) .

Using the vanishing of the divergence of a curl and the definition of Laplace’s operator, we obtain

ρ
∂2 (∇P +∇× S)

∂t2
= (λ+ µ)∇ (∇ · ∇P) + µ∇2 (∇P +∇× S)

= (λ+ µ)∇
(
∇2P

)
+ µ∇2 (∇P +∇× S) .

Using the linearity of the differential operators and the fact that in a homogeneous continuum ρ, λ and µ

are constants, as well as using the equality of mixed partial derivatives, we can rewrite this equation as

∇
(
ρ
∂2P
∂t2

)
+∇×

(
ρ
∂2S
∂t2

)
= ∇

[
(λ+ µ)∇2P

]
+∇

(
µ∇2P

)
+∇×

(
µ∇2S

)
= ∇

[
(λ+ 2µ)∇2P

]
+∇×

(
µ∇2S

)
.

Rearranging, we obtain

(6.3.5) ∇
[
(λ+ 2µ)∇2P − ρ ∂

2P
∂t2

]
+∇×

[
µ∇2S− ρ ∂

2S
∂t2

]
= 0,

which is the equation of motion for isotropic homogeneous continua in terms of the scalar and vector

potentials.
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6.3.4. P and S waves. Looking at equation (6.3.5), we see that it is satisfied if

(6.3.6) ∇2P − 1
λ+2µ
ρ

∂2P
∂t2

= 0

and

(6.3.7) ∇2S− 1
µ
ρ

∂2S
∂t2

= 0,

which, in view of equations (6.1.12) and (6.1.16), appear to be associated withP and S waves, respectively.

A rigorous analysis of this result is associated with Lamé’s theorem.4 Equations (6.3.6) and (6.3.7) are

wave equations whose wave functions are the scalar and vector potentials, respectively. Motivated by this

observation, we wish to study the relation of the scalar and vector potentials to the two wave equations

whose wave functions are given by the dilatation and the rotation vector; namely equations (6.1.12) and

(6.1.16), respectively.

As in Section 6.1.2, let us take the divergence of equation (6.3.5). Using the vanishing of the divergence

of a curl and the definition of Laplace’s operator, we obtain

(6.3.8) ∇2

[
(λ+ 2µ)∇2P − ρ ∂

2P
∂t2

]
= 0.

Using the linearity of the differential operator and the equality of mixed partial derivatives, we can rewrite

equation (6.3.8) as

(6.3.9) (λ+ 2µ)∇2
(
∇2P

)
− ρ

∂2
(
∇2P

)
∂t2

= 0.

To relate the scalar potential, P , to the dilatation, ϕ, let us take the divergence of expression (6.3.1).

Using the vanishing of the divergence of a curl and recalling definition (1.4.18) as well as the definition of

Laplace’s operator, we obtain

(6.3.10) ϕ := ∇ · u = ∇ · ∇P ≡ ∇2P .

In other words, the dilatation is equal to the Laplacian of the scalar potential. Using expression (6.3.10),

we can rewrite equation (6.3.9) as

(6.3.11) ∇2ϕ =
1

λ+2µ
ρ

∂2ϕ

∂t2
,

which is equation (6.1.12), as expected. Thus, we conclude that the Laplacian of the scalar potential, P ,

satisfies the wave equation for P waves.

4Readers interested in this theorem might refer to Aki, K., and Richards, P.G., (2002) Quantitative seismology (2nd edition):
University Science Books, pp. 67 – 69.
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As in Section 6.1.3, let us take the curl of equation (6.3.5). Using the vanishing of the curl of a gradient,

we get

∇×∇×
(
µ∇2S− ρ ∂

2S
∂t2

)
= 0.

Recalling identity (6.1.7) and letting a denote the term in parentheses, we can rewrite this equation as

∇
[
∇ ·
(
µ∇2S− ρ ∂

2S
∂t2

)]
= ∇2

(
µ∇2S− ρ ∂

2S
∂t2

)
.

Using the linearity of the differential operators and the equality of mixed partial derivatives, we can rewrite

this equation as

(6.3.12) ∇
[
µ∇2 (∇ · S)− ρ ∂

2 (∇ · S)
∂t2

]
= ∇2

(
µ∇2S− ρ ∂

2S
∂t2

)
.

In view of equation (6.3.2),∇ · S = 0, equation (6.3.12) becomes

(6.3.13) ∇2

(
µ∇2S− ρ ∂

2S
∂t2

)
= 0.

Again using the linearity of the differential operator and the equality of mixed partial derivatives, we can

write equation (6.3.13) as

(6.3.14) µ∇2
(
∇2S

)
− ρ

∂2
(
∇2S

)
∂t2

= 0.

To relate the vector potential, S, to the rotation vector, Ψ, let us take the curl of expression (6.3.1). Using

the vanishing of the curl of a gradient and recalling definition (1.5.2), we obtain

Ψ := ∇× u = ∇×∇× S.

Following identity (6.1.7) and letting a = S, we get

Ψ = ∇× (∇× S) = ∇ (∇ · S)−∇2S.

In view of equation (6.3.2),∇ · S = 0, we obtain

(6.3.15) Ψ = −∇2S.

In other words, the rotation vector is equal to the negative Laplacian of the vector potential. Using expres-

sion (6.3.15), we can rewrite equation (6.3.14) as

(6.3.16) ∇2Ψ =
1
µ
ρ

∂2Ψ
∂t2

,

which is equation (6.1.16), as expected. Thus, we conclude that under condition (6.3.2) the Laplacian of

the vector potential, S, satisfies the wave equation for S waves.
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This derivation of equations (6.3.11) and (6.3.16) is analogous to the method for obtaining Maxwell’s

equations in the electromagnetic theory using the vector and scalar potentials.5

6.4. Solutions of wave equation for single spatial dimension

6.4.1. d’Alembert’s approach. To gain further insights into the physical meaning of equations (6.1.12)

and (6.1.16), we study the solution of their generic form, where we do not specify if the wave function

corresponds to P waves or to S waves.6 Consider the initial-value problem given by

(6.4.1)
∂2u (x, t)
∂x2

− 1
v2

∂2u (x, t)
∂t2

= 0,

where u = u (x, t) is the wave function and v is a constant. Let the initial conditions be stated by

(6.4.2)


u (x, t)|t=0 = γ (x)

∂u(x,t)
∂t

∣∣∣
t=0

= η (x)
.

The following method of solving the wave equation was introduced in 1746 by d’Alembert and further

elaborated upon by Euler, with important contributions from Daniel Bernoulli and Lagrange.7 It is based

on the following two lemmas.

LEMMA 6.4.1. Equation
∂2u

∂x2
− 1
v2

∂2u

∂t2
= 0,

is equivalent to

(6.4.3)
∂2u (y, z)
∂y∂z

= 0,

where the new coordinates are

(6.4.4)

{
y = x+ vt

z = x− vt
.

Details of the derivation of Lemma 6.4.1 are shown in Exercise 6.1.

5Readers interested in the derivation of Maxwell’s equations using the potentials might refer to Feynman, R.P., Leighton,
R.B., and Sands, M., (1963/1989) Feynman’s lectures on physics: Addison-Wesley Publishing Co., Vol. II, pp. 18-9 – 18-11.

6Applying Newton’s second law of motion, we can derive equation (6.4.1) for either longitudinal waves or transverse waves,
which correspond to P waves or S waves, respectively. Readers interested in such derivations of the one-dimensional wave
equation for the P and S waves might refer to Hanna, J.R., (1982) Fourier series and integrals of boundary value problems: John
Wiley and Sons, pp. 109 – 111 and pp. 121 – 122, or to Garrity, T.A., (2001) All the mathematics you missed [but need to know
for graduate school]: Cambridge University Press, pp. 274 – 277, where a derivation for the S waves is presented.

7Readers interested in the history of deriving the wave equation including disagreements among d’Alembert, Euler, Bernoulli
and Lagrange in accommodating the initial conditions might refer to Kline, M., (1972) Mathematical thought from ancient to
modern times: Oxford University Press, Vol. II, pp. 503 – 514.
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The form ∂2u (y, z) /∂y∂z = 0 is a normal form of the hyperbolic differential equation, where y and z

are referred to as the natural coordinates. For y and z given by constants, y = x+ vt and z = x− vt are

straight lines in the xt-plane, which are known as the characteristics of the wave equation. Expressions

y (x, t) and z (x, t) satisfy the characteristic equation of wave equation (6.4.1), as shown in Exercise 6.17.8

LEMMA 6.4.2. For equation
∂2u (y, z)
∂y∂z

= 0,

the only form of the solution is

(6.4.5) u (y, z) = f (y) + g (z) ,

where f and g are twice-differentiable arbitrary functions.

Details of the derivation of Lemma 6.4.2 are shown in Exercise 6.2.

Combining Lemma 6.4.1 and Lemma 6.4.2, we can state the following corollary.

COROLLARY 6.4.3. Following Lemma 6.4.1 and Lemma 6.4.2, and using coordinates (6.4.4), we can write

the only form of the solution of equation (6.4.1) as

(6.4.6) u (x, t) = f (x+ vt) + g (x− vt) ,

where f and g are arbitrary twice-differentiable functions.

Solution (6.4.6) allows arbitrary twice-differentiable functions f and g. Further constraints must be im-

posed on functions f and g if we wish to obtain a particular solution.

Herein, we wish to obtain a particular form of solution (6.4.6) that satisfies the constraints provided by

initial conditions (6.4.2). Inserting expression (6.4.6) into system of equations (6.4.2), we can write

(6.4.7)

{
f (x) + g (x) = γ (x)

vf ′ (x)− vg′ (x) = η (x)
,

where we used the chain rule with f ′ and g′ denoting the derivatives with respect to arguments (x+ vt)

and (x− vt), respectively, and evaluated the results at t = 0. This system of equations can be solved

explicitly for f (x) and g (x). Integrating both sides of the second equation of this system, we obtain

(6.4.8)


f (x) + g (x) = γ (x)

f (x)− g (x) = 1
v

x∫
x0

η (ζ) dζ
,

8Readers interested in normal forms of the hyperbolic equations and its association with characteristics might refer to Morse
P.M., and Feshbach H., (1953) Methods of theoretical physics: McGraw-Hill, Inc., Part I, pp. 682 – 683.

Readers interested in the characteristics and their significance in wave theory might refer to Musgrave, M.J.P., (1970) Crystal
acoustics: Introduction to the study of elastic waves and vibrations in crystals: Holden-Day, pp. 68 – 76.
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where ζ is the integration variable. Adding the two equations together, we get

(6.4.9) f (x) =
1
2

γ (x) +
1
v

x∫
x0

η (ζ) dζ

 ,

while subtracting the second equation from the first one gives us

(6.4.10) g (x) =
1
2

γ (x)− 1
v

x∫
x0

η (ζ) dζ

 .

Inserting expressions (6.4.9) and (6.4.10) into solution (6.4.6), we write

u (x, t) =
1
2

γ (x+ vt) + γ (x− vt) +
1
v

 x+vt∫
x0

η (ζ) dζ −
x−vt∫
x0

η (ζ) dζ

 .

Using the fact that reversing the limits of integration changes the sign of the integral, we obtain

(6.4.11) u (x, t) =
1
2

γ (x+ vt) + γ (x− vt) +
1
v

x+vt∫
x−vt

η (ζ) dζ

 ,

which is the solution of the initial-value problem given by equations (6.4.1) and (6.4.2).

Let us interpret the physical meaning of solution (6.4.11). If we view x as the position variable and t as

the time variable, solution (6.4.11) describes propagation of u in the one-dimensional x-space. Solution

u (x, t) is completely determined by the differential equation and the initial conditions, which describe the

solution at the initial time, u (x, 0) = γ (x), and the velocity of displacement of u at that instant, η (x); in

other words, at point x, γ (x) displaces with velocity η.

Note that for the initial-value problem discussed herein, the one-dimensional space has an infinite length.

To consider finite and semifinite cases, we would also have to consider boundary conditions.9

To examine the concept of propagation, let us consider solution (6.4.6) with g = 0; namely,

(6.4.12) u (x, t) = f (x+ vt) .

We wish to examine the propagation of a given point that belongs to f . Such a point corresponds to a

particular value of f . In view of expression (6.4.12), we see that a particular value of u (x, t) remains

the same if the value of x + vt stays the same. According to conditions (6.4.2), at time t = 0, we have

u (x, 0) = γ (x). Let us consider location x0, at that time. At this location and at that time, we have γ (x0).

Let us follow this value of γ. At time t1, we have γ (x1 + vt1). To follow the same value, we require the

constancy of the argument; in other words, x0 = x1 + vt1. Solving for x1, we get x1 = x0 − vt, which

9Readers interested in a finite and semifinite cases might refer to Arnold, V.I., (2004) Lectures on partial differential equa-
tions: Springer-Verlag, pp. 29 – 32.
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means that the value of γ that was at x0 moved to x0 − vt; it moved left along the x-axis by distance vt.

We conclude that constant v in equation (6.4.1) is the propagation speed.

Returning to solution (6.4.6) and following an argument analogous to the one presented above but with

f = 0, we conclude that f and g move in opposite directions. In general, f and g are different from one

another; they are explicitly stated in terms of the two initial conditions by expressions (6.4.9) and (6.4.10).

Examining these expressions, we note that the two functions propagating in the opposite directions are the

same if η (x) = 0; in other words, if there is no initial velocity of displacement.

6.4.2. Directional derivative. To gain further insight into wave equation (6.4.1) and solution (6.4.6),

let us rewrite this equation using directional derivatives. We write(
v2 ∂

2

∂x2
− ∂2

∂t2

)
u (x, t) = 0,

where the term is parentheses is a differential operator, which we can rewrite as a composition of two

differential operators; namely,10

(6.4.13)
(
v
∂

∂x
− ∂

∂t

)(
v
∂

∂x
+
∂

∂t

)
u (x, t) = 0.

Using the scalar product, we can write each operator as

(6.4.14)
(

[v,−1] ·
[
∂

∂x
,
∂

∂t

])(
[v, 1] ·

[
∂

∂x
,
∂

∂t

])
u (x, t) = 0,

where the terms in parentheses have the form of directional derivatives with directions [v,−1] and [v, 1].

Equation (6.4.14) means that u is constant in these directions. In other words, u is constant along the lines

whose slopes are
dx
dt

= ±v.

Solving this ordinary differential equation, we get

x = ±vt+ C,

where C is the integration constant. Solving for C, we write

C = x∓ vt.

Since a function of a constant is a constant, the solution of equation (6.4.14) can be written as

u (x, t) = f (x+ vt) + g (x− vt) ,

which is solution (6.4.6); it states that f and g are constant along x = ±vt+ C.

10Readers interested in using expression (6.4.13) to obtain d’Alembert’s solution via a first-order partial differential equation
might refer to Evans, L.C., (1998) Partial differential equations: AMS, pp. 67 – 68.
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In view of equation (6.4.14), we can formulate the solution in a different way. Function u remains un-

changed along directions [v,−1] and [v, 1], which correspond to lines that are described by their perpen-

diculars; namely, [1, v] and [1,−v], respectively. Hence, the arguments of f and g are

[x, t] · [1, v] = x+ vt

and

[x, t] · [1,−v] = x− vt,

respectively.

6.4.3. Well-posed problem. We are interested in knowing whether or not the solution of the initial-

value problem given by equations (6.4.1) and (6.4.2) is unique. Also, since this solution results from the

initial conditions, we wish to know whether or not it depends smoothly on the initial data. In other words,

we wish to verify that the dependence is such that a small change in input affects the solution by a small

amount only. We refer to such a solution as a stable solution. A problem consisting of equations that

result in a unique and stable solution is called a well-posed problem. Wave equation (6.4.1) together with

conditions (6.4.2) constitute a well-posed problem as we will see below.

It is important to note that many mathematical physics questions do not constitute well-posed problems;

they are ill-posed problems. However, this classical nomenclature does not imply that a well-posed prob-

lem is physically more realistic than an ill-posed problem. For instance, inverse problems, which are of

great interest in seismology, often do not possess unique solutions.

Let us demonstrate the uniqueness of solution (6.4.11). We will demonstrate it explicitly by following the

construction of our solution derived in Section 6.4.1.

Consider equation (6.4.1), namely,

(6.4.15)
∂2u

∂x2
− 1
v2

∂2u

∂t2
= 0.

Following Lemma 6.4.1 and Lemma 6.4.2, we obtained Corollary 6.4.3, according to which

(6.4.16) u (x, t) = f (x+ vt) + g (x− vt)

is the only form of the solution of equation (6.4.15). Using initial conditions (6.4.2), we obtain system

(6.4.8), which allows us to uniquely solve for f and g in terms of γ and η. Consequently, we can write

solution (6.4.16) in terms of γ and η to obtain expression (6.4.11). Thus, in view of the construction of

solution (6.4.11), we conclude that the solution is unique.

Similarly, examining the construction that led to solution (6.4.11), as described in Section 6.4.1, we see

that γ and η are linear combinations of the continuous and differentiable functions f and g and of their

first derivatives. Hence, functions γ and η, which are the initial conditions, are also continuous. Since the
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solution depends linearly on γ and on the integral of η, we conclude that a small change in γ or η results

in a small change in u. Hence the solution, u (x, t), is stable.

We can also show the uniqueness of the solution of the wave equation by studying the energy of wave

function u (x, t) at a given instant in time. Herein, by analogy to the above section, we will discuss

the energy of a wave function in a single spatial dimension, where u = u (x, t). The presented method,

however, can be easily extended to higher dimensions, thereby showing that, in general, the wave equations

with appropriate initial conditions is a well-posed problem. Furthermore, we could also define the wave-

function energy for equations in dissipative and dispersive media; this aspect of wave phenomena, however,

is beyond the scope of this book.11

Considering equation (6.4.1), let us define the wave-function energy to be

(6.4.17) E (t) :=
1
2

∞∫
−∞

[(
∂u

∂t

)2

+ v2

(
∂u

∂x

)2
]

dx.

In the study of partial differential equations, it is common to define energy as an integral whose integrand

is composed of squares of first derivatives of a function, as we did in expression (6.4.17) for function u.

To interpret the physical meaning of this definition, we first note that, as written, the physical units of E
are the product of velocity squared and distance, which are not units of energy. However, if we multiply

E by unit mass per unit length, [kg/m], the units of E are the product of velocity squared and mass, which

are the units of energy. Also, we can write E as the sum of two integrals, namely,
∫ [

(∂u/∂t)2 /2
]

dx

and
∫ [

v2 (∂u/∂x)2 /2
]

dx. We can view the former integral as corresponding to the kinetic energy of

displacement. Since v2/2 is a constant, we can view the latter integral as corresponding to the potential

energy; in particular, it corresponds to the the strain energy that is associated with deformation u.

Differentiating expression (6.4.17) with respect to time and using the fact that limits of integration are

fixed, we get

dE
dt

=
1
2

∞∫
−∞

∂

∂t

[(
∂u

∂t

)2

+ v2

(
∂u

∂x

)2
]

dx =

∞∫
−∞

(
∂u

∂t

∂2u

∂t2
+ v2∂u

∂x

∂2u

∂t∂x

)
dx.

To study this integral, we rewrite it as two integrals, namely,

(6.4.18)
dE
dt

=

∞∫
−∞

∂u

∂t

∂2u

∂t2
dx+ v2

∞∫
−∞

∂u

∂x

∂2u

∂t∂x
dx.

11Readers interested in various definitions of energy in the study of partial differential equations might refer to McOwen,
R.C., (1996) Partial differential equations: Methods and applications: Prentice-Hall, Inc., pp. 91 – 97.
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Solving the second integral by parts, we get
∞∫
−∞

∂u

∂x

∂2u

∂t∂x
dx =

∂u

∂t

∂u

∂x

∣∣∣∣x=∞

x=−∞
−
∞∫
−∞

∂u

∂t

∂2u

∂x2
dx.

We assume that η, which appears in condition (6.4.2), has compact support. This means that η (x) is

nonzero on a closed and bounded interval, but is zero everywhere else. Thus, ∂u/∂t vanishes at both

positive and negative infinity of the space variable, x. In other words, there is no displacement velocity

infinitely far from the neighbourhood of x = 0. For the integrated term, (∂u/∂t) (∂u/∂x)|∞−∞, to vanish,

we must also assume ∂u/∂x to be finite at both positive and negative infinity of x. If we assume that

function γ has compact support, ∂u/∂x = 0 at x = ±∞ since the propagation speed, v, is finite. This

implies that, at an infinite distance, u (x, t) = 0, for all t <∞. Using these assumptions, we can write
∞∫
−∞

∂u

∂x

∂2u

∂t∂x
dx = −

∞∫
−∞

∂u

∂t

∂2u

∂x2
dx.

Inserting this expression into expression (6.4.18), we get

dE
dt

=

∞∫
−∞

∂u

∂t

∂2u

∂t2
dx− v2

∞∫
−∞

∂u

∂t

∂2u

∂x2
dx =

∞∫
−∞

∂u

∂t

[
∂2u

∂t2
− v2∂

2u

∂x2

]
dx.

Examining the integrand in view of wave equation (6.4.1), we see that the term in brackets vanishes.

Hence, we obtain

(6.4.19)
dE
dt

= 0,

which implies that E is constant.

Equation (6.4.19) states that for wave equation (6.4.1), the wave-function energy defined by expression

(6.4.17) is conserved.12 We can state it as the following theorem.

THEOREM 6.4.4. If u (x, t) is a solution of wave equation (6.4.1) together with initial conditions (6.4.2)

that are given by functions with compact support, then energy defined by expression (6.4.17) is conserved.

In other words, E (t) = E (0) for all t.

In Exercise 6.3, we prove an analogous theorem for a boundary-value, rather than an initial-value, problem.

We can use Theorem 6.4.4 to show that the solution of the problem given by equations (6.4.1) and (6.4.2)

is unique.13 Since equation (6.4.1) is linear, a solution can be composed of a difference of two arbitrary

12Readers interested in the energy of function u (x, t) for a three-dimensional wave equation, for a frequency-dispersive wave
equation, and for the dissipative wave equation might refer to McOwen, R.C., (1996) Partial differential equations: Methods and
applications: Prentice-Hall, Inc., pp. 91 – 92, 95 – 96 and 96 – 97, respectively.

13Readers interested in the uniqueness of solution of the wave equation and finiteness of the propagation speed in the context
of conservation of energy might refer to Taylor, M.E., (1996) Partial differential equations; Basic theory: Springer-Verlag, pp.
140 – 148.
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solutions. Each arbitrary solution must obey the initial conditions. Examining the first of conditions

(6.4.2), we see that — at t = 0 — each solution is γ (x). This means that — at t = 0 — the solution

composed of a difference of two solutions is zero. If the difference of two arbitrary solutions is zero, these

two solutions are equal to one another; in other words, the solution is unique at t = 0. Now, using Theorem

6.4.4, we wish to verify this uniqueness for t > 0.

Following definition (6.4.17) and using the fact that, at t = 0, the solution composed of a difference of

two solutions is u (x, t) = 0, we see that the corresponding E (0) = 0. Then, Theorem 6.4.4 states that

E (t) = E (0) = 0, for all t. Invoking definition (6.4.17), we can explicitly write

E (t1) =
1
2

∞∫
−∞

( ∂u
∂t

∣∣∣∣
t=t1

)2

+ v2

(
∂u

∂x

∣∣∣∣
t=t1

)2
dx = 0,

where t1 is an arbitrary time, t1 ∈ (0,∞). Since (∂u/∂t)2, v2 and (∂u/∂x)2 are positive for all t and x,

for the integral to vanish we require that
∂u (x, t)
∂t

= 0

and
∂u (x, t)
∂x

= 0,

for any x and for arbitrary t. This implies that

du (x, t)
dt

=
∂u

∂x

dx
dt

+
∂u

∂t
=
∂u

∂x
v +

∂u

∂t
= 0,

where we used the fact that v is a finite velocity of propagation. Hence, we can say that solution u is

constant. Since u is unique at t = 0 while being constant for all t ∈ (0,∞), it must be unique for all t.

Thus we can conclude with the following corollary of Theorem 6.4.4.

COROLLARY 6.4.5. Solution u (x, t) of wave equation (6.4.1) together with conditions (6.4.2) is unique.

6.4.4. Causality, finite propagation speed and sharpness of signals. Let us continue to examine

solution (6.4.11), namely,

(6.4.20) u (x, t) =
1
2

γ (x+ vt) + γ (x− vt) +
1
v

x+vt∫
x−vt

η (ζ) dζ

 .

For given (x, t), the value of solution u depends on the values of γ at points x ∓ vt and on the values of

η on interval [x− vt, x+ vt]. Hence, this interval is the domain of dependence of u (x, t), as illustrated

in Figure 6.4.1. To examine the effect of a point source, at x0, on a location, say x1, let us consider this

figure. Point x0 belongs to the domains of dependence of points (x, t) that lie in a triangular region whose

apex is at x0 and whose sides have the slopes of ∓1/v. This region is the range of influence of x0 on

solutions u (x, t). The signal generated at x0 at t = 0 will not reach x1 until time t1. Prior to that instant,

the source has no effect at x1. Thus, we conclude that the process is causal and the propagation speed of
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t

xx-vt x+vtx0

(x,t)

x1

t1

0

FIGURE 6.4.1. The domain of dependence and the range of influence for the wave equa-
tion in a single spatial dimension

the signal is finite; its magnitude is (x1 − x0) /t1. There is another important consequence of the range of

influence. At x1, the effect of the signal is observed not only at t1 but also afterwards. This means that, in

general, a sharp signal generated at x0 does not propagate as a sharp signal — its effect persists after t1.

It is interesting to note that for the acoustic case, where u represents pressure, the constant value of u is

not audible since our hearing relies on the change in pressure. Thus, we would hear only the initial arrival

of the signal — a sharp-signal effect. For the elastic case, where u represents displacement, the constant

value is observable.

As stated above, in general, a sharp signal generated at a point does not propagate as a sharp signal. It does

so in particular cases, however. By setting the initial displacement velocity, η, to zero, we rewrite solution

(6.4.20) as

u (x, t) =
1
2

[γ (x+ vt) + γ (x− vt)] ;

a common example of η = 0 is the case of a taut string that is pulled, and then released. Herein, the value

of the solution depends on points x∓ vt only. Hence, if there is no initial displacement velocity, the effect

of the signal does not persist after the signal passes; consequently, sharp signals can propagate.

In Section 6.5, we will see that the solution of the wave equation changes with the spatial dimension of

the problem being considered; unlike in the cases of one and two dimensions, three-dimensional media
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allow for the propagation of sharp signals. Such a change of behaviour is a particular property of the wave

equation; solutions of the heat equation and the steady-state equation, commonly known as Laplace’s

equation, do not exhibit such changes in physical interpretation due to dimensions.14

6.5. Solution of wave equation for two and three spatial dimensions

6.5.1. Introductory comments. Having obtained the solution of the wave equation in one spatial

dimension in Section 6.4, we wish to investigate the solutions of the wave equation in two and three spatial

dimensions. Let us consider

(6.5.1) ∇2u (x, t)− 1
v2

∂2u (x, t)
∂t2

= 0,

where∇2 is Laplace’s operator, and the corresponding initial conditions; namely,

(6.5.2) u (x, t)|t=0 = γ (x)

and

(6.5.3)
∂u (x, t)
∂t

∣∣∣∣
t=0

= η (x) .

This is a general form of the initial-value problem stated on page 154.

6.5.2. Three spatial dimensions. To consider the case of three spatial dimensions, we write equation

(6.5.1) explicitly as

(6.5.4)
3∑
i=1

∂2u (x1, x2, x3, t)
∂x2

i

− 1
v2

∂2u (x1, x2, x3, t)
∂t2

= 0.

To solve this equation, we take its Fourier’s transform and the transform of conditions (6.5.2) and (6.5.3)

with x and k being the transformation variables. As shown in Exercise 6.4, we obtain

(6.5.5)
∂2ũ (k, t)
∂t2

+ v2 |k|2 ũ (k, t) = 0.

The corresponding initial conditions are

(6.5.6) ũ (k, t)|t=0 = γ̃ (k)

and

(6.5.7)
∂ũ (k, t)
∂t

∣∣∣∣
t=0

= η̃ (k) .

14Readers interested in the concept of the range of influence, including an insightful physical consequences of these ranges
for the wave equation, the diffusion equation, and Laplace’s equation, might refer to Abbott, M.B., (1966) An introduction to the
method of characteristics: Elsevier, pp. 16 – 18 as well as p. 66 and p. 70.
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As shown in Exercise 6.5, the general solution of equation (6.5.5) is

(6.5.8) ũ (κ, t) = F (k) exp {iv |k| t}+G (k) exp {−iv |k| t} .

To get expressions for F and G, we use conditions (6.5.6) and (6.5.7). Also, as shown in Exercise 6.5, we

get

(6.5.9) F (k) =
1
2

(
γ̃ (k) +

1
iv |k|

η̃ (κ)
)

and

(6.5.10) G (k) =
1
2

(
γ̃ (k)− 1

iv |k|
η̃ (k)

)
.

Inserting these expressions into solution (6.5.8), we write

(6.5.11)

ũ (k, t) =
1
2

((
γ̃ (k) +

1
iv |k|

η̃ (k)
)

exp {iv |k| t}+
(
γ̃ (k)− 1

iv |k|
η̃ (k)

)
exp {−iv |k| t}

)
,

which is the solution of the initial-value problem given by equations (6.5.5), (6.5.6) and (6.5.7). To obtain

the solution of the initial-value problem given by equations (6.5.4), (6.5.2) and (6.5.3), we need to find the

inverse Fourier’s transform of solution (6.5.11). To do so, let us rewrite the solution by factoring out the

two initial conditions; namely,

ũ (k, t) = γ̃ (k)
exp {iv |k| t}+ exp {−iv |k| t}

2
+ η̃ (k)

exp {iv |k| t} − exp {−iv |k| t}
2iv |k|

.

Examining the two fractions, we notice that they are related as follows:

d
dt

exp {iv |k| t} − exp {−iv |k| t}
2iv |k|

=
exp {iv |k| t}+ exp {−iv |k| t}

2
.

Using this relation, we write

(6.5.12) ũ (k, t) = γ̃ (k)
d
dt

exp {iv |k| t} − exp {−iv |k| t}
2iv |k|

+ η̃ (k)
exp {iv |k| t} − exp {−iv |k| t}

2iv |k|
.

Since each term is a product of two functions, we will invoke the fact that a product in the k-domain is a

convolution in the x-domain. As shown in Exercise 6.6, the fractions in solution (6.5.12) are the transforms

of the distribution given by

(6.5.13)
(2π)3

4πv2t

∫∫
S(0,vt)

τ dζ =
2π2

v2t

∫∫
S(0,vt)

τ dζ,

where τ is a test function and dζ is the surface element on the sphere, S (0, vt), that is centred at x = 0 and

whose radius is vt. In other words, expression (6.5.13) is the inverse transform of the fraction in solution

(6.5.12). As formulated in Exercise 6.7, using expression (6.5.13) and the properties of convolution, we
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obtain the solution of the initial-value problem given by equations (6.5.4), (6.5.2) and (6.5.3); namely,

(6.5.14) u (x, t) =
d
dt

2π2

v2t

∫∫
S(x,vt)

γ (y) dζ (y) +
2π2

v2t

∫∫
S(x,vt)

η (y) dζ (y) ,

where y are the variables of integration on the sphere centred at x.

Examining expression (6.5.14), we see that for any point in the x1x2x3t-space, solution u (x, t) depends

on the values of γ and η whose domain is the surface of a sphere in the x1x2x3-space that is centred at the

x coordinates of that point, and whose radius is vt. In a manner analogous to the one discussed in Section

6.4.4, we conclude that a point source in the x1x2x3-space influences the points in the x1x2x3t-space that

are on the surface of the three-dimensional ‘cone’ embedded in four dimensions whose apex is the source

and whose slope is 1/v. Thus, a signal emitted at t = 0 will arrive at a point located at a distance d

from the source at time t = d/v. Prior to that instant, there is no effect of the source, which means that

the process is causal and the speed of signal propagation is finite. At that instant, the value of u is finite

since both integrals in expression (6.5.14) are bounded. Afterwards, again there is no signal. The signal

is confined to the spherical shell of radius vt, which is the propagating wavefront. Thus, sharp signals can

propagate in three dimensions, which is in agreement with our experience.

6.5.3. Two spatial dimensions. Mathematically, the solution of the wave equation in two dimensions

can be viewed as a particular case of the three-dimensional case. Physically, however, the two results have

important distinctions.

To investigate the case of two spatial dimensions, we return to equation (6.5.1) and write it explicitly as

(6.5.15)
2∑
i=1

∂2u (x1, x2, t)
∂x2

i

− 1
v2

∂2u (x1, x2, t)
∂t2

= 0,

where the corresponding initial conditions are given by expressions (6.5.2) and (6.5.3) with s = [s1, s2, 0],

where s stands for coordinates of the three-dimensional space. Using solution (6.5.14), we can write the

solution of equation (6.5.15) as

u (x, t) =
2π2

v2t

∫∫
S(x,vt)

η (s1, s2) dζ (s) +
d
dt

2π2

v2t

∫∫
S(x,vt)

γ (s1, s2) dζ (s) .

As shown in Exercise 6.8, we can rewrite this solution as

(6.5.16) u (x1, x2, t) =
d
dt

4π2

v

∫∫
D(x,vt)

γ (s1, s2)√
(vt)2 −

[
(s1 − x1)2 + (s2 − x2)2

] ds1 ds2


+

4π2

v

∫∫
D(x,vt)

η (s1, s2)√
(vt)2 −

[
(s1 − x1)2 + (s2 − x2)2

] ds1 ds2,
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where D (x, vt) is the disc that is centred at x and whose radius is vt.

Examining expression (6.5.16), we see that for any point in the x1x2t-space, solution u (x, t) depends on

the values of γ and η whose domain is a disc on the x1x2-plane that is centred at the x coordinates of that

point, and whose radius is vt. In a manner analogous to the one discussed in Section 6.4.4, we conclude

that a point source on the x1x2-plane influences the points in the x1x2t-space that are both on the surface

of and contained within the right circular cone whose apex is the point source and whose slope is 1/v. The

projections onto the x1x2-plane of a circular section of this cone is the wavefront at a given time. Thus,

a signal emitted at t = 0 will arrive at a point located at a distance d from the source at time t = d/v.

Prior to that instant, there is no effect of the source, which means that the process is causal and the speed

of signal propagation is finite. At that instant, the value of u is infinite since the bracketed terms of the

radicands of equation (6.5.16) are equal to (vt)2, and hence the two integrals in expression (6.5.16) are

unbounded. Afterwards, the value of u diminishes but remains nonzero forever.15 Hence, sharp signals do

not propagate in two dimensions, which we can visualize by picturing a pebble dropped into a pond: the

surface is affected by this disturbance after the wavefront has passed.16

Thus for all the three cases discussed in Sections 6.4 and 6.5, the process of wave propagation described

by the solution of the initial-value problem given by expressions (6.5.1), (6.5.2) and (6.5.3) is causal and

the speed of propagation is finite. Also, as shown in Section 6.4.3, the solution of this initial-value problem

is unique and stable. However, sharp signals propagate only in three dimensions.

6.6. On evolution equation

To gain further insight into the properties of solutions of the wave equation and its initial conditions, let us

consider a first-order time-evolution equation in a single spatial dimension, namely,

(6.6.1)
∂2u (x, t)
∂x2

− ∂u (x, t)
∂t

= 0,

and the initial condition given by u (x, t)|t=0 = γ (x). As we will see, the solution of this initial-value

problem is causal but its speed of propagation is infinite. Furthermore, the mapping γ → u does not have

a unique inverse in the limit as t→∞.

15Readers interested in a quantitative description of fading of the value of u as recorded by the observer in the two-dimensional
case might refer to Barton, G., (1989) Elements of Green’s functions and propagation: Potentials, diffusion and waves: Oxford
Science Publications, pp. 278 – 282.

16Readers interested in the range of influence for the wave propagation in the two-dimensional and three-dimensional media,
including the consequences for the corresponding wave equations on sharpness of the signal as well as on Huygens’ principle,
might refer to Kline, M., (1972) Mathematical thought from ancient to modern times: Oxford University Press, Vol 2, pp. 690 –
691, to McOwen, R.C., (1996) Partial differential equations: Methods and applications: Prentice-Hall, Inc., pp. 83 – 90 and pp.
130 – 131, and to Renardy, M., and Rogers, R.C., (1993) An introduction to partial differential equations: Springer-Verlag, pp.
158 – 159. Also, an insightful description of the wave equation in one spatial dimension is presented in Spivak, M., (1970/1999)
A comprehensive introduction to differential geometry: Publish or Perish, Inc., Vol. V., pp. 68 – 71.
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To solve this initial-value problem, we will investigate its Fourier’s transform in a manner analogous to the

one discussed in Section 6.5.2. We get

∂ũ (k, t)
∂t

+ k2ũ (k, t) = 0,

which we can solve as if it were a first-order ordinary differential equation in t, with initial condition

ũ (k, t)|t=0 = γ̃ (k). Hence, in the transformed domain, the solution is

ũ (k, t) = γ̃ (k) exp
{
−k2t

}
.

To obtain the solution of the initial-value problem, we proceed to find the inverse transform. We write

u (x, t) =

∞∫
−∞

γ̃ (k) exp
{
−k2t

}
exp {ixk}dk.

Invoking the definition of Fourier’s transform, we write

γ̃ (k) =
1

2π

∞∫
−∞

γ (ζ) exp {−iζk} dζ,

where ζ is the integration variable. Inserting this result into the above expression for u, we get

u (x, t) =
1

2π

∞∫
−∞

∞∫
−∞

γ (ζ) exp {−iζk} exp
{
−k2t

}
exp {ixk} dζdk.

Combining the exponential terms, we write

u (x, t) =
1

2π

∞∫
−∞

∞∫
−∞

γ (ζ) exp
{
i (x− ζ) k − k2t

}
dζdk.

Exchanging the order of integration and since γ is independent of k, we write

u (x, t) =
1

2π

∞∫
−∞

 ∞∫
−∞

exp
{
i (x− ζ) k − k2t

}
dk

 γ (ζ) dζ.

As shown in Exercise 6.9, the inner integral can be written as

∞∫
−∞

exp
{
i (x− ζ) k − k2t

}
dk =

exp
{
− (x−ζ)2

4t

}
√
t

∞∫
−∞

e−s
2
ds,

where s is the variable of integration. Evaluating the definite integral, as shown in Exercise 6.10, we write

the inner integral as
∞∫
−∞

exp
{
i (x− ζ) k − k2t

}
dk =

√
π

t
exp

{
−(x− ζ)2

4t

}
.
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Returning to the above expression for u, we write

(6.6.2) u (x, t) =
1

2
√
πt

∞∫
−∞

exp

{
−(x− ζ)2

4t

}
γ (ζ) dζ,

which is the solution of the initial-value problem, as stated by the following theorem.

THEOREM 6.6.1. If γ (x) is bounded and continuous on x ∈ R, then u (x, t) given in expression (6.6.2)

is an infinitely differentiable function satisfying — for all x ∈ R and t > 0 — the initial-value problem of

equation (6.6.1), and extends continuously to t = 0, where u (x, t) = γ (x).

Let us consider the domain of dependence of solution (6.6.2), and the range of influence of a given point

on the x-axis. Examining expression (6.6.2) in view of Theorem 6.6.1, we see that for any (x, t) on the

xt-plane where t > 0, solution u (x, t) depends on the value of function γ along the entire x-axis. In other

words, the domain of dependence is the entire x-axis. By reciprocity, any point on the x-axis influences

all the locations on the xt-plane where t > 0. In other words, this entire halfplane is the range of influence

of such a point. This means that the effect of the initial condition, γ (x), upon the solution, u (x, t), is

instantaneous; in other words, the solution has an infinite propagation speed. Hence, even if γ (x) is

confined to a finite domain along the x-axis, its effect for t > 0 covers the entire axis. Also, this means

that γ affects all points in that halfplane from t = 0 to t =∞.

Since, in view of Theorem 6.6.1, solution (6.6.2) is not valid for t < 0, the process is causal. Also the

forward solution is unique. However, any bounded γ with compact support results in u → 0 as t → ∞;

hence, we cannot determine the initial state, γ, from u at t → ∞, which means that the inverse to the

mapping γ → u is not unique at infinity — the inverse problem is ill-posed. We note that the wave

equation and its initial conditions constitute well-posed forward and inverse problems.

6.7. Solutions of wave equation for one-dimensional scattering

To introduce wave propagation in inhomogeneous media, let us study a one-dimensional continuum where

the wave propagates with speed v1 at x ≤ 0 and v2 at x > 0. In view of solution (6.4.6) for the wave

equations in the aforementioned continuum, namely,

(6.7.1)


∂2u
∂x2 − 1

v2
1

∂2u
∂t2

= 0, x ≤ 0
∂2u
∂x2 − 1

v2
2

∂2u
∂t2

= 0, x > 0
,

the general solution is

(6.7.2) u (x, t) =

{
f1 (x+ v1t) + g1 (x− v1t)

f2 (x+ v2t) + g2 (x− v2t)

x ≤ 0

x > 0
.

To examine this problem, let us consider only a wave propagating from the left towards the origin, x = 0.

The effects associated with x = 0 are called scattering since at this point the incident wave is separated
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into a reflected wave and a transmitted wave, as we will see below. We can write the expression for the

incident wave as

(6.7.3) w = w (x− v1t) ,

where w is an arbitrary function that we set to zero for x > 0; hence, any wave to the right of the origin

will be the transmitted wave: the wave that went across x = 0.

In order for expression (6.7.3) to represent the initial disturbance, we formulate the initial conditions

corresponding to equations (6.7.1) as

(6.7.4) u|t=0 = w (x)

and

(6.7.5)
∂u

∂t

∣∣∣∣
t=0

= −v1w
′ (x) ,

where w′ denotes the derivative of w.

Considering solution (6.7.2) we see that f1 + g1 describes the incident and reflected waves, and f2 + g2

describes the transmitted wave. To write it specifically in the context of conditions (6.7.4) and (6.7.5), we

restate these conditions as

w (y) = u (y, 0) =

{
f1 (y) + g1 (y) ,

f2 (y) + g2 (y) ,

y ≤ 0

y > 0

and

−v1w
′ (y) =

∂u

∂t
(y, 0) =

{
v1 [f ′1 (y)− g′1 (y)] ,

v2 [f ′2 (y)− g′2 (y)] ,

y ≤ 0

y > 0
,

respectively; to avoid the confusion between the position, x, and the argument of a function, we use y as

the argument. Recalling from expression (6.7.3) that at t = 0 and to the right of the origin, w ≡ 0, we

rewrite these conditions as

u (y, 0) =

{
f1 (y) + g1 (y) = w (y) ,

f2 (y) + g2 (y) = 0,

y ≤ 0

y > 0

and
∂u

∂t
(y, 0) =

{
f ′1 (y)− g′1 (y) = −w′ (y) ,

f ′2 (y)− g′2 (y) = 0,

y ≤ 0

y > 0
.

To solve these equations, we group them according to the domains of the functions. Thus, we write{
f1 (y) + g1 (y) = w (y) ,

f ′1 (y)− g′1 (y) = −w′ (y) ,
y ≤ 0
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and {
f2 (y) + g2 (y) = 0,

f ′2 (y)− g′2 (y) = 0,
y > 0.

Integrating the second equations of both sets, we obtain{
f1 (y) + g1 (y) = w (y) ,

f1 (y)− g1 (y) = −w (y) +A,
y ≤ 0

and {
f2 (y) + g2 (y) = 0,

f2 (y)− g2 (y) = B,
y > 0,

where A and B are integration constants. We have two systems of equations. Each system consists of two

equations in two unknowns. We can proceed to solve these systems in their corresponding domains of y.

Let us consider the nonpositive arguments. We add the two equations of the first system to get f1 (y) =

A/2. Hence, g1 (y) = w (y)− A/2. Since f1 is a constant, its value can be incorporated into g1; in other

words, we can let f1 = A/2 ≡ 0, without loss of generality. Thus, g1 (y) = w (y).

Let us consider the positive arguments. We add the two equations of the second system to get f2 (y) =

B/2. Herein, the constancy of f2 implies the constancy of g2, and we can let f2 (y) = g2 (y) ≡ 0, without

loss of generality.

Using these results, the fact that v1 > 0, v2 > 0 and t > 0, and examining solution (6.7.2), we will study

the arguments of f1, g1, f2 and g2 to rewrite the general solution. Let us consider x ≤ 0. The argument

of f1 is y = x + v1t, which can be either positive or negative. Hence, even though f1 ≡ 0 for negative

arguments, we must consider it in the solution. The argument of g1 is y = x − v1t, which is negative.

Hence, g1 = w. Let us consider x > 0. The argument of f2 is y = x + v2t, which is positive. Hence,

we set f2 ≡ 0. The argument of g2 is y = x− v2t, which can be either positive or negative. Hence, even

though g2 ≡ 0 for positive arguments, we must consider it in the solution. Thus, we can rewrite expression

(6.7.2) as

(6.7.6) u (x, t) =

{
w (x− v1t) + f1 (x+ v1t) ,

g2 (x− v2t) ,

x ≤ 0

x > 0
.

Physically, we can interpret expression (6.7.6) in the following way: w is the incident wave, f1 propagates

in the opposite direction along the same domain of x — it is the reflected wave, g2 propagates in the same

direction as w but on the other side of x = 0 — it is the transmitted wave; f2 ≡ 0 since there is no wave

propagating towards the origin from the right.

In view of the physical interpretation, we could have argued the form of expression (6.7.6) directly from

expression (6.7.2) upon introducing expression (6.7.3). However, the rigorous approach presented above

provides us with an insight into the relation among the differential equation, its initial conditions and

solution.
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In expression (6.7.6), f1 and f2 are arbitrary functions. However, by invoking physical constraints, we

will be able to relate them to w; in other words, we will obtain relations among the incident, reflected and

transmitted waves.

In view of physical considerations, which will be discussed in detail in Section 10.2, we require that both

the displacement, u, and the stress be continuous along the entire x-axis. In particular, they must be

continuous across x = 0. Using expression (6.7.6), we can state the former requirement at x = 0 as the

equality given by

(6.7.7) f1 (v1t) + w (−v1t) = g2 (−v2t) .

To state the latter requirement, we recall stress-strain equations (4.2.8) with elasticity matrix (5.12.2),

which corresponds to an isotropic continuum. These stress-strain equations are given by equations (3.2.1),

namely,

σij =
3∑

k=1

3∑
l=1

cijklεkl, i, j ∈ {1, 2, 3} .

In our present study of a one-dimensional medium that coincides with the x-axis and considering only

longitudinal displacements, we use σxx := σ11 and εxx := ε11 to write the stress-strain equation for this

one-dimensional continuum as

σxx = (λ+ 2µ) εxx,

which, in view of definition (1.4.6), we can restate as

σxx = (λ+ 2µ)
∂u

∂x
.

Furthermore, using expression (6.1.13), we can rewrite it as

(6.7.8) σxx = ρv2∂u

∂x
.

Following expression (6.7.8), we can state the continuity of stress across x = 0 as the equality given by

ρ1v
2
1

∂u1

∂x

∣∣∣∣
x=0

= ρ2v
2
2

∂u2

∂x

∣∣∣∣
x=0

,

where u1 and u2 are the adjacent displacements on either side of x = 0. Differentiating the appropriate

terms of expression (6.7.6), we can explicitly write this continuity condition as

(6.7.9) ρ1v
2
1

[
f ′1 (v1t) + w′ (−v1t)

]
= ρ2v

2
2g
′
2 (−v2t) ,

where symbol ′ denotes the derivative of a given function with respect to its argument.

We wish to solve equations (6.7.7) and (6.7.9) for f1 and g2 in terms of w. In other words, we wish to

express the reflected and transmitted waves in terms of the incident wave. To do so, let us impose the

equality of time derivatives of displacement at x = 0; in other words, the speed of displacement is contin-

uous across x = 0 — just like the displacement itself, as stated in equation (6.7.7). Thus, differentiating
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equations in system (6.7.6) with respect to t and equating the results, we obtain

(6.7.10) v1f
′
1 (v1t)− v1w

′ (−v1t) = −v2g
′
2 (−v2t) .

Solving for f ′1, we get

f ′1 (v1t) = w′ (−v1t)−
v2

v1
g′2 (−v2t) .

Substituting into equation (6.7.9) and simplifying, we get

g′2 (−v2t) =
2ρ1v

2
1

v2 (ρ1v1 + ρ2v2)
w′ (−v1t) .

Integrating both sides with respect to t and simplifying, we get

g2 (−v2t) =
2ρ1v1

ρ1v1 + ρ2v2
w (−v1t) ,

where, in view of the initial conditions, the integration constant is zero. Herein, we set y = −v2t; hence,

t = −y/v2 and the argument of w becomes (v1/v2) y. Thus, we can write

g2 (y) =
2ρ1v1

ρ1v1 + ρ2v2
w

(
v1

v2
y

)
,

where product ρivi is called the acoustic impedance. Similarly, as shown in Exercise 6.11, we obtain

f1 (y) =
ρ1v1 − ρ2v2

ρ1v1 + ρ2v2
w (−y) ,

where y = v1t.

Thus, we can write expression (6.7.6) as

(6.7.11) u (x, t) =


w (x− v1t) + ρ1v1−ρ2v2

ρ1v1+ρ2v2
w (− (x+ v1t)) ,

2ρ1v1

ρ1v1+ρ2v2
w
(
v1
v2

(x− v2t)
)

,

x ≤ 0

x > 0

,

which is the solution of our scattering problem stated in terms of the incident wave, w, and the properties

of the discontinuous medium given by ρ1, v1 and ρ2, v2.

Having obtained the appropriate form of the solution, let us interpret its physical meaning. For x ≤ 0,

the two terms correspond to the incident and the reflected waves, respectively. For x > 0, the solution

corresponds to the transmitted wave.

The factors in front of w are the amplitudes of given waves. Thus, the incident wave has amplitude set to

unity. Examining expressions

(6.7.12)
ρ1v1 − ρ2v2

ρ1v1 + ρ2v2
=: Ar

and

(6.7.13)
2ρ1v1

ρ1v1 + ρ2v2
=: At,
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which are the amplitudes of the reflected and transmitted waves, respectively, we see that, if ρ1v1 6= ρ2v2,

the amplitude of the reflected wave is always smaller than the amplitude of the incident wave, while —

in agreement with conservation of energy — the amplitude of the transmitted wave can be either smaller

or greater than the amplitude of the incident wave; this is further discussed in Section 10.2.2 and Exercise

10.5. Furthermore, expressions (6.7.12) and (6.7.13) are derived in a different way in Exercise 10.4.

The factor v1/v2 in the transmitted wave corresponds to the wavelength: The wavelength of the incident

wave is v1/v2 times the wavelength of the transmitted wave.

Examining solution (6.7.11), we see that upon transmission from a lower to a higher acoustic impedance,

the amplitude of the wave decreases. We also see that explicitly mass density has no effect on the wave-

length; implicitly, it is contained in the expressions for the speeds of propagation, v1 and v2. Upon trans-

mission from a lower to a higher speed, the wavelength decreases.

To complete this section, let us consider a particular case of solution (6.7.11). If ρ1v1 = ρ2v2 = ρv, the

solution reduces to

u (x, t) = w (x− vt) ,

for all x, as expected. In other words, if there is no change in acoustic impedance, the wave travels without

any scattering.

6.8. On weak solutions of wave equation

6.8.1. Introductory comments. In a classical approach to differential equations, we expect the dif-

ferentiability of solutions to, at least, match the order of the equation. Yet, examining solution (6.4.6),

without considering equation (6.4.1), we see that the solution itself does not require f and g to be differ-

entiable; f and g could be even discontinuous. Requirements for differentiability of the solution of the

wave equation were the subject of long discussions between d’Alembert and Euler in the second half of the

eighteenth century. In these discussions, which lasted for almost thirty years, Euler deemed it necessary

from physical considerations of wave propagation to admit nondifferentiable functions as solutions, while

d’Alembert strictly required differentiability. A rigorous formulation that allows us to consider nondif-

ferentiable solutions was not available until the middle of the twentieth century. In this section, we will

briefly study this formulation.

A standard method of verifying that solution (6.4.6) satisfies equation (6.4.1) consists of inserting this

solution into the equation. To do so, however, we require that f and g be twice-differentiable. Sergei

Sobolev, during his presentation in 1934, stated that

[t]he class of functions that we can consider as solutions to the wave equation from the

classical point of view consists of twice-differentiable functions. But in various practical

applications it seems convenient to consider functions with well-defined singularities.
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In other words, we might wish to investigate waves that cannot be described by twice-differentiable func-

tions. Consequently, we would like to extend the solutions of wave equation (6.4.1) to incorporate func-

tions that are not differentiable. To do so, we consider the theory of generalized functions, commonly

referred to as the theory of distributions, which was formulated by Sergei Sobolev in the first half of the

twentieth century and thoroughly developed by Laurent Schwartz in the middle of the twentieth century.

The key philosophical point of this theory is that a generalized function is not described by itself alone but

by its effect on other functions.

We define the effect of h (x) on τ (x) by the value of
∫∞
−∞ h (x) τ (x) dx, where τ is assumed to be

infinitely differentiable and compactly supported. In view of this definition, τ is often called the test

function. In this formulation, we do not require h to be differentiable. Furthermore, h need not be a

function in the classical sense of the term; in general, h is a generalized function, also called a distribution;

Dirac’s delta is a famous example of such an entity.

Expression
∫∞
−∞ h (x) τ (x) dx generalizes our study of functions. If h is a function in the classical sense,

we can describe it on R1 by its values, h (x), for appropriate points x ∈ R1, as well as by the values of∫∞
−∞ hτ dx for appropriate functions τ . If h is not a function, we cannot describe it by its values, but we

can still describe it by the values of
∫∞
−∞ hτ dx, as exemplified by Dirac’s delta, where δ (x) by itself alone

does not make sense, while
∫∞
−∞ δ (x) τ (x) dx = τ (0) is a well-defined quantity.

6.8.2. Weak derivatives. To study the solutions of the wave equation, which is a partial differential

equation, we wish to investigate derivatives of nondifferentiable functions; so called weak derivatives.

To do so, let us consider the effect of these derivatives on test functions. Consider
∫∞
−∞ h

′ (x) τ (x) dx.

Integrating by parts, we obtain
∞∫
−∞

h′ (x) τ (x) dx = h (x) τ (x)|∞−∞ −
∞∫
−∞

h (x) τ ′ (x) dx.

Since τ has compact support, limx→±∞ τ = 0; hence, the first term on the right-hand side vanishes, if we

consider h to be finite at ±∞. Thus, we can state the derivative of h as

(6.8.1)

∞∫
−∞

h′ (x) τ (x) dx = −
∞∫
−∞

h (x) τ ′ (x) dx.

This is the formula for the weak derivative of order one for the case of a single variable. The use of this

formula is exemplified in Exercise 6.12.

In order to obtain higher-order derivatives for the case of n variables, we can repeat the process of integra-

tion by parts to arrive at the general equation for an mth partial derivative, which is given by

(6.8.2)
∫

Rn

∂mh (x)
∂xmi

τ (x) dx = (−1)m
∫

Rn

h (x)
∂mτ (x)
∂xmi

dx,
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where
∫

Rn dx stands for n integrals over n variables from −∞ to +∞.

Examining equation (6.8.2), we notice the crux of this formulation. To study the effect of the derivatives

of h, shown on the left-hand side, we study the expression on the right-hand side where no derivatives of

h appear. Hence, we do not need h to be differentiable.

6.8.3. Weak solution of wave equation. We wish to extend the solutions of wave equation (6.4.1)

to allow nondifferentiable functions. To distinguish the solutions that can be verified directly from the

solutions discussed below, we refer to the latter ones as weak solutions.

In view of Section 6.8.2, let us consider the effect of the second derivatives. We write

(6.8.3)

∞∫
−∞

∞∫
−∞

{(
∂2

∂x2
− 1
v2

∂2

∂t2

)
[f (x+ vt) + g (x− vt)]

}
τ (x, t) dxdt,

where the term in parentheses is the differential operator of wave equation (6.4.1) and the term in brackets

is solution (6.4.6), where we wish to allow f and g to be nondifferentiable.

To verify that f + g is a weak solution of equation (6.4.1), we must show that expression (6.8.3) vanishes

for all test functions, τ . Following equation (6.8.2), we write

(6.8.4)

∞∫
−∞

∞∫
−∞

{(
∂2

∂x2
− 1
v2

∂2

∂t2

)
[f (x+ vt) + g (x− vt)]

}
τ (x, t) dxdt

=

∞∫
−∞

∞∫
−∞

[f (x+ vt) + g (x− vt)]
[(

∂2

∂x2
− 1
v2

∂2

∂t2

)
τ (x, t)

]
dxdt.

Recalling that τ is infinitely differentiable, we let y = x + vt and z = x − vt and use Lemma 6.4.1 to

rewrite the right-hand side of the above equation as

∞∫
−∞

∞∫
−∞

[f (y) + g (z)]
[
∂2τ (y, z)
∂y∂z

]
dydz

=

∞∫
−∞

∞∫
−∞

f (y)
∂2τ (y, z)
∂y∂z

dydz +

∞∫
−∞

∞∫
−∞

g (z)
∂2τ (y, z)
∂y∂z

dydz.

Changing the order of integration, we get
∞∫
−∞

f (y)

∞∫
−∞

∂2τ (y, z)
∂y∂z

dzdy +

∞∫
−∞

g (z)

∞∫
−∞

∂2τ (y, z)
∂y∂z

dydz.
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In order to show that wave equation (6.4.1) is satisfied — in the weak sense — by f + g, we must show

that the above expression vanishes. It suffices to show that
∞∫
−∞

∂2τ (y, z)
∂y∂z

dz = 0

and
∞∫
−∞

∂2τ (y, z)
∂y∂z

dy = 0.

Integrating, we obtain
∂τ (y, z)
∂y

∣∣∣∣z=∞
z=−∞

= 0

and
∂τ (y, z)
∂z

∣∣∣∣y=∞

y=−∞
= 0,

respectively. Since τ has compact support, all its derivatives — in particular, ∂τ/∂y and ∂τ/∂z — also

have compact support. Thus, limx→±∞ ∂τ/∂y = limx→±∞ ∂τ/∂z = 0, which means that both above

equations are satisfied for all test functions, τ , as required. We have verified solution (6.4.6) of wave

equation (6.4.1) without requiring differentiability of f or g. In view of expression (6.8.4), we can define

the weak solution of the one-dimensional wave equation as u (x, t) that satisfies

(6.8.5)

∞∫
−∞

∞∫
−∞

u (x, t)
[
∂2τ (x, t)
∂x2

− 1
v2

∂2τ (x, t)
∂t2

]
dxdt = 0,

where τ is the test function.

Any differentiable solution of the wave equation satisfies also equation (6.8.5). In other words, any strong

solution is also a weak solution. However, since the opposite is not true, we need equation (6.8.5) to study

solutions that are not differentiable.

6.9. Reduced wave equation

6.9.1. Harmonic-wave trial solution. To motivate the form and the name of the reduced wave equa-

tion, let us consider a particular trial solution for the wave equation. Since the wave equation is a partial

differential equation, to solve it we often assume a trial solution. For instance, while studying three-

dimensional continua, it is common to assume a plane-wave solution. However, we might wish to study a

more complicated position dependence of the solution; hence, we would require another trial solution.

Let us consider equation (6.4.1), namely,

(6.9.1)
∂2u (x, t)
∂x2

− 1
v2

∂2u (x, t)
∂t2

= 0.
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If we study an oscillatory motion, we can write our trial solution as

(6.9.2) u (x, t) = ú (x) exp (−iωt) ,

where ω stands for the angular frequency and exp (−iωt) is called the phase factor.17 The right-hand side

of expression (6.9.2) is a standard form of a complex number whose magnitude is ú (x) and whose phase

is ωt. We can write solution (6.9.2) as

(6.9.3) ú (x) exp (−iωt) = ú (x) [cos (ωt)− i sin (ωt)] .

By using this trial solution, we assume that the time dependence of the displacement function, u (x, t),

is satisfied by the term in brackets in expression (6.9.3). In other words, we assume that the solution is

sinusoidal in time; such waves are called harmonic waves.

Inserting solution (6.9.2) into equation (6.9.1), we obtain

(6.9.4)
d2ú (x)

dx2
+
(ω
v

)2
ú (x) = 0,

as shown in Exercise 6.13. This is the reduced wave equation. Since wave equation (6.9.1) is in a single

spatial dimension and since time is not a variable in equation (6.9.4), we obtained an ordinary differential

equation. However, to a certain extent, it is a matter of notation: ú is the solution of equation (6.9.4) for

a particular value of ω; hence, ú is implicitly a function of ω. Using this notation, we emphasize that

equation (6.9.4) is equation (6.9.1) with the temporal dependence given by exp (−iωt). Such a reduced

wave equation allows us to study particular problems, such as the steady-state problems or standing-wave

problems. Notably, the reduced wave equation was used by Hermann von Helmholtz in the mid-nineteenth

century to study oscillations in the organ pipes, and it belongs now to the class of Helmholtz’s equations.

Gustav Kirchhoff continued the work of Helmholtz on the reduced wave equation to study the solution of

the initial-value problem, which resulted in a mathematical statement of Huygens’ principle.18

In the next section, we will study the wave equation using Fourier’s transform. Therein, we will obtain a

partial differential equation that is almost equivalent to equation (6.9.4).

6.9.2. Fourier’s transform of wave equation. Writing equation (6.9.4) as

∂2ú

∂x2
+
(ω
v

)2
ú = 0,

we notice that we could view this equation as Fourier’s transform of equation (6.9.1) with t and ω being

the transformation variables. Let us investigate this property.

17In this book, exp (·) and e(·) are used as synonymous notations.
18Readers interested in the role of the reduced wave equation for studies of solutions of the steady-state equations, as well

as in the development of mathematical physics, might refer to Kline, M., (1972) Mathematical thought from ancient to modern
times: Oxford University Press, Vol. 2, pp. 693 – 696.
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Let us take Fourier’s transform of both sides of equation (6.9.1) with t and ω being the variables of trans-

formation. Thus, we write

1
2π

∞∫
−∞

[
∂2u (x, t)
∂x2

− 1
v2

∂2u (x, t)
∂t2

]
exp (−iωt) dt = 0.

We write the integral of a difference as a difference of integrals and factor out the constant term, 1/v2, to

get

(6.9.5)

 1
2π

∞∫
−∞

∂2u (x, t)
∂x2

exp (−iωt) dt

− 1
v2

 1
2π

∞∫
−∞

∂2u (x, t)
∂t2

exp (−iωt) dt

 = 0.

Let us consider the first bracketed term in equation (6.9.5). We can immediately rewrite it as

1
2π

∞∫
−∞

∂2

∂x2
[u (x, t) exp (−iωt)] dt

and interchange the integration and differentiation to get

∂2

∂x2

 1
2π

∞∫
−∞

u (x, t) exp (−iωt) dt

 ;

to do so, we used the fact that we take the derivative with respect to x while the limits of integration refer

to t. Herein, the term in brackets is the definition of Fourier’s transform of function u (x, t), which we

denote as ũ (x, ω). Let us consider the second bracketed term in equation (6.9.5). We evaluate the integral

using integration by parts twice to get

(iω)2

 1
2π

∞∫
−∞

u (x, t) exp (−iωt) dt

 .
We recognize that the term in brackets is Fourier’s transform of function u, namely, ũ. Returning to

equation (6.9.5), we rewrite that equation as

(6.9.6)
∂2ũ (x, ω)

∂x2
+
(ω
v

)2
ũ (x, ω) = 0,

which is Fourier’s transform of equation (6.9.1).

Equation (6.9.6) exhibits a similarity to equation (6.9.4). Let us compare these two equations. We note

that ú is a function of x alone, while ũ is a function of both x and ω. As stated in Section 6.9.1, it is a

matter of notation: ú is the solution of equation (6.9.4) for a particular value of ω; hence, it is implicitly a

function of ω — the fact that is explicitly stated for ũ.
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To complete this section, we can state that if we consider a three-dimensional equivalent of equation

(6.9.1), we can take its Fourier’s transform to get

(6.9.7) ∇2ũ (x, ω) +
(ω
v

)2
ũ (x, ω) = 0.

In this section we have shown that the reduced wave equation can be viewed as a particular case of the

wave equation subjected to Fourier’s transform with t and ω being the transformation variables. In our

subsequent work, when invoking the reduced wave equation, we will use the wave equation subjected to

Fourier’s transform. The formulation of the reduced wave equation in terms of a trial solution has provided

us with an insight into both its physical meaning and its nomenclature.

6.10. Extensions of wave equation

6.10.1. Introductory comments. In Chapter 7, we will derive equations of motion in anisotropic

inhomogeneous continua. This is accomplished by combining Cauchy’s equations of motion with stress-

strain equations for generally anisotropic continua and allowing the elasticity parameters to be functions

of position. The fundamental derivation shown in Chapter 7 lies at the root of ray theory, which is subse-

quently studied in this book.

There are, however, certain cases where the standard wave equation, which is derived for isotropic homo-

geneous continua, can be extended to account for anisotropy and for inhomogeneity. An investigation of

such cases is undertaken in this section.

6.10.2. Standard wave equation. In multidimensional continua, wave equation (6.4.1), may be writ-

ten as

(6.10.1) ∇2u (x, t)− 1
v2

∂2u (x, t)
∂t2

= 0,

which is a partial differential equation with constant coefficients, where, as shown in Section 6.4, constant v

is the magnitude of the velocity of the solution. In equation (6.10.1), x are the position coordinates. Hence,

this equation describes wave propagation in continua characterized by constant speed at all positions x

and in all directions determined by the coordinates. Consequently, this wave equation is valid for isotropic

homogeneous continua.

We wish to extend equation (6.10.1) to the anisotropic case. In certain cases, by transforming the coor-

dinates, we can formulate a wave equation that in homogeneous continua associates different velocities

with different directions. An example of such an extension, which results in a wave equation for elliptical

velocity dependence, is illustrated in Section 6.10.3.

We also wish to extend equation (6.10.1) to the inhomogeneous case. By considering the position de-

pendence v = v (x) and assuming that function v (x) varies slowly with x, we can use an approxima-

tion that allows us to describe wave propagation in weakly inhomogeneous continua. This extension of
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equation (6.10.1) to account for weak inhomogeneity is illustrated in Section 6.10.4 and belongs to the

high-frequency approximation.

6.10.3. Wave equation and elliptical velocity dependence.

Wave equation. To study an extension of the wave equation to anisotropic cases, consider equation

(6.10.1). For convenience, let v be equal to unity. Hence, we can write

(6.10.2) ∇2u (x, t) =
∂2u (x, t)
∂t2

.

Consider a two-dimensional continuum that is contained in the xz-plane. For x = [x, z], equation (6.10.2)

can be explicitly written as

(6.10.3)
∂2u (x, z, t)

∂x2
+
∂2u (x, z, t)

∂z2
=
∂2u (x, z, t)

∂t2
.

Let the linear transformation of the position coordinates be such that

(6.10.4) ú (x, z, t) = u

(
x

vx
,
z

vz
, t

)
,

where vx and vz are constants. Using the chain rule, as shown in Exercise 6.14, we can write equation

(6.10.3) as

(6.10.5) v2
x

∂2ú (x, z, t)
∂x2

+ v2
z

∂2ú (x, z, t)
∂z2

=
∂2ú (x, z, t)

∂t2
.

Thus, function ú is the solution of equation (6.10.5).

To illustrate the meaning of constants vx and vz , consider transformation (6.10.4) and let

u

(
x

vx
,
z

vz
, t

)
:= u (ξ, ς, t) .

If point (ξ, ς) is moving in the ξς-plane at the unit speed, namely,

d
dt

√
ξ2 + ς2 = 1,

the solutions u (ξ, ς, t), at different times t, are concentric circles. It follows that, in the xz-plane,

d
dt

√
x2

v2
x

+
z2

v2
z

= 1,

and, hence, the solutions ú (x, z, t), at different times t, are ellipses.

Equation (6.10.5) is the wave equation that describes the wavefront propagation in a two-dimensional

homogeneous continuum where the wave is subjected to an elliptical velocity dependence with direction.

The semiaxes of the elliptical wavefronts coincide with the coordinate axes and the magnitudes of the

wavefront velocities along these axes are given by vx and vz , respectively.
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Phase velocity. Knowing that vx and vz are the magnitudes of the wavefront velocities along the x-

axis and the z-axis, respectively, we wish to find the expression for the wavefront velocity in an arbitrary

direction. Since the wavefronts are loci of constant phase, the wavefront velocity is referred to as phase

velocity.

To solve equation (6.10.5), consider the trial solution given by

(6.10.6) ú (x, z, t) = exp [iω (pxx+ pzz − t)] .

If we consider monochromatic waves, where a given value of ω is constant, loci of constant phase are given

by the constancy of the term in parentheses. Thus, wavefronts at time t are straight lines pxx + pzz = t,

where px and pz are the components of vector p that is normal to the a given wavefront. Since x and

z have units of distance while t is time, it follows that the units of the components of p are the units of

slowness. In other words, p is the phase-slowness vector, which describes the slowness with which the

wavefront propagates. The envelope of all straight lines pxx+ pzz = t at time t is an elliptical wavefront.

Hence, p describes the slowness with which the line tangent to the elliptical wavefront propagates.

To examine trial solution (6.10.6), we substitute it into wave equation (6.10.5). We obtain

v2
xω

2p2
x exp [iω (xpx + zpz − t)] + v2

zω
2p2
z exp [iω (xpx + zpz − t)] = ω2 exp [iω (xkx + zkz − t)] .

Dividing by ω2 and by the exponential term, we can write this equation as

(6.10.7) v2
xp

2
x + v2

zp
2
z = 1,

where vx and vz are the magnitude of the phase velocity along the horizontal and vertical axes, respectively,

while px and pz are the components of p at a given point on the wavefront.

NOTATION 6.10.1. To avoid any confusion, let us clarify the meaning of notation vx, vz , px and pz that is

used in the entire book. As in expression (6.10.7), vx and vz denote constants that define the properties of

the velocity field by giving the magnitude of the wavefront velocity along the x-axis and along the z-axis,

respectively; vx and vz are not the components of a vector. Symbols px and pz , on the other hand, stand

for the components of the phase-slowness vector, p.

In other words, px and pz specify the orientation of a wavefront in the velocity field defined by vx and vz .

We also observe that — for the wavefront propagating along the x-axis — the magnitudes of px and pz are

1/vx and 0, respectively, while — for the wavefront propagating along the z-axis — they are 0 and 1/vz .

In general, for elliptical velocity dependence, |px| ∈ [0, 1/vx] and |pz| ∈ [0, 1/vz], as we can confirm by

examining expression (6.10.11), below.

Let us return to expression (6.10.7). To state this expression as a function of the orientation of the wave-

front, we can express the phase-slowness vector as

(6.10.8) p = [px, pz] = [p (ϑ) sinϑ, p (ϑ) cosϑ] ,
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where p (ϑ) stands for the magnitude of the phase-slowness vector in a given direction ϑ, which is mea-

sured between the wavefront normal and the z-axis, and is referred to as the phase angle. Thus, using

equation (6.10.8), we can also express the phase angle as

px
pz

=
sinϑ
cosϑ

= tanϑ,

which means that

(6.10.9) ϑ = arctan
px
pz
.

Using expression (6.10.8), we can rewrite expression (6.10.7) as

(6.10.10) [p (ϑ)]2
(
v2
x sin2 ϑ+ v2

z cos2 ϑ
)

= 1.

Since the magnitude of phase slowness is the reciprocal of the magnitude of phase velocity, expression

(6.10.10) can be restated as

(6.10.11) v (ϑ) =
1

p (ϑ)
=
√
v2
x sin2 ϑ+ v2

z cos2 ϑ.

Expression (6.10.11) gives the magnitude of phase velocity as a function of phase angle for the case of

elliptical velocity dependence. As shown in Exercise 9.8, SH waves in transversely isotropic continua are

characterized by elliptical velocity dependence.

Thus, by a linear transformation of the coordinate axes, we obtained an exact formulation of a wave equa-

tion for the elliptical velocity dependence. A more sophisticated manipulation of coordinates might allow

us to consider wave equations to study complicated anisotropic behaviours in homogeneous continua. In

this book, however, we will not pursue this approach. Rather, in Chapter 7, we will formulate an approxi-

mation to the wave equation that is valid for generally anisotropic continua.

Prior to completing this section, we wish to discuss the meaning of the elliptical velocity dependence with

direction. According to wave equation (6.10.5) — with vx and vz being the magnitudes of the wavefront

velocities along the x-axis and the z-axis, respectively — the wavefronts originating from a point source

are elliptical, as shown in discussion that follows expression (6.10.6). This ellipticity is exhibited by the

dependence of the magnitude of the phase-slowness vector, p, with direction. This can be illustrated by

the polar plot of expression (6.10.11) written as

p (ϑ) =
1√

v2
x sin2 ϑ+ v2

z cos2 ϑ
,

which is an ellipse. In other words, phase slowness, p, exhibits elliptical dependence on the phase angle,

ϑ. We note that phase velocity does not exhibits elliptical dependence on the phase angle. This can be

illustrated by the polar plot of expression (6.10.11) for v (ϑ), which is not an ellipse, and — for large

enough difference between vx and vz — is not even a convex curve. Geometrically, the ellipticity of

the wavefronts and of the phase slowness is a result of polar reciprocity to be discussed in Section 8.4.3.
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Analytically, this ellipticity results from the fact that p and ẋ, which are associated with the phase slowness

and ray velocity, respectively, are the variables of Legendre’s transformation, which will be also discussed

in Section 8.4. As will be shown in Chapter 8 in the context of Hamilton’s ray equations, it is p and ẋ,

rather than phase velocity, that are fundamental entities of seismic theory. Thus, we conclude that the

term elliptical velocity dependence with direction — which we introduced to refer to elliptical wavefronts

generated by a point source and governed by wave equation (6.10.5) — is tantamount to the dependence

of phase slowness on phase angle, as shown above, and to the dependence of ray velocity on ray angle, as

will be discussed in Section 8.4.

6.10.4. Wave equation and weak inhomogeneity.

Weak inhomogeneity: Formulation of equation. To study an extension of the wave equation to the

inhomogeneous case, consider equation (6.10.1), namely,

(6.10.12) ∇2u (x, t)− 1
v2

∂2u (x, t)
∂t2

= 0,

which is valid for homogeneous continua with v being a constant denoting the speed of propagation. In

order to extend this equation to inhomogeneous continua, we wish to express v as a function of the position

coordinates, x. Consequently, we wish to consider the equation given by

(6.10.13) ∇2u (x, t)− 1
[v (x)]2

∂2u (x, t)
∂t2

= 0.

Since equation (6.10.13) is a differential equation, it corresponds to local properties of the continuum and

can be locally solved for a given x. We can also obtain an approximate global solution to equation (6.10.13)

if we assume that function v (x) varies slowly, which means that the inhomogeneity of a continuum is

weak. In the seismological context, weak inhomogeneity means that the changes of properties within a

single wavelength are negligible.

Replacing v with v (x) is an arbitrary replacement: it is not justified by a derivation from the fundamentals.

There is no guarantee that in a weakly inhomogeneous medium, u satisfies equation (6.10.13). Strictly

speaking, such an equation should be derived in a manner to be discussed in Section 7.1.

In seismology, we are interested often in studying layered media where the properties vary along only one

axis. Considering a three-dimensional continuum, where x = [x, y, z], we assume often that its properties

vary slowly along the z-axis, while remaining the same along the other two axes. It can be shown that, if

v (x) = v (z) varies slowly, equation (6.10.13) is approximately satisfied by the displacements associated

with the SH waves for all directions of propagation. For the case of P and SV waves, equation (6.10.13)

provides a good approximation only for the displacements of waves propagating near the direction of
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the z-axis.19 However, the eikonal equation, which we will derive from equation (6.10.13), provides —

within the conditions of this derivation — a good approximation for signal trajectories in all directions of

propagation.

Weak inhomogeneity: Formulation of solution. To formulate a trial solution of equation (6.10.13),

consider the fact that we can write a trial solution of equation (6.10.12) as

(6.10.14) u (x, t) = A exp [iω (p · x− t)] ,

where A is the amplitude of the displacement that varies sinusoidally in space and time as described

by exp [iω (p · x− t)]. As stated in Section 6.10.3, exp [·] is the phase factor, which is constant for

a wavefront at time t. In three-dimensional continua, trial solution (6.10.14) is called the plane-wave

solution since, for a given time t, p · x = t is a plane that corresponds to a moving wavefront. Vector p is

normal to this plane and, as shown in Section 6.10.3, p is the phase-slowness vector.

If the properties of a three-dimensional continuum vary with position, a planar wavefront is distorted

during propagation through this continuum. Consequently, a trial solution of equation (6.10.13) must

account for these changes of shape of the wavefront, which also cause changes of amplitude along the

wavefront. Using a form analogous to expression (6.10.14), we write

(6.10.15) u (x, t) = A (x) exp {iω [ψ (x)− t]} ,

where A (x) denotes the amplitude of the displacement — which is allowed to vary along the wavefront

— and ψ (x), referred to as the eikonal function, which accounts for the distortions in the shape of the

wavefront. Herein, both A (x) and ψ (x) are smooth scalar functions of position coordinates. Examining

the phase factor of trial solution (6.10.15) in the context of solutions (6.10.6) and (6.10.14), we see that

equation ψ (x) = t represents the moving wavefront. In other words, the level sets of function ψ (x)

are the wavefronts. Since p is normal to the wavefront, using properties of the gradient, we obtain an

important expression, namely,

(6.10.16) p = ∇ψ.

In other words, the phase-slowness vector is the gradient of the eikonal function.

We could write the exponential term as the product of exp (iωψ) and exp (−iωt); the latter term transforms

equation (6.10.13) into the reduced wave equation in a manner shown in Section 6.9.1. This property is

illustrated in Exercise 6.18. Following the discussion in Section 6.9 — in particular referring to equation

(6.9.7) — we take Fourier’s transform of equation (6.10.13) with t and ω being the transformation variables

19Readers interested in wave propagation in slowly varying vertically nonuniform continua might refer to Grant, F.S., and
West, G.F., (1965) Interpretation theory in applied geophysics: McGraw-Hill, Inc., pp. 43 – 47, 49 – 50, and to Krebes, E.S.,
(2004) Seismic theory and methods (Lecture notes): The University of Calgary, pp. 5-8 – 5-11.
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to get

(6.10.17) ∇2ũ (x, ω) +
[

ω

v (x)

]2

ũ (x, ω) = 0.

Let us use the trial solution analogous to solution (6.10.15) and given by

(6.10.18) ũ (x, ω) = A (x) exp [iωψ (x)] .

We insert trial solution (6.10.18) into equation (6.10.17). Firstly, considering the xi term of Laplace’s

operator, where i ∈ {1, 2, 3}, we obtain

∂2

∂x2
i

A (x) exp [iωψ (x)] = exp [iωψ (x)]
[
∂2A

∂x2
i

+ iω

(
2
∂A

∂xi

∂ψ

∂xi
+A

∂2ψ

∂x2
i

)
− ω2A

∂ψ

∂xi

∂ψ

∂xi

]
.

Secondly, considering the second term on the left-hand side of equation (6.10.17), we write[
ω

v (x)

]2

ũ (x, ω) =
[

ω

v (x)

]2

A (x) exp {iω [ψ (x)]} .

Consequently, since the exponential term is never zero, equation (6.10.17) becomes

(6.10.19)
3∑
i=1

∂2A

∂x2
i

+Aω2

(
1
v2
−

3∑
i=1

∂ψ

∂xi

∂ψ

∂xi

)
+ iω

3∑
i=1

(
2
∂A

∂xi

∂ψ

∂xi
+A

∂2ψ

∂x2
i

)
= 0,

which is a complex-valued function of real variables.

The vanishing of expression (6.10.19), where both A and ψ are assumed to be real, implies the vanishing

of both real and imaginary parts. Assuming ω 6= 0 and following the definitions of the gradient operator

and Laplace’s operator, we obtain

(6.10.20)


∇2A+Aω2

[
1

v2(x)
− (∇ψ)2

]
= 0

2∇A · ∇ψ +A∇2ψ = 0

,

where (∇ψ)2 := (∂ψ/∂x1)2 + (∂ψ/∂x2)2 + (∂ψ/∂x3)2. System (6.10.20) corresponds to equation

(6.10.17), in the context of trial solution (6.10.18).

Initially, system (6.10.20) might appear not simpler than equation (6.10.17). However, further analysis of

the first equation of this system leads to an important simplification.

Eikonal equation. Considering the first equation of system (6.10.20) and assuming that both ω and A

are nonzero, we can write it as

(6.10.21)
∇2A

Aω2
+
[

1
v2 (x)

− (∇ψ)2

]
= 0.

If we assume the inhomogeneity of the continuum to be weak, this assumption is tantamount to viewing

the wavelength as being short with respect to the characteristic distance over which the properties of the
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continuum change significantly; this is analogous to the frequency being high.20 In the limit, we let ω tend

to infinity, and equation (6.10.21) becomes

(6.10.22) [∇ψ (x)]2 =
1

v2 (x)
.

In view of expression (6.10.16), we can write equation (6.10.22) as

(6.10.23) p2 =
1

v2 (x)
,

where p2 = p · p.

Equation (6.10.23) is the eikonal equation for isotropic weakly inhomogeneous continua. It can be viewed

as an approximation to wave equation (6.10.13): the eikonal equation is the high-frequency approximation;

hence, for physical applications it is limited to weak inhomogeneity.21 In Chapter 7, we will derive the

eikonal equation for anisotropic inhomogeneous continua.

Recall that equation (6.10.13) does not explicitly refer to either P or S waves. Consequently, equation

(6.10.23) does not explicitly correspond to either wave. Moreover, in view of the comment on page 183

where we state that replacing v with v (x) in equation (6.10.13) is an arbitrary replacement, our formulation

herein is heuristic rather than rigorous: a rigorous and a more general formulation is presented in Chapter

7. However, in view of expression (6.1.13) and (6.1.17), if v (x) is a smooth function given by

(6.10.24) v (x) =

√
λ (x) + 2µ (x)

ρ (x)
,

equation (6.10.23) can be viewed as corresponding to P waves, and if v (x) is a smooth function given by

(6.10.25) v (x) =

√
µ (x)
ρ (x)

,

equation (6.10.23) can be viewed as corresponding to S waves. In general, for inhomogeneous continua,

equations (6.1.4) cannot be split into two wave equations analogous to equations (6.1.12) and (6.1.16). In

other words, the dilatational and rotational waves are coupled due to the inhomogeneity of the medium,

as illustrated in Exercise 6.19. However, assuming sufficiently high frequency, there are two distinct

wavefronts that propagate in an inhomogeneous continuum with speeds given by expressions (6.10.24)

and (6.10.25).

20Readers interested in high-frequency approximation might refer to Bleistein, N., Cohen, J.K., and Stockwell, J.W., (2001)
Mathematics of multidimensional seismic imaging, migration, and inversion: Springer-Verlag, pp. 5 – 7. Therein, while dis-
cussing physical applications, the authors state that

“high frequency” does not refer to absolute values of the frequency content of the waves. What must be
considered is the relationship between the wavelengths [. . . ] and the natural length scales of the medium.

21Readers interested in an elegant formulation of the eikonal equation, which does not use weak inhomogeneity but stems
from a geometrical argument, might refer to McOwen, R.C., (1996) Partial differential equations: Methods and applications:
Prentice-Hall, Inc., pp. 34 – 35.
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The eikonal equation is a nonlinear partial differential equation. Specifically, it is a first-order and second-

degree partial differential equation. In other words, the derivatives are of the first order, while the degree

of the exponent is equal to 2. In general, the solution of the eikonal equation requires numerical methods.

If the velocity function, v, is constant, the solution of the eikonal equation is also the solution of the

corresponding wave equation, as shown in Exercises 6.15 and 7.5. Otherwise, in the cases where v =

v (x), the solution of the eikonal equation is not, in general, the solution of the wave equation, and equation

(6.10.13) is only an approximation of the wave equation.

Transport equation. The second equation of system (6.10.20), namely,

(6.10.26) 2∇A · ∇ψ +A∇2ψ = 0,

is the transport equation. For a given eikonal function, ψ, the transport equation describes the amplitude

along the wavefront.

Concluding this chapter, let us mention that expression (6.10.18) is a zeroth-order term of the asymptotic

series in exp (iωψ) / (iω)n given by22

u (x,ω) ∼ exp [iωψ (x)]
N∑
n=0

An (x)
(iω)n

,

where ∼ stands for “is asymptotically equivalent to”.23 Hence, the results presented in Section 6.10.4

belong to the realm of asymptotic methods, which play an important role in seismology. In Section 7.2.4,

we will discuss briefly ray theory in the context of asymptotic methods.

Closing remarks

In this chapter, to study wave phenomena, we formulated wave equations. These equations are formu-

lated as special cases of Cauchy’s equations of motion for isotropic homogeneous continua. From these

equations, we identify two distinct types of waves, namely P and S waves, which propagate with two dis-

tinct speeds. In Chapter 7, we will formulate Cauchy’s equations of motion in the context of anisotropic

inhomogeneous continua. Therein, we show the existence of three types of waves.

All waves discussed in this book propagate within the body of a continuum. Consequently, they correspond

to the so-called body waves, as opposed to the surface and interface waves, which we do not discuss.

22Readers interested in the motivation for choosing this form of the trial solution might refer to Babich, V.M., and Buldyrev,
V.S., (1991) Short-wavelength diffraction theory: Asymptotic methods: Springer-Verlag, pp. 10 – 13, to Bleistein, N., Cohen,
J.K., and Stockwell, J.W., (2001) Mathematics of multidimensional seismic imaging, migration, and inversion: Springer-Verlag,
pp. 436 – 437, and to Kennett, B.L.N., (2001) The seismic wavefield, Vol. I: Introduction and theoretical development: Cambridge
University Press, pp. 153 – 154 and 166 – 167.

23For a description of the nature of asymptotic expansions, as well as the ways of obtaining them by the method of steep-
est descent and the method of stationary phase, readers might refer to Jeffreys, H., and Jeffreys, B., (1946/1999) Methods of
Mathematical Physics: Cambridge University Press, pp. 498 – 507.

For a discussion on an application of asymptotic series to ray theory, readers might refer to Kravtsov, Y.A., and Orlov, Y.I.,
(1990) Geometrical optics of inhomogeneous media: Springer-Verlag, pp. 7 – 9.
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The derivation of the wave equation shown in this chapter is rooted in the balance of linear momentum.

This derivation formulates wave propagation as a result of a continuum conserving the linear momentum

within itself. The wave equation can also be derived by invoking other physical principles. For instance, in

Chapter 13, its derivation is based on Hamilton’s principle, which formulates wave propagation as a result

of a continuum restoring itself to the state of equilibrium through the process governed by the principle of

stationary action.

The study of solutions for the wave equation motivated several recent developments in mathematics. As a

result of these developments, the theory of generalized functions — in particular, the theory of distributions

— extends the solutions for the wave equation to include nondifferentiable functions. Also, studies of wave

propagation in elastic media have played an important role in the theory of integral equations.24

24Interested readers might refer to Aleksandrov, A.D., Kolmogorov, A.N., Lavrentev, M.A., (editors), (1969/1999) Mathemat-
ics: Its content, methods and meaning: Dover, Vol. II, pp. 48 – 54 and Vol. III, pp. 245 – 250, to Bleistein, N., Cohen, J.K., and
Stockwell, J.W., (2001) Mathematics of multidimensional seismic imaging, migration, and inversion: Springer-Verlag, pp. 389
– 408, and to Demidov, A.S., (2001) Generalized functions in mathematical physics: Main ideas and concepts: Nova Science
Publishers, Inc., pp. 41 – 53.
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6.11. Exercises

EXERCISE 6.1. Show the details of the derivation of Lemma 6.4.1.

SOLUTION 6.1. For the first term of the wave equation, consider

∂u

∂x
=
∂u

∂y

∂y

∂x
+
∂u

∂z

∂z

∂x
.

Since, following expression (6.4.4), ∂y/∂x = ∂z/∂x = 1, we obtain

∂u

∂x
=
∂u

∂y
+
∂u

∂z
.

Consequently,

∂2u

∂x2
=

∂

∂x

(
∂u

∂y
+
∂u

∂z

)
=

∂

∂y

(
∂u

∂y
+
∂u

∂z

)
∂y

∂x
+

∂

∂z

(
∂u

∂y
+
∂u

∂z

)
∂z

∂x

=
∂2u

∂y2
+

∂2u

∂y∂z
+

∂2u

∂z∂y
+
∂2u

∂z2

=
∂2u

∂y2
+ 2

∂2u

∂z∂y
+
∂2u

∂z2
,(6.11.1)

where, again, we used the equality given by ∂y/∂x = ∂z/∂x = 1, and the equality of mixed partial

derivatives. Similarly, for the second term of the wave equation, consider

∂u

∂t
=
∂u

∂y

∂y

∂t
+
∂u

∂z

∂z

∂t

= v
∂u

∂y
− v∂u

∂z
.

Consequently,

∂2u

∂t2
=

∂

∂t

(
v
∂u

∂y
− v∂u

∂z

)
=

∂

∂y

(
v
∂u

∂y
− v∂u

∂z

)
∂y

∂t
+

∂

∂z

(
v
∂u

∂y
− v∂u

∂z

)
∂z

∂t

=
(
v
∂2u

∂y2
− v ∂

2u

∂y∂z

)
v +

(
v
∂2u

∂z∂y
− v∂

2u

∂z2

)
(−v)

= v2

(
∂2u

∂y2
− ∂2u

∂y∂z
− ∂2u

∂z∂y
+
∂2u

∂z2

)
= v2

(
∂2u

∂y2
− 2

∂2u

∂z∂y
+
∂2u

∂z2

)
.(6.11.2)
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where the equality of mixed partial derivatives was used. Inserting expressions (6.11.1) and (6.11.2) into

equation (6.4.1), we obtain

∂2u

∂x2
− 1
v2

∂2u

∂t2
=
∂2u

∂y2
+ 2

∂2u

∂z∂y
+
∂2u

∂z2
− 1
v2
v2

(
∂2u

∂y2
− 2

∂2u

∂z∂y
+
∂2u

∂z2

)
=
∂2u

∂y2
+ 2

∂2u

∂z∂y
+
∂2u

∂z2
− ∂2u

∂y2
+ 2

∂2u

∂z∂y
− ∂2u

∂z2

= 4
∂2u

∂y∂z

= 0,

where the equality of mixed partial derivatives was used. Hence, we conclude that

∂2u

∂y∂z
= 0,

as required.

EXERCISE 6.2. Show the details of the derivation of Lemma 6.4.2.

SOLUTION 6.2. Considering the equality of mixed partial derivatives, we can write

∂

∂y

[
∂u (y, z)
∂z

]
=

∂

∂z

[
∂u (y, z)
∂y

]
= 0.

Consequently, for the second partial derivative to vanish, we require that[
∂u (y, z)
∂z

]
= G (z) ,

on the left-hand side, and [
∂u (y, z)
∂y

]
= F (y) ,

on the right-hand side. In other words, we require that G be a function of z only, while F be a function of

y only. Hence, integrating, we obtain

u (y, z) =
∫
F (y) dy

= f (y) + a (z) ,

where a (z) is the integration constant with respect to dy, and

u (y, z) =
∫
G (z) dz

= g (z) + b (y) ,

where b (y) is the integration constant with respect to dz. In view of the arbitrariness of the integration

constants, we can denote a (z) ≡ g (z) and b (y) ≡ f (y). Thus, we obtain

u (y, z) = f (y) + g (z) ,
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as required.

EXERCISE 6.3. Prove the following theorem.

THEOREM 6.11.1. Solutions of the wave equation given by

(6.11.3)
∂2u

∂x2
− 1
v2

∂2u

∂t2
= 0,

with the boundary conditions given by

(6.11.4) u (0, t) = 0

and

(6.11.5) u (1, t) = 0

that correspond to a string of unit length whose ends are fixed, satisfy the conservation of the wave-function

energy that is defined by

E (t) :=

1∫
0

[(
∂u

∂t

)2

+ v2

(
∂u

∂x

)2
]

dx.

SOLUTION 6.3. PROOF. Let us consider energy E at two arbitrary instances t1 and t2. The conserva-

tion of energy implies

1∫
0

( ∂u
∂t

∣∣∣∣
t1

)2

+ v2

(
∂u

∂x

∣∣∣∣
t1

)2
dx =

1∫
0

( ∂u
∂t

∣∣∣∣
t2

)2

+ v2

(
∂u

∂x

∣∣∣∣
t2

)2
dx.

To prove this equation is tantamount to showing that

(6.11.6)

1∫
0

( ∂u
∂t

∣∣∣∣
t1

)2

+ v2

(
∂u

∂x

∣∣∣∣
t1

)2
dx−

1∫
0

( ∂u
∂t

∣∣∣∣
t2

)2

+ v2

(
∂u

∂x

∣∣∣∣
t2

)2
dx

vanishes for all t. Let us write expression (6.11.6) as

1∫
0


( ∂u

∂t

∣∣∣∣
t1

)2

+ v2

(
∂u

∂x

∣∣∣∣
t1

)2
 −

( ∂u
∂t

∣∣∣∣
t2

)2

+ v2

(
∂u

∂x

∣∣∣∣
t2

)2
dx.

Noticing that we can view the term in braces as a result of a definite integral with respect to t, we can write

(6.11.7)

1∫
0

t1∫
t2

d
dt

[(
∂u

∂t

)2

+ v2

(
∂u

∂x

)2
]

dt dx.

Using identity (6.11.9) stated in Lemma 6.11.2, below, we can write expression (6.11.7) as

2v2

1∫
0

t1∫
t2

d
dx

(
∂u

∂t

∂u

∂x

)
dt dx.
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Changing the order of integration, we get

2v2

t1∫
t2

1∫
0

d
dx

(
∂u

∂t

∂u

∂x

)
dx dt = 2v2

t1∫
t2

[
∂u

∂t

∂u

∂x

]x=1

x=0

dt.

Applying the limits to the integrated term, we can write

(6.11.8) 2v2

 t1∫
t2

(
∂u

∂t

∂u

∂x

)∣∣∣∣
x=1

−
t1∫
t2

(
∂u

∂t

∂u

∂x

)∣∣∣∣
x=0

dt.

Boundary conditions (6.11.4) and (6.11.5) imply that ∂u/∂t|x=0 = 0 and ∂u/∂t|x=1 = 0, respectively.

Physically, no displacement implies no velocity. Hence, expression (6.11.8) vanishes identically and we

conclude that expression (6.11.6) vanishes, as required. Thus, the energy of wave function u (x, t) is

conserved. �

LEMMA 6.11.2. If u (x, t) satisfies wave equation (6.11.3), then the following identity holds:

(6.11.9)
d
dt

[(
∂u

∂t

)2

+ v2

(
∂u

∂x

)2
]

= 2v2 d
dx

(
∂u

∂t

∂u

∂x

)
.

PROOF. Let us rewrite identity (6.11.9) as

(6.11.10)
1
2

d
dt

[(
∂u

∂t

)2

+ v2

(
∂u

∂x

)2
]
− v2 d

dx

(
∂u

∂t

∂u

∂x

)
= 0.

To prove this identity, we need to show that the left-hand side vanishes. Differentiating the left-hand side

using the chain rule, we get

1
2

(
2
∂u

∂t

∂2u

∂t2
+ 2v2∂u

∂x

∂2u

∂t∂x

)
− v2

(
∂2u

∂x∂t

∂u

∂x
+
∂u

∂t

∂2u

∂x2

)
.

Using the equality of mixed partial derivatives to cancel the terms containing ∂2u/∂t∂x and ∂2u/∂x∂t,

we get
∂u

∂t

∂2u

∂t2
− v2∂u

∂t

∂2u

∂x2
=
∂u

∂t

(
∂2u

∂t2
− v2∂

2u

∂x2

)
.

If u (x, t) satisfies wave equation (6.11.3), then the term in parentheses in the above expression vanishes

identically and we obtain
∂u

∂t

(
∂2u

∂t2
− v2∂

2u

∂x2

)
= 0.

Thus, the left-hand side of equation (6.11.10) vanishes and, hence, identity (6.11.9) is proved, as required.

�

EXERCISE 6.4. Perform Fourier’s transform of equation (6.5.4); namely,

(6.11.11)
3∑
i=1

∂2u (x1, x2, x3, t)
∂x2

i

− 1
v2

∂2u (x1, x2, x3, t)
∂t2

= 0,
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with x and k being the variables of transformation.

SOLUTION 6.4. Since equation (6.11.11) is a differential equation, let us consider Fourier’s transforms of

derivatives. To find the transform of ∂u (x, t) /∂xj , we write

1
(2π)3

∫∫∫
R3

∂u (x, t)
∂xj

e−ik·xdx.

Since we are differentiating with respect to a single component of x, let us write explicitly

1
(2π)3

+∞∫
−∞

+∞∫
−∞

+∞∫
−∞

∂u (x, t)
∂xj

e−ik·xdxjdxkdxl,

which allows us to use the integration by parts on the innermost integral. Therein, we let j, k, l ∈ {1, 2, 3}
to consider the partial derivative with respect to any of the components of x. Integrating by parts, we get

1
(2π)3

+∞∫
−∞

+∞∫
−∞

u (x, t) e−ik·x
∣∣∣+∞
−∞
−

+∞∫
−∞

u (x, t)
∂

∂xj
e−ik·xdxj

dxkdxl.

We assume that the integrated term vanishes at ±∞ to get

− 1
(2π)3

+∞∫
−∞

+∞∫
−∞

+∞∫
−∞

u (x, t)
∂

∂xj
e−ik·xdxjdxkdxl.

Differentiating the exponential with respect to xj , we get

1
(2π)3

+∞∫
−∞

+∞∫
−∞

+∞∫
−∞

u (x, t) ikje−ik·xdxjdxkdxl,

which we rewrite as

ikj
1

(2π)3

∫∫∫
R3

u (x, t) e−ik·xdx.

We recognize that this expression contains the definition of Fourier’s transform. Thus we write this ex-

pression as ikj ũ (k, t), which is Fourier’s transform of ∂u (x, t) /∂xj . Following a procedure analogous

to the one shown above, we obtain the transform of ∂2u (x, t) /∂x2
j ; namely,

(6.11.12)
1

(2π)3

∫∫∫
R3

∂2u (x, t)
∂x2

j

e−ik·xdx = (ikj)
2 ũ (k, t) = −k2

j ũ (k, t) .

Having derived the formula for Fourier’s transform of the second derivative, let us consider equation

(6.11.11). We write

1
(2π)3

∫∫∫
R3

 3∑
j=1

∂2u (x1, x2, x3, t)
∂x2

j

− 1
v2

∂2u (x1, x2, x3, t)
∂t2

 e−ik·x

 dx =
1

(2π)3

∫∫∫
R3

0e−ik·xdx.
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Using the linearity of the integral operator and the fact that Fourier’s transform of zero is zero, we write

1
(2π)3

∫∫∫
R3

3∑
j=1

∂2u (x1, x2, x3, t)
∂x2

j

e−ik·xdx− 1
v2

1
(2π)3

∫∫∫
R3

∂2u (x1, x2, x3, t)
∂t2

e−ik·xdx = 0.

Again, using the linearity, we write

1
(2π)3

∫∫∫
R3

∂2u

∂x2
1

e−ik·xdx +
1

(2π)3

∫∫∫
R3

∂2u

∂x2
2

e−ik·xdx +
1

(2π)3

∫∫∫
R3

∂2u

∂x2
3

e−ik·xdx

− 1
v2

1
(2π)3

∫∫∫
R3

∂2u

∂t2
e−ik·xdx = 0.

Let us consider the first three integrals. In view of expression (6.11.12), we write them as

−k2
1ũ (k, t)− k2

2ũ (k, t)− k2
3ũ (k, t) = −

(
k2

1 + k2
2 + k2

3

)
ũ (k, t) .

We recognize that the the sum in parentheses is the scalar product of vector k with itself. Thus it is the

squared length of k, which we denote by |k|2. Let us consider the fourth integral. Using the commutativity

of the integral and differential operators, we write

− 1
v2

∂2

∂t2
1

(2π)3

∫∫∫
R3

u (x, t) e−ik·xdx = 0.

The term to be differentiated is the definition of Fourier’s transform of u; namely, ũ. Combining these

results, we write Fourier’s transform of equation (6.11.11) as

|k|2 ũ (k, t) +
1
v2

∂2ũ (k, t)
∂t2

= 0,

which is equivalent to equation (6.5.5).

EXERCISE 6.5. Solve equation (6.5.5); namely,

∂2ũ (k, t)
∂t2

+ v2 |k|2 ũ (k, t) = 0,

with initial conditions given by equations (6.5.6) and (6.5.7); namely,

ũ (k, t)|t=0 = γ̃ (k)

and
∂ũ (k, t)
∂t

∣∣∣∣
t=0

= η̃ (k) ,

respectively.

SOLUTION 6.5. Since the derivatives of ũ (k, t) are taken only with respect to a single variable, we can

approach this partial differential equation as if it were an ordinary differential equation. Invoking the theory

of second-order ordinary differential equations with constant coefficients, we write the general solution as
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a linear combination of exp (iv |k| t) and exp (−iv |k| t); namely,

ũ (k, t) = F (k) exp {iv |k| t}+G (k) exp {−iv |k| t} ,

which is expression (6.5.8). Since we are dealing with a partial differential equation with derivatives in

terms of t alone, F and G are constants with respect to t but can depend on k.

To obtain explicit expressions for F and G, we invoke the initial conditions. We get

ũ (k, t)|t=0 = F (k) +G (k) = γ̃ (k)

and

∂ũ (k, t)
∂t

∣∣∣∣
t=0

= iv |k|F (k) exp {iv |k| t}|t=0 − iv |k|G (k) exp {−iv |k| t}|t=0

= iv |k|F (k)− iv |k|G (k) = η̃ (k) .

Let us write this system of equations as[
1 1

iv |k| −iv |k|

][
F (k)

G (k)

]
=

[
γ̃ (k)

η̃ (k)

]
.

Using Cramer’s rule, we obtain

F (k) =

det

[
γ̃ (k) 1

η̃ (k) −iv |k|

]

det

[
1 1

iv |k| −iv |k|

] =
−iv |k| γ̃ (k)− η̃ (k)

−2iv |k|
=

1
2

(
γ̃ (k) +

1
iv |k|

η̃ (k)
)

and

F (k) =

det

[
1 γ̃ (k)

iv |k| η̃ (k)

]

det

[
1 1

iv |k| −iv |k|

] =
η̃ (k)− iv |k| γ̃ (k)

−2iv |k|
=

1
2

(
γ̃ (k)− 1

iv |k|
η̃ (k)

)
,

which are expressions (6.5.9) and (6.5.10), respectively.

EXERCISE 6.6. Find Fourier’s transform of distribution (6.5.13), namely,

(6.11.13) α (τ) =
(2π)3

4πv2t

∫∫
S(0,vt)

τdζ.

In other words, find α̃ (τ), where symbol ˜ denotes the transformed entity.

SOLUTION 6.6. Let us consider the definition of Fourier’s transform given by

f̃ (k) =
1

(2π)3

∫∫∫
R3

f (x) exp {−ik · x} dx,
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where f is a function. If f is considered as a distribution, the effect of this distribution on a test function,

τ , is defined as

f (τ) =
∫∫∫

R3

f (x) τ (x) dx,

and the corresponding Fourier’s transform is defined by letting τ = exp {−ik · x} / (2π)3. Distribution

(6.11.13) has the effect of Dirac’s delta with support on sphere S centred at the origin and with radius vt;

in other words, we can view this distribution as a three-dimensional Dirac’s delta.25 We write

(6.11.14) α̃ =
1

4πv2t

∫∫
S(0,vt)

exp {−ik · x} dζ (x) .

To integrate, we will use the spherical coordinates. Since the integrand does not depend on the orientation,

we rotate the coordinate system to be such that k points in the x1-axis direction. Hence, k = [|k| , 0, 0],

where |k| stands for the length of k. Thus, we write expression (6.11.14) as

(6.11.15) α̃ =
1

4πv2t

∫∫
S(0,vt)

exp {−i |k|x1} dζ (x) .

Recalling that the radius is vt, we write the relation between the coordinates as

x1 = vt cosα,

x2 = vt sinα cosβ

and

x3 = vt sinα sinβ,

where α is the latitude and β is the azimuth. The element of surface for the sphere is

dζ (x) = (vt)2 sinα dα dβ.

Returning to integral (6.11.15), we write this integral in spherical coordinates as

α̃ (τ) =
1

4πv2t

2π∫
0

π∫
0

exp {−i |k| vt cosα} (vt)2 sinα dα dβ

Simplifying, we write

α̃ (τ) =
t

4π

2π∫
0

π∫
0

exp {−i |k| vt cosα} sinα dα dβ.

25Readers interested in Dirac’s delta for two and three dimensions might refer to Barton, G., (1989) Elements of Green’s
functions and propagation: Potentials, diffusion and waves: Oxford Science Publications, pp. 30 – 32.
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Let us consider the inner integral. Setting m = exp {−i |k| vt cosα}, we get

1
i |k| vt

∫
dm =

m

i |k| vt
,

which means that
π∫

0

exp {−i |k| vt cosα} sinαdα =
exp {−i |k| vt cosα}

i |k| vt

∣∣∣∣π
0

=
exp {i |k| vt} − exp {−i |k| vt}

i |k| vt
.

Thus,

α̃ (τ) =
t

4π

2π∫
0

exp {i |k| vt} − exp {−i |k| vt}
i |k| vt

dβ.

Since the integrand does not depend on the azimuth, we write

α̃ (τ) =
t

4π
exp {i |k| vt} − exp {−i |k| vt}

i |k| vt

2π∫
0

dβ.

=
1

4π
exp {i |k| vt} − exp {−i |k| vt}

i |k| v
[β]2π0

=
1

4π
exp {i |k| vt} − exp {−i |k| vt}

i |k| vt
2π,

which is Fourier’s transform of distribution (6.11.13). Thus, we write

(6.11.16) α̃ (τ) =
exp {i |k| vt} − exp {−i |k| vt}

2i |k| v
,

which is the fraction in solution (6.5.12).

EXERCISE 6.7. Using the result of Exercise 6.6, show that the inverse Fourier’s transform of expression

(6.5.12); namely,

(6.11.17) ũ (k, t) = γ̃ (k)
d
dt

exp {iv |k| t} − exp {−iv |k| t}
2iv |k|

+ η̃ (k)
exp {iv |k| t} − exp {−iv |k| t}

2iv |k|

is expression (6.5.14); namely,

u (x, t) =
2π2

v2t

∫∫
S(x,vt)

η (y) dζ (y) +
d
dt

2π2

v2t

∫∫
S(x,vt)

γ (y) dζ (y) .

SOLUTION 6.7. Since γ̃ does not depend on t, we write expression (6.11.17) as

ũ (k, t) =
d
dt

(
γ̃ (k)

exp {iv |k| t} − exp {−iv |k| t}
2iv |k|

)
+ η̃ (k)

exp {iv |k| t} − exp {−iv |k| t}
2iv |k|

.
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As derived in Exercise 6.6, expression (6.11.16) is the inverse Fourier’s transform of distribution (6.11.13).

Thus, we write

ũ (k, t) =
d
dt

(γ̃ (k) α̃ (k)) + η̃ (k) α̃ (k) .

Taking the inverse Fourier’s transform by using the fact that the product of two functions in the k-domain

is their convolution in the x-domain, we write

u (x, t) =
d
dt

(γ (x) ? α (x)) + η (x) ? α (x) .

Invoking the definition of convolution, we write

u (x, t) =
d
dt

∫∫∫
R3

γ (x− y)α (y) dy +
∫∫∫

R3

η (x− y)α (y) dy.

In view of the commutativity of convolution, we write

u (x, t) =
d
dt

∫∫∫
R3

γ (y)α (x− y) dy +
∫∫∫

R3

η (y)α (x− y) dy,

Since α is Dirac’s delta on a sphere whose centre is the origin, α (x− y)is the corresponding Dirac’s delta

with support on the translated sphere whose centre is at x. Recalling expression (6.11.13), we write the

effect of this Dirac’s delta on γ and η as

u (x, t) =
2π2

v2t

 d
dt

∫∫
S(x,vt)

γ (y) dζ (y) +
∫∫

S(x,vt)

η (y) dζ (y)

 ,

which is equivalent to expression (6.5.14), as required.

EXERCISE 6.8. Using the fact that η is a function of s1 and s2 only, write integral

(6.11.18)
∫∫

S(x,vt)

η (s1, s2) dζ (s) ,

where S is a sphere with radius vt centred at x, as

(6.11.19) 2vt
∫∫

D(x,vt)

η (s1, s2)√
(vt)2 − (s1 − x1)2 − (s2 − x2)2

ds1ds2,

where D is the disc with radius vt centred at x.

SOLUTION 6.8. Let us write the sphere that is centered at x and whose radius is vt as

(6.11.20) (s1 − x1)2 + (s2 − x2)2 + (s3 − x3)2 = (vt)2 ,
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where s and x are coordinates of the three-dimensional space. Since η does not depend on s3, we consider

the s1s2-plane. The element of surface for the sphere, dζ (s), projected onto this plane is

dζ (s) =

√
1 +

(
∂s3

∂s1

)2

+
(
∂s3

∂s2

)2

ds1ds2.

We solve equation (6.11.20) for s3 to get

s3 = ±
√

(vt)2 − (s1 − x1)2 − (s2 − x2)2 + x3,

where the signs denote s3 that corresponds to the upper or lower hemisphere. Since η is independent of

s3, let us use only the upper hemisphere and, later on, multiply our result by 2. Herein, we write

∂s3

∂s1
=

− (s1 − x1)√
(vt)2 − (s1 − x1)2 − (s2 − x2)2

and
∂s3

∂s2
=

− (s2 − x2)√
(vt)2 − (s1 − x1)2 − (s2 − x2)2

.

Consequently,

dζ (s) =

√
1 +

(s1 − x1)2

(vt)2 − (s1 − x1)2 − (s2 − x2)2 +
(s2 − x2)2

(vt)2 − (s1 − x1)2 − (s2 − x2)2 ds1ds2.

Expressing the radicand using the common denominator, we get

dζ (s) =
vt√

(vt)2 − (s1 − x1)2 − (s2 − x2)2
ds1ds2.

Hence we write integral (6.11.18) as∫∫
S(x,vt)

η (s1, s2) dζ (s) = 2vt
∫∫

(s1−x1)2+(s2−x2)2≤(vt)2

η (s1, s2)√
(vt)2 − (s1 − x1)2 − (s2 − x2)2

ds1ds2,

where the factor of 2 on the right-hand side accounts for both the upper and lower hemispheres. Denoting

(s1 − x1)2 + (s2 − x2)2 ≤ (vt)2 by D (x, vt), which stands for the disc with radius vt that is centred at

x, we obtain

2vt
∫∫

D(x,vt)

η (s1, s2)√
(vt)2 − (s1 − x1)2 − (s2 − x2)2

ds1ds2,

which is equation (6.11.19), as required.

EXERCISE 6.9. Show that

(6.11.21)

∞∫
−∞

exp
{
i (x− ζ) k − k2t

}
dk =

exp
{
− (x−ζ)2

4t

}
√
t

∞∫
−∞

exp
{
−s2

}
ds.
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SOLUTION 6.9. Let k = a + ib, where a ∈ (−∞,∞) is the variable of integration and b ∈ R is

fixed and given by (x− ζ) /2t; hence, dk = da. Furthermore, let a = s/
√
t, and hence, da = ds/

√
t

and dk = ds/
√
t. Also, k = s/

√
t + i (x− ζ) /2t, which we write on the common denominator as

k =
(
2s
√
t+ i (x− ζ)

)
/2t. Thus, we write the exponential of the above integral as

i (x− ζ) k − k2t = i (x− ζ)
2s
√
t+ i (x− ζ)

2t
−
(

2s
√
t+ i (x− ζ)

2t

)2

t

=
2i (x− ζ) s

√
t− (x− ζ)2

2t
−
(
2s
√
t+ i (x− ζ)

)2
4t

,

which we rewrite as

1
2t

(
2i (x− ζ) s

√
t− (x− ζ)2 − 1

2

(
2s
√
t+ i (x− ζ)

)2
)

=
1
2t

(
2i (x− ζ) s

√
t− (x− ζ)2 − 1

2

(
4s2t+ 4is

√
t (x− ζ)− (x− ζ)2

))
.

Simplifying, we get

1
2t

(
2i (x− ζ) s

√
t− (x− ζ)2 − 2s2t− 2is

√
t (x− ζ) +

1
2

(x− ζ)2

)
.

Canceling and gathering the common terms, we obtain

1
2t

(
−1

2
(x− ζ)2 − 2s2t

)
= −s2 − (x− ζ)2

4t
.

Returning to integral (6.11.21), we write it as
∞∫
−∞

exp

{
−s2 − (x− ζ)2

4t

}
1√
t
ds =

∞∫
−∞

exp
{
−s2

}
exp

{
−(x− ζ)2

4t

}
1√
t
ds.

Since x, ζ and t are independent of s, we get

exp
{
− (x−ζ)2

4t

}
√
t

∞∫
−∞

exp
{
−s2

}
ds.

EXERCISE 6.10. Evaluate

(6.11.22)

∞∫
−∞

e−s
2
ds.

SOLUTION 6.10. This integrand is not a derivative of an elementary function, which is a function that

can be formed from the algebraic, exponential, logarithmic or trigonometric functions by a finite number

of operations consisting of addition, subtraction, multiplication and composition of functions. To find the



6.11. EXERCISES 201

antiderivative, let us consider

(6.11.23) I =

∞∫
−∞

∞∫
−∞

e−(x2+y2)dxdy,

to be evaluated in polar coordinates, where

x (r, α) = r cosα

and

y (r, α) = r sinα.

Since the Jacobian of transformation is

det

[
∂x
∂r

∂x
∂α

∂y
∂r

∂y
∂α

]
= det

[
cosα −r sinα

sinα r cosα

]
= r

(
cos2 α+ sin2 α

)
= r,

we write

I =

2π∫
0

∞∫
0

re−r
2
drdα,

with the limits of integration covering the entire xy-plane. Let us consider the inner integral. Letting

r2 = m, which implies that dr = dm/2r, we write

2π∫
0

∞∫
0

re−r
2
dr =

1
2

∞∫
0

e−mdm =
1
2
[
−e−m

]∞
0

=
1
2
.

Hence,

I =
1
2

2π∫
0

dα = π.

Let us return to integral (6.11.23), and write it as

I =

∞∫
−∞

∞∫
−∞

e−x
2
e−y

2
dxdy =

∞∫
−∞

e−x
2
dx

∞∫
−∞

e−y
2
dy.

Since x and y are the dummy variables of integration, we denote them by s, to write

I =

 ∞∫
−∞

e−s
2
ds

2

,

where the integral in parentheses is integral (6.11.22). Thus,
∞∫
−∞

e−s
2
ds =

√
I =
√
π,

which is the required result.
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EXERCISE 6.11. Solve equations (6.7.7) and (6.7.9) for f1 in terms of w.

SOLUTION 6.11. Solving equation (6.7.7), namely,

v1f
′
1 (v1t)− v1w

′ (−v1t) = −v2g
′
2 (−v2t) ,

for g′2, we get

g′2 (−v2t) =
v1

v2

[
w′ (−v1t)− f ′1 (v1t)

]
.

Substituting into equation (6.7.9) and simplifying, we obtain

(ρ1v1 + ρ2v2) f ′1 (v1t) = (ρ2v2 − ρ1v1)w′ (−v1t) .

Integrating both sides with respect to t and simplifying, we get

f1 (v1t) =
ρ1v1 − ρ2v2

ρ1v1 + ρ2v2
w (−v1t) ,

as required.

EXERCISE 6.12. 26Find the derivative of Heaviside’s function, which is given by

h (t) =

{
0,

1,

t < 0

t > 0
.

SOLUTION 6.12. Using expression (6.8.1), we get
∞∫
−∞

h′ (t) τ (t) dt = −
∞∫

0

τ ′ (t) dt = − τ (t)|∞0 .

Since τ has compact support, τ (∞) = 0 and, hence, − τ (t)|∞0 = τ (t)|t=0. Thus we can write the

derivative of Heaviside’s function as

(6.11.24)

∞∫
−∞

h′ (t) τ (t) dt = τ (t)|t=0 ,

which is a well-defined quantity.

REMARK 6.11.3. To interpret this result, let us consider the key property defining Dirac’s delta, δ, namely,

(6.11.25)

∞∫
−∞

δ (t) τ (t) dt = τ (t)|t=0 .

Examining expressions (6.11.24) and (6.11.25), we can write
∞∫
−∞

h′ (t) τ (t) dt =

∞∫
−∞

δ (t) τ (t) dt,

26See also Section 6.8.2.
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which means that h′ (t) behaves like δ (t). In the distributional sense, Dirac’s delta can be regarded as the

derivative of Heaviside’s function.

The result of Exercise 6.12 is consistent with our intuition developed in standard differentiation. For t 6= 0,

the derivative vanishes as it does in classical calculus, namely, h′ (t) = 0. At the jump discontinuity, where

t = 0, the derivative corresponds to Dirac’s delta, which again is quite intuitive if we regard the value of δ

at this point as being infinite.

EXERCISE 6.13. Consider wave equation (6.4.1). Using solution (6.9.2), obtain equation (6.9.4).

SOLUTION 6.13. In view of solution (6.9.2), namely, u (x, t) = ú (x) exp (−iωt), consider the position

derivatives, namely,

(6.11.26)
∂2u (x, t)
∂x2

=
∂2ú (x)
∂x2

exp (−iωt) ,

and the time derivatives, namely,

(6.11.27)
∂2u (x, t)
∂t2

= −ω2ú (x) exp (−iωt) .

Substituting expressions (6.11.26) and (6.11.27) into equation (6.4.1), and dividing by the exponential

factor, we obtain a function of a single variable,

d2ú (x)
dx2

+
(ω
v

)2
ú (x) = 0,

which is equation (6.9.4), as required.

EXERCISE 6.14. Consider equation (6.10.3). In view of transformation (6.10.4), let

(6.11.28) ú (x, z, t) ≡ u (ξ, ς, t) ,

where ξ := x/vx and ς := z/vz . Using the chain rule, show that equation (6.10.3) is equivalent to

equation (6.10.5).

SOLUTION 6.14. Taking the derivative of both sides of equation (6.11.28) with respect to x, we obtain

∂ú (x, z, t)
∂x

=
∂u

∂ξ

∂ξ

∂x
=

1
vx

∂u (ξ, ς, t)
∂ξ

,

and

(6.11.29)
∂2ú (x, z, t)

∂x2
=

1
v2
x

∂2u (ξ, ς, t)
∂ξ2

.

Similarly, taking the derivative of both sides of equation (6.11.28) with respect to z, we obtain

(6.11.30)
∂2ú (x, z, t)

∂z2
=

1
v2
z

∂2u (ξ, ς, t)
∂ς2

,
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while, taking the derivative of both sides of equation (6.11.28) with respect to t, we get

(6.11.31)
∂2ú (x, z, t)

∂t2
=
∂2u (ξ, ς, t)

∂t2
.

We can always write equation (6.10.3) as

(6.11.32)
∂2u (ξ, ς, t)

∂ξ2
+
∂2u (ξ, ς, t)

∂ς2
=
∂2u (ξ, ς, t)

∂t2
,

where ξ and ς are the variables of differentiation. Substituting expressions from equations (6.11.29),

(6.11.30) and (6.11.31) into (6.11.32), we obtain equation (6.10.5), as required.

EXERCISE 6.15. 27Consider a three-dimensional scalar wave equation given by

∇2u ≡ ∂2u

∂x2
1

+
∂2u

∂x2
2

+
∂2u

∂x2
3

=
1
v2

∂2u

∂t2
,

where v is the velocity of propagation and t is time. Let the plane-wave solution be u (x, t) = f (η), where

η = n1x1 + n2x2 + n3x3 − vt, with ni being the components of the unit vector that is normal to the

wavefront. Show that the plane-wave solution of the wave equation is also a solution of its characteristic

equation, given by

(6.11.33) (∇u)2 ≡
(
∂u

∂x1

)2

+
(
∂u

∂x2

)2

+
(
∂u

∂x3

)2

=
1
v2

(
∂u

∂t

)2

.

SOLUTION 6.15. Considering the plane-wave solution, we obtain

∂u

∂xi
=
∂f

∂η

∂η

∂xi
=
∂f

∂η
ni,

and
∂u

∂t
=
∂f

∂η

∂η

∂t
= −∂f

∂η
v.

Substituting ∂u/∂xi and ∂u/∂t into equation (6.11.33), we can write(
∂f

∂η
n1

)2

+
(
∂f

∂η
n2

)2

+
(
∂f

∂η
n3

)2

=
1
v2

(
−∂f
∂η
v

)2

,

which yields (
∂f

∂η

)2 (
n2

1 + n2
2 + n2

3

)
=
(
∂f

∂η

)2

.

This equality is justified since for the unit vector, n, we have n2
1 + n2

2 + n2
3 = 1.

EXERCISE 6.16. Show that the characteristic equation of wave equation (6.4.1) is, in general, satisfied by

u (x, t) = f (η), where η = x± vt.

27See also Section 6.10.4 and Exercise 7.5.
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SOLUTION 6.16. We could view the solution of this exercise as a special case of Exercise 6.15. However,

if we wish to write it out, we get
∂u

∂x
=
∂f

∂η

∂η

∂x
=
∂f

∂η

and
∂u

∂t
=
∂f

∂η

∂η

∂t
= ±v∂f

∂η
.

In view of equation (6.11.33), the characteristic equation of equation (6.4.1) is

(6.11.34)
(
∂u

∂x

)2

− 1
v2

(
∂u

∂t

)2

= 0.

Inserting the above expressions for ∂u/∂x and ∂u/∂t into the left-hand side of equation (6.11.34), we get(
∂u

∂x

)2

− 1
v2

(
∂u

∂t

)2

=
(
∂f

∂η

)2

− 1
v2

(
±v∂f

∂η

)2

.

Performing algebraic manipulations, we obtain(
∂f

∂η

)2

−
(
∂f

∂η

)2

= 0,

as required. Thus, functions f (x± vt) are solutions of equation (6.11.34), which is the characteristic

equation of wave equation (6.4.1).

REMARK 6.11.4. We note that although both wave equation (6.4.1) and characteristic equation (6.11.34)

have a general solution that possesses the same form, these equations are not equivalent to one another.

Mathematically, equation
∂u

∂x
= ±1

v

∂u

∂t
,

whose solutions are functions u (x, t) = f (x± vt), does not suffice to describe such wave phenomena as

reflection. Also, in the context of this chapter, the above equation is not the result of inserting stress-strain

equations into Cauchy’s equations of motion. Hence, the above equation is not rooted in physical concepts

of the balance of linear momentum.

EXERCISE 6.17. 28Show that expressions (6.4.4) are particular solutions of the characteristic equation of

wave equation (6.4.1).

SOLUTION 6.17. We could view the solution of this exercise as a special case of Exercise 6.16. However,

if we wish to write it out, inserting into the left-hand side of characteristic equation (6.11.34) expressions

(6.4.4), which we can write as u (x, t) = x± vt, we get[
∂ (x± vt)

∂x

]2

− 1
v2

[
∂ (x± vt)

∂t

]2

= (1)2 − 1
v2

(±v)2 .

Performing algebraic manipulations, we obtain 1 − 1 = 0, as required. Thus, expressions (6.4.4) are

solutions of equation (6.11.34), which is the characteristic equation of wave equation (6.4.1).

28See also Section 6.4.1.
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EXERCISE 6.18. In view of Section 6.9, considering the reduced form of equation (6.10.13) in a sin-

gle spatial dimension and using the trial solution given by u (x) = A (x) exp [iωψ (x)], obtain system

(6.10.20).

SOLUTION 6.18. Considering a single spatial dimension, the reduced form of equation (6.10.13) is

d2u (x)
dx2

+
[

ω

v (x)

]2

u (x) = 0.

Inserting a one-dimensional form of the given trial solution into this equation, performing the differentia-

tion and dividing both sides of the resulting equation by the exponential term, we obtain

d2A

dx2
+Aω2

(
1
v2
− dψ

dx
dψ
dx

)
+ iω

[
2

dA
dx

dψ
dx

+A
d2ψ

dx2

]
= 0,

which is analogous to equation (6.10.19) and, hence, leads to system (6.10.20), as required.

EXERCISE 6.19. 29Using stress-strain equations (6.1.1) and Cauchy’s equations of motion (6.1.2), obtain

equations of motion for an isotropic inhomogeneous continuum. Discuss these equations in the context of

equations (6.1.4).

SOLUTION 6.19. Considering an inhomogeneous continuum, where Lamé’s parameters are functions of

position, and in view of definition (1.4.6), we can write equations (6.1.1) as

(6.11.35) σij = λ (x) δij
3∑

k=1

∂uk
∂xk

+ µ (x)
(
∂ui
∂xj

+
∂uj
∂xi

)
, i, j ∈ {1, 2, 3} ,

which are stress-strain equations for an isotropic inhomogeneous continuum. Considering an inhomoge-

neous continuum, where mass density is a function of position, we can write equations (6.1.2) as

(6.11.36) ρ (x)
∂2ui
∂t2

=
3∑
j=1

∂σij
∂xj

, i ∈ {1, 2, 3} ,

which are equations of motion for an isotropic inhomogeneous continuum. Using equations (6.11.35), we

can write equations (6.11.36) as

ρ (x)
∂2ui
∂t2

=
3∑
j=1

∂

∂xj

[
λ (x) δij

3∑
k=1

∂uk
∂xk

+ µ (x)
(
∂ui
∂xj

+
∂uj
∂xi

)]

=
3∑
j=1

∂

∂xj

[
λ (x) δij

3∑
k=1

∂uk
∂xk

]
+

3∑
j=1

∂

∂xj

[
µ (x)

(
∂ui
∂xj

+
∂uj
∂xi

)]
,

where i ∈ {1, 2, 3}. Using the property of Kronecker’s delta, we obtain

ρ (x)
∂2ui
∂t2

=
∂

∂xi

[
λ (x)

3∑
k=1

∂uk
∂xk

]
+

3∑
j=1

∂

∂xj

[
µ (x)

(
∂ui
∂xj

+
∂uj
∂xi

)]
,

29See also Sections 6.1.1 and 6.10.4.
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where i ∈ {1, 2, 3}. Letting k = j for the summation index, we can write

ρ (x)
∂2ui
∂t2

=
∂

∂xi

λ (x)
3∑
j=1

∂uj
∂xj

+
3∑
j=1

∂

∂xj

[
µ (x)

(
∂ui
∂xj

+
∂uj
∂xi

)]
,

where i ∈ {1, 2, 3}. Using the product rule and the linearity of differential operators, we obtain

ρ (x)
∂2ui
∂t2

=
∂λ

∂xi

3∑
j=1

∂uj
∂xj

+ λ
∂

∂xi

3∑
j=1

∂uj
∂xj

+
3∑
j=1

∂µ

∂xj

(
∂ui
∂xj

+
∂uj
∂xi

)
+ µ

3∑
j=1

(
∂

∂xj

∂ui
∂xj

+
∂

∂xj

∂uj
∂xi

)
,

where i ∈ {1, 2, 3}. Differentiating and using the equality of mixed partial derivatives, we obtain

ρ (x)
∂2ui
∂t2

=
∂λ

∂xi

3∑
j=1

∂uj
∂xj

+ λ

3∑
j=1

∂2uj
∂xi∂xj

+
3∑
j=1

∂µ

∂xj

(
∂ui
∂xj

+
∂uj
∂xi

)
+ µ

3∑
j=1

(
∂2ui
∂x2

j

+
∂2uj
∂xi∂xj

)
,

where i ∈ {1, 2, 3}. Simplifying and rearranging, we get

(6.11.37) ρ (x)
∂2ui
∂t2

= (λ+ µ)
∂

∂xi

3∑
j=1

∂uj
∂xj

+ µ

 3∑
j=1

∂2

∂x2
j

ui

+
∂λ

∂xi

3∑
j=1

∂uj
∂xj

+
3∑
j=1

∂µ

∂xj

(
∂ui
∂xj

+
∂uj
∂xi

)
,

where i ∈ {1, 2, 3}. These are equations of motion for an isotropic inhomogeneous continuum.30

Examining equations (6.11.37), we notice that if ρ, λ and µ are constants — as is the case for homogeneous

continua — equations (6.11.37) reduce to equations (6.1.4), as expected. Also we notice that invoking

definitions (1.4.18) and (1.5.2) as well as identity (6.1.7) we can express the displacement vector, u, in the

first three terms on the right-hand side, using the dilatation, ϕ, and the rotation vector, Ψ. Investigating the

last term on the right-hand side, however, it can be shown that we cannot express the displacement vector

on the right-hand side of equations (6.11.36) using only ϕ and Ψ. Consequently, we cannot split equations

(6.11.37) into two parts that are associated with the dilatation alone and with the rotation vector alone,

respectively, as we did in Sections 6.1.2 and 6.1.3 in the case of isotropic homogeneous continua. In other

words, the dilatational and rotational waves are coupled due to the inhomogeneity of the continuum.

30Readers interested in a solution to these equations might refer to Karal, F.C., and Keller, J.B., (1959) Elastic wave propaga-
tion in homogeneous and inhomogeneous media: J. Acoust. Soc. Am., 31 (6), 694 – 705.





CHAPTER 7

Equations of motion: Anisotropic inhomogeneous continua

. . . an exact solution to a problem in wave phenomena is not an end in itself.

Rather, it is the asymptotic solution that provides means of interpretation and a

basis for understanding. The exact solution, then, only provides a point of depar-

ture for obtaining a meaningful solution.

Norman Bleistein (1984) Mathematical methods for wave phenomena

Preliminary remarks

In Chapter 6, to study wave phenomena in an isotropic homogeneous continuum, we obtained the equations

of motion by invoking Cauchy’s equations of motion and using stress-strain equations that correspond to

such a continuum. In this chapter, we will study wave phenomena in an anisotropic inhomogeneous

continuum by following a strategy analogous to that used in Chapter 6. In this study, we learn about the

existence of three types of waves that can propagate in anisotropic continua.

We begin this chapter with the derivation of the equations of motion in an anisotropic inhomogeneous

continuum. We obtain these equations by combining Cauchy’s equations of motion with the stress-strain

equations for an anisotropic inhomogeneous continuum. To solve the resulting equations, we use a trial

solution. Subsequently, we derive the eikonal equation for anisotropic inhomogeneous continua, which is

the fundamental equation of ray theory, to be studied in the subsequent chapters of Part 2 and in Part 3.

7.1. Formulation of equations

In Chapter 6, the wave equation is derived by considering Cauchy’s equations of motion (2.8.1) and ex-

pressing the stress-tensor components therein in terms of stress-strain equations (5.12.4), which describe

an isotropic homogeneous continuum. In the present chapter, we will derive the equations of motion for an

anisotropic inhomogeneous continuum by considering Cauchy’s equations of motion (2.8.1) and express-

ing the stress-tensor components therein in terms of the stress-strain equations that describe an anisotropic

inhomogeneous continuum.

In view of equations of motion (2.8.1), consider equations

(7.1.1) ρ (x)
∂2ui
∂t2

=
3∑
j=1

∂σij
∂xj

, i ∈ {1, 2, 3} .

209
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In equations (7.1.1), due to the inhomogeneity of the continuum, mass density, ρ (x), is a function of

position; unlike for a homogeneous continuum, where ρ is constant. The components of the displacement

vector, u, as well as the stress-tensor components, σij , are also functions of position. Since u and σij are

also functions of x in homogeneous continua, to emphasize the distinction between a homogeneous and

an inhomogeneous continuum, we explicitly state the x-dependence only for the mass density, ρ, and for

the elasticity tensor, cijkl, below. The stress-strain equations that account for the inhomogeneity of the

continuum are expressed by rewriting equations (3.2.1) as

(7.1.2) σij =
3∑

k=1

3∑
l=1

cijkl (x) εkl, i, j ∈ {1, 2, 3} ,

where the elasticity tensor is a functions of position. In view of the properties of the elasticity tensor that

were discussed in Chapter 5, cijkl also describes the anisotropy of a given continuum. Thus, ρ (x) and

cijkl (x) fully describe a given anisotropic inhomogeneous continuum. Using definition (1.4.6), we can

rewrite stress-strain equations (7.1.2) as

(7.1.3) σij =
1
2

3∑
k=1

3∑
l=1

cijkl (x)
(
∂uk
∂xl

+
∂ul
∂xk

)
, i, j ∈ {1, 2, 3} .

We wish to combine the equations of motion and the stress-strain equations to obtain the equations of mo-

tion in an anisotropic inhomogeneous continuum. Inserting stress-strain equations (7.1.3) into equations

of motion (7.1.1), we obtain

ρ (x)
∂2ui
∂t2

=
3∑
j=1

∂

∂xj

[
1
2

3∑
k=1

3∑
l=1

cijkl (x)
(
∂uk
∂xl

+
∂ul
∂xk

)]
(7.1.4)

=
1
2

3∑
j=1

3∑
k=1

3∑
l=1

[
∂cijkl (x)
∂xj

(
∂uk
∂xl

+
∂ul
∂xk

)
+ cijkl (x)

(
∂2uk
∂xj∂xl

+
∂2ul

∂xj∂xk

)]
,

where i ∈ {1, 2, 3}. Equations (7.1.4) are equations of motion in anisotropic inhomogeneous continua.

For isotropic continua, these equations reduce to equations (6.11.37), and for isotropic homogeneous con-

tinua, they further reduce to equations (6.1.4). Equations (7.1.4) are complicated differential equations

and, in general, we are unable to find their solutions analytically.

7.2. Formulation of solutions

7.2.1. Introductory comments. Below, we formulate solutions to equations (7.1.4). To elucidate the

meaning of our trial solution, we show three related approaches that lead to similar results.

7.2.2. Trial-solution formulation: General wave. To investigate equations (7.1.4), let us consider

the trial solution that is a function of position, x, and time, t, given by

(7.2.1) u (x, t) = A (x) f (η) ,
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where A is a vector function of position, x, and f is a scalar function whose argument is given by

(7.2.2) η = ω [ψ (x)− t] ,

with ω being a constant with units of frequency. Function ψ : R3 → R is called the eikonal function.

Since both u and A have units of distance, we require f to be dimensionless. Since commonly f (η) is an

exponential function, as in expression (6.10.15), we made η dimensionless.

To see the physical meaning of this trial solution, consider function f (η) in the context of trial solutions

(6.10.6), (6.10.14) and (6.10.15). We see that f corresponds to the phase factor. Since along the level sets

of ψ (x), function f is constant, these level sets correspond to wavefronts. In other words, equation

(7.2.3) ψ (x)− t = ti,

where ti is a constant, describes a moving wavefront. Function f gives the waveform as a function of time,

and A is the spatially variable amplitude of this waveform.

Inserting trial solution (7.2.1) into equations (7.1.4), using the symmetries of the elasticity tensor, cijkl,

and the equality of mixed partial derivatives, we obtain

ω2ρ (x)Ai (x)
d2f

dη2
=

3∑
j=1

3∑
k=1

3∑
l=1

{
f

[
∂cijkl (x)
∂xj

∂Ak
∂xl

+ cijkl (x)
∂2Ak
∂xj∂xl

]

+ω
df
dη

[
∂cijkl (x)
∂xj

Al
∂ψ

∂xk
cijkl (x)

(
∂Al
∂xj

∂ψ

∂xk
+
∂Ak
∂xl

∂ψ

∂xj
+Al

∂2ψ

∂xj∂xk

)]
+ω2 d2f

dη2

[
cijkl (x)Ak

∂ψ

∂xj

∂ψ

∂xl

]}
,

where i ∈ {1, 2, 3}. Taking all terms to the right-hand side of the equations and, therein, gathering the

terms with the same derivatives of f , we get

0 =
3∑
j=1

3∑
k=1

3∑
l=1

{
f

[
∂cijkl (x)
∂xj

∂Ak
∂xl

+ cijkl (x)
∂2Ak
∂xj∂xl

]
(7.2.4)

+ ω
df
dη

[
∂

∂xj

(
cijkl (x)Al

∂ψ

∂xk

)
+ cijkl (x)

∂Ak
∂xl

∂ψ

∂xj

]
+ω2 d2f

dη2

[
cijkl (x)Ak

∂ψ

∂xj

∂ψ

∂xl

]}
− ω2ρ (x)Ai (x)

d2f

dη2
,

where i ∈ {1, 2, 3}.

Concisely, equation (7.2.4) can be stated as

a (x) f ′′ + b (x) f ′ + c (x) f = 0,

where, in view of f = f (η) being a single-variable function, we write f ′′ := d2f/dη2 and f ′ := df/dη.

For equation (7.2.4) to be satisfied by an arbitrary f with its first and second derivatives, each of the
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coefficients — a (x), b (x) and c (x) — must be zero.1 As we can see from the physical meaning of trial

solution (7.2.1), we require the arbitrariness of f in order to allow any function to describe the waveform.

However, we need f , f ′ and f ′′ to be linearly independent, as illustrated in Exercise 7.1.

Setting each of the three coefficients to zero and assuming that ω 6= 0, we obtain three systems of three

equations, namely,

(7.2.5)
3∑
j=1

3∑
k=1

3∑
l=1

cijkl (x)
∂ψ

∂xj

∂ψ

∂xl
Ak − ρ (x)Ai = 0, i ∈ {1, 2, 3} ,

(7.2.6)
3∑
j=1

3∑
k=1

3∑
l=1

[
∂

∂xj

(
cijkl (x)Al

∂ψ

∂xk

)
+ cijkl (x)

∂Ak
∂xl

∂ψ

∂xj

]
= 0, i ∈ {1, 2, 3}

and

(7.2.7)
3∑
j=1

3∑
k=1

3∑
l=1

(
∂cijkl (x)
∂xj

∂Ak
∂xl

+ cijkl (x)
∂2Ak
∂xj∂xl

)
= 0, i ∈ {1, 2, 3} ,

which correspond to a (x), b (x) and c (x), respectively. Equations (7.2.5), (7.2.6) and (7.2.7) constitute

an overdetermined system of equations for ψ (x) and A (x) that results from inserting trial solution (7.2.1)

into equations (7.1.4). We obtain a unique solution for functions ψ (x) and A (x) using equations (7.2.5)

and (7.2.6). Equation (7.2.7) is a degenerate form of equations that result from the asymptotic-series nature

of the trial solution, which will be introduced in Section 7.2.4.

7.2.3. Trial-solution formulation: Harmonic wave. Herein, we will follow the approach analogous

to the one used in Section 6.10.4. It allows us to illustrate that equations (7.2.5), (7.2.6) and (7.2.7) result

from the high-frequency approximation.

Recall equations (7.1.4); namely,

(7.2.8)

ρ (x)
∂2ui (x, t)

∂t2
=

1
2

3∑
j=1

3∑
k=1

3∑
l=1

[
∂cijkl (x)
∂xj

(
∂uk
∂xl

+
∂ul
∂xk

)
+ cijkl (x)

(
∂2uk
∂xj∂xl

+
∂2ul

∂xj∂xk

)]
,

where i ∈ {1, 2, 3}. We wish equations (7.2.8) to be expressed in terms of x and ω in order to consider

the limit of ω tending to infinity. For this purpose we will perform Fourier’s transform of equations (7.2.8)

with t and ω being the variables of transformation. Invoking Fourier’s transform as illustrated in Section

6.9.2, we get

(7.2.9)

(iω)2 ρ (x) ũi (x, ω) =
1
2

3∑
j=1

3∑
k=1

3∑
l=1

[
∂cijkl (x)
∂xj

(
∂ũk
∂xl

+
∂ũl
∂xk

)
+ cijkl (x)

(
∂2ũk
∂xj∂xl

+
∂2ũl

∂xj∂xk

)]
,

1Readers interested in an analogous formulation of the three vanishing terms of equation (7.2.4) might refer to Červený, V.,
(2001) Seismic ray theory: Cambridge University Press, p. 55, pp. 57 – 58 and pp. 62 – 63.
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where

ũi (x, ω) :=
1

2π

∞∫
−∞

ui (x, t) exp (−iωt) dt,

and i ∈ {1, 2, 3}. In a manner analogous to those used in Sections 6.10.4 and 7.2.2, let us consider the

trial solution given by

(7.2.10) ũ (x, ω) = A (x) exp {iω [ψ (x)]} ,

which is a generalization of expression (6.10.15) and a particular case of expression (7.2.1). However,

with trial solution (7.2.10), we cannot use exactly the method presented in Section 7.2.2, as illustrated

in Exercise 7.1. This is due to the fact that — in view of expressions (7.2.1) and (7.2.2) — we see that

η = iω [ψ (x)], and hence d2f (η) /dη2, df (η) /dη and f (η) are not linearly independent; they are equal

to each other. In the method presented below we will take derivatives with respect to xi, not with respect

to the whole argument, η.

Inserting expression (7.2.10) into equations (7.2.9), differentiating and factoring out the common term,

exp (iωψ), we get

(7.2.11) − ω2 exp [iωψ (x)] ρAi =
1
2

exp [iωψ (x)]
3∑
j=1

3∑
k=1

3∑
l=1[

∂cijkl
∂xj

((
∂Ak
∂xl

+
∂Al
∂xk

+ iω

(
∂ψ

∂xl
Ak +

∂ψ

∂xk
Al

)))
+ cijkl

((
∂2Ak
∂xj∂xl

+
∂2Al
∂xj∂xk

)
+ iω

(
∂2ψ

∂xj∂xl
Ak +

∂ψ

∂xj

∂Al
∂xk

+
∂2ψ

∂xj∂xk
Al +

∂ψ

∂xl

∂Ak
∂xj

+
∂ψ

∂xk

∂Al
∂xj

+
∂ψ

∂xj

∂Al
∂xk

)
−ω2

(
∂ψ

∂xl

∂ψ

∂xj
Ak +

∂ψ

∂xk

∂ψ

∂xj
Al

))]
,

with i ∈ {1, 2, 3}. Canceling the exponential term and considering only the real part, we write

− ω2ρAi =
1
2

3∑
j=1

3∑
k=1

3∑
l=1

{
∂cijkl
∂xj

(
∂Ak
∂xl

+
∂Al
∂xk

)

+cijkl

[(
∂2Ak
∂xj∂xl

+
∂2Al
∂xj∂xk

)
− ω2

(
∂ψ

∂xl

∂ψ

∂xj
Ak +

∂ψ

∂xk

∂ψ

∂xj
Al

)]}
,

where i ∈ {1, 2, 3}. Dividing both sides by ω and letting ω tend to infinity, we get

1
2

3∑
j=1

3∑
k=1

3∑
l=1

cijkl (x)
(
∂ψ

∂xl

∂ψ

∂xj
Ak +

∂ψ

∂xk

∂ψ

∂xj
Al

)
− ρAi = 0, i ∈ {1, 2, 3} .
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Since j, k and l are summation indices and cijkl is symmetric in k and l, we can write these three equations

as
3∑
j=1

3∑
k=1

3∑
l=1

cijkl (x)
∂ψ

∂xl

∂ψ

∂xj
Ak − ρ (x)Ai = 0, i ∈ {1, 2, 3} ,

which are equations (7.2.5). In view of the limit of ω, the presented method is the high-frequency approx-

imation.

Considering the imaginary part, we obtain

3∑
j=1

3∑
k=1

3∑
l=1

[
∂cijkl
∂xj

(
∂ψ

∂xl
Ak +

∂ψ

∂xk
Al

)

+cijkl

(
∂2ψ

∂xj∂xl
Ak +

∂ψ

∂xj

∂Al
∂xk

+
∂2ψ

∂xj∂xk
Al +

∂ψ

∂xl

∂Ak
∂xj

+
∂ψ

∂xk

∂Al
∂xj

+
∂ψ

∂xj

∂Al
∂xk

)]
= 0,

where i ∈ {1, 2, 3}, which are equations (7.2.6) with partial derivatives ∂/∂xj taken.

Also examining equations (7.2.11), we see that — in a manner analogous to the one used in Section 7.2.2

— we could also obtain equations (7.2.5) by setting the coefficients of ω2 to zero.

7.2.4. Asymptotic-series formulation. To gain insight into the fact that trial solution (7.2.10) is an

asymptotic series, and, hence, the resulting equations belong to the asymptotic ray theory, let us consider

the following formulation. As discussed in Section 6.10.4, the trial solution is the zeroth-order term of an

asymptotic series. Expression (7.2.10) is the zeroth-order term of

(7.2.12) ũ (x, ω) ∼ exp [iωψ (x)]

{
A0 (x) +

A1 (x)
iω

+
∞∑
n=2

An (x)
(iω)n

}
,

where ∼ stands for “is asymptotically equivalent to”. This is a series whose bases are exp (iωψ) / (iω)n,

where n ∈ {0, . . . ,∞}. Series (7.2.12) is an asymptotic series of ũ; herein, the defining property of the

asymptotic series is

(7.2.13) lim
ω→∞

{
(iω)N

exp [iωψ (x)]

[
ũ (x, ω)− exp [iωψ (x)]

N∑
n=0

An (x)
(iω)n

]}
= 0,

for all N . This statement implies that the difference between the exact solution and the partial sum of N

terms of the series vanishes as ω tends to infinity — hence, the name “high-frequency approximation”;

this difference tends to zero more rapidly than (iω)N / exp (iωψ) tends to infinity. For each function that

has an asymptotic series, coefficients An are unique, as illustrated in Exercise 7.2.

Prior to inserting the asymptotic series into the equations of motion, let us explain our motivation for using

series (7.2.12). In particular, let us discuss the importance of the exponential term. What is the reason for
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considering an asymptotic series given by the product of the exponential term and the summation,

(7.2.14) exp [iωψ (x)]
N∑
n=0

An (x)
(iω)n

,

rather than the summation itself? An insight into the physical reason is given by the meanings of ψ and A,

which are associated with wavefronts and amplitudes, respectively. This is, however, an insight achieved

by examining the solutions to the equations of motion. The mathematical reason to begin with such a series

to obtain the solution can be explained as follows. The bases of our asymptotic expansion, which we will

use in differential equations, are exp (iωψ) / (iω)n. Consider the derivatives of expression (7.2.14). Each

time we take a derivative of the exponential term with respect to xi, we get iω (∂ψ/∂xi) exp (iωψ). The

derivatives of expression (7.2.14) are linear combinations of exp (iωψ) / (iω)n; we get such combinations

even if we consider only the zeroth-order term of series (7.2.12), as we can see by examining expression

(7.2.11).

Note that the units of the nth term in the denominator of summation (7.2.14) are s−n, where s stands for

seconds. Hence, the units of the numerator, An, must change with n in such a way that all the terms in the

series have the same units.

Inserting the first two terms of series (7.2.12) into the left-hand side of equations (7.2.9), we write

(7.2.15) (iω)2 ρ (x) exp [iωψ (x)]
[
A0i (x) + (iω)−1A1i (x)

]
, i ∈ {1, 2, 3} .

Inserting the first two terms of series (7.2.12) into a first-derivative term on the right-hand side of equations

(7.2.9), we write
∂ũk
∂xl

=
∂

∂xl

[
exp [iωψ (x)]

(
A0k +

A1k

iω

)]
.

Differentiating, factoring out the common term, exp (iωψ), and gathering the terms with common powers

of iω, we get

(7.2.16)
∂ũk
∂xl

= exp [iωψ (x)]
[
(iω)−1

(
∂A1k

∂xl

)
+ (iω)0

(
∂ψ

∂xl
A1k +

∂A0k

∂xl

)
+ (iω)1

(
∂ψ

∂xl
A0k

)]
.

Performing the same operations for ∂ũl/∂xk, adding together the two results, and gathering the terms with

common powers of iω, we get
∂ũk
∂xl

+
∂ũl
∂xk

= exp [iωψ (x)][
(iω)−1

(
∂A1k

∂xl
+
∂A1l

∂xk

)
+ (iω)0

(
∂ψ

∂xl
A1k +

∂ψ

∂xk
A1l +

∂A0k

∂xl
+
∂A0l

∂xk

)
+ (iω)1

(
∂ψ

∂xl
A0k +

∂ψ

∂xk
A0l

)]
.

To insert the first two terms of series (7.2.12) into a second-derivative term, we write

∂2ũk
∂xj∂xl

=
∂

∂xj

∂ũk
∂xl

,
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where ∂ũk/∂xl is given in expression (7.2.16). Differentiating, factoring out the common term, exp (iωψ),

and gathering the terms with common powers of iω, we get

∂2ũk
∂xj∂xl

= exp {iω [ψ (x)]}
[
(iω)−1

(
∂2A1k

∂xj∂xl

)
+ (iω)0

(
∂2ψ

∂xj∂xl
A1k +

∂ψ

∂xl

∂A1k

∂xj
+
∂ψ

∂xj

∂A1k

∂xl
+
∂2A0k

∂xj∂xl

)
+ (iω)1

(
∂2ψ

∂xj∂xl
A0k +

∂ψ

∂xl

∂ψ

∂xj
A1k +

∂ψ

∂xl

∂A0k

∂xj
+
∂ψ

∂xj

∂A0k

∂xl

)
+ (iω)2

(
∂ψ

∂xl

∂ψ

∂xj
A0k

)]
.

Performing the same operations for ∂2ũl/∂xj∂xk, adding together the two results, and gathering the terms

with common powers of iω, we get

∂2ũk
∂xj∂xl

+
∂2ũl

∂xj∂xk
= exp [iωψ (x)]

[
(iω)−1

(
∂2A1k

∂xj∂xl
+

∂2A1l

∂xj∂xk

)
+ (iω)0

(
∂2ψ

∂xj∂xl
A1k +

∂ψ

∂xl

∂A1k

∂xj
+
∂ψ

∂xj

∂A1k

∂xl
+
∂2A0k

∂xj∂xl

+
∂2ψ

∂xj∂xk
A1l +

∂ψ

∂xk

∂A1l

∂xj
+
∂ψ

∂xj

∂A1l

∂xk
+

∂2A0l

∂xj∂xk

)
+ (iω)1

(
∂2ψ

∂xj∂xl
A0k +

∂ψ

∂xl

∂ψ

∂xj
A1k +

∂ψ

∂xl

∂A0k

∂xj
+
∂ψ

∂xj

∂A0l

∂xk

+
∂2ψ

∂xj∂xk
A0l +

∂ψ

∂xk

∂ψ

∂xj
A1l +

∂ψ

∂xk

∂A0l

∂xj
+
∂ψ

∂xj

∂A0k

∂xl

)
+ (iω)2

(
∂ψ

∂xl

∂ψ

∂xj
A0k + ∂xk

∂ψ

∂xj
A0l

)]
.

Returning to equations (7.2.9), we can write the right-hand side as

(7.2.17)
1
2

exp [iωψ (x)]
3∑
j=1

3∑
k=1

3∑
l=1

[
a (x) (iω)2 + b (x) (iω)1 + c (x) (iω)0 + d (x) (iω)−1

]
,

where

a (x) = cijkl (x)
(
∂ψ

∂xl

∂ψ

∂xj
A0k +

∂ψ

∂xk

∂ψ

∂xj
A0l

)
,

b (x) =
∂cijkl (x)
∂xj

(
∂ψ

∂xl
A0k +

∂ψ

∂xk
A0l

)
+ cijkl (x)

(
∂2ψ

∂xj∂xl
A0k +

∂ψ

∂xl

∂ψ

∂xj
A1k +

∂ψ

∂xl

∂A0k

∂xj
+
∂ψ

∂xj

∂A0l

∂xk

+
∂2ψ

∂xj∂xk
A0l +

∂ψ

∂xk

∂ψ

∂xj
A1l +

∂ψ

∂xk

∂A0l

∂xj
+
∂ψ

∂xj

∂A0k

∂xl

)
,
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c (x) =
∂cijkl (x)
∂xj

(
∂ψ

∂xl
A1k +

∂ψ

∂xk
A1l +

∂A0k

∂xl
+
∂A0l

∂xk

)
+ cijkl (x)

(
∂2ψ

∂xj∂xl
A1k +

∂ψ

∂xl

∂A1k

∂xj
+
∂ψ

∂xj

∂A1k

∂xl
+
∂2A0k

∂xj∂xl

+
∂2ψ

∂xj∂xk
A1l +

∂ψ

∂xk

∂A1l

∂xj
+
∂ψ

∂xj

∂A1l

∂xk
+

∂2A0l

∂xj∂xk

)
and

d (x) =
∂cijkl (x)
∂xj

(
∂A1k

∂xl
+
∂A1l

∂xk

)
+ cijkl (x)

(
∂2A1k

∂xj∂xl
+

∂2A1l

∂xj∂xk

)
,

with i ∈ {1, 2, 3}. Considering the left-hand side of equations (7.2.9) that includes the two terms of series

(7.2.12), which is given in expression (7.2.15), we write it as

(7.2.18) exp [iωψ (x)]
[
(iω)2 ρ (x)A0i (x) + ωρ (x)A1i (x)

]
, i ∈ {1, 2, 3} .

Comparing the right-hand and left-hand sides, which are given by expressions (7.2.17) and (7.2.18), re-

spectively, we cancel exp (iωψ). Then, moving all the terms to one side, we write the resulting coefficient

of (iω)2 as

1
2

3∑
j=1

3∑
k=1

3∑
l=1

cijkl (x)
(
∂ψ

∂xl

∂ψ

∂xj
A0k +

∂ψ

∂xk

∂ψ

∂xj
A0l

)
− ρ (x)A0i (x) , i ∈ {1, 2, 3} .

Since j, k and l are summation indices and cijkl is symmetric in k and l, we can write these three expres-

sions as
3∑
j=1

3∑
k=1

3∑
l=1

cijkl (x)
∂ψ

∂xl

∂ψ

∂xj
A0k (x)− ρ (x)A0i (x) , i ∈ {1, 2, 3} .

For the resulting equations of motion to be satisfied for all iω, we require all the coefficients to be zero.

Again considering the (iω)2 coefficient, we write

(7.2.19)
3∑
j=1

3∑
k=1

3∑
l=1

cijkl (x)
∂ψ

∂xl

∂ψ

∂xj
A0k − ρ (x)A0i = 0, i ∈ {1, 2, 3} ,

which are equations (7.2.5) in terms of A0. These equations will lead us to the eikonal equation whose

solution is ψ (x); this equation is associated with the path of the propagating wave.

We could also write the coefficients of (iω)−1, (iω)0 and (iω)1 and set them to zero. The solutions of

corresponding equations are An (x). These equations are associated with the amplitude of the propagating

wave and are called transport equations.

Let us return to series (7.2.12). Inserting more terms of this series into equations (7.2.9) would result in

terms with higher negative powers of iω in expression (7.2.17). Coefficients a (x) and b (x) would remain

unchanged; in particular, equations (7.2.5) would remain the same — these equations are always expressed

in the zeroth-order term of series (7.2.12). Keeping this property in mind, we can rewrite equations (7.2.19)
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as
3∑
j=1

3∑
k=1

3∑
l=1

cijkl (x)
∂ψ

∂xl

∂ψ

∂xj
Ak − ρ (x)Ai = 0, i ∈ {1, 2, 3} ,

which are equations (7.2.5). Coefficient c (x) would have terms with A0, A1 and A2; coefficient d (x)

would have terms with A1, A2 and A3, but would no longer have any term with A0. Each coefficient

would have three As. Thus, a new coefficient, e (x), would have terms with A2, A3 and A4. The pattern

would continue.

7.3. Eikonal equation

In order to obtain ψ (x), we turn our attention to equations (7.2.5), from which we can factor out the

components of vector A (x). Hence, we rewrite equation (7.2.5) as

(7.3.1)
3∑

k=1

 3∑
j=1

3∑
l=1

cijkl (x)
∂ψ

∂xj

∂ψ

∂xl
− ρ (x) δik

Ak (x) = 0, i ∈ {1, 2, 3} .

In view of expression (6.10.16), let us denote

(7.3.2) pj :=
∂ψ

∂xj
, j ∈ {1, 2, 3} ,

where p is the phase-slowness vector, which describes the slowness of the propagation of the wavefront.

Note that the meaning of p can be seen by examining expression (7.2.2) and considering a three-dimensional

continuum. Therein, ψ is a function relating position variables, x1, x2 and x3, to the traveltime, t. Thus,

since ψ has units of time, pj := ∂ψ/∂xj has units of slowness and the level sets of ψ (x) can be viewed

as wavefronts at a given time t. Consequently, in view of properties of the gradient operator, p = ∇ψ (x)

is a vector whose direction corresponds to the wavefront normal and whose magnitude corresponds to the

wavefront slowness.

In view of notation (7.3.2), we can write equations (7.3.1) as

(7.3.3)
3∑

k=1

 3∑
j=1

3∑
l=1

cijkl (x) pjpl − ρ (x) δik

Ak (x) = 0, i ∈ {1, 2, 3} .

Equations (7.3.3) are referred to as Christoffel’s equations.

In Chapter 9, we discuss equations (7.3.3) in the context of the particular symmetries of continua, which

were introduced in Chapter 5. Therein, we also show that the eigenvalues resulting from these equations

are associated with the velocity of the wavefront while the corresponding eigenvectors are the displacement

directions. Herein, we study the general form of equations (7.3.3).
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We know from linear algebra that equations (7.3.3) have nontrivial solutions if and only if

(7.3.4) det

 3∑
j=1

3∑
l=1

cijkl (x) pjpl − ρ (x) δik

 = 0, i, k ∈ {1, 2, 3} .

Assuming that p2 6= 0, we can write determinant (7.3.4) as

(7.3.5)
(
p2
)3 det

 3∑
j=1

3∑
l=1

cijkl (x)
pjpl
p2
− ρ (x)

p2
δik

 = 0, i, k ∈ {1, 2, 3} .

Note that p2 = 0 would mean that the slowness of the propagation of the wavefront is zero. This would

imply the velocity to be infinite, which is a nonphysical situation. Also, in view of determinant (7.3.4),

p2 = 0 would result in det [ρ (x) δik] = 0, which would imply ρ (x) = 0.

Expression (7.3.5) is a polynomial of degree 3 in p2, where the coefficients depend on the direction of the

phase-slowness vector, p. Any such polynomial can be factored out as

(7.3.6)
[
p2 − 1

v2
1 (x,p)

] [
p2 − 1

v2
2 (x,p)

] [
p2 − 1

v2
3 (x,p)

]
= 0,

where 1/v2
i are the roots of polynomial (7.3.5). The existence of three roots implies the existence of three

types of waves, which can propagate in anisotropic continua.

The matrix with entries

(7.3.7) Γik =

 3∑
j=1

3∑
l=1

cijkl (x)
pjpl
p2

 , i, k ∈ {1, 2, 3} ,

which appears in equation (7.3.5) is called Christoffel’s matrix. It is symmetric and positive-definite, as

shown in Exercises 7.3 and 7.4, respectively. Since the matrix is symmetric, the roots are real; since it is

positive-definite, they are positive and, hence, the values of vi are real.

Now, let us consider a given root of equation (7.3.6). Each root is the eikonal equation for a given type of

wave, namely,

(7.3.8) p2 =
1

v2
i (x,p)

, i ∈ {1, 2, 3} .

Let us examine the meaning of this equation.2

Since p2 = p · p is the squared magnitude of the slowness vector, which is normal to the wavefront,

then — in view of the wavefronts being the loci of constant phase — vi is the function describing phase

velocity. This velocity is a function of position, x, and the direction of p. Hence, equation (7.3.8) applies

to anisotropic inhomogeneous continua and can be viewed as an extension of equation (6.10.23), which

2Readers interested in the mathematical formulation of the conditions under which the eikonal equation provides a good
approximation to the wave equation might refer to Officer, C.B., (1974) Introduction to theoretical geophysics: Springer-Verlag,
pp. 204 – 205.
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is valid for isotropic inhomogeneous continua. As shown above, due to the positive definiteness of Γ,

function vi is real-valued — a property of the body-wave velocities in an elastic continuum, which are

discussed in Chapter 9.

Considering two adjacent wavefronts, we can view equation (7.3.8) as an infinitesimal formulation of

Huygens’ principle.3

Note that function v is homogeneous of degree 0 in the pi. In other words, the orientation of a wavefront

is described by the direction of p and is independent of the length of p. Hence, in equation (7.3.8) we

could also write vi = vi (x,n), where n is a unit vector in the direction of p. Notably, we will use this

notation in Chapter 9. We can explicitly see the homogeneity of function v in Section 6.10.3, where we

discussed waves in the context of elliptical velocity dependence. Therein, vector p appears as a ratio of its

components, namely, the directional dependence is given by expression (6.10.9).

Furthermore, as shown explicitly in Chapter 9, the phase-velocity function can be expressed in terms of

the properties of the continuum, namely, its mass density and elasticity parameters. Thus, the eikonal

equation relates the magnitude of the slowness with which the wavefront propagates to the properties of

the continuum through which it propagates.

In the mathematical context, the eikonal equation is a differential equation. Recalling expressions (7.3.2),

we can rewrite equation (7.3.8) as

(7.3.9) [∇ψ (x)]2 =
1

v2 (x,p)
.

In general, the eikonal equation is a nonlinear first-order partial differential equation in x to be solved for

the eikonal function, ψ (x). It belongs to the Hamilton-Jacobi class of differential equations.4

Equation (7.2.6) is the transport equation. This transport equation possesses a vectorial form that is valid

for anisotropic inhomogeneous continua. It is analogous to the scalar transport equation (6.10.26), which

is valid for isotropic inhomogeneous continua.

Closing remarks

In this chapter, while seeking to study the propagation of waves in anisotropic inhomogeneous continua, we

follow a strategy analogous to that used in Chapter 6. However, having obtained the equations of motion,

we find that we are unable to investigate them analytically. Thus, we utilize a trial solution that leads us

to the eikonal equation, which relates the slowness of propagation of the wavefront to the properties of the

3Readers interested in a formulation relating the eikonal equation to Huygens’ principle might refer to Arnold, V.I., (1989)
Mathematical methods of classical mechanics (2nd edition): Springer-Verlag, pp. 248 – 252, and to Lanczos, C., (1949/1986)
The variational principles in mechanics: Dover, pp. 269 – 270.

4Readers interested in a mathematical study of the eikonal and transport equations might refer to Taylor, M.E., (1996) Partial
differential equations; Basic theory: Springer-Verlag, pp. 79 – 84 and pp. 440 – 447.
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continuum through which it propagates. In Chapter 8, we will continue our study of wave propagation in

anisotropic inhomogeneous continua by solving the eikonal equation.
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7.4. Exercises

EXERCISE 7.1. Show that trial solution (7.2.1) with f (η) = exp η, which corresponds to solution (7.2.10),

does not allow us to obtain equations (7.2.5), (7.2.6) and (7.2.7).

SOLUTION 7.1. Letting f (η) = exp η in expression (7.2.1), inserting the resulting expression into equa-

tion (7.1.4), and factoring out the common term,

exp η = f =
df
dη

=
d2f

dη2
,

we write

exp η

 3∑
j=1

3∑
k=1

3∑
l=1

{[
∂cijkl (x)
∂xj

∂Ak
∂xl

+ cijkl (x)
∂2Ak
∂xj∂xl

]

+
[
∂

∂xj

(
cijkl (x)Al

∂ψ

∂xk

)
+ cijkl (x)

∂Ak
∂xl

∂ψ

∂xj

]
+
[
cijkl (x)Ak

∂ψ

∂xj

∂ψ

∂xl

]}
− ρ (x)Ai

)
= 0,

where i ∈ {1, 2, 3}. Since exp η 6= 0, we obtain

3∑
j=1

3∑
k=1

3∑
l=1

{
∂cijkl (x)
∂xj

∂Ak
∂xl

+
∂

∂xj

(
cijkl (x)Al

∂ψ

∂xk

)
+ cijkl (x)

[
∂2Ak
∂xj∂xl

+
∂Ak
∂xl

∂ψ

∂xj

+Ak
∂ψ

∂xj

∂ψ

∂xl

]}
− ρ (x)Ai = 0, i ∈ {1, 2, 3} .

These are complicated differential equations for ψ and A. Since f , f ′ and f ′′ are not linearly independent,

we cannot split their corresponding terms into three distinct equations as we did in Section 7.2.2. Thus,

we cannot proceed to solve them by methods that lead to the eikonal and transport equations.

EXERCISE 7.2. Expression (7.2.13), namely,

(7.4.1) lim
ω→∞

{
(iω)N

exp [iωψ (x)]

[
ũ (x, ω)− exp [iωψ (x)]

N∑
n=0

An (x)
(iω)n

]}
= 0,

allows us to determine uniquely all An. Determine A0, A1 and A2.

SOLUTION 7.2. For N = 0 also n = 0, and we write expression (7.4.1) as

lim
ω→∞

{
1

exp [iωψ (x)]
[ũ (x, ω)− exp [iωψ (x)] A0 (x)]

}
= 0,

which means that

(7.4.2) A0 (x) = lim
ω→∞

ũ (x, ω)
exp [iωψ (x)]

.
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For N = 1, n = 0, 1, and we write expression (7.4.1) as

lim
ω→∞

{
iω

exp [iωψ (x)]

[
ũ (x, ω)− exp [iωψ (x)]

[
A0 (x) +

A1 (x)
iω

]]}
= 0.

We can rewrite it as

lim
ω→∞

{
iω

[
ũ (x, ω)

exp [iωψ (x)]
−
[
A0 (x) +

A1 (x)
iω

]]}
= 0

to get

lim
ω→∞

{
iω

[
ũ (x, ω)

exp [iωψ (x)]
−A0 (x)

]
−A1 (x)

}
= 0.

This means that

(7.4.3) A1 (x) = lim
ω→∞

{
iω

[
ũ (x, ω)

exp [iωψ (x)]
−A0 (x)

]}
,

where A0 is known from equation (7.4.2). For N = 2, n = 1, 2, 3, and we write expression (7.4.1) as

lim
ω→∞

{
(iω)2

exp [iωψ (x)]

[
ũ (x, ω)− exp [iωψ (x)]

[
A0 (x) +

A1 (x)
iω

+
A2 (x)
(iω)2

]]}
= 0.

We can rewrite it as

lim
ω→∞

{
(iω)2

[
ũ (x, ω)

exp [iωψ (x)]
−A0 (x)

]
− iωA1 (x)−A2 (x)

}
,

which means that

(7.4.4) A2 (x) = lim
ω→∞

{
(iω)2

[
ũ (x, ω)

exp [iωψ (x)]
−A0 (x)

]
− iωA1 (x)

}
,

where A0 and A1 are known from equations (7.4.2) and (7.4.3), respectively. Continuing this process we

obtain uniquely all An.

EXERCISE 7.3. Show that matrix (7.3.7) is symmetric.

SOLUTION 7.3. To show that matrix (7.3.7) is symmetric, we need to show that Γik = Γki, which is

equivalent to showing that

(7.4.5)
3∑
j=1

3∑
l=1

cijkl (x)
pjpl
p2

=
3∑
j=1

3∑
l=1

ckjil (x)
pjpl
p2

, i, k ∈ {1, 2, 3} .

In view of symmetries (4.2.2), we can write the left-hand side of equation (7.4.5) as

3∑
j=1

3∑
l=1

cijkl (x)
pjpl
p2

=
3∑
j=1

3∑
l=1

cklij (x)
pjpl
p2

, i, k ∈ {1, 2, 3} .

Examining the right-hand sides of the above equations, we see that — since both j = 1, 2, 3 and l = 1, 2, 3

— each term that appears in
3∑
j=1

3∑
l=1

ckjil (x)
pjpl
p2
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also appears in
3∑
j=1

3∑
l=1

cklij (x)
pjpl
p2

.

Thus, we can write

3∑
j=1

3∑
l=1

cijkl (x)
pjpl
p2

=
3∑
j=1

3∑
l=1

ckjil (x)
pjpl
p2

, i, k ∈ {1, 2, 3} ,

which is equation (7.4.5), as required. We conclude that Christoffel’s matrix (7.3.7) is symmetric as a

consequence of symmetries (4.2.2) of the elasticity matrix, which result from the existence of the strain-

energy function.

EXERCISE 7.4. Show that matrix (7.3.7) is positive-definite.

SOLUTION 7.4. To show that matrix (7.3.7) is positive-definite, we need to show that

(7.4.6)
3∑
i=1

3∑
k=1

 3∑
j=1

3∑
l=1

cijkl (x)
pjpl
p2

wiwk > 0,

for an arbitrary nonzero vector, w. To do so, let us recall equation (4.3.2), which we can rewrite as

6∑
m=1

6∑
n=1

Cmnεmεn > 0,

where ε is an arbitrary nonzero vector. Invoking formula (3.2.5), we write

(7.4.7)
3∑
i=1

3∑
j=1

3∑
k=1

3∑
l=1

cijklεijεkl > 0.

To proceed, we will use the fact that although, in view of definition (1.4.6), εij is a symmetric tensor,

inequality (7.4.7) remains valid for general second-rank tensors. To show this fact, let us return to Section

1.5 and recall that any second-rank tensor can be written as a sum of symmetric and antisymmetric tensors.

As we will show below, the summation of the antisymmetric parts vanishes. Consider expression

3∑
i=1

3∑
j=1

3∑
k=1

3∑
l=1

cijklηijakl,

where η is an antisymmetric tensor, ηij = −ηji, and akl is an arbitrary one. Thus, we can write

3∑
i=1

3∑
j=1

3∑
k=1

3∑
l=1

cijklηijakl =
3∑
i=1

3∑
j=1

3∑
k=1

3∑
l=1

(−cijklηjiakl) .
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Using the symmetry of the elasticity tensor given in expression (3.2.3), which is a result of the symmetry

of stress tensor, we write

3∑
i=1

3∑
j=1

3∑
k=1

3∑
l=1

cijklηijakl =
3∑
j=1

3∑
i=1

3∑
k=1

3∑
l=1

(−cjiklηjiakl) .

Since i and j are summation indices we can rename them so that i becomes j and vice versa. Hence, we

write
3∑
i=1

3∑
j=1

3∑
k=1

3∑
l=1

cijklηijakl =
3∑
i=1

3∑
j=1

3∑
k=1

3∑
l=1

(−cijklηijakl) = −
3∑
i=1

3∑
j=1

3∑
k=1

3∑
l=1

cijklηijakl,

which implies
3∑
i=1

3∑
j=1

3∑
k=1

3∑
l=1

cijklηijakl = 0.

In other words, the summation of the antisymmetric parts vanishes and, hence, inequality (7.4.7) is valid

whether or not the second-rank tensor is symmetric. In particular, we can write

(7.4.8)
3∑
i=1

3∑
j=1

3∑
k=1

3∑
l=1

cijklaijakl > 0.

Since aij is arbitrary, we consider

aij = wi
pj
|p|

to write inequality (7.4.8) as
3∑
i=1

3∑
j=1

3∑
k=1

3∑
l=1

cijklwi
pj
|p|
wk

pl
|p|

> 0.

Using the algebraic properties of summation and multiplication, we write

3∑
i=1

3∑
k=1

 3∑
j=1

3∑
l=1

cijkl (x)
pjpl
p2

wiwk > 0,

which is inequality (7.4.6), as required. We conclude that Christoffel’s matrix (7.3.7) is positive-definite

as a consequence of the positive definiteness of the elasticity matrix, which results from the stability

conditions, and the symmetry of the stress tensor, which results from the balance of angular momentum.

EXERCISE 7.5. In view of Exercise 6.15, consider a more general form of the solution that is given by

u (x,t) = f (η), where η = v0 [ψ (x)− t]. Show that the necessary condition for characteristic equation

(6.11.33) to be satisfied is the eikonal equation given by

(∇ψ)2 =
1
v2

.
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SOLUTION 7.5. Considering the argument of f given by η = v0 [ψ (x)− t], we obtain

∂u

∂xi
=
∂f

∂η

∂η

∂xi
= v0

∂f

∂η

∂ψ

∂xi
, i ∈ {1, 2, 3} ,

and
∂u

∂t
=
∂f

∂η

∂η

∂t
= −v0

∂f

∂η
.

Substituting ∂u/∂xi and ∂u/∂t into characteristic equation (6.11.33), we can write(
v0
∂f

∂η

∂ψ

∂x1

)2

+
(
v0
∂f

∂η

∂ψ

∂x2

)2

+
(
v0
∂f

∂η

∂ψ

∂x3

)2

=
1
v2

(
−∂f
∂η
v0

)2

,

which yields

v2
0

(
∂f

∂η

)2
[(

∂ψ

∂x1

)2

+
(
∂ψ

∂x2

)2

+
(
∂ψ

∂x3

)2
]

=
(v0

v

)2
(
∂f

∂η

)2

.

Since, in general, v0 6= 0 and ∂f/∂η 6= 0, we can write(
∂ψ

∂x1

)2

+
(
∂ψ

∂x2

)2

+
(
∂ψ

∂x3

)2

=
1
v2

,

which is the required eikonal equation.

REMARK 7.4.1. If v is constant, Exercise 7.5 is reduced to Exercise 6.15.

EXERCISE 7.6. Derive eikonal equation (6.10.22) in two spatial dimensions as the requirement describing

a surface in the space of the independent variables, x, z and t, on which the initial conditions do not specify

uniquely the second partial derivatives for equation (6.10.13) in these two spatial dimensions.

SOLUTION 7.6. In two spatial dimensions, we explicitly write equation (6.10.13) as

(7.4.9)
∂2u (x, z, t)

∂x2
+
∂2u (x, z, t)

∂z2
=

1
v2 (x, z)

∂2u (x, z, t)
∂t2

.

Let the required surface be ψ (x, z) = t. On this surface, u = u (x, z, ψ (x, z)) and the initial conditions

are the value of u given by

(7.4.10) u (x, z, ψ (x, z)) = g (x, z)

and the value of the directional derivative of u given by

(7.4.11)
∂u (x, z, ψ (x, z))

∂n
= h (x, z) ,

where n is a vector normal to the level-set given by ψ (x, z)− t = 0, namely,

n =
[
∂ [ψ (x, z)− t]

∂x
,
∂ [ψ (x, z)− t]

∂z
,
∂ [ψ (x, z)− t]

∂t

]
=
[
∂ψ

∂x
,
∂ψ

∂z
,−1

]
.
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First let us consider the first derivatives, namely, ∂u/∂x, ∂u/∂z and ∂u/∂t. Condition (7.4.10) provides

two equations. To get them, we differentiate condition (7.4.10) with respect to x, to get

∂

∂x
u (x, z, ψ (x, z)) =

∂u

∂x
+
∂u

∂t

∂ψ

∂x
=
∂g

∂x
,

where we used the fact that ψ is tantamount to t. Differentiating with respect to z, we get

∂

∂z
u (x, z, ψ (x, z)) =

∂u

∂z
+
∂u

∂t

∂ψ

∂z
=
∂g

∂z
.

We can explicitly write condition (7.4.11) as[
∂u

∂x
,
∂u

∂z
,
∂u

∂t

]
· n =

[
∂u

∂x
,
∂u

∂z
,
∂u

∂t

]
·
[
∂ψ

∂x
,
∂ψ

∂z
,−1

]
=
∂u

∂x

∂ψ

∂x
+
∂u

∂z

∂ψ

∂z
− ∂u

∂t
= h (x, z) ,

which is the third equation. Now, we can write these three equations as a system of linear algebraic

equations given by 
1 0 ∂ψ

∂x

0 1 ∂ψ
∂z

∂ψ
∂x

∂ψ
∂z −1




∂u
∂x

∂u
∂z

∂u
∂t

 =


∂g
∂x

∂g
∂z

h

 .

Since, in general, the right-hand side is not zero, to uniquely solve this system for ∂u/∂x, ∂u/∂z and

∂u/∂t, we require that the determinant of the coefficient matrix be nonzero; we require that

(7.4.12)
(
∂ψ

∂x

)2

+
(
∂ψ

∂z

)2

+ 1 6= 0.

This condition is always satisfied. Hence, we can always uniquely solve for the first partial derivatives of

u. Let us denote these solutions as ∂u/∂x := Ux (x, t), ∂u/∂z := Uz (x, t) and ∂u/∂t := Ut (x, t).

To find the second partial derivatives, we take partial derivatives of these three solutions with respect to x

and with respect to z. We obtain

∂Ux
∂x

=
∂

∂x

[
∂u

∂x
(x, z, ψ (x, z))

]
=
∂2u

∂x2
+

∂2u

∂x∂t

∂ψ

∂x

and
∂Ux
∂z

=
∂

∂z

[
∂u

∂x
(x, z, ψ (x, z))

]
=

∂2u

∂z∂x
+

∂2u

∂x∂t

∂ψ

∂z
.

In view of the equality of mixed partial derivatives, ∂Ux/∂z = ∂Uz/∂x, so we proceed directly to

∂Uz
∂z

=
∂

∂z

[
∂u

∂z
(x, z, ψ (x, z))

]
=
∂2u

∂z2
+

∂2u

∂z∂t

∂ψ

∂z
.
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Recalling that the third argument, ψ, is tantamount to t, we get

∂Ut
∂x

=
∂

∂x

[
∂u

∂t
(x, z, ψ (x, z))

]
=

∂2u

∂x∂t
+
∂2u

∂t2
∂ψ

∂x

and
∂Ut
∂z

=
∂2u

∂z∂t
+
∂2u

∂t2
∂ψ

∂z
.

As the last equation for the second partial derivatives, we take equation (7.4.9). These six equations can

be written as a system of linear algebraic equations given by

1 0 0 0 0 ∂ψ
∂x

0 0 0 1 0 ∂ψ
∂z

0 1 0 0 ∂ψ
∂z 0

0 0 ∂ψ
∂x 0 0 1

0 0 ∂ψ
∂z 0 1 0

1 1 − 1
v2 0 0 0





∂2u
∂x2

∂2u
∂z2

∂2u
∂t2

∂2u
∂x∂z

∂2u
∂z∂t

∂2u
∂t∂x


=



∂Ux
∂x

∂Ux
∂z

∂Uz
∂z

∂Ut
∂x

∂Ut
∂z

0


,

where we used the equality of mixed partial derivatives.

For this system not to have a unique solution, we require that the determinant of the coefficient matrix be

zero. Thus, we require that

(7.4.13)
(
∂ψ

∂x

)2

+
(
∂ψ

∂z

)2

=
1

v2 (x, z)
,

which is eikonal equation (6.10.22) in two dimensions.

This derivation shows that eikonal equation (7.4.13) is the characteristic equation of equation (7.4.9).

Since equation (7.4.9) is a second-order partial differential equation, we require that the initial condition

uniquely specify the second partial derivatives. ψ (x, z) is a surface on which we cannot specify the initial

conditions so as to uniquely find the second partial derivatives; it is called the characteristic surface. Along

this surface, the behaviour of u is predetermined by the original differential equation, which itself is rooted

in the physical laws of equations of motion.



CHAPTER 8

Hamilton’s ray equations

It is a common physical knowledge that wavefields, rather than rays, are physical

reality. None the less, the traditions to endow rays with certain physical properties,

traced back to Descartes times, have been deeply rooted in natural sciences. Rays

are discussed as if they were real objects.

Yuri Aleksandrovich Kravtsov and Yuri Ilyich Orlov (1999) Caustics, catastrophes and

wavefields

Preliminary remarks

In Chapter 7, we obtained the eikonal equation that gives us the magnitude of phase slowness as a function

of the properties of an anisotropic inhomogeneous continuum through which the wavefront propagates. In

this chapter, we will focus our attention on the solution of the eikonal equation.

We begin this chapter by using the method of characteristics to solve the eikonal equation, which is a first-

order nonlinear partial differential equation. This solution leads to a system of first-order linear ordinary

differential equations that describe the curves that form the solution surface in the xp-space.1 These are

the characteristic equations. Parametrizing the characteristic equations in terms of time, we obtain Hamil-

ton’s ray equations, whose solutions give the trajectory of a signal propagating through an anisotropic

inhomogeneous continuum, and which are the key equations of ray theory. Subsequently, we relate the

orientations and magnitudes of vectors p and ẋ, which result in expressions relating phase and ray an-

gles as well as phase and ray velocities. We conclude the chapter with two examples that illustrate the

Hamiltonian approach.

Readers who are not familiar with Euler’s homogeneous-function theorem might find it useful to study this

chapter together with Appendix A.

8.1. Method of characteristics

8.1.1. Level-set functions. The eikonal equation is a first-order nonlinear partial differential equa-

tion. It is possible to transform this equation into a system of first-order ordinary differential equations by

1In classical mechanics, the xp-space corresponds to the momentum phase space. In this book, however, to avoid the
confusion with the term “phase” that we use in the specific context of wave phenomena, we do not use this nomenclature.
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using the method of characteristics. Then, the solutions of the ordinary differential equations are given as

the characteristic curves, which compose the solution surface of the original partial differential equation.

Consider eikonal equation (7.3.8), namely,

(8.1.1) p2 =
1

v2 (x,p)
,

where, p2 = p · p, and, in view of definition (7.3.2),

(8.1.2) pi :=
∂ψ

∂xi
, i ∈ {1, 2, 3} .

We wish to solve this equation for p (x). In other words, at every point x we are looking for vector

[∂ψ/∂x1, ∂ψ/∂x2, ∂ψ/∂x3]. Once, we get this vector, we can integrate it to obtain ψ — the solution of

our partial differential equation.

The method that we are about to describe is specifically designed for the first-order partial differen-

tial equations that depend on the independent variables, x, and on the first derivatives of function ψ,

namely,∇ψ (x). The eikonal equation is such a partial differential equation. This method does not apply

to differential equations that also depend on function ψ itself.2

The solution of the eikonal equation is a surface in the xp-space. We have a choice of several implicit

descriptions of this surface as level sets of a function that we denote by F (x,p). The two obvious choices

are

(8.1.3) F (x,p) = p2 − 1
v2 (x,p)

,

and

(8.1.4) F (x,p) = p2v2 (x,p) .

This way, in view of eikonal equation (8.1.1), the surfaces are the level sets of functions (8.1.3) or (8.1.4),

given by

(8.1.5) F (x,p) = 0,

and

(8.1.6) F (x,p) = 1,

respectively. Since each formulation has different advantages, both are used in various sections of this

book.

2Readers interested in the method of characteristics for solving general first-order partial differential equations might refer
to Bleistein, N., (1984) Mathematical methods for wave phenomena: Academic Press, pp. 1 – 27, to Courant, R., and Hilbert,
D., (1989) Methods of mathematical physics: John Wiley & Sons., Vol. II, Chapter II, to McOwen, R.C., (1996) Partial differ-
ential equations: Methods and applications: Prentice-Hall, Inc., pp. 29 – 38, and to Spivak, M., (1970/1999) A comprehensive
introduction to differential geometry: Publish or Perish, Inc., pp. 3 – 28.



8.1. METHOD OF CHARACTERISTICS 231

8.1.2. Characteristic equations. We seek to construct the solution given by p = p (x), such that

equation (8.1.5) or equation (8.1.6) is satisfied. In both cases, since F (x,p (x)) is constant, it follows that

dF = 0, where F is treated as a function of x only.

Treating F as a function of x only, which we denote by F (x,p (x)), means that we constrain our consid-

eration of F to p (x) — the solution we seek — as opposed to studying F (x,p), which refers to function

F in the entire xp-space.

Using the chain rule, we can explicitly state the differential of F as

dF [x,p (x)] =
3∑
i=1

∂F

∂xi
dxi +

3∑
i=1

3∑
j=1

∂F

∂pj

∂pj
∂xi

dxi = 0.

Using definition (8.1.2), we can express it in terms of the eikonal function, ψ, as

dF [x,p (x)] =
3∑
i=1

∂F

∂xi
dxi +

3∑
i=1

3∑
j=1

∂F

∂pj

∂

∂xi

∂ψ

∂xj
dxi = 0.

Since dxi 6= 0, using the equality of mixed partial derivatives and considering a given i, we can factor out

dxi and write
∂F

∂xi
+

3∑
j=1

∂F

∂pj

∂

∂xj

∂ψ

∂xi
= 0, i ∈ {1, 2, 3} ,

which are second-order partial differential equations. Again, using definition (8.1.2), we can rewrite these

equations as

(8.1.7)
∂F

∂xi
+

3∑
j=1

∂F

∂pj

∂pi
∂xj

= 0, i ∈ {1, 2, 3} .

For each i ∈ {1, 2, 3}, we wish to find curves [x (s) , pi (s)] in the solution surface pi = pi (x). This

way we will construct the solution surface as a union of these curves, which are commonly referred to

as characteristics. To do so, we desire to obtain vectors tangent to the solution surface. To obtain these

vectors, we will use geometrical properties of vectors in the context of the solution surface.

Let us consider a given i ∈ {1, 2, 3}. The corresponding equation among three equations (8.1.7) can be

written as a scalar product of two vectors given by

(8.1.8)
[
∂F

∂p1
,
∂F

∂p2
,
∂F

∂p3
,− ∂F

∂xi

]
·
[
∂pi
∂x1

,
∂pi
∂x2

,
∂pi
∂x3

,−1
]

= 0.

Following the properties of the scalar product, we conclude that these two vectors are orthogonal to one

another in the four-dimensional x1x2x3pi-space.

For a given i ∈ {1, 2, 3}, we can write the solution surface, pi = pi (x), as a level set of the function

given by

(8.1.9) gi (x, pi) = pi (x)− pi,
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where pi is the value of function pi (x) at point x. Herein, since the right-hand side of equation (8.1.9)

vanishes identically, gi (x, pi) is a zero set. Using properties of the gradient operator, we can obtain vector

normal to gi (x, pi), namely,

(8.1.10) ni = ∇gi =
[
∂gi
∂x1

,
∂gi
∂x2

,
∂gi
∂x3

,
∂gi
∂pi

]
.

In view of equation (8.1.9), we see that a vector normal to gi (x, pi) is also normal to the solution surface,

pi = pi (x). Thus, inserting gi (x, pi), given in expression (8.1.9), into expression (8.1.10), we can write

ni =
[
∂ (pi (x)− pi)

∂x1
,
∂ (pi (x)− pi)

∂x2
,
∂ (pi (x)− pi)

∂x3
,
∂ (pi (x)− pi)

∂pi

]
,

to obtain vector

(8.1.11) ni =
[
∂pi
∂x1

,
∂pi
∂x2

,
∂pi
∂x3

,−1
]

,

which is normal to solution surface, pi = pi (x) in the four-dimensional x1x2x3pi-space.

Examining equations (8.1.8) and (8.1.11), we realize that

ni ⊥
[
∂F

∂p1
,
∂F

∂p2
,
∂F

∂p3
,− ∂F

∂xi

]
.

Thus, for a given i ∈ {1, 2, 3}, vector [∂F/∂p1, ∂F/∂p2, ∂F/∂p3,−∂F/∂xi] is tangent to the solution

surface, pi = pi (x). We denote this vector by ti. Hence, for a given i ∈ {1, 2, 3}, we have obtained

vectors tangent to the solution surface, as desired.

Curves [x1 (s) , x2 (s) , x3 (s) , pi (s)] that are in the solution surface and whose tangent vector is ti is the

solution of a system of first-order ordinary differential equations, namely,

dx1(s)
ds = ζ ∂F∂p1

dx2(s)
ds = ζ ∂F∂p2

dx3(s)
ds = ζ ∂F∂p3

dpi(s)
ds = −ζ ∂F∂xi

,

which we can concisely write as

(8.1.12)


dxj(s)

ds = ζ ∂F∂pj

dpi(s)
ds = −ζ ∂F∂xi

, j ∈ {1, 2, 3} ,

where ζ is a scaling factor and s is the parameter along the curve. The choice of ζ determines the

parametrization, which we will use in Section 8.2. System (8.1.12) describes curves that are associated
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with solution surface pi = pi (x) and — for a given i ∈ {1, 2, 3} — exist in a four-dimensional space,

x1x2x3pi.

We note that the solutions of system (8.1.12) depend on the initial conditions, which we can write as

xj (0) = x0
j and pi (0) = p0

i , where i, j ∈ {1, 2, 3}. However, these initial conditions are not arbitrary;

they must satisfy the differential equation given in expression (8.1.5) or (8.1.6).

Since the above derivation, which was shown for a given i, must hold for each i ∈ {1, 2, 3}, we can write

equations (8.1.12) as 
dxj
ds = ζ ∂F∂pj

dpi
ds = −ζ ∂F∂xi

, i, j ∈ {1, 2, 3} ,

which, in view of i and j being the summation indices, we can restate as

(8.1.13)


dxi
ds = ζ ∂F∂pi

dpi
ds = −ζ ∂F∂xi

, i ∈ {1, 2, 3} .

The solution of system (8.1.13) are curves that compose solution surface p = p (x) in the six-dimensional

xp-space. Such curves are the characteristics of eikonal equation (8.1.1).

Hence, three second-order partial differential equations (8.1.7) become six first-order ordinary differential

equations (8.1.13). These are the characteristic equations of eikonal equation (8.1.1). The solution of

characteristic equations (8.1.13) consists of curves that compose the solution surface of eikonal equation

(8.1.1).

8.1.3. Consistency of formulation. As stated in Section 8.1.1, there are two obvious forms of func-

tion F . Functions (8.1.3) and (8.1.4) differ in certain aspects, such as their homogeneity with respect to

the variables pi. However, as stated by the following lemma, they both result in the same characteristic

equations and, hence, the same characteristic curves.

LEMMA 8.1.1. Both formulations of the function given by expressions (8.1.3) and (8.1.4) result in the

same characteristic curves.

PROOF. Consider characteristic equations (8.1.13), namely,
dxi
ds = ζ ∂F∂pi

dpi
ds = −ζ ∂F∂xi

, i ∈ {1, 2, 3} .
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Letting F = p2v2 (x,p) and setting ζ = 1, we note that equations (8.1.13) become
dxi
ds = 2

(
piv

2 + p2v ∂v∂pi

)
dpi
ds = −2p2v ∂v∂xi

, i ∈ {1, 2, 3} .

We let F = p2 − 1/v2 (x,p) and equations (8.1.13) become
dxi
ds = 2ζ

(
pi + 1

v3
∂v
∂pi

)
dpi
ds = −2ζ 1

v3
∂v
∂xi

, i ∈ {1, 2, 3} .

Equating the second equations of each set, we can write

p2v
∂v

∂xi
= ζ

1
v3

∂v

∂xi
, i ∈ {1, 2, 3} .

Solving for ζ, we obtain

ζ =
p2v ∂v∂xi

1
v3

∂v
∂xi

= p2v4, i ∈ {1, 2, 3} .

Substituting ζ = p2v4 into the first equation of the second set, we obtain

dxi
ds

= 2p2v4

(
pi +

1
v3

∂v

∂pi

)
= 2

(
pip

2v4 + p2v
∂v

∂pi

)
, i ∈ {1, 2, 3} ,

which is equivalent to the first equation of the first set along p2v2 = 1. �

Thus, following equations (8.1.13), both equations (8.1.5) and (8.1.6), yield the same characteristic curves,

given that ζ = v2 and ζ = 1, respectively.

8.2. Time parametrization of characteristic equations

8.2.1. General formulation. Different choices of ζ result in different parametrization of the solution

curves for the characteristic equations. For seismological studies, it is often convenient to parametrize

characteristic equations (8.1.13) in terms of time. Recall equation (7.2.3), which we can rewrite as

ψ (x) = t+ ti,

where t denotes time and ti is a constant. Differentiating with respect to s, we obtain

dψ (x)
ds

=
dt
ds

.

This equation governs the propagation of ψ (x) along the characteristic curves. The physical interpretation

of parameter s depends on the choice of scaling factor ζ in system (8.1.13). If the parameter s is to be
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equivalent to time, t, we require that
dψ (x)

ds
= 1.

We can restate the above condition as

(8.2.1)
dψ (x)

ds
=

3∑
i=1

∂ψ

∂xi

dxi
ds

= 1.

Using definition (8.1.2), we rewrite condition (8.2.1) as

(8.2.2)
dψ (x)

ds
=

3∑
i=1

pi
dxi
ds

= 1,

which is a condition for the time parametrization of characteristic equations (8.1.13).

8.2.2. Equations with variable scaling factor. In order to obtain the time parametrization of system

(8.1.13) in the context of function (8.1.3), we can write dxi/ds = ζ∂F/∂pi, where F = p2 − 1/v2, as

dxi
ds

= 2ζ
(
pi +

1
v3

∂v

∂pi

)
, i ∈ {1, 2, 3} .

In view of condition (8.2.2), we require that

3∑
i=1

pi
dxi
ds

= 2ζ
3∑
i=1

pi

(
pi +

1
v3

∂v

∂pi

)
= 2ζ

(
p2 +

1
v3

3∑
i=1

pi
∂v

∂pi

)
= 1.

Since v is homogeneous of degree 0 in the pi, the summation on the right-hand side vanishes by Theorem

A.2.1. Thus, we obtain
3∑
i=1

pi
dxi
ds

= 2ζp2 = 1,

and solving for ζ, we immediately get ζ = 1/
(
2p2
)
.

Consequently, given function (8.1.3), the system of characteristic equations (8.1.13) that is parametrized

in terms of time becomes

(8.2.3)


ẋi = 1

2p2
∂F
∂pi

ṗi = − 1
2p2

∂F
∂xi

, i ∈ {1, 2, 3} ,

where ẋi := dxi/dt and ṗi := dpi/dt. Equations (8.2.3) are characteristic equations (8.1.13) whose scaling

factor is a function of the pi. In view of eikonal equation (8.1.1), we can also state this scaling factor as

v2 (x,p) /2.

An implication of this parametrization is shown in Exercise 8.8. An implication of another parametrization

of characteristic equations (8.1.13) in the context of function (8.1.3) is shown in Exercise 8.7.
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8.2.3. Equations with constant scaling factor. In order to obtain the time parametrization of system

(8.1.13) in the context of function (8.1.4), we can write dxi/ds = ζ∂F/∂pi, where F = p2v2, as

dxi
ds

= 2ζ
(
piv

2 + p2v
∂v

∂pi

)
, i ∈ {1, 2, 3} .

In view of condition (8.2.2), we require

3∑
i=1

pi
dxi
ds

= 2ζ
3∑
i=1

pi

(
piv

2 + p2v
∂v

∂pi

)
= 2ζ

(
p2v2 + p2v

3∑
i=1

pi
∂v

∂pi

)
= 1.

Following the eikonal equation, the first product in parentheses on the right-hand side is equal to unity.

Since v is homogeneous of degree 0 in the pi, the summation on the right-hand side vanishes by Theorem

A.2.1. Thus, we obtain
3∑
i=1

pi
dxi
ds

= 2ζ = 1,

and solving for ζ, we immediately get ζ = 1/2.

Consequently, given function (8.1.4), system (8.1.13) is parametrized in terms of time if

(8.2.4)


ẋi = 1

2
∂F
∂pi

ṗi = −1
2
∂F
∂xi

, i ∈ {1, 2, 3} ,

where ẋi := dxi/dt and ṗi := dpi/dt. Equations (8.2.4) are characteristic equations (8.1.13) whose scaling

factor is the constant equal to 1/2.

In view of functions (8.1.3) and (8.1.4), the corresponding scaling factors, ζ = v2/2 and ζ = 1/2, are

consistent with one another. This can be seen by examining the proof of Lemma 8.1.1.

8.2.4. Formulation of Hamilton’s ray equations. We now examine systems (8.2.3) and (8.2.4), and

choose to proceed with the latter one since, therein, ζ is given by a constant. This constant can be brought

inside the differential operator and we can write system (8.2.4) as

(8.2.5)


ẋi = ∂

∂pi

(
F
2

)
ṗi = − ∂

∂xi

(
F
2

) , i ∈ {1, 2, 3} .

Let us denote

(8.2.6) H :=
F

2
,



8.3. PHYSICAL INTERPRETATION OF HAMILTON’S RAY EQUATIONS AND SOLUTIONS 237

whereH is referred to as the ray-theory Hamiltonian3. Now, we can write equations (8.2.5) as

(8.2.7)


ẋi = ∂H

∂pi

ṗi = − ∂H
∂xi

, i ∈ {1, 2, 3} .

Equations (8.2.7) constitute a system of first-order ordinary differential equations in t for x (t) and p (t).

These equations are Hamilton’s ray equations. System (8.2.7) governs the signal trajectories in the xp-

space spanned by the position vectors, x, and the phase-slowness vectors, p.

The first set of equations of system (8.2.7) corresponds to the components of vectors tangent to curves

x (t). These curves belong to the physical space. They are the trajectories along which signals propagate

and, in the context of ray theory, they are rays.

The second set of equations of system (8.2.7) describes the rate of change of the phase slowness. If H
is not explicitly a function of a given xi, we obtain ṗi = 0, which implies that pi is constant along the

ray. Hence, in such a case, pi is a conserved quantity, known as the ray parameter, which is discussed in

Chapter 14. Physically, this means that v (x,p) is not explicitly a function of xi and, hence, the continuum

is homogeneous along that component.

Note that, in the context of Legendre’s transformation, discussed in Appendix B, the first set of equations

can be viewed as a definition of a variable, while the essence of the physical formulation is contained in

the second set of equations.

The ray-theory Hamiltonian,H, resulting from function (8.1.4), can be explicitly stated as

(8.2.8) H =
1
2
p2v2 (x,p) .

It is a dimensionless quantity, unlike the classical-mechanics Hamiltonian, discussed in Chapter 13, which

has units of energy. In view of eikonal equation (7.3.8), which states that p2v2 = 1, and expression (8.2.8),

we require thatH (x,p) = 1/2, along a ray.

8.3. Physical interpretation of Hamilton’s ray equations and solutions

8.3.1. Equations.

Ray velocity. The first set of equations of system (8.2.7), namely, ẋi = ∂H/∂pi, states the components

of vector ẋ, which is tangent to the ray, x (t). Since the right-hand sides of these equations are expressed

in terms of the pi, which are the components of the phase-slowness vector, this set of equations relates ray

and phase velocities.

3In this book we use two distinct Hamiltonians denoted byH and H. Consequently, in the text, we avoid a generic reference
to “the Hamiltonian”, unless it is clear from the context which one of the two is considered.
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Ray orientation. The relations among the ẋi, which appear in the first set of equations of system

(8.2.7), give us the orientation of the ray, x (t). Since the right-hand sides are expressed in terms of the pi,

this set of equations relates ray and wavefront orientations. This is illustrated in Section 8.5.5.

Wavefront orientation. The relations among the ṗi, which appear in the second set of equations of

system (8.2.7), namely, ṗi = −∂H/∂xi, give us the orientation of the wavefront, ψ (x). This is illustrated

in Section 8.5.5.

8.3.2. Solutions.

Ray. The solution of the first set of equations of system (8.2.7) is x (t), which is the expression for

the ray. This is illustrated in Section 8.5.6 on page 250.

Wavefront velocity. The solution of the second set of equations of system (8.2.7) is p (t), which is the

expression for the vector normal to the wavefront, ψ (x). The magnitude of this vector is the wavefront

slowness. This is illustrated in Section 8.5.8.

Traveltime. Since both x (t) and p (t) are parametrized by time, t, we can obtain the expression for t

by solving any xi (t) or pi (t) for t. This is illustrated in Section 8.5.7.

8.4. Relation between p and ẋ

8.4.1. General formulation. We wish to study the relation between the orientations and the magni-

tudes of vectors p and ẋ. Physically, p is the vector normal to the wavefront and ẋ is the vector tangent to

the ray. Mathematically, the components of these vectors are the variables of Legendre’s transformation

discussed in Appendix B and used in Chapter 11.

Consider a given point x of the continuum and, therein, the directional dependence of H. The first set of

equations of system (8.2.7) is

(8.4.1) ẋi =
∂H
∂pi

, i ∈ {1, 2, 3} .

Inserting expression (8.2.8), namely,

H =
1
2
p2v2 (x,p) ,

into equations (8.4.1) and using the equality resulting from the eikonal equation, namely, p2v2 = 1, we

obtain

(8.4.2) ẋi = piv
2 +

1
v

∂v

∂pi
, i ∈ {1, 2, 3} ,

where the phase-velocity function, v, is a function of the orientation of vector p. Thus, we have obtained

the relation between the components of vectors p and ẋ.
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8.4.2. Phase and ray velocities. Vector ẋ is tangent to the ray x (t). Since, at a given point, this

vector corresponds to the velocity of the signal along the ray at that point, we refer to it as ray velocity.4

We wish to find the magnitude of this vector, which can be written as

(8.4.3) V := |ẋ| =
√

ẋ · ẋ =

√√√√ 3∑
i=1

ẋ2
i .

Using expression (8.4.2), we can write each term of the summation in radicand (8.4.3) as

(ẋi)
2 =

(
piv

2 +
1
v

∂v

∂pi

)2

= (pi)
2 v4 + 2piv

∂v

∂pi
+

1
v2

(
∂v

∂pi

)2

, i ∈ {1, 2, 3} .

Performing the summation of the three terms, we obtain

3∑
i=1

[
(pi)

2 v4 + 2piv
∂v

∂pi
+

1
v2

(
∂v

∂pi

)2
]

= v4
3∑
i=1

(pi)
2 + 2v

3∑
i=1

pi
∂v

∂pi

+
1
v2

3∑
i=1

(
∂v

∂pi

)2

= v4
3∑
i=1

(pi)
2 +

1
v2

3∑
i=1

(
∂v

∂pi

)2

,

where, since v is homogeneous of degree 0 in the pi, the summation of pi (∂v/∂pi) vanished due to

Theorem A.2.1.

Thus, in view of equality p2v2 = 1, we can write expression (8.4.3) as

V =

√
v2 +

1
v2

(∇pv)2,

where ∇pv denotes the gradient of the phase-velocity function, v, with respect to the components of the

phase-slowness vector, p. Using the chain rule and following the properties of logarithms, we obtain

(8.4.4) V =
√
v2 + [∇p (ln v)]2.

Expression (8.4.4) gives the magnitude of the signal velocity along the ray x (t). In expression (8.4.4), the

magnitude of the ray velocity, V , is given in terms of the magnitude of the phase velocity, v, as a function

of the orientation of the wavefront, given by the wavefront-normal vector, p.

4In seismology, this quantity is often referred to as the group velocity. Our nomenclature is consistent with Synge, J.L.,
(1937/1962) Geometrical optics: An introduction to Hamilton’s methods: Cambridge University Press, p. 12, and with Born,
M., and Wolf, E., (1999) Principles of optics (7th edition): Cambridge University Press, pp. 792 – 795. Also, our nomenclature
appears in Winterstein, D.F., (1990) Velocity anisotropy terminology for geophysicists: Geophysics, 55, 1070 – 1088, and in
Helbig, K., (1994) Foundations of anisotropy for exploration seismics: Pergamon, p. 12.
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Two-dimensional case. To illustrate expression (8.4.4), consider a two-dimensional continuum that is

contained in the x1x3-plane. At a given point of the continuum, we can express the orientation of the

wavefront-normal vector, p = [p1, p3], in terms of a single angle. This is the phase angle, which, in this

two-dimensional continuum, is given by expression (8.5.3), namely,

(8.4.5) ϑ = arctan
p1

p3
.

Hence, using expression (8.4.4), the magnitude of the ray velocity can be expressed in terms of the phase

velocity and the phase angle.

Herein, using expression (8.4.4), we can write

(8.4.6) V =

√
v2 +

(
∂ ln v
∂p1

)2

+
(
∂ ln v
∂p3

)2

.

We wish to express differential operators ∂/∂pi in terms of the phase angle. Using the chain rule, we can

write

(8.4.7)
∂

∂p1
=

∂ϑ

∂p1

∂

∂ϑ
=
∂ arctan p1

p3

∂p1

∂

∂ϑ
=

p3

p2
1 + p2

3

∂

∂ϑ
= p3v

2 ∂

∂ϑ
,

where p2
1 + p2

3 = p2 = 1/v2. Similarly, we obtain

(8.4.8)
∂

∂p3
= −p1v

2 ∂

∂ϑ
.

Thus, expression (8.4.6) can be written as

V =

√
v2 +

(
p3v2

∂ ln v
∂ϑ

)2

+
(
−p1v2

∂ ln v
∂ϑ

)2

=

√
v2 +

(
p2

3 + p2
1

)
v4

(
∂ ln v
∂ϑ

)2

=

√
v2 + p2v4

(
∂ ln v
∂ϑ

)2

=

√
[v (ϑ)]2 + [v (ϑ)]2

(
∂ ln v (ϑ)

∂ϑ

)2

.

Following the chain rule, we obtain

(8.4.9) V (ϑ) =

√
[v (ϑ)]2 +

[
∂v (ϑ)
∂ϑ

]2

,

which gives the magnitude of the ray velocity in terms of the phase velocity as a function of the phase

angle.

Since, as shown in Chapter 7, phase velocity is a function of the properties of the continuum — namely,

its mass density and the elasticity parameters — expression (8.4.9) gives the magnitude of the ray velocity

in terms of these properties and as a function of the phase angle.
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8.4.3. Phase and ray angles. To discuss the relation between the orientations of vectors p and ẋ,

consider a two-dimensional continuum that is contained in the x1x3-plane. Therein, the phase angle is

given by expression (8.4.5). Analogously, we can express the orientation of the vector tangent to the ray,

namely, ẋ = [ẋ1, ẋ3], in terms of a single angle. This is the ray angle, which, in this two-dimensional

continuum, is given by

(8.4.10) θ = arctan
ẋ1

ẋ3
.

In this two-dimensional case, expression (8.4.2) is

(8.4.11) ẋi = piv
2 +

1
v

∂v

∂pi
, i ∈ {1, 3} .

Hence, expression (8.4.10) becomes

tan θ =
p1v

2 + 1
v
∂v
∂p1

p3v2 + 1
v
∂v
∂p3

.

We wish to express the differential operators ∂/∂pi in terms of the phase angle. Recalling expression

(8.4.7) and (8.4.8), we obtain

tan θ =
p1v

2 + p3v
∂v
∂ϑ

p3v2 − p1v
∂v
∂ϑ

=
p1 + p3

1
v
∂v
∂ϑ

p3 − p1
1
v
∂v
∂ϑ

.

Recalling expression (8.4.5), we divide both the numerator and the denominator by p3, to obtain

(8.4.12) tan θ =
p1

p3
+ 1

v
∂v
∂ϑ

1− p1

p3

1
v
∂v
∂ϑ

=
tanϑ+ 1

v
∂v
∂ϑ

1− tanϑ
v

∂v
∂ϑ

.

Expression (8.4.12) relates the phase and the ray angles.

Note that, in view of standard formulations in polar coordinates, expression (8.4.12) gives the angle θ that

corresponds to the vector normal to the curve 1/v (ϑ).5 We refer to this curve as the phase-slowness curve.

Furthermore, as shown in Exercise 11.3, ϑ corresponds to the vector normal to the curve given by V (θ),

which is the ray-velocity curve. This angular relation between the phase-slowness and ray-velocity curves,

together with expression (8.4.9), which relates the magnitudes of the phase and ray velocities, results in

the property that we call polar reciprocity. In other words, the phase-slowness curve is the polar reciprocal

of the ray-velocity curve, and vice-versa. In general, the phase-slowness and ray-velocity surfaces are the

polar reciprocals of one another.6

The possibility of solving expression (8.4.12) explicitly for ϑ depends on function v. To understand this

statement, consider the following description. The explicit solution of expression (8.4.12) for ϑ requires

5Interested readers might refer to Anton, H., (1984) Calculus with analytic geometry: John Wiley & Sons, pp. 730 – 731.
6Interested readers might refer to Arnold, V.I., (1989) Mathematical methods of classical mechanics (2nd edition): Springer-

Verlag, pp. 248 – 252, where the relation between the direction normal to the wavefront and the ray direction is formulated in
terms of Huygens’ principle, as well as to Born, M., and Wolf, E., (1999) Principles of optics (7th edition): Cambridge University
Press, pp. 803 – 805, and to Helbig, K., (1994) Foundations of anisotropy for exploration seismics: Pergamon, pp. 21 – 29, where
the geometrical properties of the physical concepts are formulated.
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that we can solve expression (8.4.11) for the pi in terms of the ẋi. Since expression (8.4.11) is derived

from expression (8.4.1), we require the solvability of the latter expression for the pi in terms of the ẋi.

Note that equation (8.4.1) is equivalent to equation (B.3.7) in Appendix B, which relates the variables used

in Legendre’s transformation. Thus, the possibility of expressing ϑ in terms of θ belongs to the study of

this transformation.

For the velocity functions formulated in the context of the elasticity theory, we conjecture that expression

(8.4.12) can be explicitly solved for ϑ if and only if v2 is quadratic in the components of a vector that

specifies the orientation of the wavefront. As we will see in Section 9.2.3, for SH waves in transversely

isotropic continua, we get

v2
SH =

1
ρ

[
C66 + (C44 − C66)n2

3

]
,

which is a quadratic function in n3, with n3 being a component of the unit vector normal to the wavefront;

in other words, n = p/ |p|. In the seismological context, this quadratic dependence is tantamount to an

elliptical velocity dependence. Consequently, an explicit ray-velocity expression, V = V (θ), where θ is

the ray angle, appears to be possible only for elliptical velocity dependence. This expression is illustrated

in Exercise 8.5.

8.4.4. Geometrical illustration. In general, at a given point, the direction of a wavefront normal and

the direction of a ray are different. Also, considering two wavefronts separated by a given time interval, the

magnitudes of phase and ray velocities differ due to the fact that the distance along the wavefront normal

is different than the distance along the ray over the same time interval.

As shown in Exercise 8.4, the relationship between the magnitudes of the ray velocity, V = |ẋ|, and phase

velocity, v = 1/ |p|, is given by

(8.4.13) V =
v

n · t
,

where n and t are unit vectors normal to the wavefront and tangent to the ray, respectively.

Note that, in view of vector algebra, expression (8.4.13) shows that the phase-velocity vector is the projec-

tion of the ray-velocity vector onto the wavefront normal.7 This means that, in general, the magnitude of

ray velocity is always greater than, or equal to, the magnitude of the corresponding phase velocity.

Using the definition of the scalar product and the fact that |n| = |t| = 1, we can rewrite expression (8.4.13)

as

(8.4.14) V =
v

cos (θ − ϑ)
.

7Readers interested in this formulation might refer to Auld, B.A., (1973) Acoustic fields and waves in solids: John Wiley and
Sons, Vol. I, p. 222 and p. 227, to Born, M., and Wolf, E., (1999) Principles of optics (7th edition): Cambridge University Press,
p. 794, and to Epstein, M., and Śniatycki, J. (1992) Fermat’s principle in elastodynamics: Journal of Elasticity, 27, 45 – 56.
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Expression (8.4.14) conveniently involves all four entities discussed in this chapter, namely, ray velocity,

V , phase velocity, v, ray angle, θ, and phase angle, ϑ.

8.5. Example: Elliptical anisotropy and linear inhomogeneity

8.5.1. Introductory comments. 8In this section, we study Hamilton’s ray equations for a particular

case of a wave that exhibits an elliptical velocity dependence with direction and a linear velocity depen-

dence along one axis. This assumption, in the context of a two-dimensional continuum, allows us to

conveniently illustrate the meaning of Hamilton’s ray equations by considering analytic expressions for

rays and traveltimes. Also, the same case will be treated in Section 14.3 in the context of Lagrange’s ray

equations. Thus, our examination of Sections 8.5 and 14.3 will allow us to investigate the same physical

problem using the two different approaches that are available to study seismic ray theory.

We wish to emphasize that, as discussed in Section 6.10.3, the elliptical velocity dependence refers to the

fact that infinitesimal wavefronts generated by a point source are elliptical. This behaviour of wavefronts

is related to the properties of the continuum in which the given wave propagates. As shown in Section

7.3, three types of waves can propagate in anisotropic continua. In general, in a given continuum, each of

the three waves exhibits a different infinitesimal wavefront. Thus, although in a particular continuum one

of the three waves might exhibit an elliptical wavefront, the other two waves, in general, do not exhibit

elliptical wavefronts. Often, for brevity, we refer to the elliptical velocity dependence as the elliptical

anisotropy. However, it should be clear that elliptical anisotropy refers to the response of a given wave to

the properties of the continuum, not to the material symmetry of the continuum itself.

8.5.2. Eikonal equation. As shown in expression (6.10.11), considering the xz-plane, we can write

the phase velocity of a wave subjected to the elliptical anisotropy as

v (ϑ) =
√
v2
x sin2 ϑ+ v2

z cos2 ϑ,

where vx and vz are the magnitudes of phase velocity along the x-axis and z-axis, respectively, and ϑ is

the phase angle measured from the z-axis. For convenience of notation, we define parameter

(8.5.1) χ :=
v2
x − v2

z

2v2
z

,

which is a dimensionless quantity that vanishes in the isotropic case. Using this definition, we can solve

for

v2
x = v2

z (1 + 2χ) ,

and rewrite the expression for the phase velocity as

v (ϑ) = vz

√
(1 + 2χ) sin2 ϑ+ cos2 ϑ.

8This section is based on the work that was published by Rogister, Y., and Slawinski, M.A., (2005) Analytic solution of
ray-tracing equations for a linearly inhomogeneous and elliptically anisotropic velocity model: Geophysics, 70, D37 – D41.
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If the wave is also subjected to the linear increase of velocity along the z-axis, we can write

(8.5.2) v (ϑ, z) = (a+ bz)
√

(1 + 2χ) sin2 ϑ+ cos2 ϑ,

where a and b are constants whose units are the units of velocity and the reciprocal of time, respectively.

We refer to the velocity model described by this expression as the abχ model.

Note that the meaning of the term “model” used herein, although consistent with the common use in

seismology, is not the same as the meaning of models referred to in the footnote on page 7. Therein, the

models constitute a complete physical picture in the context of a mathematical theory.

We wish to formulate the eikonal equation corresponding to equation (8.5.2). Following equation (8.1.1),

we can write it as

p2 := p2
x + p2

z =
1

(a+ bz)2 [(1 + 2χ) sin2 ϑ+ cos2 ϑ
] .

To express ϑ in terms of vector p = [px, pz], we can write

(8.5.3) ϑ = arctan
px
pz

,

which is equivalent to expression (6.10.9). Inserting the expression for ϑ into the above equation and using

trigonometric identities, we get

p2
x + p2

z =
p2
x + p2

z

(a+ bz)2 [(1 + 2χ) p2
x + p2

z]
.

Simplifying, we obtain

(8.5.4) (a+ bz)2 [(1 + 2χ) p2
x + p2

z

]
= 1.

This is the eikonal equation that corresponds to elliptical anisotropy and linear inhomogeneity. Since the

right-hand side is equal to unity, this expression is also the level set of function (8.1.4).

To avoid any confusion about the meaning of px, pz , vx and vz , we refer the reader to Notation 6.10.1 on

page 181.

To see that we are dealing with a differential equation, let us take a look at eikonal equation (8.5.4) and, in

view of definition (7.3.2), rewrite it as

(8.5.5) (a+ bz)2

[
(1 + 2χ)

[
∂ψ (x, z)
∂x

]2

+
[
∂ψ (x, z)

∂z

]2
]

= 1.

We are looking for function ψ (x, z). Rather than attempting to solve this nonlinear partial differential

equation, we will study the system of ordinary differential equations that are the characteristic equations

of equation (8.5.4). The solution of this system will provide us with information about the physical phe-

nomenon that is governed by eikonal equation (8.5.4).
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8.5.3. Hamilton’s ray equations. Using expression (8.5.4), we write our ray-theory Hamiltonian as

H =
(a+ bz)2 [(1 + 2χ) p2

x + p2
z

]
2

,

which, as we can see, is a dimensionless quantity. Following equations (8.2.7), we write our Hamilton’s

ray equations as

(8.5.6)



ẋ = ∂H(z,px,pz)
∂px

= (a+ bz)2 (1 + 2χ) px

ż = ∂H(z,px,pz)
∂pz

= (a+ bz)2 pz

ṗx = −∂H(z,px,pz)
∂x = 0

ṗz = −∂H(z,px,pz)
∂z = −b (a+ bz)

[
(1 + 2χ) p2

x + p2
z

]
.

These are the characteristic equations of equation (8.5.4).

Since we can write equation (8.5.4) as

(1 + 2χ) p2
x + p2

z =
1

(a+ bz)2 ,

we can rewrite the last Hamilton’s ray equation as

ṗz = − b

a+ bz
.

Since ṗx = 0, it immediately follows that px (t) = p, where p denotes a constant. Now, we can write the

remaining three Hamilton’s ray equations as a system of ordinary differential equations to be solved for x,

z and pz . These equations are

(8.5.7)
dx (t)

dt
= [a+ bz (t)]2 (1 + 2χ) p,

(8.5.8)
dz (t)

dt
= [a+ bz (t)]2 pz (t)

and

(8.5.9)
dpz (t)

dt
= − b

a+ bz (t)
.

8.5.4. Initial conditions. To complete this system of differential equations, we need additional con-

straints. We choose to use the initial conditions, which correspond to the values of unknowns at the initial

time. In other words, we need x (t), z (t), px (t) and pz (t) at t = 0. While we already have px (0) = p, let

us set x (0) = 0 and z (0) = 0 and pz (0) = pz0. The initial condition for pz (t) is not independent from

the initial condition for px (t). They are related by eikonal equation (8.5.4). Solving this equation for pz
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at t = 0, which corresponds to z = 0, we get

pz (0) =

√
1
a2
− (1 + 2χ) [px (0)]2.

Since px (0) = p, the initial condition for pz that obeys the eikonal equation is

(8.5.10) pz (0) =

√
1
a2
− (1 + 2χ) p2.

System (8.5.6) accompanied by the initial conditions has a clear meaning in the context of ray theory. We

will discuss it in the next section.

8.5.5. Physical interpretation of equations and conditions.

Ray velocity. The first two equations of system (8.5.6) define the vector field in the xz-plane. Herein,

solution [x (t) , z (t)] describes the path of a signal under elliptical velocity dependence with direction and

a linear velocity dependence along the z-axis; this path is the ray. Below, we will discuss the physical

information contained in the equations themselves.

Considering the first two equations of system (8.5.6), we can express the magnitude of the velocity of the

signal along the ray as

V =

√(
dx
dt

)2

+
(

dz
dt

)2

,

where V is referred to as the ray velocity. We can explicitly write

V =

√(
[a+ bz (t)]2 (1 + 2χ) p

)2
+
(

[a+ bz (t)]2 pz (t)
)2
,

which we rewrite as

V = [a+ bz (t)]2
√

(1 + 2χ)2 p2 + pz (t)2.

This expression relates the ray velocity to the wavefront slowness.

Ray orientation. Considering the first two equations of system (8.5.6), we can express the direction of

a ray as

θ = arctan
dx
dz

,

where θ is measured from the z-axis and is referred to as the ray angle. Herein, by referring to system

(8.5.6), we write

θ = arctan
dx
dz

= arctan
ẋ

ż
= arctan

[
(1 + 2χ)

px
pz

]
,

which we can rewrite as

tan θ = (1 + 2χ)
px
pz
.

Invoking expression (6.10.9), we can write

(8.5.11) tan θ = (1 + 2χ) tanϑ,
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which explicitly relates ray and phase angles.

Wavefront orientation. To gain more understanding of expression (6.10.9), which was already dis-

cussed between pages 181 and 183, we examine the last two equations of system (8.5.6).

We recall that contours of ψ (x, z) correspond to wavefronts at given instants of time. Hence, in view

of definition (7.3.2), px := ∂ψ/∂x and pz = ∂ψ/∂z at a given point, (x (t) , z (t)), are components of

slowness with which a wavefront propagates at this point. Also, vector p = [px, pz] at (x (t) , z (t)) is

normal to the wavefront at this point. In view of expression (8.5.3), we write

ϑ = arctan
px
pz

,

where ϑ is the phase angle, which gives the direction of wavefront propagation.

Initial conditions. Now, let us examine the physical meaning of the initial conditions. Setting

[x (0) , z (0)] = [0, 0] ,

we fix the origin of the ray at the initial time. In other words, we locate the point source at the origin. In

view of continuity of wavefronts and considering the inhomogeneity along the z-axis only, we know that

p =
sinϑ
v (ϑ, z)

.

Considering z = 0 and using expression (8.5.2), we can write

(8.5.12) px (0) = p =
sinϑ0

a
√

(1 + 2χ) sin2 ϑ0 + cos2 ϑ0

,

where ϑ0 denotes the take-off phase angle; in other words, the direction of the wavefront at the source.

8.5.6. Solution of Hamilton’s ray equations.

General solution. We wish to solve system (8.5.6). Since we already know that px = p, we must solve

equations (8.5.7), (8.5.8) and (8.5.9) for x (t), z (t) and pz (t).

To do so, let us write the second equation of system (8.5.6) as

pz =
dz
dt

[a+ bz]2
.

Differentiating with respect to t, we get

dpz
dt

=
d2z
dt2

(a+ bz)− 2b
(

dz
dt

)2
(a+ bz)3 .

Equating this result with the fourth equation of system (8.5.6) and rearranging, we get

(a+ bz)
d2z

dt2
− 2b

(
dz
dt

)2

+ b (a+ bz)2 = 0.
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Letting (a+ bz)2 = y, we get
1
2b

d2y

dt2
− 3

4yb

(
dy
dt

)2

+ by = 0.

Letting y = a2 expu, we get
d2u

dt2
− 1

2

(
du
dt

)2

+ 2b2 = 0.

Letting du/dt = q, we get
dq
dt
− 1

2
q2 + 2b2 = 0.

We can rewrite this equation as

dt =
dq

1
2q

2 − 2b2
.

Integrating both sides of this equation, we get

t+A1 = −1
b

tanh−1 q

2b
,

where A1 is an integration constant. Solving for q, we get

q = 2b tanh (−b (t+A1)) .

To obtain u, we integrate and get

u = −2 ln (cosh (−b (t+A1))) +A2,

where A2 is an integration constant. Hence,

(8.5.13) y = a2 exp [A2] cosh−2 (−b (t+A1)) .

Since z =
(√
y − a

)
/b, we have the solution of the second equation of system (8.5.6), namely,

z (t) =
1
b

a exp
(
A2
2

)
cosh (−b (t+A1))

− a

b
.

Also — in view of the second equation of system (8.5.6) — we have pz = ż/y. Thus, we have the solution

of the fourth equation of system (8.5.6). This solution is

pz (t) = −sinh (−b (t+A1))
a exp

(
A2
2

) .

We can write the remaining equation of system (8.5.6) as

dx
dt

= y (1 + 2χ) p,

where y is given by expression (8.5.13). Integrating, we get

x (t) =
p (1 + 2χ) a2 expA2

b
tanh (b (t+A1)) +A3,
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where A3 is an integration constant. Thus, we can concisely write the general solution of system (8.5.6) as

(8.5.14)



x (t) = p(1+2χ)a2 expA2

b tanh (b (t+A1)) +A3

z (t) = 1
b

a exp
“
A2
2

”
cosh(b(t+A1)) −

a
b

px (t) = p

pz (t) = − sinh(−b(t+A1))

a exp
“
A2
2

”

.

Integration constants. Now, we can find the three integration constants. At t = 0, using the initial

conditions discussed in Section 8.5.4, we can rewrite the solutions stated in the first two expressions of set

(8.5.14) as

x (0) =
p (1 + 2χ) a2 expA2

b
tanh (bA1) +A3 = 0,

z (0) =
1
b

a exp
(
A2
2

)
cosh (bA1)

− a

b
= 0.

Also, considering z = 0 and using the second equation of system (8.5.6) combined with solution z (t)

given in set (8.5.14) and evaluating at t = 0, we can write

pz (0) =
ż (0)
a2

= − sinh (bA1)
a exp

(
A2
2

) =

√
1
a2
− (1 + 2χ) p2,

where the right-hand side is given in expression (8.5.10).

Considering the last two equations, we have a system of two equations in two unknowns, A1 and A2.

Solving, we obtain

A1 = −1
b

tanh−1
√

1− (1 + 2χ) p2a2,

A2 = − ln
[
(1 + 2χ) p2a2

]
.

Inserting A1and A2 into the equation for x (0), we obtain

A3 =

√
1− (1 + 2χ) p2a2

pb
.

Examining A1, A2 and A3, we see that the units of A1 are the units of time, A2 is dimensionless and the

units of A3 are the units of distance. This is consistent with positions of the A1, A2 and A3 in system

(8.5.14).
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Unique solution. Having found A1, A2 and A3, we can rewrite solutions (8.5.14) as

(8.5.15)



x (t) = 1
pb

[
tanh

(
bt− tanh−1

√
1− (1 + 2χ) p2a2

)
+
√

1− (1 + 2χ) p2a2
]

z (t) = a
b

[
1

pa cosh
“

tanh−1
√

1−(1+2χ)p2a2−bt
”√

1+2χ
− 1

]

px (t) = p

pz (t) = p
√

1 + 2χ sinh
(

tanh−1
√

1− (1 + 2χ) p2a2 − bt
)

,

where, in view of expression (8.5.12), we have

p =
sinϑ0

a
√

(1 + 2χ) sin2 ϑ0 + cos2 ϑ0

with ϑ0 being the take-off phase angle.

Thus — for a velocity model given by a, which is the velocity at z = 0, b, which describes the increase of

velocity along the z-axis, and χ, which describes the elliptical velocity dependence with direction — we

can choose the phase take-off angle, ϑ0, and, using the first two expressions of solutions (8.5.15), obtain

the ray along which the signal generated at (0, 0) propagates.

Geometrical interpretation. Examination of the first two expressions of solutions (8.5.15) allows us

to learn about the shape of rays for the abχ model. We can write each of these expressions as

pbx (t)−
√

1− p2a2 (1 + 2χ) = tanh
(
bt− tanh−1

√
1− (1 + 2χ) p2a2

)
and [

b

a
z (t) + 1

]
pa
√

1 + 2χ =
1

cosh
(
bt− tanh−1

√
1− (1 + 2χ) p2a2

) ,

respectively. Squaring these two equations, adding them together, and using standard identities, we obtain

(8.5.16)

(
x−
√

1−p2a2(1+2χ)

pb

)2

(
1
pb

)2 +

(
z + a

b

)2(
1

pb
√

1+2χ

)2 = 1.

This is the equation of an ellipse with a centre on the line given by z = −a/b. In other words, in the

abχ model, rays are elliptical arcs. In view of v (z) = a + bz, we conclude that the centre of the ellipse

corresponds to the level where the velocity vanishes. This equation is identical to the one that we will

obtain in Section 14.3.2 using Lagrange’s, rather than Hamilton’s, ray equations.

8.5.7. Solution of eikonal equation. Using solutions (8.5.15), we can obtain the graph of the so-

lution of the original partial differential equation, namely, eikonal equation (8.5.4), as a parametric plot
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[x (t) , z (t) , t] for all p that are consistent with the original equation. In the present case, we set ϑ0 ∈
(−π/2, π/2) to get, following expression (8.5.12),

p ∈
(
−1/

[
a
√

1 + 2χ
]
, 1/

[
a
√

1 + 2χ
])
.

In the case of the present example, we can also obtain an explicit analytic form of the solution of the

original partial differential equation, namely, eikonal equation (8.5.4). In other words, we can use our

results to obtain ψ (x, z). To do so, we proceed in the following way. Since t = ψ (x, z), let us solve the

first equation of set (8.5.15) for t. We get

(8.5.17) t (x; p) =
tanh−1

[
pbx−

√
1− p2a2 (1 + 2χ)

]
+ tanh−1

√
1− p2a2 (1 + 2χ)

b
.

To express t in terms of x and z, and the parameters of a given abχ model, we solve equation (8.5.16) for

p. We get

(8.5.18) p (x, z) =
2x√

[x2 + (1 + 2χ) z2] [(2a+ bz)2 (1 + 2χ) + b2x2]
.

Thus, expression (8.5.17) with p given by expression (8.5.18) is the solution of equation (8.5.4). In the

context of expressions (8.5.17) and (8.5.18), we can write this solution as ψ = t (x, z).

We can also obtain the expression for t by solving the second equation of set (8.5.15), as shown in Exercise

8.10, where it appears as expression (8.7.17). Traveltime expression (8.5.17), stated above, is valid for the

entire trajectories of all rays. Traveltime expression (8.7.17), stated below, is valid for only the downgoing

segment of the rays. Both traveltime expressions are valid as long as the corresponding coordinates, x and

z, respectively, are increasing; coordinate x increases for the entire ray, but coordinate z increases only for

the downgoing segment of the ray. This distinction of the validity of the traveltime expressions will appear

again, and will be discussed in more detail, in Section 14.3.3, in the context of integration along the x-axis

and the z-axis.

8.5.8. Physical interpretation of solutions. Above, we discussed the rays and traveltimes, which are

obtained from the solutions of Hamilton’s ray equations (8.5.6). We also discussed wavefronts, which are

obtained from the solution of eikonal equation (8.5.4). The physical meaning of these solutions is obvious.

We did not yet explicitly use solution pz , although we had to use all four equations to solve system (8.5.6).

Now, we will explicitly use pz to express the magnitude of the slowness of the wavefront propagation.

Since the wavefront slowness is the reciprocal of the wavefront velocity, we write

v =
1

√
p · p

=
1√

[px, pz] · [px, pz]
=

1√
p2 + p2

z

,

where v is referred to as the phase velocity.
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8.6. Example: Isotropy and inhomogeneity

8.6.1. Parametric form. In most cases, one would solve Hamilton’s ray equations given in expres-

sion (8.2.7) by numerical methods. Since Hamilton’s ray equations are first-order linear ordinary differen-

tial equations, the solution can be obtained using standard computer tools.

As shown in Section (8.5), in particular cases system (8.2.7) allows us to analytically, rather than numer-

ically, study ray theory in the context of anisotropic inhomogeneous continua. To gain further familiarity

with this system, let us now consider a formulation for isotropic inhomogeneous continua, where eikonal

equation (8.1.1) reduces to

(8.6.1) p2 =
1

v2 (x)
,

which is eikonal equation (6.10.22).

To study ray equations in isotropic inhomogeneous continua, let us choose function (8.1.3), which becomes

(8.6.2) F (x) = p2 − 1
v2 (x)

.

Using system (8.1.13), we can write the corresponding characteristic equations as

(8.6.3)


dxi
ds = 2ζpi

dpi
ds = −2ζ 1

v3
∂v
∂xi

, i ∈ {1, 2, 3} .

Also, let us choose scaling factor ζ so that s is the arclength parameter. As shown in Exercise 8.6, we

obtain the arclength parametrization of system (8.6.3) by letting ζ = v/2. Furthermore, as shown in

Exercise 8.7, system (8.6.3) can be restated as a single expression

(8.6.4)
d
ds

[
1

v (x)
dx
ds

]
= −∇v (x)

v2 (x)
,

where x = [x1, x2, x3].

Equation (8.6.4) relates the properties of the continuum, which are given by the phase-velocity function

v (x), to the ray x (s), which is described by arclength parameter s.

8.6.2. Explicit form. Consider a three-dimensional isotropic inhomogeneous continuum where x =

[x, y, z]. Expression (8.6.4) can be explicitly written as three parametric equations for x (s), y (s) and



Closing remarks 253

z (s), namely,

d
ds

(
1

v (x)
dx
ds

)
= − 1

v2 (x)
∂v (x)
∂x

,

d
ds

(
1

v (x)
dy
ds

)
= − 1

v2 (x)
∂v (x)
∂y

,(8.6.5)

d
ds

(
1

v (x)
dz
ds

)
= − 1

v2 (x)
∂v (x)
∂z

,

where s is the arclength parameter along the ray. Consequently, all three equations are related by ds =√
(dx)2 + (dy)2 + (dz)2, where x, y and z are the orthonormal coordinates. Consequently, as shown in

Exercise 8.11, instead of using the parametric form, under certain conditions related to the behaviour of

the curve x (s), we can write equations (8.6.5) as two equations for x (z) and y (z), namely,

(8.6.6)
d
dz

 1
v (x)

dx
dz√(

dx
dz

)2
+
(

dy
dz

)2
+ 1

 = − 1
v2 (x)

∂v (x)
∂x

√(
dx
dz

)2

+
(

dy
dz

)2

+ 1

and

(8.6.7)
d
dz

 1
v (x)

dy
dz√(

dx
dz

)2
+
(

dy
dz

)2
+ 1

 = − 1
v2 (x)

∂v (x)
∂y

√(
dx
dz

)2

+
(

dy
dz

)2

+ 1,

which form a system of explicit equations for isotropic inhomogeneous continua.

If the continuum exhibits only vertical inhomogeneity, v = v (z), the right-hand sides of equations (8.6.6)

and (8.6.7) vanish and, for the resulting equations, we can obtain an analytic solution, as shown in Exercise

8.12. If, however, the properties of the medium vary along the x-axis and the y-axis, we must often resort

to numerical methods to obtain a solution.9

Closing remarks

By solving the eikonal equation using the method of characteristics, we obtain Hamilton’s ray equations

whose solutions give rays. Hamilton’s ray equations are rooted in the high-frequency approximation and

the trial solutions discussed in Chapters 6 and 7, and the resulting rays are given by function x = x (t).

We can study the entire ray theory in the context of Hamilton’s ray equations, which is the most rigorous

method for studying seismic rays.

In Chapter 11, however, we will explore another formulation of rays using the approach that transforms

Hamilton’s six first-order equations into Lagrange’s three second-order equations. Also, this Lagrangian

formulation coincides with the variational approach to the study of ray theory, which we will discuss in

9Readers interested in numerical techniques to solve these differential equations might refer to Červený, V., and Ravindra,
R., (1971) Theory of seismic head waves: University of Toronto Press, pp. 25 – 26.
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Part 3. By investigating both of these approaches, we gain additional physical insight into ray theory, as

well as additional knowledge of useful mathematical tools.

In general, ray theory is related to the Wentzel-Kramers-Brillouin-Jeffreys (WKBJ) method for solving

differential equations. The WKBJ method is also used in other physical theories, for instance, in quantum

mechanics.10 Ray theory is an approximation of wave theory as classical mechanics is an approximation

of quantum mechanics. The high-frequency approximation is analogous to assuming the action, discussed

in Section 13.2.2, to be infinitely divisible, as is the case in classical mechanics. This is not the case in

quantum mechanics due to the existence of Planck’s constant, which is the fundamental unit, or quantum,

of action.11

10Readers interested in the WKBJ method might refer to Aki, K. and Richards, P.G., (2002) Quantitative seismology (2nd
edition): University Science Books, pp. 434 – 437, (Box 9.6), and to Woodhouse, N.M.J., (1992) Geometric quantization (2nd
edition): Oxford Science Publications, pp. 197 – 201 and pp. 236 – 249.

11Readers interested in the association of the geometrical optics and quantum mechanics might refer to Goldstein, H.,
(1950/1980) Classical mechanics: Addison-Wesley Publishing Co., pp. 484 – 492, and to Batterman, R.W., (2002) The devil
in the details: Asymptotic reasoning in explanation, reduction, and emergence: Oxford University Press, Chapters 6 and 7.
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8.7. Exercises

EXERCISE 8.1. Consider a three-dimensional isotropic inhomogeneous continuum. Using Hamilton’s ray

equations (8.2.7), show that, in isotropic continua, rays are orthogonal to wavefronts.

SOLUTION 8.1. Following expression (8.2.8), we can explicitly write Hamiltonian H (x,p), in a three-

dimensional isotropic inhomogeneous continuum, as

(8.7.1) H (x,p) =
1
2
p2v2 (x) =

1
2

[p1, p2, p3] · [p1, p2, p3] v2 (x1, x2, x3) .

The corresponding Hamilton’s ray equations (8.2.7) are

(8.7.2)



ẋ1 = p1v
2

ẋ2 = p2v
2

ẋ3 = p3v
2

ṗ1 = −p2v ∂v
∂x1

ṗ2 = −p2v ∂v
∂x2

ṗ3 = −p2v ∂v
∂x3

.

Recalling definition (7.3.2), we can write the first three equations of system (8.7.2) as

(8.7.3) [ẋ1, ẋ2, ẋ3] = v2

[
∂ψ

∂x1
,
∂ψ

∂x2
,
∂ψ

∂x3

]
.

The left-hand side of equation (8.7.3) is a vector tangent to the curve x (t), while the right-hand side is the

gradient of function ψ (x), scaled by v2. For a given point of the continuum, we can write equation (8.7.3)

as

t|x1,x2,x3
= v2 (∇ψ)

∣∣
x1,x2,x3

.

This means that vector t, which is tangent to curve x (t), is parallel to the gradient of the eikonal function,

∇ψ (x). Since curve x (t) corresponds to the ray and the level sets of the eikonal function correspond to the

wavefronts, by the properties of the gradient operator, the rays in an isotropic inhomogeneous continuum

are orthogonal to the wavefronts.

EXERCISE 8.2. Derive expression (8.4.12) using level-set function (8.1.4) and characteristic equations

(8.1.13).

SOLUTION 8.2. In view of expression (8.4.10), the ray angle can be stated as

(8.7.4) tan θ =
dx1
ds

dx3
ds

,

where s defines the parametrization of the ray x (s), and dxi/ds are the components of the vector tangent

to the ray. Since expression (8.7.4) is given as a ratio, the actual parametrization has no effect on the ray
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angle. Consider a given point in an anisotropic continuum and the level-set function given by expression

(8.1.4), namely,

(8.7.5) F (p) = p2v2 (p) = 1.

At a given point, expression (8.7.5) is not a function of x, and, hence, ∂F/∂xi = 0. Thus, characteristic

equations (8.1.13), are reduced to

dxi
ds

= ζ
∂F

∂pi
= 2ζ

(
piv

2 + p2v
∂v

∂pi

)
, i ∈ {1, 2} .

Following expression (8.7.4), we can write the ray angle as

(8.7.6) tan θ =
2ζ
(
p1v

2 + p2v ∂v
∂p1

)
2ζ
(
p3v2 + p2v ∂v

∂p3

) =
p1v

2 + p2v ∂v
∂p1

p3v2 + p2v ∂v
∂p3

.

We wish to express the quantities on the right-hand side of expression (8.7.6) in terms of the phase angle,

ϑ. Recalling expression (8.4.5), we can write the differential operator in the numerator as

∂

∂p1
=

∂ϑ

∂p1

∂

∂ϑ
=
∂ arctan p1

p3

∂p1

∂

∂ϑ

=
1
p3

1 +
(
p1

p3

)2

∂

∂ϑ
=
p3

p2

∂

∂ϑ
.

Similarly, we obtain the differential operator in the denominator, which is

∂

∂p3
= −p1

p2

∂

∂ϑ
.

Using these differential operators in expression (8.7.6), we can rewrite it as

tan θ =
p1v

2 + p3v
∂v
∂ϑ

p3v2 − p1v
∂v
∂ϑ

=
p1 + p3

1
v
∂v
∂ϑ

p3 − p1
1
v
∂v
∂ϑ

.

Again, recalling expression (8.4.5), we divide both the numerator and the denominator by p3 to obtain

tan θ =
p1

p3
+ 1

v
∂v
∂ϑ

1− p1

p3

1
v
∂v
∂ϑ

=
tanϑ+ 1

v
∂v
∂ϑ

1− tanϑ
v

∂v
∂ϑ

,

which is expression (8.4.12), as required.

EXERCISE 8.3. Derive expression (8.4.12) using level-set function (8.1.3) and characteristic equations

(8.1.13).

SOLUTION 8.3. Recall expression (8.7.4). Consider a given point in an anisotropic continuum and the

level-set function that is given by expression (8.1.3), namely,

(8.7.7) F (p) = p2 − 1
v2 (p)

= 0.
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At a given point, expression (8.7.7) is not a function of x, and, hence, ∂F/∂xi = 0. Thus, characteristic

equations (8.1.13), are reduced to

dxi
ds

= ζ
∂F

∂pi
= 2ζ

(
pi +

1
v3

∂v

∂pi

)
, i ∈ {1, 2} .

Following expression (8.7.4), we can write the ray angle as

(8.7.8) tan θ =
p1 + 1

v3
∂v
∂p1

p3 + 1
v3

∂v
∂p3

.

We wish to express the quantities on the right-hand side of expression (8.7.8) in terms of the phase angle,

ϑ. In view of expression (8.4.5), we consider the differential operator in the numerator, namely,

∂

∂p1
=

∂ϑ

∂p1

∂

∂ϑ
=
∂ arctan p1

p3

∂p1

∂

∂ϑ

=
1
p3

1 +
(
p1

p3

)2

∂

∂ϑ
=

p3

p2
1 + p2

3

∂

∂ϑ
.

Considering the phase-slowness vector given by p = [p1, p3], we can write p2 = p · p. Hence, the

differential operator becomes
∂

∂p1
=
p3

p2

∂

∂ϑ
.

Similarly, we obtain the differential operator in the denominator, which is

∂

∂p3
= −p1

p2

∂

∂ϑ
.

Using these differential operators in expression (8.7.8), we can rewrite it as

tan θ =
p1 + 1

v3
p3

p2
∂v
∂ϑ

p3 − 1
v3
p1

p2
∂v
∂ϑ

.

Following eikonal equation (7.3.8), we can state p2v2 = 1, and, hence, we can write

tan θ =
p1 + p3

v
∂v
∂ϑ

p3 − p1

v
∂v
∂ϑ

.

Again, recalling expression (8.4.5) and dividing both numerator and denominator by p3, we obtain

tan θ =
p1

p3
+ 1

v
∂v
∂ϑ

1−
p1
p3
v
∂v
∂ϑ

=
tanϑ+ 1

v(ϑ)
∂v(ϑ)
∂ϑ

1− tanϑ
v(ϑ)

∂v(ϑ)
∂ϑ

,

which is expression (8.4.12), as required.

EXERCISE 8.4. Using expressions (8.4.9) and (8.4.12), derive expression (8.4.13).
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SOLUTION 8.4. Using algebraic manipulation, we can write expression (8.4.12), namely,

tan θ =
tanϑ+ 1

v
∂v
∂ϑ

1− tanϑ
v

∂v
∂ϑ

,

as
∂v

∂ϑ
= v

tan θ − tanϑ
1 + tan θ tanϑ

.

Recognizing the trigonometric identity, we can rewrite it as

(8.7.9)
∂v

∂ϑ
= v tan (θ − ϑ) .

Consider expression (8.4.9). In view of expression (8.7.9), we can write

V =

√
v2 +

(
∂v

∂ϑ

)2

=
√
v2 + v2 tan2 (θ − ϑ)

= v
√

1 + tan2 (θ − ϑ).

Using trigonometric identities, we obtain

(8.7.10) V =
v

cos (θ − ϑ)
,

which, notably, is expression (8.4.14). The argument of the cosine function is the angle between the ray-

velocity vector, V, and the phase-velocity vector, v. As defined in expression (8.4.13), let t be the unit

vector tangent to the ray, and n be the unit vector normal to the wavefront. Hence, θ − ϑ is the angle

between n and t. Thus, we can immediately rewrite expression (8.7.10) as

V =
v

n · t
,

which is expression (8.4.13), as required.

EXERCISE 8.5. Derive a particular case of expression (8.4.12) that corresponds to the elliptical velocity

dependence.

SOLUTION 8.5. Inserting expression (6.10.11) into expression (8.4.9), we can write the magnitude of the

ray-velocity vector as

(8.7.11) V (ϑ) =

√
v4
x tan2 ϑ+ v4

z

v2
x tan2 ϑ+ v2

z

.

This is the magnitude of ray velocity in terms of the phase velocity as a function of the phase angle for the

case of elliptical velocity dependence. Also, inserting expression (6.10.11) into expression (8.4.12), we

obtain

(8.7.12) tan θ =
(
vx
vz

)2

tanϑ,
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which is the relation between the phase angle and the ray angle for elliptical velocity dependence. Expres-

sion (8.7.12) is analogous to expression (9.4.8), which corresponds to SH waves in transversely isotropic

continua. Inserting expression (8.7.12) into expression (8.7.11), we can write the magnitude of the ray-

velocity vector in terms of ray-related quantities, namely,

(8.7.13) V (θ) = Vz

√√√√ tan2 θ + 1(
Vz
Vx

)2
tan2 θ + 1

,

where Vx and Vz are the magnitudes of the ray-velocity vector along the x-axis and z-axis, respectively.

Herein, we use the fact that, along the axes of the ellipse, the magnitudes of the phase velocity and the ray

velocity coincide.

REMARK 8.7.1. Characteristic equations (8.1.13) can be parametrized by choosing various expressions

for scaling factor ζ. Two typical examples are shown in Exercises 8.7 and 8.8, below. In both cases, we

invoke function (8.1.3) and consider isotropic inhomogeneous continua. Hence, characteristic equations

(8.1.13) become equations (8.6.3).

EXERCISE 8.6. 12Show that the arclength parametrization of system (8.6.3) requires ζ = v/2.

SOLUTION 8.6. In general, if x = x (s), using definition (8.1.2), we can write

dψ (x)
ds

=
3∑
i=1

∂ψ

∂xi

dxi
ds

=
3∑
i=1

pi
dxi
ds

,

which, in view of characteristic equations (8.6.3), we can rewrite as

dψ (x)
ds

=
3∑
i=1

2ζpipi,

which we can immediately restate as

(8.7.14)
dψ (x)

ds
= 2ζp2.

If s is the arclength parameter, then

ds =
√

(dx)2 + (dy)2 + (dz)2,

and, hence,

(8.7.15)
ds
dt

=

√(
dx
dt

)2

+
(

dy
dt

)2

+
(

dz
dt

)2

,

where t stands for traveltime. Combining expressions (8.7.14) and (8.7.15), we obtain

(8.7.16)
dψ (x)

dt
=

dψ (x)
ds

ds
dt

= 2ζp2

√(
dx
dt

)2

+
(

dy
dt

)2

+
(

dz
dt

)2

.

12See also Section 8.6.1.
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In view of condition (8.2.1) and since the square root gives the magnitude of velocity, we can rewrite

equation (8.7.16) as

1 = 2ζp2v.

Solving for ζ, where — in view of equation (8.6.1) — we use p2v2 = 1, we get

ζ =
1

2p2v
=

v

2p2v2
=
v

2
,

as required.

EXERCISE 8.7. 13Letting ζ = v/2, show that characteristic equations (8.6.3) can be reduced to equation

(8.6.4), namely,
d
ds

[
1

v (x)
dx
ds

]
= −∇v (x)

v2 (x)
.

SOLUTION 8.7. If ζ = v/2, characteristic equations (8.6.3) become
dxi
ds = vpi

dpi
ds = − 1

v2
∂v
∂xi

, i ∈ {1, 2, 3} .

The first equation of this system can be rewritten as

pi =
1
v

dxi
ds

, i ∈ {1, 2, 3} .

Hence, the second equation can be stated as

dpi
ds

=
d
ds

(
1
v

dxi
ds

)
= − 1

v2

∂v

∂xi
, i ∈ {1, 2, 3} .

Thus, the system of characteristic equations can be written as a single expression

d
ds

(
1

v (x)
dx
ds

)
= −∇v (x)

v2 (x)
,

where x = [x1, x2, x3], which is equation (8.6.4), as required.

EXERCISE 8.8. 14Letting ζ = v2/2, show that characteristic equations (8.6.3) can be written as a system

of equations given by 
ẋi = v2pi

ṗi = − ∂
∂xi

ln v

, i ∈ {1, 2, 3} .

SOLUTION 8.8. As shown in Section 8.2, using function (8.1.3) and letting ζ = v2/2 results in the time

parametrization of characteristic equations (8.1.13). Hence, characteristic equations (8.6.3) can be written

13See also Section 8.6.1.
14See also Section 8.2.2 and Exercise 13.3.
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as 
ẋi := dxi

dt = v2pi

ṗi := dpi
dt = − 1

v
∂v
∂xi

, i ∈ {1, 2, 3} .

Following the chain rule, we can restate the second equation of this system to obtain
ẋi = v2pi

ṗi = − ∂
∂xi

ln v

, i ∈ {1, 2, 3} ,

as required.

REMARK 8.7.2. Lemma 8.1.1 shows that both functions (8.1.3) and (8.1.4) yield the same characteristics.

Thus, in a seismological context, both functions result in the same rays. In view of Exercise 8.8, Exercise

8.9 illustrates this property for isotropic inhomogeneous continua.

EXERCISE 8.9. 15Using characteristic equations (8.2.4) and considering functions (8.1.4), show that, for

isotropic inhomogeneous continua, we obtain the system of equations
ẋi = v2pi

ṗi = − ∂
∂xi

ln v

, i ∈ {1, 2, 3} .

SOLUTION 8.9. Considering functions (8.1.4) for isotropic inhomogeneous continua, characteristic equa-

tions (8.2.4), which are parametrized in terms of time, become
ẋi = v2pi

ṗi = −p2v ∂v∂xi

, i ∈ {1, 2, 3} .

Since p2v2 = 1, we can write
ẋi = v2pi

ṗi = − 1
v
∂v
∂xi

= − ∂
∂xi

ln v

, i ∈ {1, 2, 3} ,

which is also the solution of Exercise 8.8.

EXERCISE 8.10. Solve the second equation of set (8.5.15) for t.

SOLUTION 8.10. Consider the second equation of set (8.5.15), namely,

z (t) =
a

b

 1

pa cosh
(

tanh−1
√

1− (1 + 2χ) p2a2 − bt
)√

1 + 2χ
− 1

 .

15See also Exercise 13.3.
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We can rearrange this equation to get

cosh
(

tanh−1
√

1− (1 + 2χ) p2a2 − bt
)

=
1

p (a+ bz)
√

1 + 2χ
.

Taking cosh−1 of both sides, we write

tanh−1
√

1− (1 + 2χ) p2a2 − bt = cosh−1 1
p (a+ bz)

√
1 + 2χ

.

Solving for t, we obtain

(8.7.17) t (z; p) =
1
b

(
tanh−1

√
1− (1 + 2χ) p2a2 − cosh−1 1

p (a+ bz)
√

1 + 2χ

)
,

as required.

REMARK 8.7.3. Expression (8.7.17) is valid for the downgoing segment of the ray, unlike expression

(8.5.17), which is valid for the entire ray, as discussed on page 251.

EXERCISE 8.11. Formally, show the steps leading from set (8.6.5) to equations (8.6.6) and (8.6.7).

SOLUTION 8.11. The first two equations can be written as

d
ds

(
1

v (x)
dx
ds

)
= − 1

v2 (x)
∂v (x)
∂x

,

d
ds

(
1

v (x)
dy
ds

)
= − 1

v2 (x)
∂v (x)
∂y

,

which leads to

ds
dz

d
ds

(
1

v (x)
dx
ds

ds
dz

dz
ds

)
= − 1

v2 (x)
∂v (x)
∂x

ds
dz

,

ds
dz

d
ds

(
1

v (x)
dy
ds

ds
dz

dz
ds

)
= − 1

v2 (x)
∂v (x)
∂y

ds
dz

,

where we multiplied both sides of the equations by ds/dz, and we multiplied the factors inside the paren-

theses by unity in the form (ds/dz) (dz/ds). The two equations can be immediately restated as

d
dz

(
1

v (x)
dx
dz

dz
ds

)
= − 1

v2 (x)
∂v (x)
∂x

ds
dz

,

(8.7.18)

d
dz

(
1

v (x)
dy
dz

dz
ds

)
= − 1

v2 (x)
∂v (x)
∂y

ds
dz

.

We assume the invertibilty of function z = z (s), which allows us to write s = s (z). Furthermore, we

assume that the behaviour of the space curve [x (s) , y (s) , z (s)] allows us to express it as [x (z) , y (z)].
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Consequently, from formal operations, we get

ds
dz
≡ ds (x (z) , y (z) , z)

dz
=

√
[dx (z)]2 + [dy (z)]2 + [dz (z)]2

dz

=

√(
dx
dz

)2

+
(

dy
dz

)2

+
(

dz
dz

)2

.

Thus, since ds/dz = 1/ (dz/ds), equations (8.7.18) can be stated as

d
dz

 1
v (x)

dx
dz√(

dx
dz

)2
+
(

dy
dz

)2
+ 1

 = − 1
v2 (x)

∂v (x)
∂x

√(
dx
dz

)2

+
(

dy
dz

)2

+ 1

and

d
dz

 1
v (x)

dy
dz√(

dx
dz

)2
+
(

dy
dz

)2
+ 1

 = − 1
v2 (x)

∂v (x)
∂y

√(
dx
dz

)2

+
(

dy
dz

)2

+ 1,

which — as required — are equations (8.6.6) and (8.6.7), respectively.

EXERCISE 8.12. Solve ray equations (8.6.6) and (8.6.7) for a vertically inhomogeneous continuum, where

v = v (z).

SOLUTION 8.12. Since v = v (z), the right-hand sides of equations (8.6.6) and (8.6.7) vanish. Conse-

quently, we obtain

d
dz

 1
v (z)

dx
dz√(

dx
dz

)2
+
(

dy
dz

)2
+ 1

 = 0,(8.7.19)

d
dz

 1
v (z)

dy
dz√(

dx
dz

)2
+
(

dy
dz

)2
+ 1

 = 0.

Since the velocity gradient is present only along the z-axis, the ray is contained in a single vertical plane.

Thus, with no loss of generality, we can assume that a given ray is contained in the xz-plane and, hence,

consider only equation (8.7.19). In view of the vanishing of the total derivative, equation (8.7.19) can be

restated as

(8.7.20)
1

v (z)

dx
dz√(

dx
dz

)2
+ 1

= p,
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where p is a constant. Equation (8.7.20), can be rewritten as(
dx
dz

)2

= p2v2

[(
dx
dz

)2

+ 1

]
.

Solving for dx/dz, we obtain

(8.7.21)
dx
dz

=
pv√

1− p2v2
,

and, hence we can state the solution as

x (z) =

z∫
z0

pv (ξ)√
1− p2v2 (ξ)

dξ,

where ξ is the integration variable. This is a standard expression for a ray in vertically inhomogeneous

continua, where, as shown in Exercise 8.13, p = sin θ/v (z).

EXERCISE 8.13. Consider equation (8.7.20). Show that p = sin θ/v (z).

SOLUTION 8.13. Since dx/dz = tan θ, following standard trigonometric identities, we can write equation

(8.7.20) as

p =
1

v (z)

dx
dz√(

dx
dz

)2
+ 1

=
1

v (z)
tan θ√

tan2 θ + 1
=

sin θ
cos θ

v (z) sec θ
=

sin θ
v (z)

.

EXERCISE 8.14. Consider a one-dimensional homogeneous continuum. Show that solution x (t) of Hamil-

ton’s ray equations (8.2.7) corresponds to coordinates (6.4.4), which can be written as

x (t) = x0 ± vt.

SOLUTION 8.14. For a one-dimensional case, letting x1 ≡ x and p1 ≡ p, we can write Hamilton’s ray

equations (8.2.7) as 
ẋ = pv2 + p2v ∂v∂p

ṗ = −p2v ∂v∂x

,

To study solution x (t), we consider the first equation. In elasticity theory, a one-dimensional continuum

must be isotropic, hence, ∂v/∂p = 0. Thus, we obtain

ẋ = pv2.

Since, in the one-dimensional case, p is the magnitude of the phase-slowness vector, we can write

ẋ =
1
p
p2v2.

In view of eikonal equation (7.3.8) and since v = ±1/p, we can write

ẋ :=
dx
dt

= ±v.
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Solving for dx, we obtain

dx = ±vdt.

Integrating both sides, we obtain

x (t) = x0 ± vt,

as required and where x0 is the integration constant.

EXERCISE 8.15. Following ray equation (8.6.4), show that rays are straight lines in homogeneous con-

tinua.16

SOLUTION 8.15. For homogeneous continua, v is constant and, hence, the right-hand side of ray equation

(8.6.4) vanishes. Thus, we obtain
d
ds

(
1
v

dx
ds

)
= 0.

The vanishing of the total derivative implies that the term in parentheses can be written as

1
v

dx
ds

= C,

where C denotes a constant vector. Rearranging and integrating gives

x = as+ b,

which is an equation of a straight line, where a := Cv.

16Readers interested in an insightful explanation of the straight-line appearance of the optical rays by the theory of quantum
electrodynamics might refer to Feynman, R.P., (1985/2006) QED: The strange theory of light and matter: Princeton University
Press, pp. 53 – 56, where we read that

the idea that light goes in a straight line is a convenient approximation to describe what happens in the world
that is familiar to us.





CHAPTER 9

Christoffel’s equations

Mathematical applications to physics occur in at least two aspects. Mathematics
is of course the principal tool for solving technical analytical problems, but in-
creasingly it is also a principal guide in our understanding of the basic structure
and concepts involved.1

Theodore Frankel (1997) The geometry of physics

Preliminary remarks

In Chapter 7, where we studied the equations of motion in anisotropic continua, we noted that waves

propagate therein with three distinct phase velocities. In Chapters 7 and 8, we denoted each of these

velocities by v = v (x,p), which is a function of both position and direction. Such a formulation allowed

us to derive general forms of the equations governing ray theory in anisotropic inhomogeneous continua,

namely, the eikonal equation and Hamilton’s ray equations. In this chapter, we wish to derive explicit

expressions for these three velocities in terms of the properties of a given continuum, namely, its mass

density and elasticity parameters.

We begin this chapter by writing Christoffel’s equations, derived in Chapter 7, explicitly in terms of mass

density and elasticity parameters. Based on the solvability of these equations, we are then able to formulate

the expressions for the three wave velocities, as well as for the associated displacement directions. Using

these expressions, we study two specific cases — the three waves that propagate along the symmetry axis

in a monoclinic continuum and the three waves that propagate in an arbitrary direction in a transversely

1Readers interested in philosophical aspects of this statement might refer to Steiner, M., (1998) The applicability of mathe-
matics as a philosophical problem: Harvard University Press, pp. 1 – 11.

Also, we might remind ourselves that
La physique a bâti ses propres critères de validation: n’est valide à ses yeux que ce qui est confirmé par
l’expérience; ni la cohérence logique ni l’élégance mathématique ne suffisent à elles seules à étayer une
théorie physique, même si elles sont souvant de précieux indicateurs.*

Etienne Klein (1991) Conversations avec le Sphinx: Les paradoxes en physique
*Physics has established its own criteria of validation: In its eyes, only things confirmed by experiments

are valid; neither logical consistency nor mathematical elegance suffice by themselves to support a physical
theory, even though they are often valuable indicators.
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isotropic continuum.2 The chapter concludes with a discussion of the three corresponding phase-slowness

surfaces and their intersections.

9.1. Explicit form of Christoffel’s equations

We wish to study Christoffel’s equations, shown in expression (7.3.3), namely,

(9.1.1)
3∑

k=1

 3∑
j=1

3∑
l=1

cijkl (x) pjpl − ρ (x) δik

Ak (x) = 0, i ∈ {1, 2, 3} ,

in the context of a specific continuum. In other words, we wish to rewrite equations (9.1.1) in a way that

allows us to conveniently insert the elasticity parameters of a continuum exhibiting a particular symmetry,

as discussed in Chapter 5.

Expressing the phase slowness as the reciprocal of the phase velocity, namely,

(9.1.2) p2 =
1
v2

,

and letting n2
i = p2

i /p
2, where p2 := p · p, be the squared components of the unit vector normal to the

wavefront, we can rewrite equations (9.1.1) as

(9.1.3) p2
3∑

k=1

 3∑
j=1

3∑
l=1

cijkl (x)njnl − ρ (x) v2δik

Ak (x) = 0, i ∈ {1, 2, 3} .

We can state equations (9.1.3) in matrix notation as

(9.1.4) p2
[
Γ (x,n)− ρ (x) v2I

]
A (x) = 0,

where

(9.1.5) Γ (x,n) =



3∑
j=1

3∑
l=1

c1j1l (x)njnl
3∑
j=1

3∑
l=1

c1j2l (x)njnl
3∑
j=1

3∑
l=1

c1j3l (x)njnl

3∑
j=1

3∑
l=1

c2j1l (x)njnl
3∑
j=1

3∑
l=1

c2j2l (x)njnl
3∑
j=1

3∑
l=1

c2j3l (x)njnl

3∑
j=1

3∑
l=1

c3j1l (x)njnl
3∑
j=1

3∑
l=1

c3j2l (x)njnl
3∑
j=1

3∑
l=1

c3j3l (x)njnl


,

2Readers interested in an insightful formulation of Christoffel’s equations and waves in a transversely isotropic continuum,
which is exemplified by a hexagonal crystal, might also refer to Newnham, R.E., (2005) Properties of materials: Anisotropy,
symmetry, structure: Oxford University Press, pp. 249 – 255.



9.1. EXPLICIT FORM OF CHRISTOFFEL’S EQUATIONS 269

which is equivalent to Christoffel’s matrix (7.3.7). 3Using formula (3.2.5), we can state the entries of

matrix Γ (x,n) in terms of the elasticity parameters Cmn (x), to obtain

Γ11 = C11n
2
1 + C66n

2
2 + C55n

2
3 + 2 (C16n1n2 + C56n2n3 + C15n1n3) ,

Γ22 = C66n
2
1 + C22n

2
2 + C44n

2
3 + 2 (C26n1n2 + C24n2n3 + C46n1n3) ,

Γ33 = C55n
2
1 + C44n

2
2 + C33n

2
3 + 2 (C45n1n2 + C34n2n3 + C35n1n3) ,

Γ12 = Γ21

= C16n
2
1 + C26n

2
2 + C45n

2
3

+ (C12 + C66)n1n2 + (C25 + C46)n2n3 + (C14 + C56)n1n3 ,

Γ13 = Γ31(9.1.6)

= C15n
2
1 + C46n

2
2 + C35n

2
3

+ (C14 + C56)n1n2 + (C36 + C45)n2n3 + (C13 + C55)n1n3 ,

Γ23 = Γ32

= C56n
2
1 + C24n

2
2 + C34n

2
3

+ (C25 + C46)n1n2 + (C23 + C44)n2n3 + (C36 + C45)n1n3 ,

where, for convenience of notation, we do not explicitly write Γrs (x,n) and Cmn (x). Thus, using the

elasticity matrices formulated in Chapter 5, expressions (9.1.6) allow us to state Christoffel’s equations

for a given continuum. Hence, we can conveniently study behaviour of the continuum in terms of its

properties, namely, its mass density and elasticity parameters.

System (9.1.4) is a homogeneous system of linear equations. In general, such a system has either only the

trivial solution, namely, A = 0, or infinitely many solutions in addition to the trivial solution. A neces-

sary and sufficient condition for a system of n homogeneous equations in n unknowns to have nontrivial

solutions is the vanishing of the determinant of the coefficient matrix.

3Note that it is also common to divide the elasticity parameters by mass density and, hence, to write Christoffel’s equations
(9.1.1) as

3X
k=1

 
3X
j=1

3X
l=1

cijkl (x)

ρ (x)
pjpl − δik

!
Ak (x) = 0, i ∈ {1, 2, 3} ,

where, as we see in view of Exercise 2.6, the cijkl/ρ have units of velocity squared. The corresponding solvability condition can
be written as

det [Γik(x,p)− δik] = 0, i, k ∈ {1, 2, 3} ,
where the entries of matrix Γ(x,p) are

Γik(x,p) :=

3X
j=1

3X
l=1

cijkl (x)

ρ (x)
pjpl, i, k ∈ {1, 2, 3} .

Each of the three eigenvalues of Γ(x,p), namely, Gi(x,p), where i ∈ {1, 2, 3}, results in an eikonal equation, which we can
write as

Gi(x,p) = 1, i ∈ {1, 2, 3} ,
and which is equivalent to equation (7.3.8).
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We wish to examine the solvability of system (9.1.4). Since, for physically meaningful solutions, we

require p2 6= 0, as discussed in Section 7.3, system (9.1.4) can be written as

(9.1.7)
[
Γ (x,n)− ρ (x) v2I

]
A (x) = 0.

Hence, we can write the solvability condition of system (9.1.7) as

(9.1.8) det

 Γ11 (x,n)− ρ (x) v2 Γ12 (x,n) Γ13 (x,n)

Γ12 (x,n) Γ22 (x,n)− ρ (x) v2 Γ23 (x,n)

Γ13 (x,n) Γ23 (x,n) Γ33 (x,n)− ρ (x) v2

 = 0.

Determinantal equation (9.1.8) is an eigenvalue equation. We wish to learn about the associated eigenval-

ues and eigenvectors. Γ is a symmetric matrix as shown in Exercise 7.3. Consequently, we can invoke

explicitly two theorems of linear algebra, namely,4

THEOREM 9.1.1. Since Γ is symmetric, the corresponding eigenvalues are real.

and

THEOREM 9.1.2. Since Γ is symmetric, the corresponding eigenvectors are orthogonal to each other.

In view of Theorem 9.1.1, the determinantal equation, stated in expression (9.1.8), has three real roots —

the eigenvalues ρv2
i , where i = 1, 2, 3. Furthermore, in view of Theorem 9.1.2, the three corresponding

eigenvectors are orthogonal to each other.

To recognize the physical meaning of the eigenvalues and eigenvectors of system (9.1.7), consider trial

solution (7.2.1), which led to Christoffel’s equations and which can be written as

(9.1.9) u (x, t) = A (x) f {v0 [ψ (x)− t]} .

Examining expression (9.1.9) and in view of definition (7.3.2), namely, pj := ∂ψ/∂xj , and expression

(9.1.2), namely, p2 = 1/v2, we see that the three eigenvalues correspond to three distinct phase velocities,

which are measured normal to the wavefront of a given wave. In view of Theorem 9.1.1, these velocities

are real.

Also, as stated in trial solution (7.2.1), A (x) is the displacement vector. Hence, each eigenvector corre-

sponds to the displacements of the continuum associated with the propagation of a given wave. In view of

Theorem 9.1.2, each wave exhibits the displacement vector that is orthogonal to the displacement vectors

of the other two waves.

The three displacement vectors are orthogonal to each other at a given point of the continuum only if

all three corresponding wavefronts exhibit the same direction at that point. In seismological studies, if

4For proofs of Theorem 9.1.1 and Theorem 9.1.2, interested readers might refer to Anton, H., (1973) Elementary linear
algebra: John Wiley & Sons, p. 289 and p. 399, and pp. 286 – 287, respectively.
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we place a receiver in an inhomogeneous continuum at a certain distance from the source — where, in

general, the three wavefront normals do not coincide — the three recorded displacement directions are

not orthogonal to each other since each displacement vector corresponds to a wavefront that exhibits a

different orientation than the two other wavefronts.

Examining matrix (9.1.5), we can also conclude that, for a given wave in a continuum defined by stress-

strain equations (7.1.2), the magnitude of the phase velocity, at a given point, depends only on the elasticity

parameters and mass density at that point and is a function of the direction of propagation. Hence, given

the properties of the continuum, at each point, we can uniquely determine the magnitude of phase velocity

for every direction.

The corresponding displacement direction depends on the same quantities and can be also uniquely de-

termined at a given point of an anisotropic continuum. This is not the case in isotropic continua, where

the displacement direction of S waves, although contained in the plane orthogonal to the phase-slowness

vector, p, cannot be uniquely determined, as shown in Exercise 9.1.

For the remainder of this chapter, we focus our attention on a given point of the continuum. Hence, for

convenience of notation, we write ρ (x) ≡ ρ and Cmn (x) ≡ Cmn.

9.2. Christoffel’s equations and anisotropic continua

9.2.1. Introductory comments. We wish to study equation (9.1.8), which provides us with the phase

velocities of the three waves within an anisotropic continuum. We also wish to examine the eigenvectors

of the corresponding matrix Γ, which are the displacement vectors.

Explicit expressions for these velocities in a generally anisotropic continuum can be obtained by inserting

entries (9.1.6) into equation (9.1.8). Thus, we obtain three phase velocities, which are functions of both

the properties of the continuum — given by its mass density, ρ, and the elasticity parameters, Cmn — and

the orientation of the wavefront — given by its unit normal, n. Once the phase velocities are obtained, we

can find the displacement directions that correspond to each of the three waves by using system (9.1.7).

Note that in the formulation discussed in Chapters 1 and 2, we assumed the displacements of material

points associated with the propagation of the waves to be infinitesimal. This is justified by the fact that

these displacements are many orders of magnitude smaller than the size of the continuum under investiga-

tion, as well as, several orders of magnitude smaller than the wavelength of a given wave. Nevertheless,

seismic receivers measure the direction and the amplitude of these displacements, thereby providing us

with important information for our study of the properties of the materials through which waves propa-

gate. These measurements are discussed in this chapter and in Chapter 10, respectively.

To illustrate explicit expressions for phase velocities and displacement directions, we consider two par-

ticular cases. In the case of a monoclinic continuum, we investigate velocities and displacements for the

three waves that are associated with the propagation along the symmetry axis. Notably, this formulation
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also allows us to illustrate the condition of the natural coordinate system, discussed in Section 5.1. In the

case of a transversely isotropic continuum, we investigate velocities and displacements of the three waves

for an arbitrary direction of propagation. Notably, this formulation allows us to show that, in general,

for anisotropic continua, the displacement direction is neither parallel nor orthogonal to the direction of

propagation, as is the case for isotropic continua.

9.2.2. Monoclinic continua.

Christoffel’s equations along symmetry axis. Consider a monoclinic continuum and let the x3-axis

coincide with the normal to the symmetry plane. In other words, let the x3-axis be the symmetry axis.

Such a continuum is described by elasticity matrix (5.6.4).

Consider a propagation along the x3-axis. Hence, n1 = n2 = 0, and the unit vector normal to the

wavefront is n = [0, 0, 1]. Following entries (9.1.6) and in view of elasticity matrix (5.6.4), we note that

system (9.1.7) becomes

(9.2.1)

 C55 − ρv2 C45 0

C45 C44 − ρv2 0

0 0 C33 − ρv2


 A1

A2

A3

 =

 0

0

0

 .

System (9.2.1) can be rewritten as

(9.2.2)

[
C55 − ρv2 C45

C45 C44 − ρv2

][
A1

A2

]
=

[
0

0

]
,

and

(9.2.3)
[
C33 − ρv2

]
A3 = 0.

The displacement vectors associated with equations (9.2.2) are contained in the x1x2-plane. The dis-

placement vector associated with equation (9.2.3) coincides with the x3-axis. Hence, the displacement

directions associated with equations (9.2.2) are orthogonal to the direction of propagation, while the dis-

placement direction associated with equation (9.2.3) is parallel to the direction of propagation. We refer to

the waves whose displacement directions are either orthogonal or parallel to the direction of propagation

as the pure-mode waves, and denote them by S or P , respectively.5

Note that this monoclinic example illustrates the fact that, along the symmetry axes, all waves propagate

as pure-mode waves.

5Readers interested in an insightful description of the pure-mode waves might also refer to Newnham, R.E., (2005) Properties
of materials: Anisotropy, symmetry, structure: Oxford University Press, pp. 256 – 258.
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Phase velocities along symmetry axis. In order to obtain the phase velocity along the symmetry axis,

consider equations (9.2.2). The solvability condition is

det

[
C55 − ρv2 C45

C45 C44 − ρv2

]
= 0.

Thus, we obtain the determinantal equation, namely,

ρ2
(
v2
)2 − [(C44 + C55) ρ]

(
v2
)
−
(
C2

45 − C44C55

)
= 0,

and, hence, the velocities of the S waves are

(9.2.4) vS1 =

√√√√(C44 + C55) +
√

(C44 − C55)2 + 4C2
45

2ρ
,

and

vS2 =

√√√√(C44 + C55)−
√

(C44 − C55)2 + 4C2
45

2ρ
.

Also, consider equation (9.2.3). A nontrivial solution requires that A3 6= 0. Thus, the velocity of the P

wave is

vP =

√
C33

ρ
.

Displacement directions along symmetry axis. In view of equation (9.2.3), the P -wave displacement

vector is parallel to the x3-axis. Considering a three dimensional continuum, we can write this displace-

ment vector as

AP =

 A1

A2

A3

 = a

 0

0

1

 ,

where a is a nonzero constant.

Now, we wish to find the orientations of the displacement vectors of the S waves. In view of equations

(9.2.2), these vectors are contained in the x1x2-plane. Inserting eigenvalue (9.2.4) into equations (9.2.2),

we obtain

(9.2.5)

 C55−C44−
√

(C44−C55)2+4C2
45

2 C45

C45
C44−C55−

√
(C44−C55)2+4C2

45
2

[ A1

A2

]
=

[
0

0

]
.

In view of a three-dimensional continuum, we can write the nontrivial solution of system (9.2.5) as the

displacement vector given by

(9.2.6) AS1 =

 A1

A2

A3

 = b


C55−C44+

√
(C44−C55)2+4C2

45
2C45

1

0

 ,
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where b is a nonzero constant. Hence, the angle that this vector makes with a coordinate axis in the

x1x2-plane is

(9.2.7) tan Θ =
A1

A2
=
C55 − C44 +

√
(C44 − C55)2 + 4C2

45

2C45
.

We can also find, in an analogous manner, the displacement vector that corresponds to the other S wave.

It is given by

AS2 =

 A1

A2

A3

 = c


−1

C55−C44+
√

(C44−C55)2+4C2
45

2C45

0

 ,

where c is a nonzero constant.We recognize that eigenvectors AP , AS1 and AS2are linearly independent.

Thus, as expected, by Theorem 9.1.2, the three displacement directions are orthogonal to each other, since

AP ·AS1 = AP ·AS2 = AS1 ·AS2 = 0.

Furthermore, in this particular case of the waves propagating along the symmetry axis, the displacement

vectors are either parallel or orthogonal to the wavefront normal, n.

In general, in anisotropic continua, the wavefront normal, n, is neither parallel nor orthogonal to the

displacement vector. However, in any anisotropic continuum, there exist at least three directions of prop-

agation where the wavefront normal is either parallel or orthogonal to the displacement direction.6 Such

directions are called the pure-mode directions. As illustrated herein, symmetry axes are pure-mode direc-

tions.

Natural coordinate systems. In Section 5.6.3, we use the natural coordinate system to describe a mon-

oclinic continuum using the smallest number of nonzero elasticity parameters. The relation between the

natural coordinate system and pure-mode directions is stated by the following proposition.

PROPOSITION 9.2.1. Given a propagation along a pure-mode direction, the coordinate system whose axes

coincide with the displacement directions of the three waves is a natural coordinate system.

To elucidate Proposition 9.2.1, consider expression (9.2.7). Invoking the trigonometric identity given by

tan (2Θ) =
2 tan Θ

1− tan2 Θ
,

we can restate expression (9.2.7) as

(9.2.8) tan (2Θ) =
2C45

C44 − C55
.

6Readers interested in further description and additional references might refer to Helbig, K., (1994) Foundations of
anisotropy for exploration seismics: Pergamon, p. 166.



9.2. CHRISTOFFEL’S EQUATIONS AND ANISOTROPIC CONTINUA 275

Expression (9.2.8) is precisely expression (5.6.6), which allows us to express elasticity matrix (5.6.4) in

a natural coordinate system to obtain matrix (5.6.7). To further illustrate this result, we notice that, using

elasticity matrix (5.6.7), equations (9.2.1) become

(9.2.9)

 Ĉ55 − ρv2 0 0

0 Ĉ44 − ρv2 0

0 0 Ĉ33 − ρv2


 A1

A2

A3

 =

 0

0

0

 ,

where all three displacement directions are along the axes of the natural coordinate system, as expected.

Square submatrix [
Ĉ55 − ρv2 0

0 Ĉ44 − ρv2

]
,

in equation (9.2.9), is the diagonal form of the square matrix shown in equation (9.2.2). In terms of a

natural coordinate system, such a diagonalization is also obtained using equation (5.6.8), which in the

present case, we can write as[
Ĉ55 − ρv2 0

0 Ĉ44 − ρv2

]
=

[
cos Θ sin Θ

− sin Θ cos Θ

][
C55 − ρv2 C45

C45 C44 − ρv2

][
cos Θ − sin Θ

sin Θ cos Θ

]
,

where C44 and C55 are entries of matrix (5.6.4), while Ĉ44 and Ĉ55 are entries of matrix (5.6.7).Also,

examining systems (9.2.1) and (9.2.9), we see that the third equation remains unchanged; hence, C33 =

Ĉ33. This results from the fact that to obtain a natural coordinate system, the original coordinate system is

rotated by angle Θ about the x3-axis, whose orientation remains unchanged.

9.2.3. Transversely isotropic continua.

Christoffel’s equations. In seismological studies, transverse isotropy plays an important role. For

instance, transverse isotropy can be conveniently used to describe layered media.

Consider a transversely isotropic continuum and let the x3-axis coincide with the normal to the plane of

transverse isotropy. In other words, let the x3-axis be the rotation-symmetry axis. Such a continuum is

described by elasticity matrix (5.10.3). For notational convenience, letting

(9.2.10)
C11 − C12

2
= C66,
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in matrix (5.10.3), we can write the entries of matrix Γ, given by expressions (9.1.6), as

Γ11 = n2
1C11 + n2

2C66 + n2
3C44 ,

Γ22 = n2
1C66 + n2

2C11 + n2
3C44 ,

Γ33 =
(
n2

1 + n2
2

)
C44 + n2

3C33 ,

Γ12 = Γ21 = n1n2 (C11 − C66) ,(9.2.11)

Γ13 = Γ31 = n1n3 (C13 + C44) ,

Γ23 = Γ32 = n2n3 (C13 + C44) .

Note that, in view of expression (9.2.10), C12 = C11 − 2C66. Thus, we could also write Γ12 = Γ21 =

n1n2 (C12 + C66), which is consistent with the pattern of the last two lines of set (9.2.11). However, in

this chapter, we choose to describe a transversely isotropic continuum using C11, C13, C33, C44 and C66.

Thus, Christoffel’s equations for a transversely isotropic continuum are given by system (9.1.7) with entries

(9.2.11). Note that, in view of transverse isotropy, with no loss of generality, we can set either n1 = 0 or

n2 = 0.

Phase velocities in transverse-isotropy plane. In this section, we wish to obtain three distinct phase-

velocity expressions for the pure-mode waves in a transversely isotropic continuum in order to conve-

niently identify the general expressions, which are derived in the following section. All waves that propa-

gate along the rotation-symmetry axis, as well as the waves that propagate within the plane of transverse

isotropy, are pure-mode waves. However, along the rotation-symmetry axis, the displacement directions

of the S waves are subject to the same elastic properties, and, hence, their phase-velocity expressions are

not distinct. Consequently, to obtain three distinct velocities, we consider the propagation in the plane of

transverse isotropy, where n3 = 0.

Furthermore, in view of transverse isotropy, we can consider the propagation in any direction in this plane.

We choose the propagation along the x1-axis and, hence, we set n2 = 0. Consequently, n2
1 = 1. Thus,

entries (9.2.11) become Γ11 = C11, Γ22 = C66, Γ33 = C44 and Γ12 = Γ13 = Γ23 = 0. Hence, for the

propagation along the x1-axis, system (9.1.7) becomes

(9.2.12)

 C11 − ρv2 0 0

0 C66 − ρv2 0

0 0 C44 − ρv2


 A1

A2

A3

 =

 0

0

0

 .

By examining system (9.2.12), we recognize that all equations are independent of each other and, as

expected, all three waves propagate as pure-mode waves. To consider a P wave propagating along the

x1-axis, we set the displacement amplitude along the x1-axis to unity. Hence, the corresponding vector is

AP = [1, 0, 0]T . This immediately results in the expression for the P -wave velocity along the x1-axis,
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namely,

(9.2.13) vP = ±

√
C11

ρ
.

To consider an S wave propagating along the x1-axis, we set to unity the displacement amplitude along the

axis orthogonal to the x1-axis and contained in the x1x2-plane. We view the x1x2-plane as a horizontal

plane and, therefore, we refer to this wave as an SH wave . Hence, the corresponding vector is ASH =

[0, 1, 0]T . This immediately results in the expression for the SH-wave velocity along the x1-axis, namely,

(9.2.14) vSH = ±

√
C66

ρ
.

To consider the other S wave propagating along the x1-axis, we set to unity the displacement amplitude

along the axis orthogonal to the x1x2-plane. We refer to this wave as an SV wave. Hence, the correspond-

ing vector is ASV = [0, 0, 1]T . This immediately results in the expression for the SV -wave velocity along

the x1-axis, namely,

(9.2.15) vSV = ±

√
C44

ρ
.

Expressions (9.2.13), (9.2.14) and (9.2.15) are distinct from each other. Hence, we can use these expres-

sions to identify general expressions for wave velocities, which are derived below.

Phase velocities in arbitrary directions. We wish to obtain general phase-velocity expressions for the

three waves propagating in arbitrary directions. Using entries (9.2.11), we can write expression (9.1.8) as

det
[
Γ− ρv2I

]
=
[
C66

(
n2

1 + n2
2

)
+ C44n

2
3 − ρv2

]
{−C2

13

(
n2

1 + n2
2

)
n2

3 − 2C13C44

(
n2

1 + n2
2

)
n2

3

+ C33C44n
4
3 − C44

(
n2

1 + n2
2

)
ρv2 − C33n

2
3ρv

2 − C44n
2
3ρv

2

+ C11

(
n2

1 + n2
2

) [
C44

(
n2

1 + n2
2

)
+ C33n

2
3 − ρv2

]
+ ρ2v4}.

Examining the above expression and using the properties of the components of the unit vector, namely,

n2
1 + n2

2 = 1− n2
3, we can write this determinant as a function of a single component, namely, n3.

Rearranging the determinantal expression, we can write it as a product of the quadratic expression in v

multiplied by the biquadratic expression in v, namely,

det
[
Γ− ρv2I

]
=
[
C66

(
1− n2

3

)
+ C44n

2
3 − ρv2

](9.2.16)

{[
C33C44n

4
3 −

[
2C13C44 − C11C33 + C2

13

]
n2

3

(
1− n2

3

)
+C11C44

(
1− n2

3

)2]
+
[
(C11 − C33)n2

3 − (C11 + C44)
]
ρv2 + ρ2v4

}
.
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Note that determinant (9.2.16) is independent of n1 and n2. It depends only on n3, namely, the orientation

of the wavefront normal, n, with respect to the x3-axis, which is the rotation-symmetry axis. The absence

of n1 and n2 illustrates the fact that to study the properties of a transversely isotropic continuum, we can

use an arbitrary plane that contains the rotation-symmetry axis.

Following equation (9.1.8) and, hence, setting expression (9.2.16) to zero, we immediately obtain the

equation to be solved for the three velocities.

Solving the quadratic equation, shown in brackets in expression (9.2.16), and considering only the positive

root, we obtain

(9.2.17) v (n) =

√
C66

(
1− n2

3

)
+ C44n2

3

ρ
.

Setting n3 = 0 and comparing to expressions (9.2.13), (9.2.14) and (9.2.15), we recognize expression

(9.2.17) as corresponding to expression (9.2.14). Thus, we denote it as

(9.2.18) vSH (n) =

√
C66

(
1− n2

3

)
+ C44n2

3

ρ
.

Solving the biquadratic equation, shown in braces in expression (9.2.16), we obtain two solutions. Again,

setting n3 = 0, we recognize them as corresponding to expressions (9.2.13) and (9.2.15). We denote them

as vqP and vqSV , respectively. Following algebraic simplifications and considering only the positive roots,

we can write these two solutions as

(9.2.19) vqP (n) =

√
(C33 − C11)n2

3 + C11 + C44 +
√

∆
2ρ

and

(9.2.20) vqSV (n) =

√
(C33 − C11)n2

3 + C11 + C44 −
√

∆
2ρ

,

where the discriminant, ∆, is

(9.2.21)

∆ ≡
[
(C11 − C33)n2

3 − C11 − C44

]2 − 4
[
C33C44n

4
3 −

[
2C13C44 − C11C33 + C2

13

]
n2

3

(
1− n2

3

)
+C11C44

(
1− n2

3

)2] .

Note that since the n3 component can be written as

(9.2.22) n3 = cosϑ,

where ϑ is the phase angle, velocity expressions (9.2.18), (9.2.19) and (9.2.20) can be immediately stated

in terms of the phase angle.
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Let us examine expression (9.2.21). To do so, we rewrite it as

(9.2.23) ∆ ≡
[
(C11 − C44)

(
1− n2

3

)
− (C33 − C44)n2

3

]2 + 4 (C44 + C13)2 n2
3

(
1− n2

3

)
.

We see that ∆ is a nonnegative quantity; hence, expressions (9.2.19) and (9.2.20) are real, as expected

in view of the symmetry of matrix Γ. Expressions (9.2.19) and (9.2.20) are distinct from one another

if ∆ 6= 0. Examining expression (9.2.23), we see that ∆ = 0 for the following cases: n3 = 0 and

C11 = C44, n3 = ±1 and C33 = C44, as well as particular values of n3 if C44 = −C13. Since these

equalities lead to peculiar results, which cannot be viewed as common in the idealized representation of

continuum mechanics, we will assume that C11 6= C44, C33 6= C44, C44 6= −C13. From now on, we will

consider ∆ as a strictly positive quantity for all values of n3, except in a brief discussion at the end of

Section 9.3.3.

Displacement directions. To find the displacement directions of waves propagating in a transversely

isotropic continuum, we consider, with no loss of generality, any plane that contains the rotation-symmetry

axis. Letting this plane coincide with the x1x3-plane, we set n2 = 0, and, hence, using entries (9.2.11),

we can write the coefficient matrix of system (9.1.7) as

(9.2.24)

 n2
1C11 + n2

3C44 − ρv2 0 n1n3 (C13 + C44)

0 n2
1C66 + n2

3C44 − ρv2 0

n1n3 (C13 + C44) 0 n2
1C44 + n2

3C33 − ρv2

 .

Considering equations (9.1.7) and in view of the coefficient matrix (9.2.24), we see that the second equa-

tion is not coupled with the remaining two. Hence, we can rewrite system (9.1.7) as

(9.2.25)
[
n2

1C66 + n2
3C44 − ρv2 (n)

]
A2 = 0,

and

(9.2.26)

[
n2

1C11 + n2
3C44 − ρv2 (n) n1n3 (C13 + C44)

n1n3 (C13 + C44) n2
1C44 + n2

3C33 − ρv2 (n)

][
A1

A3

]
=

[
0

0

]
.

Note the decoupling of a 3×3 matrix into a 1×1 matrix and a 2×2 matrix, where, the former corresponds to

the SH waves while the latter corresponds to the qP and the qSV waves. This decoupling of mathematical

entities has a physical reason. The displacement vector associated with equation (9.2.25) is parallel to the

x2-axis, while the displacement vectors associated with equations (9.2.26) are contained in the x1x3-

plane. Since the two sets of displacement vectors are orthogonal to one another and, hence, do not share

any components, they do not affect one another.

Let us investigate the displacement vector associated with equation (9.2.25). The trivial solution isA2 = 0.

To find a nontrivial solution, we consider a nonzero vector. This displacement vector, A = [0, A2, 0], is

parallel to the x2-axis and, hence, it is orthogonal to the propagation plane. Such a displacement must

result from the propagation of a pure SH wave.
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We can verify that expression (9.2.18), which can be written as

(9.2.27) ρv2
SH (n) = n2

1C66 + n2
3C44,

corresponds to the SH wave. Inserting expression (9.2.27) into equation (9.2.25), we notice that the term

in brackets vanishes, as expected. In accordance with the theory of linear equations, this also means that

any value of A2 satisfies equation (9.2.25). In other words, this equation constrains the orientation, but not

the magnitude, of the displacement vector.

Now, we focus our attention on the displacement vectors associated with the remaining two equations,

which are stated in system (9.2.26) and correspond to the qP and qSV waves. The trivial solution is

A1 = A3 = 0. To find a nontrivial solution, we consider a nonzero displacement vector, A = [A1, 0, A3],

which is contained in the x1x3-plane.

System (9.2.26) allows us to show that, in general, in anisotropic continua, the displacement direction

is neither parallel nor orthogonal to the direction of propagation. To do so, we find the angle that the

displacement vector makes with the x3-axis. This angle is given by

(9.2.28) φ = arctan
A1

A3
.

Using the second equation of system (9.2.26), we obtain

(9.2.29)
A1

A3
=
ρv2 (n)− n2

1C44 − n2
3C33

n1n3 (C13 + C44)
.

Note that the same value of the displacement angle is obtained if we use the first equation of system

(9.2.26), as illustrated in Exercise 9.5.

Since n2 = n2
1 + n2

3 = 1 and n3 is given by expression (9.2.22), we can write expression (9.2.28) as

(9.2.30) φ = arctan
ρv2 (ϑ)− C44 sin2 ϑ− C33 cos2 ϑ

(C13 + C44) sinϑ cosϑ
,

where v (ϑ) is given by expressions (9.2.19) or (9.2.20), together with expression (9.2.22), for the qP or

qSV waves, respectively. In other words, if we wish to find the displacement direction associated with

the qP wave, we insert expressions (9.2.19) and (9.2.22) into expression (9.2.30). If we wish to find the

displacement direction associated with the qSV wave, we insert expressions (9.2.20) and (9.2.22) into

expression (9.2.30).

Examining expression (9.2.30), we see that, in general, φ and ϑ are neither equal to one another nor differ

by precisely π/2; this is shown in Figure 9.4.1. Hence, in general, in anisotropic continua, waves do not

propagate as pure-mode waves. However, in many geological materials, the angle between φ and ϑ is not

much different from 0 or π/2; this is the reason for our referring to these waves as quasiP or quasiS,

respectively.
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Note that, as expected from the theory of linear equations, in spite of having determined the orientation of

the displacement vector, we still have infinitely many nontrivial solutions given by A1 = s and A3 = ms,

where s is a nonzero parameter and m is the right-hand side of equation (9.2.29). In other words, we find

the orientation but not the magnitude of the displacement vectors.

9.3. Phase-slowness surfaces

9.3.1. Introductory comments. Let us consider a point within a continuum and the phase-slowness

vectors emanating, in every direction, from this point. The phase-slowness surface is a surface that contains

the endpoints of these phase-slowness vectors. In general, in view of three distinct velocities, there are

three distinct sheets of the phase-slowness surface.

Phase-slowness surfaces are used in formulating and applying seismic theory associated with anisotropic

continua, as shown in Chapter 10. They possess important topological properties. For the elasticity param-

eters used to describe geological materials, the two outer sheets of the phase-slowness surface intersect. In

other words, the magnitudes of the phase velocity of the two slower waves coincide for certain propagation

directions.

9.3.2. Convexity of innermost sheet. For the elastic continua, the phase-slowness surface — which,

for the transversely isotropic case, results from the bicubic equation given by expression (9.2.16) — is of

degree 6. Consequently, any straight line can intersect the surface at, at most, six points. Since the line

intersecting the innermost sheet of the phase-slowness surface must intersect the two outer sheets twice,

the innermost sheet can be intersected at, at most, two points. This results in the following theorem.7

THEOREM 9.3.1. In elastic continua, if the innermost sheet of the phase-slowness surface is detached, it

is convex.

There are particular cases in which the innermost phase-slowness sheet is not detached, such as the case

of C44 = −C13, mentioned above.8 Nevertheless, Theorem 9.3.1 is still valid, because the detachment is

not necessary for the validity of the theorem. In other words, in elastic continua, the innermost sheet of

the phase-slowness surface is convex.9

7Interested readers might refer to Musgrave, M.J.P., (1970) Crystal acoustics: Introduction to the study of elastic waves and
vibrations in crystals: Holden-Day, pp. 91 – 92.

8For another example of a nondetached innermost sheet, readers might refer to Auld, B.A., (1973) Acoustic fields and waves
in solids: John Wiley and Sons, Vol. I, p. 406.

9Interested readers might refer to Bucataru and Slawinski (2008) in progress
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9.3.3. Intersection points. S1 and S2 waves are the two slower waves. As stated above, along certain

directions, the velocities of these waves must be the same. We wish to find these directions for the S

waves propagating in transversely isotropic continua, namely, the intersections of the SH and qSV phase-

slowness sheets.

In a transversely isotropic continuum, discussed herein, we consider a cross-section of the phase-slowness

surface in the x1x3-plane. In view of phase-velocity expressions (9.2.18), (9.2.19) and (9.2.20), and using

expression (9.2.22), the corresponding phase-slowness curves can be generated as a polar plot with the

radius given by the reciprocal of the phase-velocity magnitude.

Note that the intersection points of the phase-slowness curves in the x1x3-plane correspond to intersection

lines of the phase-slowness sheets in the x1x2x3-space. In view of the rotation symmetry about the x3-axis,

these lines are circles that are parallel to the x1x2-plane.

Consider determinant (9.2.16). In view of the fact that the quadratic expression in v2 contains SH waves

while the biquadratic expression in v2 contains qSV waves, at the intersection points the solution of the

quadratic equation must satisfy the biquadratic equation for values of n3 ∈ [−1, 1]. Thus, inserting v2 —

given by expression (9.2.18) — into the biquadratic part of equation (9.2.16) — shown in braces — and

simplifying, we obtain(
n2

3 − 1
){

(C66 − C11) (C44 − C66) +
[
(C13 + C44)2 − (C11 − C66) (C33 − 2C44 + C66)

]
n2

3

}
= 0,

which is an expression of the form

(9.3.1)
(
n2

3 − 1
) (
A+Bn2

3

)
= 0,

where

A := (C66 − C11) (C44 − C66) ,

and

B := (C13 + C44)2 − (C11 − C66) (C33 − 2C44 + C66) .

Hence, immediate solutions of equation (9.3.1) are given by

n3 = ±1,

which correspond to the propagation along the rotation-symmetry axis. Setting n3 = ±1 in expressions

(9.2.18) and (9.2.20), we can verify that these are the velocities of SH and qSV that are equal to one

another.

The remaining solutions of equation (9.3.1) depend on the values of A and B, namely, on the properties of

a given continuum given by its elasticity parameters, Cmn. In general, we get four distinct cases, namely,

• if B = 0, and A 6= 0, there are no additional solutions and the magnitudes of the velocity

coincide only for the propagation along the rotation-symmetry axis.
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• if B 6= 0, and A/B > 0, there are no additional solutions and the magnitudes of the velocity

coincide only for the propagation along the rotation-symmetry axis. Also, except at those two

points, the qSV -wave velocity is greater than the SH-wave velocity.

• if B 6= 0, and A/B ≤ 0, there is an additional solution given by

(9.3.2) n3 = ±

√
(C11 − C66) (C44 − C66)

(C13 + C44)2 − (C11 − C66) (C33 − 2C44 + C66)
.

• if A = B = 0, all values of n3 are the solutions and, hence, the magnitudes of the SH-wave and

the qSV -wave velocities coincide for all directions. This is the case for isotropic continua.

In a seismological context, expression (9.3.2) is of particular interest, because, in connection with expres-

sion (9.2.22), namely, n3 = cosϑ, it gives the value of the phase angle at which the intersection points

occur, as shown in Exercise 9.2. The equality of the two shear-wave phase velocities results from the equal-

ity of two eigenvalues. Consequently, the two corresponding eigenvectors, and, hence, the displacement-

vector directions, are not uniquely determined. This is also the case for S waves in isotropic continua, as

stated in Remark 9.4.1, which follows Exercise 9.1.

In above derivations, we have excluded three particular cases, as stated on page 279. Let us comment on

the most interesting one: C44 = −C13. If C44 = −C13, expressions (9.2.19) and (9.2.20) become

(9.3.3) vqP (n) =

√
(C33 − C11)n2

3 + C11 + C44 +
∣∣(C11 − C44)

(
1− n2

3

)
− (C33 − C44)n2

3

∣∣
2ρ

and

(9.3.4) vqSV (n) =

√
(C33 − C11)n2

3 + C11 + C44 −
∣∣(C11 − C44)

(
1− n2

3

)
− (C33 − C44)n2

3

∣∣
2ρ

.

Expressions (9.3.3) and (9.3.4) are equal to one another for particular values of n3. To find these values,

we set the right-hand side of expression (9.2.23) to zero, and get

(9.3.5) n3 = ±
√

C11 − C44

C11 + C33 − 2C44
.

At points corresponding to the values given by expression (9.3.5), the sheets of the phase-slowness surfaces

that correspond to the qP and qSV waves are not smooth, due to the change of sign within the absolute

values in expressions (9.3.3) and (9.3.4). Also, since n3 is a component of a unit vector, we require that

|n3| ∈ (0, 1), and thus expression (9.3.5) imposes constraints on elasticity parameters. To investigate these

constraints, we rewrite this expression as

n3 = ± 1√
1 + C33−C44

C11−C44

;

thus, we require the fraction in the denominator to be positive. Hence, we must assume that C33 and

C11 are both greater, or both smaller, than C44. A transversely isotropic continuum with these constraints
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has the innermost sheet of the phase-slowness surface that is not detached from the other sheets. The

displacement direction associated with this sheet means that the sheet corresponds to the qP wave. This

correspondence is expected in view of expression (9.3.3) whose value is greater than the one of expression

(9.3.4), for all n3 except for the points given by expression (9.3.5) — the qP wave is the fastest one.10

Closing remarks

Explicit velocity and displacement-angle expressions allow us to study wave phenomena in the context of

specific materials. In particular, these expressions can be used in formulating inverse problems where the

elasticity parameters are calculated based on the traveltime and displacement-angle information, which are

obtained from experimental measurements.

Studying anisotropic materials, we need to consider three types of angles, namely, the phase angles, dis-

cussed in Chapters 6 and 7, as well as the ray angles and the displacement angles, discussed herein. As

illustrated in Exercise 9.11, all three angles are related by analytic expressions. However, each angle plays

a distinct role in theoretical formulations and the analysis of experimental measurements.

10Readers interested in the formulation of the displacement vectors for the waves in the transversely isotropic continuum
discussed herein might refer to Bucataru and Slawinski (2008) in progress
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9.4. Exercises

EXERCISE 9.1. 11Formulate and solve equation (9.1.8) for isotropic continua.

SOLUTION 9.1. Since isotropy implies directional invariance, with no loss of generality, consider propa-

gation along the x3-axis and, hence, let n1 = n2 = 0 and n3 = 1. Considering elasticity matrix (5.12.3)

and following entries (9.1.6), we can write equation (9.1.8) as

(9.4.1) det

 µ− ρv2 0 0

0 µ− ρv2 0

0 0 λ+ 2µ− ρv2

 = 0,

to obtain

(9.4.2)
(
ρv2 − µ

)2 [
ρv2 − (λ+ 2µ)

]
= 0.

Hence, the solutions are v1 = v2 =
√
µ/ρ and v3 =

√
(λ+ 2µ) /ρ, as expected in view of equations

(6.1.17) and (6.1.13), respectively.

REMARK 9.4.1. The first two solutions in Exercise 9.1 correspond to the S waves since we can write the

corresponding displacement directions as vectors A = [1, 0, 0]T and A = [0, 1, 0]T , which are orthogonal

to the direction of propagation, n = [0, 0, 1]T . The third solution corresponds to the P waves since we can

write the corresponding displacement direction as vector A = [0, 0, 1]T , which is parallel to the direction

of propagation. In view of the double root in equation (9.4.2), there are only two eigenspaces associated

with matrix Γ for an isotropic case, unlike for the anisotropic case, where there are three eigenspaces.

Exercise 9.1 shows that in isotropic continua the displacement directions of S waves are contained in the

plane that is orthogonal to the direction of propagation. However, these displacement directions cannot be

determined uniquely, as is the case for anisotropic continua.

EXERCISE 9.2. Given the values of the elasticity parameters of the Green-river shale12, namely,

(9.4.3)



C11 = 3.13× 1010N/m2

C13 = 0.34× 1010N/m2

C33 = 2.25× 1010N/m2

C44 = 0.65× 1010N/m2

C66 = 0.88× 1010N/m2

,

find the intersection points for the SH and qSV waves.

SOLUTION 9.2. Since C44 6= −C13, we can use expression (9.3.2), which refers to the SH and qSV

waves only — herein, the qP wave is detached, as discussed on page 279. Combining expression (9.2.22)

11See also Section 9.3.3
12These values are taken from Thomsen, L., (1986) Weak elastic anisotropy: Geophysics, 51, 1954 – 1966.
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and (9.3.2), we obtain

ϑ = arccos

√
(C11 − C66) (C44 − C66)

(C13 + C44)2 − (C11 − C66) (C33 − 2C44 + C66)
≈ 660.

The intersection points the SH and qSV waves occur at ϑ ≈ 660.

EXERCISE 9.3. In view of Section 9.3.3, show that for isotropic continua, SH-wave velocity and SV -wave

velocity coincide with one another for all directions.

SOLUTION 9.3. As shown in elasticity matrix (5.12.3), for an isotropic continuum, we have

C11 = C22 = C33 = λ+ 2µ,

C13 = λ,

C44 = C66 = µ,

where λ and µ are Lamé’s parameters. Thus,

A = (C11 − C66) (C44 − C66) = (λ+ µ) (µ− µ)

= 0,

and

B = (C13 + C44)2 − (C11 − C66) (C33 − 2C44 + C66) = (λ+ µ)2 − (λ+ µ)2

= 0.

As stated in Section 9.3.3, if A = B = 0, the phase-slowness curves coincide for all directions.

EXERCISE 9.4. Using expression (9.2.30), namely,

(9.4.4) φ = arctan
ρv2 (ϑ)− C44 sin2 ϑ− C33 cos2 ϑ

(C13 + C44) sinϑ cosϑ
,

show that, for P waves in isotropic continua, the phase angle, ϑ, and the displacement angle, φ, coincide.

SOLUTION 9.4. Considering the elasticity matrix for an isotropic continuum, namely, matrix (5.12.1), we

see that

C13 = C11 − 2C44,

and

C11 = C33.

Considering elasticity matrix (5.12.3) and expression (6.1.13), we can express the velocity of a P wave in

an isotropic continuum as

vP =

√
C33

ρ
.
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Hence, expression (9.4.4) can be rewritten as

φ = arctan
C11 − C44 sin2 ϑ− C11 cos2 ϑ

(C11 − C44) sinϑ cosϑ
.

Rearranging and using standard trigonometric identities, we obtain

φ = arctan
(C11 − C44) sin2 ϑ

(C11 − C44) sinϑ cosϑ
= arctan (tanϑ) .

Hence, φ = ϑ, as required and as expected from our discussion in Section 6.2.

EXERCISE 9.5. Expression (9.4.4) is obtained using the second equation of system (9.2.26). Verify that

using the first equation of this system to obtain A1/A3, we get the same result as shown in Exercise 9.4.

SOLUTION 9.5. Using the first equation of system (9.2.26), we can write expression (9.2.28) as

(9.4.5) φ = arctan
A1

A3
= arctan

(C13 + C44) sinϑ cosϑ
ρv2 (ϑ)− C11 sin2 ϑ− C44 cos2 ϑ

.

In view of the isotropic-case expressions, stated in Exercise 9.4, we can rewrite expression (9.4.5) as

φ = arctan
(C11 − C44) sinϑ cosϑ

C11 − C11 sin2 ϑ− C44 cos2 ϑ
= arctan (tanϑ) .

Hence, φ = ϑ, as required.

EXERCISE 9.6. Using expression (9.4.4), show that, for S waves in isotropic continua, the phase angle,

ϑ, and the displacement angle, φ, differ by π/2, which implies that the propagation and displacement

directions are orthogonal to one another.

SOLUTION 9.6. Considering the elasticity matrix for an isotropic continuum, namely, matrix (5.12.1), we

see that

C13 = C11 − 2C44,

and

C11 = C33.

Considering elasticity matrix (5.12.3) and expression (6.1.17), we can express the velocity of an S wave

in an isotropic continuum as

vS =

√
C44

ρ
.

Hence, in a manner analogous to the one used to obtain the solution of Exercise 9.4, expression (9.4.4)

becomes

φ = arctan (− cotϑ) = − arctan (cotϑ) .

Using properties of the inverse trigonometric functions, we can rewrite this expression as

φ = arctan (tanϑ)− π

2
= ϑ− π

2
,

as required and as expected from our discussion in Section 6.2.



288 9. CHRISTOFFEL’S EQUATIONS

EXERCISE 9.7. Using determinant (9.2.16) obtain expressions (9.2.13), (9.2.14) and (9.2.15).

SOLUTION 9.7. Consider the determinantal expression (9.2.16), namely,

det
[
Γ− ρ (x) v2I

]
=
[
C66

(
1− n2

3

)
+ C44n

2
3 − ρv2

]{[
C33C44n

4
3 −

[
2C13C44 − C11C33 + C2

13

]
n2

3

(
1− n2

3

)
+C11C44

(
1− n2

3

)2]
+
[
(C11 − C33)n2

3 − (C11 + C44)
]
ρv2 + ρ2v4

}
.

To consider propagation in the plane of transverse isotropy, we let n3 = 0 to obtain

(9.4.6) det
[
Γ− ρ (x) v2I

]
=
(
C66 − ρv2

) [
ρ2v4 − (C11 + C44) ρv2 + C11C44

]
.

Setting expression (9.4.6) to zero, we obtain expressions (9.2.13), (9.2.14) and (9.2.15), as required.

EXERCISE 9.8. 13Show that SH waves in transversely isotropic continua exhibit elliptical velocity depen-

dence.

SOLUTION 9.8. Consider expression (9.2.18). Recalling expression (9.2.22) and using trigonometric iden-

tities, we can write

vSH (ϑ) =

√
C66

ρ
sin2 ϑ+

C44

ρ
cos2 ϑ.

Setting ϑ = 0, we get vSH (0) =
√
C44/ρ, while setting ϑ = π/2, we get vSH (π/2) =

√
C66/ρ, which

can be denoted as vz and vx, respectively. Thus, we can write

vSH (ϑ) =
√
v2
x sin2 ϑ+ v2

z cos2 ϑ,

which is expression (6.10.11), giving the magnitude of phase velocity for the case of elliptical velocity

dependence.

EXERCISE 9.9. Formulate HamiltonianH that corresponds to SH waves in a transversely isotropic con-

tinuum.

SOLUTION 9.9. In view of expression (8.2.8) and considering a given point of the continuum, we can

write the corresponding ray-theory Hamiltonian as

H (p) =
1
2
p2v2 (p) .

Considering the SH-wave velocity given by expression (9.2.18), namely,

v2
SH (n) =

C66

(
1− n2

3

)
+ C44n

2
3

ρ
,

13See also Section 6.10.3
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and since n2
i = p2

i /p
2 and n2

1 = 1− n2
3, we can write

v2
SH (p) =

C66
p2

1
p2 + C44

p2
3
p2

ρ
=

1
p2

C66p
2
1 + C44p

2
3

ρ
.

Hence, we can write

(9.4.7) HSH (p) =
1
2
C66p

2
1 + C44p

2
3

ρ
.

EXERCISE 9.10. Using Legendre’s transformation and expression (9.4.7), find the corresponding relation

between the phase and the ray angles for SH waves in a transversely isotropic continuum.

SOLUTION 9.10. As shown in expression (8.7.4), the ray angle is given by

tan θ =
dx1
ds

dx3
ds

.

Using time parametrization, we can immediately restate this expression as

tan θ =
dx1
dt

dx3
dt

≡ ẋ1

ẋ3
,

where t denotes time. In view of transformation (B.3.7), we can write

ẋi =
∂H
∂pi

.

Thus, using expression (9.4.7), we obtain

ẋ1 =
1
2
∂

∂p1

C66p
2
1 + C44p

2
3

ρ
=
C66

ρ
p1,

and

ẋ3 =
1
2
∂

∂p3

C66p
2
1 + C44p

2
3

ρ
=
C44

ρ
p3.

Hence, we can write

tan θ =
ẋ1

ẋ3
=
C66

C44

p1

p3
.

Recalling expression (8.4.5), we can restate the above expression in terms of the phase angle, as

(9.4.8) tan θ =
C66

C44
tanϑ.

REMARK 9.4.2. Expression (9.4.8) allows us to explicitly express the phase angle as a function of the ray

angle and vice versa, in terms of the properties of the continuum given by its elasticity parameters. An

explicit, closed-form expression of the phase angle in terms of the ray angle is possible only for elliptical

velocity dependence.

EXERCISE 9.11. Using expression (9.2.30), namely,

(9.4.9) φ = arctan
ρv2 (ϑ)− C44 sin2 ϑ− C33 cos2 ϑ

(C13 + C44) sinϑ cosϑ
,
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FIGURE 9.4.1. Ray, phase and displacement angles: The ray angle (dashed line) and the
displacement angle (dotted line) are plotted as functions of the phase angle. The units of
both axes are displayed in radians. This figure is the solution of Exercise 9.11.

and expression (8.4.12), which can be rewritten as

(9.4.10) θ = arctan
tanϑ+ 1

v(ϑ)
∂v(ϑ)
∂ϑ

1− tanϑ
v(ϑ)

∂v(ϑ)
∂ϑ

,

as well as the elasticity parameters of the Green-river shale, shown in expressions (9.4.3), and its mass

density, given by ρ = 2310 kg/m3, plot the displacement angles, φ, and the ray angle, θ, as a function of

the phase angle, ϑ, for qP waves.

SOLUTION 9.11. Inserting phase-velocity expression (9.2.19) and expression (9.2.22), into expressions

(9.4.9) and (9.4.10), we generate the plot of the displacement and the ray angles, respectively. This plot is

shown in Figure 9.4.1.

REMARK 9.4.3. Figure 9.4.1 shows that, in general, the phase angles, the ray angles, and the displacement

angles are distinct. For qP waves, the three angles coincide along the pure-mode directions, where qP

waves are reduced to P waves. As illustrated using the elasticity parameters of the Green-river shale, the

pure-mode directions occur at ϑ = 0 and ϑ = π/2, as well as — in view of expressions (9.4.9) and (9.4.10)

— at the phase angle satisfying equation

ρv2
qP (ϑ)− C44 sin2 ϑ− C33 cos2 ϑ

(C13 + C44) sinϑ cosϑ
=

tanϑ+ 1
v(ϑ)

∂v(ϑ)
∂ϑ

1− tanϑ
v(ϑ)

∂v(ϑ)
∂ϑ

.

Examining Figure 9.4.1, we see that the values of the displacement angle are closer to the values of the ray

angle than to the values of the phase angle.14

14Readers interested in relations among the phase angle, the ray angle and the displacement angle might also refer to Tsvankin,
I., (2001) Seismic signatures and analysis of reflection data in anisotropic media: Pergamon, pp. 34 – 36.



CHAPTER 10

Reflection and transmission

A “perfect” scientific theory may be described as one which proceeds logically
from a few simple hypotheses to conclusions which are in complete agreement
with observation, to within the limits of accuracy of observation. [. . . ] As accu-
racy of observation increases, a theory ceases to be perfect.1

John Lighton Synge (1937) Geometrical optics: An introduction to Hamilton’s method

Preliminary remarks

Discussing ray theory in Chapter 7, we assumed the smoothness of functions describing mass density and

elasticity parameters. Hence, the velocity function was smooth with respect to both position and direction.

In other words, we assumed that the continuum was not separated by interfaces.

Certain seismic techniques do not require any a priori treatment of interfaces and, hence, smooth velocity

functions suffice. For instance, for imaging seismic data, we might only need a background velocity

field, which can be given by a smooth function. Other seismological studies, however, require an explicit

treatment of interfaces. In particular, we need to consider interfaces to study the phenomena of reflection

and transmission. To study these phenomena, we invoke the principles of the continuity of phase, the

equality of the sum of displacements and the equality of the traction components across the interface.

We begin this chapter with the derivation of relations among the incidence, reflection, and transmission

angles for interfaces between two anisotropic continua. A specific case of elliptical velocity dependence is

used to illustrate the general formulation. Then, we consider the amplitudes of the reflected and transmitted

signals as functions of the angle of incidence. For a mathematical convenience, the explicit expressions

are derived only for the case of SH waves in transversely isotropic continua.

10.1. Angles at interface

10.1.1. Phase angles. Consider a three-dimensional continuum that is composed of parallel homo-

geneous layers of finite thickness. Let each layer be parallel to the x1x2-plane. We choose to view the

x1x2x3-coordinate system in such a way that we refer to the x3-axis as the vertical axis. In other words,

herein, we study phenomena associated with horizontal layers.

1Readers interested in philosophical implications of this statement might refer to Steiner, M., (1998) The applicability of
mathematics as a philosophical problem: Harvard University Press, pp. 58 – 59 and pp. 105 – 114.

291
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Recall Hamilton’s ray equations (8.2.7), namely,

(10.1.1)


ẋi = ∂H

∂pi

ṗi = − ∂H
∂xi

, i ∈ {1, 2, 3} ,

where HamiltonianH is given by expression (8.2.8), namely,

(10.1.2) H =
1
2
p2v2 (x,p) .

Examining equations (10.1.1) and expression (10.1.2), in view of the horizontal layering, where the elastic

properties remain unchanged along the x1-axis and the x2-axis, we see that

ṗi ≡
dpi
dt

= −∂H
∂xi

= 0, i ∈ {1, 2} .

Consequently, p1 and p2 are constant for a given solution curve x (t). In other words, the phase-slowness

vector components that are parallel to the interfaces are conserved across these interfaces. We refer to this

property as the continuity of phase.

The continuity of phase can be justified by a physical argument. The continuity of phase is tantamount to

the continuity of wavefronts, which are the loci of constant phase. Equality of pi, where i ∈ {1, 2}, across

the interface implies that although the orientation of vector p might change, its horizontal components

must remain the same. In other words, the wavefronts are continuous across the interface. We can see this

requirement as resulting from Huygens’ principle and from the associated causality.

Let us consider propagation in the x1x3-plane. In other words, let p = [p1, 0, p3]. We can write the

horizontal component of the phase-slowness vector as

p1 = |p|n1,

where |p| is the magnitude of the phase-slowness vector and n1 is the horizontal component of the unit

vector normal to the wavefront. Recalling expression (9.2.22) and using the fact that, in the x1x3-plane,

n1 =
√

1− n2
3, we obtain

p1 = |p| sinϑ,

where ϑ is the phase angle, which is measured between the wavefront normal and the vertical axis.

Since p1 is conserved across the interfaces separating homogeneous horizontal layers, we denote this

constant by p. Now, since the magnitudes of phase slowness and phase velocity are the reciprocals of one

another, we can write conserved quantity p as

(10.1.3) p =
sinϑ
v (ϑ)

,

where v (ϑ) gives the magnitude of phase velocity as a function of the phase angle.
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Expression (10.1.3) is a general statement of Snell’s law2 in the context of phase angle and phase velocity.

It is valid across interfaces between generally anisotropic continua. Since p is a conserved quantity for a

given solution curve x (t), which corresponds to a ray, we refer to p as ray parameter. We will discuss it

further, in the context of Hamilton’s and Lagrange’s ray equations, in Section 14.6.

The continuity of the horizontal phase-slowness components provides us with a convenient formulation to

relate the angles of incidence, reflection and transmission.3

10.1.2. Ray angles. We wish to use the continuity of the phase-slowness components to derive the

relation between the ray angles across the interface.

Examining Hamilton’s ray equations, an analytic relation between the phase angles and the ray angles

was derived in Section 8.4.3 and given by expression (8.4.12). As discussed on page 241, this expression

also states that at any point of the phase-slowness curve, the corresponding ray direction is always normal

to this curve. Herein, we will use this geometrical property to formulate expressions relating incidence,

reflection and transmission ray angles across an interface between two anisotropic continua.

Note that, while expression (10.1.3) is generally true for ϑ ∈ (−π, π), obtaining analytic expressions in

terms of ray angles and ray velocities is not always possible. If we wish to obtain such expressions, we

must restrict our studies to particular symmetries or use convenient approximations.4 This is a consequence

of restrictions imposed by Legendre’s transformation, which is discussed in Appendix B. Nevertheless,

the geometrical construction relating the phase and ray angles, which results from polar reciprocity, is

possible at any given point of the phase-slowness surface of a generally anisotropic continuum.

In the following section, we consider a particular symmetry due to elliptical velocity dependence. Therein,

we derive analytic expressions between the ray angles of incidence and transmission.

2Readers interested in discussion of Snell’s law in the context of quantum electrodynamics might refer to Feynman, R.P.,
(1985/2006) QED: The strange theory of light and matter: Princeton University Press, pp. 38 – 45, for reflection, and pp. 50 –
52, for refraction. On page 56 of that book, we read that

the idea that light goes in a straight line is a convenient approximation to describe what happens in the world
that is familiar to us; it’s similar to the crude approximation that says when light reflects off a mirror, the
angle of incidence is equal to the angle of reflection.

Readers interested in an insightful discussion of Snell’s law, which includes both a geometrical and mechanical formulations,
might refer to Polya, G., (1954) Mathematics and plausible reasoning, Vol. I: Induction and analogy in mathematics: Princeton
University Press, pp. 142 – 155. Readers interested in Snell’s law as an example of causation and determinism might refer to
Weinert, F., (2005) The scientist as philosopher: Springer-Verlag, pp. 208 – 209.

3Readers interested in a geometrical formulation of the relation among the incidence, reflection and transmission angles
might refer to Auld, B.A., (1973) Acoustic fields and waves in solids: John Wiley and Sons, Vol. II, pp. 1 – 14.

4Readers interested in formulations using expressions based on the weak-anisotropy approximation might refer to Slawinski,
M.A., Slawinski, R.A, Brown, R.J., and Parkin, J.M., (2000), A generalized form of Snell’s law in anisotropic media. Geophysics,
65, No. 2, 632 – 637.
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10.1.3. Example: Elliptical velocity dependence.

Phase-slowness curves. Consider a two-dimensional continuum that is contained in the xz-plane. Let

this continuum consist of two halfspaces, and let the interface coincide with the x-axis.

We wish to characterize each layer by the phase-slowness curve, which is expressed in terms of the hori-

zontal and vertical velocities.

The two phase-slowness curves can be stated as

(10.1.4)

{
f (px, pz) = (1vxpx)2 + (1vzpz)

2 = 1

g (px, pz) = (2vxpx)2 + (2vzpz)
2 = 1

,

for the medium of incidence and transmission, respectively, where vx and vz specify the horizontal and

vertical phase velocities, respectively.

Note that either expression of set (10.1.4) is the equation of an ellipse in the pxpz-plane, given by

(10.1.5)
p2
x(

1
mvx

)2 +
p2
z(

1
mvz

)2 = 1, m ∈ {1, 2} ,

where m = 1 corresponds to the medium of incidence, while m = 2 corresponds to the medium of

transmission.

Conserved quantity in terms of phase angles and phase velocities. Since the continuum is homoge-

neous along the x-axis, we wish to obtain the quantity that is conserved across the interface in terms of the

horizontal and vertical velocities.

In view of expression (10.1.3), we can write

(10.1.6) p = px =
sinϑ
v (ϑ)

=
sinϑm√

mv2
x sin2 ϑm + mv2

z cos2 ϑm
, m ∈ {1, 2} ,

where, in view of elliptical velocity dependence, v (ϑ) is given by expression (6.10.11).

Conserved quantity in terms of ray angles and ray velocities. We wish to express conserved quantity

(10.1.6) in terms of the ray angle and the ray velocity.

In view of the symmetry of the ellipse, the values of the horizontal phase velocity and vertical phase

velocity are equal to the corresponding values of the ray velocities, namely, vx = Vx and vz = Vz . Hence,

set (10.1.4) can be restated as

(10.1.7)

{
f (px, pz) = (1Vxpx)2 + (1Vzpz)

2 = 1

g (px, pz) = (2Vxpx)2 + (2Vzpz)
2 = 1

.

To find the angle of a normal to a phase-slowness curve, we can consider the phase-slowness curves as the

level curves of functions f and g, and use the fact that the ray directions are normal to the phase-slowness

curves. In view of the properties of the gradient operator and using, for instance, function f , we can write
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the unit vector normal to the phase-slowness curve as ∇pf/ |∇pf |, where ∇p is the gradient operator

given by [∂/∂px, ∂/∂pz]. Now, using the scalar product, we obtain the angle between the vector normal

to the phase-slowness surface and the vertical axis. This angle, which is the ray angle, is given by

cos θ1 = ez ·
∇pf

|∇pf |
=

∂f
∂pz

|∇pf |

evaluated at (px, pz), where ez is the unit vector along the vertical axis. Thus, using expressions for f and g

stated in set (10.1.7), we get the corresponding expression for a ray angle in elliptical velocity dependence,

namely,

(10.1.8) cos θm = mV
2
z pz√

(mV 2
x px)2 + (mV 2

z pz)
2

, m ∈ {1, 2} .

To invoke the conserved quantity, p = px, we would like to explicitly solve equations (10.1.8) for px.

Using expressions of set (10.1.7), we can write

(10.1.9) pz =

√
1− (mVxpx)2

mVz
, m ∈ {1, 2} ,

and, hence, inserting expressions (10.1.9) into equations (10.1.8), we get

(10.1.10) cos θm =
mVz

√
1− (mVxpx)2√

mV 4
x p

2
x +mV 2

z

[
1− (mVxpx)2

] , m ∈ {1, 2} .

Solving equations (10.1.10) for px, we obtain

p2
x = mV

2
z sin2 θm

mV 2
x

(
mV 2

z sin2 θm +m V 2
x cos2 θm

) , m ∈ {1, 2} .

Simplifying, we can write

p2
x =

1

mV 2
x

[(
mVx
mVz

)2
cot2 θm + 1

] , m ∈ {1, 2} .

Consequently, the conserved quantity, p = px, can be written as

(10.1.11) p =
1

mVx

√(
mVx
mVz

)2
cot2 θm + 1

, m ∈ {1, 2} ,

which is conserved quantity (10.1.6) stated in terms of ray angles and ray velocities.

Note that we can write expression (10.1.6) as

(10.1.12) p =
1

mvx

√(
mvz
mvx

)2
cot2 ϑm + 1

, m ∈ {1, 2} ,
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which allows us to see the similarity of form between expressions (10.1.6) and (10.1.11). Notice, however,

that in expression (10.1.11), we have Vx/Vz , while, in expression (10.1.12), we have vz/vx.

In general, as shown in Exercise 10.1, expressions (10.1.6) and (10.1.11) are equivalent to one another.

For the isotropic case, as shown in Exercise 10.2, expressions (10.1.6) and (10.1.11) become identical.

Following expression (10.1.11) and in view of set (10.1.7), we can write

(10.1.13) 1V
2
x

[(
1Vx

1Vz

)2

cot2 θ1 + 1

]
= 2V

2
x

[(
2Vx

2Vz

)2

cot2 θ2 + 1

]
,

where the subscripts 1 and 2 correspond to the medium of incidence and transmission, respectively. Equa-

tion (10.1.13) can be viewed as a statement of Snell’s law for elliptical velocity dependence, expressed in

terms of ray angles and ray velocities.

10.2. Amplitudes at interface

10.2.1. Kinematic and dynamic boundary conditions.

Introductory comments. In Section 10.1, we related the directions of waves across the interface. For

this purpose, we used the continuity of phase. Herein, we will relate the amplitudes of waves across the

interface. For this purpose, we will use the equality of the sum of displacements and the equality of the

traction components across the interface, which we refer to as the kinematic and the dynamic boundary

conditions, respectively.

In general, when a wave encounters an interface, it generates both reflected and transmitted waves. In this

process, the energy of the incident wave is partially reflected and partially transmitted. The fractions of

the incident-wave energy that are reflected and transmitted are functions of the direction of the incident

wave and the material properties on either side of the interface. Since energy carried by a wave is directly

proportional to the square of the amplitude of the displacement, which can be measured by a seismic

receiver, we discuss reflection and transmission amplitudes.

The formulation presented in this section deals specifically with amplitudes of plane SH waves in the

context of a plane interface between two transversely isotropic continua whose rotation-symmetry axes

are normal to the interface. Also, these two continua are assumed to be in a welded contact, which implies

that they cannot slip with respect to one another. SH waves are used because their elliptical velocity

dependence lends itself to a convenient illustration of the physical concepts involved.

Displacement vectors. In a three-dimensional transversely isotropic continuum, where the rotation-

symmetry axis is assumed to coincide with the x3-axis, we consider an SH wave whose phase-slowness

vector, p, is contained in the x1x3-plane. Hence, this SH wave exhibits a displacement in the x2-direction

only, and, consequently, we can write its displacement vector as

(10.2.1) u = [0, u2, 0] .
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Considering the oscillatory nature of waves and in view of expression (6.10.14), we can write the nonzero

component of displacement as

(10.2.2) u2 = A exp [iω (p · x− t)] ,

where A denotes the amplitude of the displacement and exp [·] is the phase factor.

Kinematic boundary conditions. The kinematic boundary conditions require the equality of the sum

of displacements across the interface. This equality has the following physical meanings. The equality of

displacements parallel to the interface implies that the materials cannot slip with respect to one another.

The equality of the displacement normal to the interface implies that the materials cannot separate from

one another or penetrate one another. These equalities are tantamount to the assumption of a welded

contact.

In view of expression (10.2.2) and setting the amplitude of the incident signal to unity, we can write the

kinematic boundary condition as 0

1

0

 exp
[
iω
(
pi · x− t

)]
+

 0

Ar

0

 exp [iω (pr · x− t)] =

 0

At

0

 exp
[
iω
(
pt · x− t

)]
,

where i, r and t, as superscripts or subscripts, refer to the incident, reflected and transmitted waves,

respectively. We can immediately rewrite this kinematic boundary condition as

(10.2.3) exp
[
iω
(
pi · x− t

)]
+Ar exp [iω (pr · x− t)] = At exp

[
iω
(
pt · x− t

)]
.

Dynamic boundary conditions. The dynamic boundary conditions require the equality of the traction

components across the interface, which is tantamount to the equality of the stress-tensor components. We

will deduce this equality from Newton’s third law of motion. To do so, we require the welded contact in

order for the adjacent points to remain in constant contact across the interface, and we view the continuum

on either side of the interface as two distinct bodies acting on one another.5

Since the stress-tensor components are the components of the traction acting on a plane with a given

orientation, let us recall the sign convention described on page 41.

On a surface whose outward normal points in the positive direction of the corresponding

coordinate axis, all traction components that act in the positive direction of a given axis

are positive. On a surface whose outward normal points in the negative direction of the

corresponding coordinate axis, all traction components that act in the negative direction

of a given axis are positive.

5Readers interested in an insightful explanation of the requirement of the constant contact between two bodies acting on one
another might refer to Schutz, B., (2003) Gravity from the ground up: Cambridge University Press, pp. 11 – 12.
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For convenience, let us consider an interface coinciding with the x1x2-plane, and let traction T(n) act on

this plane in such a way that T (n)
1 , T (n)

2 and T (n)
3 are positive; n stands for the outward normal of the

plane, it points in the positive direction of the x3-axis. Thus, T (n)
1 , T (n)

2 and T (n)
3 point in the positive

directions of the x1-axis, the x2-axis and the x3-axis, respectively. Newton’s third law of motion implies

that T (−n)
1 , T (−n)

2 and T (−n)
3 are equal in magnitude to their counterparts on the other side of the interface,

and they point in the negative directions of the corresponding axes. Since T(−n) acts on a plane whose

outward normal points in the negative direction of the x3-axis, the three components of T(−n) are positive.

Hence, we can write T (n)
i = T

(−n)
i . In other words, Newton’s third law implies the equality of the traction

components across the interface.

To express this result in terms of the stress-tensor components, let us recall the index convention described

on page 41 and illustrated in Figure 2.5.1. Following this convention, both vectors T(n) and T(−n) are

described by σ31, σ32 and σ33 shown, respectively, by the solid arrows on the upper horizontal plane and

by the dashed arrows on the lower horizontal plane in Figure 2.5.1. Since we would have reached the

same conclusion of equality if we had chosen a different orientation of the interface or different signs

of the traction components, we have shown that Newton’s third law implies the equality of the stress-

tensor components, which are the dynamic boundary conditions. Let us use these conditions to discuss the

displacement amplitudes at a given interface, say, the x1x2-plane.

For an interface coinciding with the x1x2-plane, n1 = n2 = 0. Thus, in view of expression (2.5.15)

on page 45, we see that the corresponding traction components are identically zero. Consequently, their

equality is satisfied trivially. As shown above, the equality of the nonzero components of traction implies

the equality of the stress-tensor components given by

(10.2.4)

 σI31

σI32

σI33

 =

 σII31

σII32

σII33

 ,
where the superscript I indicates the medium of incidence and reflection, and the superscript II indicates

the medium of transmission. Furthermore, in view of the symmetry of the stress tensor stated in Theorem

2.7.1 on page 52, we can write

σI13 = σI31 = σII13 = σII31

and

σI23 = σI32 = σII23 = σII32 .

To study the amplitudes of reflected and transmitted waves in terms of the properties of the continua on

either side of the interface, we wish to rewrite conditions (10.2.4) in terms of elasticity parameters and

mass density. Recalling definition (1.4.6) and considering stress-strain equations (4.2.8) with the elasticity
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matrix for a transversely isotropic continuum, given by matrix (5.10.3), we can write

σ13 = C44

(
∂u1

∂x3
+
∂u3

∂x1

)
,

σ23 = C44

(
∂u2

∂x3
+
∂u3

∂x2

)
and

σ33 = C13
∂u1

∂x1
+ C13

∂u2

∂x2
+ C33

∂u3

∂x3
,

where — using the stress-tensor symmetry — we chose to write σ13 and σ23 rather than σ31 and σ32.

Considering displacement vector (10.2.1), where u1 = u3 = 0, we can write explicitly the three conditions

as

σ13 = 0,

(10.2.5) σ23 = C44
∂u2

∂x3

and

σ33 = C13
∂u2

∂x2
.

Since σ13 = 0, the first condition is satisfied identically, and the remaining dynamic boundary conditions

are

(10.2.6) σI23 = σII23

and

(10.2.7) σI33 = σII33 .

Considering the displacement-vector components for the incident, reflected and transmitted waves in view

of expression (10.2.5), we can write boundary condition (10.2.6) as

(10.2.8) CI44

(
∂ui2
∂x3

+
∂ur2
∂x3

)
= CII44

∂ut2
∂x3

,

where the left-hand side contains the contributions of both the incident and reflected waves. Invoking

expression (10.2.2), we can write equation (10.2.8) as

(10.2.9)

CI44

(
ωpi3 exp

[
iω
(
pi · x− t

)]
+ ωpr3Ar exp [iω (pr · x− t)]

)
= ωpt3C

II
44At exp

[
iω
(
pt · x− t

)]
.

In an analogous manner, we consider boundary condition (10.2.7) to obtain

CI13

(
ωpi2 exp

[
iω
(
pi · x− t

)]
+ ωpr2Ar exp [iω (pr · x− t)]

)
= ωpt2C

II
13At exp

[
iω
(
pt · x− t

)]
.

Since the phase-slowness vector, p, is contained in the x1x3-plane, p2 = 0. Hence, this condition is

satisfied identically.
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Thus, for SH waves propagating across the interface separating two transversely isotropic continua in

welded contact, equation (10.2.3) is the only kinematic boundary condition and equation (10.2.9) is the

only dynamic boundary condition. These equations form the system to be solved for the reflection and

transmission amplitudes in terms of properties of continua on either side of the interface; notably, the mass

density is implicitly present in these conditions since it is contained in expressions for the phase-slowness

vectors, p.

10.2.2. Reflection and transmission amplitudes.

Derivation of expressions. We wish to obtain the values of the reflection amplitude, Ar, and the trans-

mission amplitude, At. Thus, we need to solve the system composed of equations (10.2.3) and (10.2.9).

Since these equations relate to a point on the interface, in view of the previous assumptions, we can make

certain simplifications without further affecting the generality of the formulation.

Since we are considering the interface that coincides with the x1x2-plane, we set x3 = 0. In view of the

transversely isotropic continuum with the x3-axis corresponding to the rotation-symmetry axis and our

choice of the propagation in the x1x3-plane, the corresponding phase-slowness vector is p = [p1, 0, p3].

Furthermore, the homogeneity of the continuum along the x1-axis and the x2-axis allows us to conve-

niently choose any incidence point on the interface; hence, we choose (0, 0, 0). Also, at the instant of

incidence, the incident, reflected and transmitted waves are considered at the boundary at the same time

t. Moreover, considering monochromatic waves, the value of frequency, ω, is the same for the incident,

reflected and transmitted waves. Thus, equations (10.2.3) and (10.2.9) simplify to

(10.2.10) 1 +Ar = At,

and

(10.2.11) CI44

(
pi3 +Arp

r
3

)
= CII44p

t
3At,

respectively.

We can further simplify condition (10.2.11). In view of the phase-slowness curve being symmetric about

the x3-axis, the equality of the p1 components for the incident and reflected waves implies that pi3 = −pr3.

In other words, the vertical components of the phase-slowness vectors for the incident and reflected waves

exhibit the same magnitudes and opposite directions.

Hence, dynamic boundary condition (10.2.11) becomes

(10.2.12) CI44p
i
3 (1−Ar) = CII44p

t
3At.
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Now, it is convenient to explicitly include mass density in condition (10.2.12). Since p3 is a vertical

component of the phase-slowness vector, recalling expression (9.2.18), we can write

(10.2.13) CI44

cosϑi√
CI66 sin2 ϑi+CI44 cos2 ϑi

ρ1

(1−Ar) = CII44

cosϑt√
CII66 sin2 ϑt+CII44 cos2 ϑt

ρ2

At.

Equations (10.2.10) and (10.2.13) form a system of two equations to be solved for the two unknowns,

namely, the reflection and transmission amplitudes. These solutions are

(10.2.14) Ar (ϑ) =

√
ρ1CI44 cosϑi√

CI66 sin2 ϑi+CI44 cos2 ϑi
−

√
ρ2CII44 cosϑt√

CII66 sin2 ϑt+CII44 cos2 ϑt
√
ρ1CI44 cosϑi√

CI66 sin2 ϑi+CI44 cos2 ϑi
+

√
ρ2CII44 cosϑt√

CII66 sin2 ϑt+CII44 cos2 ϑt

,

and

(10.2.15) At (ϑ) =
2

√
ρ1CI44 cosϑi√

CI66 sin2 ϑi+CI44 cos2 ϑi
√
ρ1CI44 cosϑi√

CI66 sin2 ϑi+CI44 cos2 ϑi
+

√
ρ2CII44 cosϑt√

CII66 sin2 ϑt+CII44 cos2 ϑt

.

Expressions (10.2.14) and (10.2.15) give the reflection amplitude and the transmission amplitude, respec-

tively, for SH waves in transversely isotropic continua with the rotation-symmetry axes normal to the

interface. The reflection and transmission amplitudes depend on the values of the elasticity parameters

and mass density on either side of the interface, and are functions of the phase angles of incidence and

transmission.6

Interpretation of expressions. Examining expressions (10.2.14) and (10.2.15), we learn about the be-

haviour of the seismic signal in the context of its being transmitted through, or reflected from, the interface.

Depending on the values of elasticity parameters, mass densities and the incidence angle, the value of

expression (10.2.14) can be either positive or negative. The positive sign implies that the direction of the

displacement vectors for both the incident wave and the reflected wave is the same. The negative sign

implies the reversal of the direction of the displacement vector. Also, while the amplitude of the incident

wave is set to unity, the amplitude of the transmitted wave can be greater than unity. This is in agreement

with balance of energy, as shown in Exercise 10.5.

If the values of elasticity parameters and mass densities are such that the magnitude of the velocity that

is parallel to the interface is greater in the medium of transmission than in the medium of incidence, by

examining expression (10.1.6), we conclude that once ϑi is large enough, sinϑt is greater than unity and,

consequently, cosϑt =
√

1− sin2 ϑt is purely imaginary. Furthermore, examining expressions (10.2.14)

and (10.2.15), we conclude that, in such a case, Ar and At are complex numbers.

6Readers interested in an insightful explanation of the reflection and transmission amplitudes — as functions of the properties
of the media and the incidence angle — in the context of the theory of quantum electrodynamics might refer to Feynman, R.P.,
(1985/2006) QED: The strange theory of light and matter: Princeton University Press, pp. 107 – 109.
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Let us consider the transmitted wave. Returning to expression (10.2.2), we can write it as

ut2 = At exp
[
iω
(∣∣pt∣∣ cosϑtz +

∣∣pt∣∣ sinϑtx− t)](10.2.16)

= At exp
[
iω
(∣∣pt∣∣ i |cosϑt| z +

∣∣pt∣∣ sinϑtx− t)]
= At exp

(
−ω

∣∣pt∣∣ |cosϑt| z
)

exp
[
i
(∣∣pt∣∣ sinϑtx− t)] .

Expression (10.2.16) describes a wave that propagates in the positive x-direction and decays exponentially

in the positive z-direction. Such a wave is called evanescent. In such a case there is no energy transmitted

across the interface. Also, in such a case, the corresponding magnitude of Ar is equal to unity, as shown

in Exercise 10.6.

Since for evanescent waves there is no energy transmitted across the interface, let us focus our attention

on the reflected wave. For evanescent waves, Ar is a complex number that we can write as

(10.2.17) Ar (ϑ) = |Ar| exp (iκ) ,

where |Ar| is the magnitude and κ is the angle in the complex plane. In view of expressions (10.2.2) and

(10.2.17), as well as using the fact that |Ar| = 1, we can write the nonzero component of displacement of

the reflected wave as

(10.2.18) ur2 = exp (iκ) exp [iω (p · x− t)] = exp {i [κ + ω (p · x− t)]} ,

where exp {·} is the phase factor. Consequently, examining expression (10.2.18) and following the sign

convention used for the phase factor in expression (10.2.2), we see that if κ > 0, the reflected wave is

phase-delayed relative to the incident wave. This is the consequence of the fact that positive κ results in

the phase factor being evaluated at an earlier time. In other words, exp [i (κ − ωt)] lags exp (−iωt) in

time. Similarly, if κ < 0, the reflected wave is phase-advanced.7

Expressions in terms of incidence phase angle. As shown in Section 10.1, the incidence and transmis-

sion angles can be expressed in terms of one another. Consequently, we wish to state expressions (10.2.14)

and (10.2.15) in terms of the phase angle of incidence only.

Recall conserved quantity (10.1.3). Let the phase velocity be given by expression (9.2.18), and the phase

angle be stated by expression (9.2.22). Thus, we can write

(10.2.19)
sinϑi√

CI66 sin2 ϑi+CI44 cos2 ϑi
ρ1

=
sinϑt√

CII66 sin2 ϑt+CII44 cos2 ϑt
ρ2

.

Solving equation (10.2.19) for the angle of transmission, yields

(10.2.20) ϑt = arcsin

√
ρ1CII44 sin2 ϑi[

ρ2

(
CI66 − CI44

)
− ρ1

(
CII66 − CII44

)]
sin2 ϑi + ρ2CI44

.

7Readers interested in phase shifts might refer to Aki, K., and Richards, P.G., (2002) Quantitative seismology (2nd edition):
University Science Books, pp. 149 – 157.
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Hence, by inserting expression (10.2.20) into expressions (10.2.14) and (10.2.15), we can state the latter

expressions in terms of the phase angle of incidence only.

Expressions in terms of incidence ray angle. It is often convenient to state expressions (10.2.14) and

(10.2.15) in terms of the ray angle of incidence, rather than the phase angle of incidence. Following

equation (9.4.8), we can express the phase angle in terms of the ray angle as

(10.2.21) ϑi = arctan
(
CI44

CI66

tan θi

)
.

Consequently, by inserting expression (10.2.21) into expression (10.2.20), and inserting the resulting ex-

pression into expressions (10.2.14) and (10.2.15), we can state the latter expressions in terms of the ray

angle of incidence only.

Turning points. Herein, we will consider reflection amplitudes for a ray in a continuum where the

velocity increases monotonically with depth. For this purpose — with no loss of generality — we can use

the expression derived in Exercise 10.3, which corresponds to an isotropic case, namely,

Ar =
ρ1v1 cosϑi − ρ2v2 cosϑt
ρ1v1 cosϑi + ρ2v2 cosϑt

.

We can write

cosϑi =
√

1− sin2 ϑi

and

cosϑt =
√

1− sin2 ϑt

Invoking

p =
sinϑi
v1

=
sinϑt
v2

,

we obtain

Ar =
ρ1v1

√
1− p2v2

1 − ρ2v2

√
1− p2v2

2

ρ1v1

√
1− p2v2

1 + ρ2v2

√
1− p2v2

2

.

Let ρ1 = ρ−∆ρ, ρ2 = ρ+ ∆ρ, v1 = v −∆v and v2 = v + ∆v. We get

Ar =
(ρ−∆ρ) (v −∆v)

√
1− p2 (v −∆v)2

(ρ−∆ρ) (v −∆v)
√

1− p2 (v −∆v)2 + (ρ+ ∆ρ) (v + ∆v)
√

1− p2 (v + ∆v)2

−
(ρ+ ∆ρ) (v + ∆v)

√
1− p2 (v + ∆v)2

(ρ−∆ρ) (v −∆v)
√

1− p2 (v −∆v)2 + (ρ+ ∆ρ) (v + ∆v)
√

1− p2 (v + ∆v)2
.

Consider the root given by√
1− p2 (v −∆v)2 =

√
1− p2

[
v2 − 2v∆v + (∆v)2

]
.
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Assuming ∆v is small, we ignore the second-order term and write√
1− p2 (v −∆v)2 ≈

√
1− p2 (v2 − 2v∆v).

As ϑi approaches π/2, p tends to 1/v. Thus, we can write√
1− p2 (v −∆v)2 ≈

√
1− 1

v2
[v2 − 2v∆v] =

√
−2

∆v
v

.

Similarly, consider the other root, we get√
1− p2 (v + ∆v)2 ≈

√
2

∆v
v

.

Neglecting linear terms in ∆ρ and ∆v, we obtain

Ar ≈

√
2∆v
v −

√
−2∆v

v√
2∆v
v +

√
−2∆v

v

.

Rearranging, we write

Ar ≈

√
2∆v
v − i

√
2∆v
v√

2∆v
v + i

√
2∆v
v

.

Simplifying, we get

Ar ≈
1− i
1 + i

.

Multiplying both the numerator and the denominator by the complex conjugate, we obtain Ar ≈ −i.

To understand the physical meaning of this result, we can also write Ar = exp (−iπ/2), and consider the

phase factor, namely, exp (−iωt). The effect of Ar is

Ar exp (−iωt) = exp
(
−iπ

2

)
exp (−iωt) = exp

[
−i
(π

2
+ ωt

)]
,

which is a phase advance at the turning point.

Closing remarks

The reflection-angle and transmission-angle expressions derived in this chapter result from the continuity

of phase across the interface. Analogous expressions, resulting from the conserved quantity associated

with Fermat’s principle of stationary traveltime, are discussed in Chapter 14.

Herein, the reflection-amplitude and transmission-amplitude expressions are derived for SH waves in

transversely isotropic continua. This formulation provides a convenient illustration of the derivation pro-

cess resulting from the boundary conditions that imply the equality of the sum of displacements and the

equality of the traction components across the interface. Such a formulation can also be used in more

general cases.
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Note, however, that the illustration using SH waves does not address the fact that, in general, in anisotropic

continua, displacement direction is neither parallel nor orthogonal to the wavefront normal, as discussed

in Section 9.2.3. This property would introduce additional complications that are not addressed in this

chapter.

Our formulation of the reflection and transmission amplitudes is based on the plane-wave assumption.

Considering a point source, the plane-wave assumption provides a good approximation to a general for-

mulation for distant sources. Moreover, other wavefront shapes can be considered as a composition of

plane waves. In other words, any wavefront can be decomposed into plane waves.8

If we wish to derive a more general formulation, numerous assumptions must be investigated. For instance,

considering ray methods in transversely isotropic continua, SH waves are decoupled from the qP and qSV

waves. In general, in continua exhibiting different symmetries, all three waves are coupled. Also, for the

interface considered in this chapter, the two transversely isotropic continua are oriented in such a way that

their rotation-symmetry axes are normal to the interface. Furthermore, the boundary conditions used in

this chapter are based on the assumption of the welded contact at the interface. Many of the above concerns

are addressed in the existing literature.9

8Readers interested in evaluation of the applicability of the plane-wave assumption and its extensions might refer to Grant,
F.S., and West, G.F., (1965) Interpretation theory in applied geophysics: McGraw-Hill Book Co., Chapter 6.

9Readers interested in the formulation of reflection and transmission coefficients for P , SV and SH waves at different
boundary conditions might refer to Aki, K. and Richards, P.G., (2002) Quantitative seismology (2nd edition): University Science
Books, pp. 128 – 149, and to Červený, V., (2001) Seismic ray theory: Cambridge University Press, pp. 477 – 505. The former
reference also contains a convenient weak-inhomogeneity approximation.

Readers interested in a formulation involving qP and qSV waves in transversely isotropic continua might refer to Mavko, G.,
Mukerji, T., and Dvorkin, J., (1998) The rock physics handbook: Cambridge University Press, pp 65 – 70.

Readers interested in a formulation of reflection and transmission coefficients in anelastic continua might refer to Le, L.H.T.,
Krebes, E.S., and Quiroga-Goode, G.E., (1994) Synthetic seismograms for SH waves in anelastic transversely isotropic media:
Geophys. J. Int, 116, 598 – 604.

Readers interested in a formulation accounting for phenomena resulting from slip interfaces, including interfaces between two
identical continua, might refer to Schoenberg, M., (1980) Elastic wave behaviour across linear slip interfaces: J. Acoust. Soc.
Am., 68 (5), 1516 – 1521.
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10.3. Exercises

EXERCISE 10.1. 10Show that expressions (10.1.6) and (10.1.11) are equivalent to one another.

SOLUTION 10.1. Consider expression (10.1.11). In view of the symmetry of an ellipse, we know that

Vx = vx and Vz = vz . Hence, we can write

p =
1

vx

√(
vx
vz

)2
cot2 θ + 1

.

Recalling expression (8.7.12), we express the ray angle in terms of the phase angle to obtain

p =
1

vx

√(
vx
vz

)2
1

tan2


arctan

»“
vx
vz

”2
tanϑ

–ff + 1
.

Using trigonometric identities, we get

p =
1

vx

√(
vx
vz

)2
1“

vx
vz

”4
tan2 ϑ

+ 1
=

1√
v2
z cot2 ϑ+ v2

x

.

Multiplying both numerator and denominator by sinϑ, we obtain

p =
sinϑ√

v2
z cos2 ϑ+ v2

x sin2 ϑ
.

In view of expression (6.10.11), we can immediately write

p =
sinϑ
v (ϑ)

,

which is expression (10.1.6), as required.

EXERCISE 10.2. Show that in isotropic continua, expressions (10.1.6) and (10.1.11) are identical to one

another.

SOLUTION 10.2. Consider expression (10.1.11). In isotropic continua, V := Vx = Vz . Hence, we can

write

p =
1

V
√

cot2 θ + 1
.

For isotropic continua, the magnitudes of the phase and ray velocities coincide, namely, V = v. Also, the

phase and ray angles coincide, namely, θ = ϑ. Thus, invoking trigonometric identities, we obtain

p =
sinϑ
v

,

which is the isotropic form of expression (10.1.6), as required.

10Also see Section 14.6
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EXERCISE 10.3. Following expression (10.2.14), state the expressions for the reflection and transmission

amplitudes for isotropic continua in terms of mass density, ρ, and velocity, v.

SOLUTION 10.3. In view of matrices (5.12.1) and (5.12.3), we let µ := C44 = C66 and write

Ar (ϑ) =
√
ρ1µ1 cosϑi −

√
ρ2µ2 cosϑt√

ρ1µ1 cosϑi +
√
ρ2µ2 cosϑt

,

and

At (ϑ) =
2
√
ρ1µ1 cosϑi√

ρ1µ1 cosϑi +
√
ρ2µ2 cosϑt

,

for the reflection and transmission amplitudes, respectively. In view of v =
√
µ/ρ, we can restate these

expressions as

Ar (ϑ) =
ρ1

√
µ1

ρ1
cosϑi − ρ2

√
µ2

ρ2
cosϑt

ρ1

√
µ1

ρ1
cosϑi + ρ2

√
µ2

ρ2
cosϑt

=
ρ1v1 cosϑi − ρ2v2 cosϑt
ρ1v1 cosϑi + ρ2v2 cosϑt

,

and

At (ϑ) =
2ρ1

√
µ1

ρ1
cosϑi

ρ1

√
µ1

ρ1
cosϑi + ρ2

√
µ2

ρ2
cosϑt

=
2ρ1v1 cosϑi

ρ1v1 cosϑi + ρ2v2 cosϑt
.

Following Snell’s law, namely, ϑt = arcsin [(v2/v1) sinϑi], we can express both Ar and At in terms of

the angle of incidence, ϑi.

EXERCISE 10.4. Using expressions (10.2.14) and (10.2.15), state the expressions for the reflection and

transmission amplitudes for normal incidence in terms of mass density, ρ, and velocity, vSH (0).

SOLUTION 10.4. Consider expressions (10.2.14) and (10.2.15). Letting ϑi = ϑt = 0, we obtain

Ar (0) =

√
ρ1CI44 −

√
ρ2CII44√

ρ1CI44 +
√
ρ2CII44

,

and

At (0) =
2
√
ρ1CI44√

ρ1CI44 +
√
ρ2CII44

,

for the reflection and transmission amplitudes, respectively. In view of expressions (9.2.18) and (9.2.22),

we obtain v := vSH (0) =
√
C44/ρ and, hence, we can restate the above expressions as

(10.3.1) Ar (0) =
ρ1

√
CI44
ρ1
− ρ2

√
CII44
ρ2

ρ1

√
CI44
ρ1

+ ρ2

√
CII44
ρ2

=
ρ1v1 − ρ2v2

ρ1v1 + ρ2v2
,
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and

(10.3.2) At (0) =
2ρ1

√
CI44
ρ1

ρ1

√
CI44
ρ1

+ ρ2

√
CII44
ρ2

=
2ρ1v1

ρ1v1 + ρ2v2
,

where v1 ≡ vSH (0) in the medium of incidence and v2 ≡ vSH (0) in the medium of transmission.

REMARK 10.3.1. Expressions (10.3.1) and (10.3.2) are identical to expressions (6.7.12) and (6.7.13),

respectively, which were derived in a different way in Chapter 6.

EXERCISE 10.5. Consider expression

(10.3.3) 〈E〉 =
1
2
ρvω2A2,

where 〈E〉 is the average energy density carried by the wave and ω is its angular frequency. Using the

expressions for the normal-incidence reflection and transmission amplitudes, derived in Exercise 10.4,

show that the energy is conserved.

SOLUTION 10.5. The balance of energy states that the energy carried by the incident wave must be equal

to the sum of the energies carried by the reflected and transmitted waves, namely,

〈Ei〉 = 〈Er〉+ 〈Et〉 .

Considering monochromatic waves and normalizing incident-wave amplitude to unity, in accordance with

expression (10.3.3), we obtain
1
2
ρ1v1 =

1
2
ρ1v1A

2
r +

1
2
ρ2v2A

2
t ,

which can be rewritten as

(10.3.4) 1 = A2
r +

ρ2v2

ρ1v1
A2
t .

Inserting expressions (10.3.1) and (10.3.2) into expression (10.3.4), we get

1 =
(
ρ1v1 − ρ2v2

ρ1v1 + ρ2v2

)2

+
ρ2v2

ρ1v1

(
2ρ1v1

ρ1v1 + ρ2v2

)2

=
(
ρ1v1 − ρ2v2

ρ1v1 + ρ2v2

)2

+
4ρ1v1ρ2v2

(ρ1v1 + ρ2v2)2 = 1,

as required.

EXERCISE 10.6. 11Show that if sinϑt > 1, the magnitude of Ar is equal to unity.

SOLUTION 10.6. If sinϑt > 1, then cosϑt is a pure imaginary number. In that case, expression (10.2.14)

is of the form

Ar =
a− bi
a+ bi

.

11See also Section 10.2.2
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The magnitude is given by

|Ar| =
√
ArA∗r ,

where

A∗r :=
a+ bi

a− bi
is the complex conjugate. Therefore,

|Ar| =
√
a− bi
a+ bi

a+ bi

a− bi
= 1,

as required.





CHAPTER 11

Lagrange’s ray equations

The ancient Greeks had a hard time defining objects like “curves” and “surfaces”

in a general way since their algebra was not well developed and always remained

on a rather modest level. In fact, some historians think that the final stagnation of

Greek mathematics was caused by the Greeks’ failure to develop algebra and to

apply it to geometry.

Stephan Hildebrandt and Anthony Tromba (1996) The parsimonious universe

Preliminary remarks

In Chapter 8, we obtained Hamilton’s ray equations, which allow us to study seismic signals in an

anisotropic inhomogeneous continuum. In a three-dimensional continuum, Hamilton’s equations con-

stitute a system of six first-order ordinary differential equations, which are expressed in terms of Hamil-

tonian H and exist in the xp-space. This system can be also expressed as a system consisting of three

ordinary second-order differential equations, which are expressed in terms of Lagrangian L, where func-

tion L (x, ẋ) is Legendre’s transformation of functionH (x,p). These second-order differential equations

are Lagrange’s ray equations, which exist in the xẋ-space.1

In this chapter, we transform Hamilton’s ray equations into Lagrange’s ray equations. Lagrange’s ray

equations allow us to study ray theory in the realm of the calculus of variations. Thus, this chapter can be

viewed as a transition between Part 2 and Part 3 of the book.

Readers who are not familiar with Legendre’s transformation might find it useful to study this chapter

together with Appendix B.

11.1. Legendre’s transformation of Hamiltonian

In view of Appendix B, where we discuss Legendre’s transformation, we follow expression (B.3.8) to

consider a new function given by

(11.1.1) L (x, ẋ) =
3∑
j=1

pj (x, ẋ) ẋj −H (x,p (x, ẋ)) ,

1In classical mechanics, the xẋ-space corresponds to the velocity phase space. In this book, however, to avoid the confusion
with the term “phase” that we use in the specific context of wave phenomena, we do not use this nomenclature.
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where L is referred to as the ray-theory Lagrangian2 corresponding to a givenH, and pj (x, ẋ) is a solution

of

(11.1.2) ẋj =
∂H (x,p)
∂pj

, j ∈ {1, 2, 3} ,

which is equation (B.3.7). Hence, in view of Appendix B, L is Legendre’s transformation of H. Now, we

wish to rewrite Hamilton’s ray equations (11.2.1) in terms of Lagrangian (11.1.1).

11.2. Formulation of Lagrange’s ray equations

To obtain Lagrange’s ray equations, recall Hamilton’s ray equations (8.2.7), namely,

(11.2.1)


ẋi = ∂H

∂pi

ṗi = − ∂H
∂xi

, i ∈ {1, 2, 3} .

Using expression (11.1.1), consider its derivative with respect to the first and second arguments, namely,

xi and ẋi, where i ∈ {1, 2, 3}. We obtain

(11.2.2)
∂L (x, ẋ)
∂xi

=
∂

∂xi

 3∑
j=1

pj (x, ẋ) ẋj −H (x,p (x, ẋ))


=

3∑
j=1

∂pj (x, ẋ)
∂xi

ẋj −
∂H (x,p (x, ẋ))

∂xi
−

3∑
j=1

∂H (x,p (x, ẋ))
∂pj

∂pj (x, ẋ)
∂xi

and

(11.2.3)
∂L (x, ẋ)
∂ẋi

=
∂

∂ẋi

 3∑
j=1

pj (x, ẋ) ẋj −H (x,p (x, ẋ))


=

3∑
j=1

∂pj (x, ẋ)
∂ẋi

ẋj + pi (x, ẋ)−
3∑
j=1

∂H (x,p (x, ẋ))
∂pj

∂pj (x, ẋ)
∂ẋi

,

respectively.

Using Hamilton’s ray equations (11.2.1), we can restate expressions (11.2.2) and (11.2.3) as

(11.2.4)
∂L (x, ẋ)
∂xi

=
3∑
j=1

∂pj (x, ẋ)
∂xi

ẋj + ṗi (x, ẋ)−
3∑
j=1

ẋj
∂pj (x, ẋ)

∂xi
, i ∈ {1, 2, 3} ,

2In this book we use four distinct Lagrangians, which are denoted by L, F , L and F. Consequently, in the text, we avoid a
generic reference to “the Lagrangian”, unless it is clear from the context which one among the four is considered.
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and

(11.2.5)
∂L (x, ẋ)
∂ẋi

=
3∑
j=1

∂pj (x, ẋ)
∂ẋi

ẋj + pi (x, ẋ)−
3∑
j=1

ẋj
∂pj (x, ẋ)

∂ẋi
, i ∈ {1, 2, 3} ,

respectively.

Examining expressions (11.2.4) and (11.2.5), we see that the first and the third terms on the right-hand

sides cancel each other. Hence, ∂L/∂xi = ṗi and ∂L/∂ẋi = pi. Thus, we conclude that

∂L (x, ẋ)
∂xi

=
d
dt

(
∂L (x, ẋ)
∂ẋi

)
, i ∈ {1, 2, 3} ,

which we can rewrite as

(11.2.6)
∂L
∂xi
− d

dt
∂L
∂ẋi

= 0, i ∈ {1, 2, 3} ,

whereL is given in expression (11.1.1). System (11.2.1) is composed of six first-order ordinary differential

equations in t to be solved for x (t) and p (t). As a result of Legendre’s transformation, we expressed this

system as three second-order ordinary differential equations (11.2.6) in t. These equations constitute a

system of three second-order ordinary differential equations to be solved for x (t), which is the curve

corresponding to the ray. We refer to these equations as Lagrange’s ray equations.

Note that when we introduced L (x, ẋ) in expression (11.1.1), ẋ denoted a new variable, which, a pri-

ori, had no association with x. However, if we consider the solution of system (11.2.1), which is given

by (x (t) ,p (t)), then, in view of p (t) = p (x (t) , ẋ (t)), we also have the corresponding solution

(x (t) , ẋ (t)). By examining equation (11.1.2) together with the first equation of system (11.2.1), we

see that dx (t) /dt = ẋ (t). Consequently, at the end, our initial abuse of notation did no harm and,

rather, might be viewed as insightful. In other words, depending on the context, ẋ can be viewed as an

independent variable or as a function of t.

In view of this derivation, system (11.2.6) is equivalent to system (11.2.1). Herein, we have obtained

Lagrange’s ray equations from Hamilton’s ray equations. The duality of Legendre’s transformation is such

that we can also obtain Hamilton’s ray equations from Lagrange’s ray equations, as shown in Exercise

11.2 and in Appendix B. This leads to the following proposition.

PROPOSITION 11.2.1. Rays, parametrized by time, can be obtained either by solving Hamilton’s ray

equations (11.2.1) or by solving Lagrange’s ray equations (11.2.6).

We note that, in view of Legendre’s transformation, the derivation of Lagrange’s ray equations from Hamil-

ton’s ray equations requires regularity of HamiltonianH, namely,

det
[
∂2H
∂pi∂pj

]
6= 0, i, j ∈ {1, 2, 3} ,
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which is a necessary condition for Legendre’s transformation to be a local diffeomorphism. This limitation

is discussed in Section 13.1.2.

11.3. Beltrami’s identity

For our subsequent work, we notice that we can write all the equations of system (11.2.6) as a single

equation, namely,

(11.3.1)
∂L
∂t

+
d
dt

(
3∑
i=1

ẋi
∂L
∂ẋi
− L

)
= 0.

Equation (11.3.1) is also valid for an n-dimensional case, where i ∈ {1, . . . , n}. The verification of this

expression, for the two-dimensional case, is shown in Exercise 11.1.

We refer to equation (11.3.1) as Beltrami’s identity, since this expression was formulated in 1868 by

Eugenio Beltrami. Beltrami’s identity plays an important role in our raytracing methods, as illustrated in

Section 12.3 and in Chapter 14. This importance results from the fact that if L does not explicitly depend

on t, the first term on the left-hand side in equation (11.3.1) vanishes and, hence, the term in parentheses

is equal to a constant. Furthermore, if L is homogeneous in the ẋi, the Lagrangian is conserved along the

solution, x (t), as shown in Exercise 13.2.

Closing remarks

To describe rays in anisotropic inhomogeneous continua, we can use either Hamilton’s ray equations or

Lagrange’s ray equations. Herein, Hamilton’s ray equations are directly rooted in fundamental physical

principles discussed in Chapter 2, while Lagrange’s ray equations are based on these principles via Le-

gendre’s transformation, which links the two systems. Thus, Lagrange’s ray equations are subject to the

singularities of this transformation.

However, we can also treat Lagrange’s ray equations in their own right without invoking Hamilton’s ray

equations. Lagrange’s ray equations belong to the realm of variational methods. Hence, in Part 3, we

will introduce the tools of the calculus of variations, which allow us to base these equations on Fermat’s

variational principle.
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11.4. Exercises

EXERCISE 11.1. 3Considering a two-dimensional continuum, verify that, given LagrangianL that satisfies

Lagrange’s ray equations (11.2.6), Beltrami’s identity (11.3.1) is also satisfied.

SOLUTION 11.1. For a two-dimensional continuum, let x := x1 and z := x2. Then, we can write

L = L (x, z, ẋ, ż, t). Consequently, Beltrami’s identity (11.3.1) can be written as

(11.4.1)
∂L
∂t

+
d
dt

(
ẋ
∂L
∂ẋ

+ ż
∂L
∂ż
− L

)
= 0.

Differentiating the left-hand side of equation (11.4.1), we obtain

∂L
∂t

+
d
dt

(
ẋ
∂L
∂ẋ

+ ż
∂L
∂ż
− L

)
=
∂L
∂t

+
d
dt

(
ẋ
∂L
∂ẋ

)
+

d
dt

(
ż
∂L
∂ż

)
− dL

dt

=
∂L
∂t

+ ẍ
∂L
∂ẋ

+ ẋ
d
dt

(
∂L
∂ẋ

)
+ z̈

∂L
∂ż

+ ż
d
dt

(
∂L
∂ż

)
−
[
∂L
∂x

ẋ+
∂L
∂z
ż +

∂L
∂ẋ

ẍ+
∂L
∂ż
z̈ +

∂L
∂t

]
= ẋ

[
d
dt

(
∂L
∂ẋ

)
− ∂L
∂x

]
+ ż

[
d
dt

(
∂L
∂ż

)
− ∂L
∂z

]
= 0,

which agrees with the right-hand side, as required. Note that the vanishing of the left-hand side results

from the fact that each expression in brackets corresponds to a ray equation from system (11.2.6), namely,
∂L
∂x −

d
dt

(
∂L
∂ẋ

)
= 0

∂L
∂z −

d
dt

(
∂L
∂ż

)
= 0

.

EXERCISE 11.2. Assuming that HamiltonianH and Lagrangian L do not explicitly depend on t, following

expression (11.1.1) and using equations (11.2.6), derive Hamilton’s ray equations (8.2.7).

SOLUTION 11.2. Consider H (x, p) and L (x, ẋ). Following expression (11.1.1), the differential of H
becomes

dH =
3∑
i=1

dpiẋi +
3∑
i=1

pidẋi −
3∑
i=1

∂L
∂xi

dxi −
3∑
i=1

∂L
∂ẋi

dẋi.

In view of expression (B.3.2), we can write pi = ∂L/∂ẋi. Hence, the second and last summations on the

right-hand side cancel one another, and we obtain

(11.4.2) dH =
3∑
i=1

ẋidpi −
3∑
i=1

∂L
∂xi

dxi.

3See also Section 14.5
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Also, the differential ofH, can be formally written as

(11.4.3) dH =
3∑
i=1

∂H
∂pi

dpi +
3∑
i=1

∂H
∂xi

dxi.

Equating the corresponding terms of expression (11.4.2) and its formal statement (11.4.3), we can write
ẋi = ∂H

∂pi

∂L
∂xi

= − ∂H
∂xi

, i ∈ {1, 2, 3} .

Invoking Lagrange’s ray equation (11.2.6) and recalling expression (B.3.2), we can write

∂L
∂xi
− dpi

dt
≡ ∂L
∂xi
− ṗi = 0, i ∈ {1, 2, 3} .

Hence, we obtain

ṗi =
∂L
∂xi

, i ∈ {1, 2, 3} .

Thus, we can write 
ẋi = ∂H

∂xi

ṗi = − ∂H
∂xi

, i ∈ {1, 2, 3} ,

which are Hamilton’s ray equations (8.2.7), as required.

EXERCISE 11.3. 4In view of the polar reciprocity of the phase-slowness curve and the ray-velocity curve,

derive the equation that, while analogous to expression (8.4.12), relates phase angle to both ray velocities

and ray angles, namely,

tanϑ =
tan θ − 1

V (θ)
∂V
∂θ

1 + tan θ
V (θ)

∂V
∂θ

.

SOLUTION 11.3. Phase angle is given by

tanϑ =
p1

p3
,

where, following Legendre’s transformation, pi is the phase-slowness component given by

pi =
∂L
∂ẋi

,

and L is the ray-theory Lagrangian. Considering a two-dimensional medium and following the definition

of the Lagrangian, we can write

L =
ẋ2

1 + ẋ2
3

[V (θ)]2
,

4See also Section 10.1.2
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where θ = arctan (ẋ1/ẋ3). Consider differential operator ∂/∂ẋi. To express the differential operator in

terms of the ray angle, we can write

∂

∂ẋ1
=

∂θ

∂ẋ1

∂

∂θ
=
∂ arctan ẋ1

ẋ3

∂ẋ1

∂

∂θ
=

1
ẋ3

1 +
(
ẋ1
ẋ3

)2

∂

∂θ
=
ẋ3

V 2

∂

∂θ
,

and
∂

∂ẋ3
=

∂θ

∂ẋ3

∂

∂θ
=
∂ arctan ẋ1

ẋ3

∂ẋ3

∂

∂θ
= −

ẋ1

ẋ2
3

1 +
(
ẋ1
ẋ3

)2

∂

∂θ
= − ẋ1

V 2

∂

∂θ
.

Consider the expression for the phase-slowness components and for the ray-theory Lagrangian. Using the

quotient rule, we can write

p1 =
∂L
∂ẋ1

=
2ẋ1V

2 − 2
(
ẋ2

1 + ẋ2
3

)
V ∂V
∂ẋ1

V 4
=

2ẋ1 − 2V ∂V
∂ẋ1

V 2
,

where we used the fact that the expression in parentheses is equal to the square of the magnitude of the ray

velocity, namely, V 2. Using, for ∂/∂ẋ1, the differential operator derived above, we obtain

p1 = 2
ẋ1 − ẋ3

V
∂V
∂θ

V 2
.

Similarly, we get

p3 = 2
ẋ3 + ẋ1

V
∂V
∂θ

V 2
.

Thus,

(11.4.4) tanϑ =
p1

p3
=
ẋ1 − ẋ3

V
∂V
∂θ

ẋ3 + ẋ1
V
∂V
∂θ

=
ẋ1
ẋ3
− 1

V
∂V
∂θ

1 +
ẋ1
ẋ3
V

∂V
∂θ

=
tan θ − 1

V
∂V
∂θ

1 + tan θ
V

∂V
∂θ

,

as required, which shows that 1/v (ϑ) and V (θ) are polar reciprocals of one another.

REMARK 11.4.1. Expression (11.4.4) requires a closed form expression for the ray velocity as a function

of the ray angle, V (θ). Such an expression can be formulated only for elliptical velocity dependence. In

such a case the ray-velocity curve is an ellipse.

EXERCISE 11.4. Using expressions (8.4.12) and (11.4.4) and following standard trigonometric identities,

show that
∂

∂ϑ
ln v =

∂

∂θ
lnV .

SOLUTION 11.4. Note that expression (8.4.12) can be written as

tan θ =
tanϑ+ ∂

∂ϑ ln v

1− tanϑ ∂
∂ϑ ln v

=
tanϑ+ tan

[
arctan

(
∂
∂ϑ ln v

)]
1− tanϑ tan

[
arctan

(
∂
∂ϑ ln v

)] ,

which, following trigonometric identities, we can write as

(11.4.5) θ = ϑ+ arctan
(
∂

∂ϑ
ln v
)

.
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Similarly, expression (11.4.4) can be written as

(11.4.6) ϑ = θ − arctan
(
∂

∂θ
lnV

)
.

Solving expression (11.4.6) for θ and equating it to expression (11.4.5), we obtain

∂

∂ϑ
ln v =

∂

∂θ
lnV ,

as required.
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Variational formulation of rays





Introduction to Part 3

What you do is to invent various curves, and calculate on each curve a certain
quantity. If you calculate this quantity for one route, and then for another, you
will get a different number for each route. There is one route which gives the least
possible number, however, and that is the route that the particle in nature actually
takes. We are now describing the actual motion by saying something about the
whole curve. We have lost the idea of causality, that the particle feels the pull and
moves in accordance with it. Instead of that, in some grand fashion it smells all
the curves, all the possibilities, and decides which one to take by choosing that for
which our quantity is least.5

Richard Feynman (1967) The Character of Physical Law

The fundamental formulation of ray theory was presented in Part 2. This theory is based on Cauchy’s

equations of motion in anisotropic inhomogeneous continua and results in Hamilton’s ray equations. Also,

in Part 2, we used Legendre’s transformation of the ray-theory Hamiltonian to obtain Lagrange’s ray

equations. Thus, within the limitations of this transformation, we have two equivalent forms of the ray

equations.

In Part 3, we will study ray theory in the context of Lagrange’s ray equations. We will show that they are

the stationarity conditions of the calculus of variations. Hence, we will show that rays, wavefronts and

traveltimes can be studied by invoking the concept of stationary traveltime.

In search of the stationarity condition for a definite integral that describes the traveltime of the signal

between a source and a receiver, we will use the calculus of variations. Since, in the variational approach to

ray theory, either time or distance constitutes the single variable, the stationarity conditions are a system of

ordinary differential equations. Consequently, the variational formulation is an elegant method to describe

rays, wavefronts and traveltimes. Also, an intuitive concept of stationarity is a fruitful starting point for

many investigations.

5Readers interested in the philosophical aspects of this statement, in the context of analytical mechanics, might refer to
Toretti, R., (1999) The philosophy of physics: Cambridge University Press, p. 92.
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The first scientific statement of a variational principle was formulated in optics by Pierre de Fermat in

1657.6 In its original formulation, this principle was referred to as the principle of least time.7 Following

Fermat’s principle, the principle of least action in mechanics was proposed in the first half of the eighteenth

century by Pierre-Louis Moreau de Maupertuis and, then, rigorously stated by William Rowan Hamilton

in 1835.8

The theory of the calculus of variations originated with the statement of Johannes Bernoulli, who, in 1696,

posed the problem to determine the shape of a wire along which a bead might slide in the shortest possible

time. While this problem might have initially appeared quite particular, it led to an important general

theory. In 1900, David Hilbert delivered a talk on “Mathematical Problems” during which he made the

following statement.

The mathematicians of past centuries were accustomed to devote themselves to the solu-

tion of difficult individual problems with passionate zeal. They knew the value of difficult

problems. I remind you only of the ‘problem of the line of quickest descent’, proposed by

Johannes Bernoulli. [. . . ] It is an error to believe that rigour in the proof is the enemy of

simplicity. On the contrary, we find it confirmed by numerous examples that the rigorous

method is at the same time simpler and the more easily comprehended. [. . . ] the most

striking example of my statement is the calculus of variations.

6Interested readers might refer to Born, M., and Wolf, E., (1999) Principles of optics (7th edition): Cambridge University
Press, p. xxvi.

7Readers interested in discussion of Fermat’s principle in the context of quantum electrodynamics might refer to Feynman,
R.P., (1985/2006) QED: The strange theory of light and matter: Princeton University Press, pp. 38 – 45 and pp. 50 – 52.

8Readers interested in formal relations between the classical-mechanics principle of stationary action and the ray-theory prin-
ciple of stationary traveltime as well as their relation to quantum mechanics might refer to Goldstein, H., (1950/1980) Classical
mechanics: Addison-Wesley Publishing Co., pp. 365 – 371 and pp. 484 – 492.



CHAPTER 12

Euler’s equations

For since the shape of the whole universe is most perfect and, in fact, designed
by the wisest creator, nothing at all takes place in the universe in which a rule of
maximum or minimum does not appear.1

Leonhard Euler (1744) Methodus inveniendi lineas curvas maximi minimive proprietate

gaudentes, sive solutio problematis isoperimetrici latissimo sensu accepti2

Preliminary remarks

In Chapter 11, we derived Lagrange’s ray equations. These equations are variational equations and, hence,

allow us to consider ray theory in the context of the calculus of variations.

We begin this chapter with a brief discussion of stationarity of a definite integral and the derivation of

the stationarity condition of the calculus of variations, namely, Euler’s equation. This is followed by

formulations of the generalized and special forms of Euler’s equations, which are again used in Chapters

13 and 14. We conclude this chapter by relating Euler’s equations to Lagrange’s ray equations.

This chapter is intended to give a brief introduction to the calculus of variations for readers who are not

familiar with this subject. Otherwise, it can be omitted without affecting the study of subsequent chapters.

12.1. Mathematical background

The calculus of variations is the study of methods to obtain stationary values of definite integrals. These

values depend on functions that compose a given integrand. In other words, the domain of a definite

integral is a set of functions. An integral operates on a set of functions and we seek a particular function

that gives a stationary value of this integral. Analogously, in differential calculus, a function operates on a

set of points and we seek a particular point that gives a stationary value of this function.

1Readers interested in the modern perspective on this statement might refer to Brown, J.R., (2001) Who rules in science: An
opinionated guide to the wars: Harvard University Press, pp. 107 – 108:

During the heydey of fruitful interaction of science and religion, Kepler, Newton, Leibniz, and many others
brought religious considerations to bear on scientific theorizing. [...] Their religious beliefs were not mere
acts of faith, but the consequence of rational considerations. [...] It is no longer rational to set religious
constraints on theorizing in biology or astronomy or anywhere else.

2Method of finding curved lines enjoying the maximum and minimum property; or the solution of the isoperimetric problem
understood in the broadest sense
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In differential calculus, the condition for stationarity of a function is the vanishing of its first derivative.

We wish to formulate an analogous condition for stationarity of a definite integral.3

Herein, we focus our study on two-dimensional problems that are contained in the xz-plane. In this study,

we require stationary values of an integral expressed as

(12.1.1) I =

b∫
a

F
(
z (x) , z′ (x) ;x

)
dx.

Thus, we seek function z (x) that makes integral (12.1.1) stationary. Assuming that z (x) is continuous

and smooth, we can view it as a curve in the xz-plane.

Integrand F contains three arguments, namely, z (x), z′ (x) ≡ dz/dx and x. In formulating the condition

of stationarity, we consider these three arguments as independent.

Note that to avoid any confusion, we could choose to write

(12.1.2) F
(
z (x) , z′ (x) ;x

)
≡ F (ξ1, ξ2, ξ3) .

However, we will not introduce these additional symbols.

We need, however, a new operator symbol. In the search for stationarity, Lagrange introduced a special

symbol denoted by δ, which refers to the variations of curve z (x). In other words, among all the variations

of z (x) between the fixed end-points a and b, we look for a curve that renders the value of a given integral

stationary. This curve is a solution of the variational problem. Hence, the problem of looking for such a

curve is symbolically stated as δ
∫ b
a Fdx = 0.

Note the distinction between the variational and differential operators. Symbol δz (x) refers to a variation

from curve to curve for a given x, whereas symbol dz (x) refers to a differential change along a given

curve for a change in x.4

Note that, in this chapter and in Chapter 14, we restrict our study to curves in the form z = z (x), rather

than in the parametric form, x (t), used to formulate Hamilton’s and Lagrange’s ray equations in Chapters

8 and 11, respectively.5

3Readers interested in a definition of stationarity of a definite integral might refer to Arnold, V.I., (1989) Mathematical
methods of classical mechanics (2nd edition): Springer-Verlag, p. 57.

4Readers interested in the δ operator might refer to Lanczos, C., (1949/1986) The variational principles of mechanics: Dover,
pp. 38 – 40, and to Ewing, M.G., (1969/1985) Calculus of variations with applications: Dover, pp. 86 – 88.

5Readers interested in the relation between the explicit and parametric formulations of the Euler equations might refer to
Ewing, M.G., (1969/1985) Calculus of variations with applications: Dover, pp. 140 – 141, to Gelfand, I.M., and Fomin, S.V.,
(1963/2000) Calculus of variations: Dover, pp 38 – 42, to Sagan, H., (1969/1992) Introduction to the calculus of variations:
Dover, pp. 197 – 202, or to Weinstock, R., (1952/1974) Calculus of variations with applications to physics and engineering:
Dover, pp. 34 – 36.
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The condition of stationarity of integral (12.1.1) was derived by Euler in 1744.6 This condition is discussed

in the next section.

12.2. Formulation of Euler’s equation

In this section, we derive the stationarity condition for integral (12.1.1). In other words, among all contin-

uously differentiable functions z (x) that satisfy the boundary conditions at z (a) and z (b), we establish

the condition to choose a function that renders integral (12.1.1) stationary. This stationarity condition is

stated by the following theorem.

THEOREM 12.2.1. Function z (x) with the continuous first derivative on interval [a, b] yields a stationary

value of integral (12.1.1), namely,

(12.2.1) I =

b∫
a

F
(
z (x) , z′ (x) ;x

)
dx,

in the class of functions with boundary conditions z (a) = za and z (b) = zb, if equation

(12.2.2)
∂F

∂z
− d

dx

(
∂F

∂z′

)
= 0

is satisfied.7

We refer to equation (12.2.2) as Euler’s equation. Euler’s equation (12.2.2) is a second-order ordinary

differential equation.8

To see the connection between integral (12.2.1) and its stationarity condition, given by Euler’s equation

(12.2.2), consider the following heuristic argument.

Replace the integral by a finite sum of subdivisions given by x0, x1,. . ., xn−1, xn, where the interval of

integration [a, b] is [x0, xn]. The subdivisions are assumed to be equally spaced and we denote this spacing

by ∆x = (b− a) /n. A discrete expression approximating integral (12.2.1) can be written as

Sn =
n−1∑
i=0

F
(
zi+1, z

′
i+1;xi+1

)
∆x,

where

(12.2.3) z′i+1 :=
zi+1 − zi

∆x
.

6It is also common to refer to this equation as the Euler-Lagrange equation. Readers interested in the history of this equation
might refer to Marsden, J.E., and Ratiu, T.S., (1999) Introduction to mechanics and symmetry: A basic exposition of classical
mechanical systems (2nd edition): Springer-Verlag, pp. 231 – 234.

7Readers interested in a rigorous proof of Theorem 12.2.1 might refer to Arnold, V.I., (1989) Mathematical methods of
classical mechanics (2nd edition): Springer-Verlag, pp. 57 – 58.

8Readers interested in a thorough study of Euler’s equations might refer to Courant, R., and Hilbert, D., (1924/1989) Methods
of mathematical physics: John Wiley & Sons, Vol. I, pp. 183 – 206, and to Morse P.M., and Feshbach H., (1953) Methods of
theoretical physics: McGraw-Hill, Inc., Part I, pp. 276 – 280.
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Here Sn is viewed as a function of the n− 1 variables, z1, . . . , zn−1.

Note that z0 and zn are not included as variables because they are fixed by the boundary conditions,

namely, z0 = za and zn = zb.

To find the stationary value of Sn, we find the stationary points for n − 1 variables. This is equivalent to

setting to zero all partial derivatives of Sn with respect to zi. In other words, the stationarity condition is

(12.2.4)
∂Sn
∂zi

= 0, i ∈ {1, . . . , n− 1} .

In view of expression (12.2.3), in the sum Sn, for any given i ∈ (1, . . . , n− 1), there are only two

consecutive terms that explicitly contain a given zi, namely,

(12.2.5) F
(
zi, z

′
i;xi

)
∆x+ F

(
zi+1, z

′
i+1;xi+1

)
∆x.

Applying stationarity condition (12.2.4), we take the derivative of expression (12.2.5) with respect to zi
and obtain

(12.2.6)
[
∂F

∂z

(
zi, z

′
i;xi

)
+
∂F

∂z′
(
zi, z

′
i;xi

) ∂z′i
∂zi

]
∆x +

[
∂F

∂z′
(
zi+1, z

′
i+1;xi+1

) ∂z′i+1

∂zi

]
∆x = 0,

where i ∈ {1, . . . , n− 1}.

Note that an analogous approach can be followed by viewing Sn as a function of xi and, hence, by setting

all partial derivatives with respect to xi to zero. As shown in Exercise 12.2, by following this approach,

we obtain Beltrami’s identity (12.3.1).

In view of equation (12.2.6) and recalling expression (12.2.3), we have

∂z′i
∂zi

=
∂

∂zi

zi − zi−1

∆x
=

1
∆x

,

and
∂z′i+1

∂zi
=

∂

∂zi

zi+1 − zi
∆x

= − 1
∆x

.

Hence, equation (12.2.6) becomes[
∂F

∂z

(
zi, z

′
i;xi

)
+
∂F

∂z′
(
zi, z

′
i;xi

) 1
∆x

]
∆x−

[
∂F

∂z′
(
zi+1, z

′
i+1;xi+1

) 1
∆x

]
∆x = 0,

where i ∈ {1, . . . , n− 1}. This equation can be rearranged to give

(12.2.7)
∂F

∂z

(
zi, z

′
i;xi

)
− 1

∆x

[
∂F

∂z′
(
zi+1, z

′
i+1;xi+1

)
− ∂F

∂z′
(
zi, z

′
i;xi

)]
= 0,

where i ∈ {1, . . . , n− 1}.
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We now assume that as ∆x → 0 and xi → x ∈ [a, b], zi approaches z (x) and z′i = (zi − zi−1) /∆x

approaches z′ (x). Then, equation (12.2.7) becomes

∂F

∂z

(
z (x) , z′ (x) ;x

)
− d

dx

[
∂F

∂z′
(
z (x) , z′ (x) ;x

)]
= 0,

which is Euler’s equation (12.2.2), as required.

12.3. Beltrami’s identity

A convenient form of Euler’s equation (12.2.2) is Beltrami’s identity, discussed in Section 11.3. In the two-

dimensional case, where we look for the z (x) that is a solution of Euler’s equation (12.2.2), Beltrami’s

identity is equivalent to that equation. Hence, we can write

(12.3.1)
∂F

∂z
− d

dx

(
∂F

∂z′

)
= 0 =

∂F

∂x
+

d
dx

(
z′
∂F

∂z′
− F

)
.

In general, Beltrami’s identity is not equivalent to the corresponding Euler’s equations or Lagrange’s ray

equations. In Chapter 11, for instance, a single expression of Beltrami’s identity (11.3.1) refers to three

equations of system (11.2.6) and, hence, by itself, cannot give a unique solution of system (11.2.6). A

verification of Beltrami’s identity (12.3.1) and its derivation are shown in Exercises 12.1 and 12.2, respec-

tively.

Beltrami’s identity is particularly useful when the integrand does not explicitly depend on x, namely,

F = F (z, z′). In such a case, the first term on the right-hand side of equation (12.3.1) vanishes. Important

consequences of this simplification are discussed in Chapter 14 in the context of ray parameters.

12.4. Generalizations of Euler’s equation

12.4.1. Introductory comments. Integral (12.1.1) depends on a single variable, x, on a single func-

tion, z (x), and on its first derivative, z′ (x). In mathematical considerations of physically motivated

problems, a given integral whose stationary value we seek can also depend on several variables, on sev-

eral functions and on higher-order derivatives. Such formulations result in stationarity conditions that are

second-order partial differential equations, systems of second-order ordinary differential equations and

higher-order ordinary differential equations, respectively.

Although a given problem can depend on all of the above quantities, each of the three cases is described

separately below.

12.4.2. Case of several variables. Let us consider an integral that contains a single function of sev-

eral variables. To begin, we consider an integral whose integrand contains a function of two variables,
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namely,

I =

by∫
ay

bx∫
ax

F (z (x, y) , zx, zy;x, y ) dx dy,

where zx := ∂z/∂x and zy := ∂z/∂y. Thus, within given constraints on a boundary, we look for a smooth

surface, z (x, y), that renders I stationary. In this case, Euler’s equation becomes

(12.4.1)
∂F

∂z
−
[
∂

∂x

(
∂F

∂zx

)
+

∂

∂y

(
∂F

∂zy

)]
= 0,

which is a second-order partial differential equation. The generalization for n variables follows the same

pattern, thereby giving

(12.4.2)
∂F

∂z
−

n∑
i=1

∂

∂xi

(
∂F

∂zxi

)
= 0,

where z = z (x1, . . . , xn) and zxi := ∂z/∂xi, with i ∈ {1, . . . , n}.

Problems involving multiple integrals were considered by Lagrange in his papers dating from 1760 – 1762.

A physical example of a double integral is discussed in Section 13.2.4.

12.4.3. Case of several functions. Let us consider an integral that contains several single-variable

functions and their first derivatives. To begin, we consider an integral whose integrand contains two

functions, namely,

I =

b∫
a

F
(
y (x) , y′ (x) , z (x) , z′ (x) ;x

)
dx.

Thus, we look for smooth curves y (x) and z (x) that render I stationary, subject to constraints

(12.4.3)


y (a) = a1

z (a) = a2

y (b) = b1

z (b) = b2

,

where ai and bi are constants. In this case, Euler’s equations become a system of second-order ordinary

differential equations 
∂F
∂y −

d
dx

(
∂F
∂y′

)
= 0

∂F
∂z −

d
dx

(
∂F
∂z′

)
= 0

.

The generalization for n functions follows the same pattern thereby giving a system of n equations,

(12.4.4)
∂F

∂ζi
− d

dx

(
∂F

∂ζ ′i

)
= 0, i ∈ {1, . . . , n} ,

where ζi = ζi (x) and ζ ′i = dζi (x) /dx.
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12.4.4. Higher-order derivatives. Let us consider an integral whose integrand contains higher-order

derivatives of a single-variable function. To begin, we consider an integral whose integrand contains both

the first and second derivatives, namely,

I =

b∫
a

F
(
z(x), z′(x), z′′ (x) ;x

)
dx.

Thus, we look for a smooth curve z (x) that renders I stationary, subject to constraints

(12.4.5)


z (a) = a1

z′ (a) = a2

z (b) = b1

z′ (b) = b2

,

where ai and bi are constants. In this case, Euler’s equation becomes

∂F

∂z
− d

dx

(
∂F

∂z′

)
+

d2

dx2

(
∂F

∂z′′

)
= 0.

This is a fourth-order ordinary differential equation. The generalization for nth-order derivatives follows

the same pattern to yield

∂F

∂z
− d

dx

(
∂F

∂z′

)
+

d2

dx2

(
∂F

∂z′′

)
+ . . .+ (−1)n

dn

dxn

(
∂F

∂z(n)

)
= 0,

which is an ordinary differential equation of order 2n.

12.5. Special cases of Euler’s equation

12.5.1. Introductory comments. There are cases where, due to the explicit absence of certain argu-

ments or to the particular form of integral (12.1.1), Euler’s equation (12.2.2) becomes a simpler equation.

Note that in evaluating partial derivatives, only explicit appearances of the variable of differentiation are

taken into account. For instance, if we differentiate F (z (x)) with respect to z, namely, ∂F/∂z, no

allowance is made for the fact that a change in x also results in a change of z. Following expression

(12.1.2), we could choose to write such a differentiation as ∂F (ξ1) /∂ξ1 and, thus, at the expense of

introducing an additional symbol, avoid any confusion.

12.5.2. Independence of z. Let us consider an integrand that is explicitly independent of z, namely,

F = F (z′;x). We see that Euler’s equation (12.2.2) is reduced to

d
dx

(
∂F

∂z′

)
= 0.

The vanishing of the total derivative implies that

(12.5.1)
∂F

∂z′
= C1,
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where C1 denotes a constant. Thus, z (x) is obtained as a solution of first-order ordinary differential

equation (12.5.1).

12.5.3. Independence of x and z. Let us consider an integrand that is explicitly independent of both

x and z. In other words, it is only dependent on z′, namely, F = F (z′). Since z′ is the only variable, we

can immediately rewrite equation (12.5.1) as

(12.5.2)
dF (z′)

dz′
= C1.

Denoting dF (z′) /dz′ as f (z′), we can write equation (12.5.2) as

f
(
z′
)

= C1.

Assuming that df/dz′ 6= 0, we can consider inverse function f−1. Thus, we can write

z′ = f−1 (C1) .

Recalling that z′ ≡ dz/dx and denoting f−1 (C1) = C2, we can write

(12.5.3)
dz
dx

= C2.

This is a first-order ordinary differential equation, whose solution,

z = C2x+ C3,

is obtained directly by integration.

Thus, finding the curve which gives a stationary value of
∫ b
a F (z′)dx consists of writing the equation of a

straight line passing through points [a, z (a)] and [b, z (b)].

In a seismological context, this implies that in homogeneous continua, whether the continua be isotropic

or anisotropic, if the properties do not depend on position, rays are straight.

12.5.4. Independence of x. Let us consider an integrand that is explicitly independent of x, namely,

F = F (z, z′). Using Beltrami’s identity (12.3.1), we obtain

d
dx

(
z′
∂F

∂z′
− F

)
= 0.

The vanishing of the total derivative implies that

(12.5.4) z′
∂F

∂z′
− F = C,

where C denotes a constant. Thus, z (x) is obtained as a solution of first-order ordinary differential

equation (12.5.4).
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In a seismological context, the case where the traveltime integral is independent of x implies that the

continuum is homogeneous along the x-axis — a case commonly encountered in layered media. In such

media, the constant in expression (12.5.4) is a ray parameter, discussed in Chapter 14.

12.5.5. Total derivative. Let integrand F (x, z, z′) be a total derivative of function f (x, z) with re-

spect to x, namely,

(12.5.5) F
(
z, z′;x

)
=

df (x, z)
dx

=
∂f

∂x
+
∂f

∂z
z′.

Consider the left-hand side of Euler’s equation (12.2.2). Inserting function (12.5.5), we obtain

∂F

∂z
− d

dx

(
∂F

∂z′

)
=

∂2f

∂x∂z
+
∂2f

∂z2
z′ − d

dx

(
∂f

∂z

)
=

∂2f

∂x∂z
+
∂2f

∂z2
z′ −

(
∂2f

∂x∂z
+
∂2f

∂z2
z′
)

= 0.

Thus, equation (12.2.2) is identically satisfied. Consequently, if F is a total derivative, Euler’s equation

(12.2.2) is satisfied by any z (x). In other words, if a variational problem involves the integral of a total

differential, namely,

δ

b∫
a

df (x, z) = 0,

the value of the integral is independent of the integration path and depends only on the limits of integration.

Note that, considering a fixed-ends variational problem, we can add to the integrand a term that is a total

derivative without changing the solution of Euler’s equations, as shown in Exercise 12.3.9 Considering

such cases, we note that, although a solution curve is not affected by this addition, the value of the integral

is changed. For instance, identical rays can result in distinct traveltimes, depending on the properties of

the continuum.

12.5.6. Function of x and z.

Euler’s equation. In physically motivated problems, we often encounter an integral given by
∫ b
a h (x)ds,

which is an integral of function h, whose value depends on position x along the arclength element ds. Such

an integral represents a certain quantity measured along a trajectory that connects points a and b. Consid-

ering the two-dimensional case and assuming that the trajectory can be expressed as z = z (x), we can

write such an integral as

(12.5.6)

bx∫
ax

h (x, z)

√
1 +

(
dz
dx

)2

dx.

Thus, Euler’s equation (12.2.2) becomes

∂

∂z

[
h (x, z)

√
1 + (z′)2

]
− d

dx

[
∂

∂z′

(
h (x, z)

√
1 + (z′)2

)]
= 0,

9In electromagnetic theory, this property is associated with the gauge invariance. Interested readers might refer to Morse
P.M., and Feshbach H., (1953) Methods of theoretical physics: McGraw-Hill, Inc., pp. 210 –212.
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where z′ ≡ dz/dx. Performing partial derivatives, we obtain

∂h (x, z)
∂z

√
1 + (z′)2 − d

dx

h (x, z)
z′√

1 + (z′)2

 = 0.

Then, by the product rule, we get

∂h (x, z)
∂z

√
1 + (z′)2 −

dh (x, z)
dx

z′√
1 + (z′)2

+ h (x, z)
d

dx
z′√

1 + (z′)2

 = 0.

Letting h := h (x, z) and using the quotient and chain rules, we obtain

∂h

∂z

√
1 + (z′)2 −

(∂h
∂x

+
∂h

∂z
z′
)

z′√
1 + (z′)2

+ h
z′′
√

1 + (z′)2 − z′ z′z′′√
1+(z′)2

1 + (z′)2

 = 0.

An algebraic simplification leads to

∂h

∂z

√
1 + (z′)2 − ∂h

∂x

z′√
1 + (z′)2

− ∂h

∂z

(z′)2√
1 + (z′)2

− h z′′[
1 + (z′)2

] 3
2

= 0.

Rearranging the common factor, we obtain

1√
1 + (z′)2

[
∂h

∂z
+
∂h

∂z

(
z′
)2 − ∂h

∂x
z′ − ∂h

∂z

(
z′
)2 − h z′′

1 + (z′)2

]
= 0.

The cancellation of identical terms results in

1√
1 + (z′)2

[
∂h

∂z
− ∂h

∂x
z′ − h z′′

1 + (z′)2

]
= 0.

Since the factor in front of the brackets is never zero, Euler’s equation becomes

(12.5.7)
∂h

∂z
− ∂h

∂x

dz
dx
− h

d2z
dx2

1 +
(

dz
dx

)2 = 0.

To study equation (12.5.7) in the context of ray theory, let function h (x, z) describe slowness in an

isotropic inhomogeneous continuum. Hence, letting the velocity function be v (x, z) = 1/h (x, z) and

rearranging equation (12.5.7), we obtain

(12.5.8) v
d2z

dx2
− ∂v

∂x

(
dz
dx

)3

+
∂v

∂z

(
dz
dx

)2

− ∂v

∂x

dz
dx

+
∂v

∂z
= 0,

where we assume v (x, z) 6= 0. In such a case, integral (12.5.6), which can be rewritten as

(12.5.9)

bx∫
ax

√
1 + (z′)2

v (x, z)
dx,
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represents the traveltime between two points. Thus, a solution of equation (12.5.8) is a ray, z (x), satisfying

Fermat’s principle of stationary traveltime.

If v (x, z) is given by a constant, integral (12.5.9) is explicitly independent of x and z, and it corresponds

to the case discussed in Section 12.5.3. In such a case, equation (12.5.8) reduces to d2z/dx2 = 0, whose

solutions are z = C2x + C3, where C2 and C3 are constants that depend on the limits of integration in

integral (12.5.9).

Geometrical interpretation and physical meaning. Integral (12.5.6) has a simple geometrical inter-

pretation. Let function h be a smooth and continuous function whose values are positive. Consider an

orthonormal coordinate system, where h (x, z) can be represented as a surface above the xz-plane. Let

z (x) be a smooth and continuous curve in the xz-plane that connects points a and b. Integral (12.5.6) is

the surface area of a strip that is orthogonal to the xz-plane and whose edges are given by z (x) and the

corresponding values of h (x, z). This strip can be viewed as a fence that follows curve z (x), and whose

height, at any point, is determined by function h (x, z).

A solution of equation (12.5.7), namely, z = z (x), is the curve along which the area of the corresponding

strip is stationary. Herein, given the geometry of the variational problem, the area of the strip that results

from equation (12.5.7) is minimum, as illustrated in Exercise 12.4.

Traveltime is the product of slowness and distance travelled. If function h represents the slowness in an

isotropic inhomogeneous continuum, the area of the strip represents the traveltime between the two points,

which are given by the limits of integration. Hence, a solution of equation (12.5.8) is a trajectory along

which the traveltime is stationary.

12.6. First integrals

Special cases of Euler’s equation, which result from the absence of particular arguments in the integrand

function, are called first integrals. This name originates in the period of mathematical history when many

differential equations were solved by integration. The description shown in Section 12.5.3, where the

integrand is explicitly independent of both x and z, exemplifies such an approach.

The term “first integral” implies that the order of the differential equation has been reduced by one, which

is equivalent to the integration process. Formally, the meaning of first integral is described in the following

definition.

DEFINITION 12.6.1. If an nth-order differential equation

(12.6.1) f
(
x, z, z′, . . . , z(n)

)
= 0,

can be transformed to the equivalent form

d
dx
g
(
x, z, z′, . . . , z(n−1)

)
= 0,
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we see that

(12.6.2) g
(
x, z, z′, . . . , z(n−1)

)
= C,

where C is a constant. Expression (12.6.2) is a “first integral” of equation (12.6.1).

Note that the fact that the integrand of a variational problem does not explicitly depend on a particular

argument is equivalent to saying that this problem is invariant with respect to that argument. This invari-

ance and the associated first integral are contained in Noether’s theorem, published by Emmy Noether in

Göttingen in 1918 in her paper entitled “Invariante Variationsprobleme”. We can state this theorem in the

following way.10

THEOREM 12.6.2. To every change of dependent or independent variables that leaves the integral of the

Lagrangian invariant, there corresponds a conservation law.

In the context of ray theory, we use the property that a first integral of a differential equation is a function

that has a constant value along a solution curve. This conserved quantity is a ray parameter, which we will

discuss in Chapter 14.

12.7. Lagrange’s ray equations as Euler’s equations

To use the calculus of variations in the study of ray theory, we wish to show that Lagrange’s ray equa-

tions (11.2.6) belong to the realm of Euler’s equations. The parametric form of Euler’s equation (12.2.2)

corresponds to a system of two Euler’s equations, namely,

(12.7.1)


∂G
∂x −

d
dt

(
∂G
∂ẋ

)
= 0

∂G
∂z −

d
dt

(
∂G
∂ż

)
= 0

,

where G = G (x, z, ẋ, ż) with ẋ := dx/dt and ż := dz/dt. A solution of system (12.7.1) is a curve in the

xz-plane given by [x (t) , z (t)] that corresponds to variational problem

δ

∫
Gdt = 0.

To see the relation between G and F , which is stated in integral (12.1.1), we can write dt = dx/ẋ and

z′ := dz/dx. Hence, G (x, z, ẋ, ż) = F (z, ż/ẋ, x) ẋ.

10Readers interested in rigorous derivations and proofs might refer to Gelfand, I.M., and Fomin, S.V., (1963/2000) Calculus
of variations: Dover, pp. 79 – 83 and pp. 176 – 179, and to Goldstein, H., (1950/1980) Classical mechanics: Addison-Wesley
Publishing Co., pp. 588 – 596.

Readers interested in variational aspects of Noether’s theorem might refer to Lanczos, C., (1949/1986) The variational princi-
ples of mechanics: Dover, pp. 401 – 405.
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This parametric formulation allows us to use Euler’s equations for an n-dimensional space. In general, we

can write a system of n Euler’s equations, namely,

(12.7.2)
∂G

∂xi
− d

dt
∂G

∂ẋi
= 0, i ∈ {1, . . . , n} ,

whose solution is a curve in the x-space given by x (t). Examining systems (11.2.6) and (12.7.2), we

conclude that Lagrange’s ray equations (11.2.6) possess the form of Euler’s equations (12.7.2).

The fact that Euler’s and Lagrange’s equations have equivalent forms is the reason why equations of the

form (11.2.6) and (12.7.2) are often referred to as the Euler-Lagrange equations. In this book, we use

the term Euler’s equations to refer to the mathematical condition of stationarity while we reserve the term

Lagrange’s equations to refer to those among Euler’s equations that are endowed with physical meaning

associated with ray theory or classical mechanics.

Closing remarks

The fact that Lagrange’s ray equations are also Euler’s equations implies that rays can be obtained as

solutions of a variational problem. This fact allows us to use the tools of the calculus of variations in our

investigations of ray theory.

In the calculus of variations, a stationary curve is given by Euler’s equation. The conditions to specify

that this curve results in a minimum or a maximum value of a given integral are difficult to formulate

mathematically and are not addressed in this book.11 Yet, in physically motivated problems the minimum

or maximum nature of the stationary curve is often obvious from the physical context.

In Chapter 13, we will study Fermat’s variational principle of stationary traveltime. We will show that

the search for a ray is equivalent to the search for a curve along which the traveltime is stationary. Also

in Chapter 13, we will discuss Hamilton’s variational principle of stationary action, which we will use to

derive the wave equation. In Chapter 14, we will show that first integrals, which correspond to conserved

quantities along the rays, can be used in raytracing techniques.

11Readers interested in geodesic fields and its implication to minima and maxima might refer to Kreyszig, E., (1959/1991)
Differential geometry: Dover, pp. 162 – 168.
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12.8. Exercises

EXERCISE 12.1. In view of Euler’s equation (12.2.2), verify Beltrami’s identity (12.3.1).

SOLUTION 12.1. Consider F = F (x, z, z′) and Beltrami’s identity (12.3.1). We can write

∂F

∂x
+

d
dx

(
z′
∂F

∂z′
− F

)
=
∂F (x, z, z′)

∂x
+

d
dx

(
z′
∂F (x, z, z′)

∂z′

)
− dF (x, z, z′)

dx

=
∂F

∂x
+ z′′

∂F

∂z′
+ z′

d
dx

(
∂F

∂z′

)
−
(
∂F

∂x
+
∂F

∂z
z′ +

∂F

∂z′
z′′
)

= z′
d

dx

(
∂F

∂z′

)
− ∂F

∂z
z′ = −z′

[
∂F

∂z
− d

dx

(
∂F

∂z′

)]
,

where the terms in brackets is Euler’s equation (12.2.2). Thus,

∂F

∂x
+

d
dx

(
z′
∂F

∂z′
− F

)
= 0,

as required.

EXERCISE 12.2. Following the argument used to justify Theorem 12.2.1, derive the explicit form of Bel-

trami’s identity (12.3.1).

SOLUTION 12.2. To obtain Beltrami’s identity, consider term (12.2.5), namely,

F
(
zi, z

′
i;xi

)
∆x+ F

(
zi+1, z

′
i+1;xi+1

)
∆x,

where i ∈ {1, . . . , n− 1}. Differentiating with respect to x, we obtain[
∂F

∂x

(
zi, z

′
i;xi

)
+
∂F

∂z′
(
zi, z

′
i;xi

) ∂z′i
∂xi

]
∆x+ F

(
zi, z

′
i;xi

) ∂∆x
∂xi

(12.8.1)

+
∂F

∂z′
(
zi+1, z

′
i+1;xi+1

) ∂z′i+1

∂xi
∆x+ F

(
zi+1, z

′
i+1;xi+1

) ∂∆x
∂xi

.

Recalling expression (12.2.3) and the appropriate expression for ∆x, we can write

∂z′i
∂xi

=
∂

∂xi

(
zi − zi−1

xi − xi−1

)
= − zi − zi−1

(xi − xi−1)2 = −zi − zi−1

(∆x)2 ,

∂∆x
∂xi

(
zi, z

′
i;xi

)
=

∂

∂xi
(xi − xi−1) = 1,

∂z′i+1

∂xi
=

∂

∂xi

(
zi+1 − zi
xi+1 − xi

)
=

zi+1 − zi
(xi+1 − xi)2 =

zi+1 − zi
(∆x)2 ,

∂∆x
∂xi

(
zi+1, z

′
i+1;xi+1

)
=

∂

∂xi
(xi+1 − xi) = −1.
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Hence, expression (12.8.1) becomes[
∂F

∂x

(
zi, z

′
i;xi

)
− ∂F

∂z′
(
zi, z

′
i;xi

) zi − zi−1

(∆x)2

]
∆x+ F

(
zi, z

′
i;xi

)

+
∂F

∂z′
(
zi+1, z

′
i+1;xi+1

) zi+1 − zi
(∆x)2 ∆x− F

(
zi+1, z

′
i+1;xi+1

)
.

As in stationarity condition (12.2.4), we have a system of n− 1 equations, namely,

∂Sn
∂xi

= 0

= F
(
zi, z

′
i;xi

)
− F

(
zi+1, z

′
i+1;xi+1

)

− ∂F

∂z′
(
zi, z

′
i;xi

) zi − zi−1

∆x
+
∂F

∂z′
(
zi+1, z

′
i+1;xi+1

) zi+1 − zi
∆x

+
∂F

∂x

(
zi, z

′
i;xi

)
∆x,

where i ∈ {1, . . . , n− 1}. Dividing both sides of each equation by ∆x and using the appropriate defini-

tion of ∆x, we can write

0 =
F (zi, z′i;xi)− F

(
zi+1, z

′
i+1;xi+1

)
∆x

+
∂F
∂z′

(
zi+1, z

′
i+1;xi+1

) zi+1−zi
∆x − ∂F

∂z′ (zi, z′i;xi)
zi−zi−1

∆x

∆x

+
∂F

∂x

(
zi, z

′
i;xi

)
,

where i ∈ {1, . . . , n− 1}. Letting ∆x→ 0, we see that zi approaches z (x) so that z′i = (zi − zi−1) /∆x

approaches z′ (x). Recognizing in the resulting statement the definitions of the derivatives, we obtain a

single equation

0 = −dF
dx

+
d

dx

(
∂F

∂z′
z′
)

+
∂F

∂x
.

Rearranging and using the linearity of the differential operator, we get

∂F

∂x
+

d
dx

[
z′
∂F

∂z′
− F

]
= 0,

which is Beltrami’s identity (12.3.1), as required.
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EXERCISE 12.3. 12Prove the following lemma.

NOTATION 12.8.1. To state Lemma 12.8.2, below, we use the parametric form of the variational problems,

rather than the explicit form used in this chapter.

LEMMA 12.8.2. The two variational problems given by

(12.8.2) δ

∫
F (x, ẋ) dt = 0

and

(12.8.3) δ

∫ cF (x, ẋ) +
n∑
j=1

fj (x) ẋj

dt = 0

have the same function x (t) that renders the corresponding integrals stationary, if fj (x) are the compo-

nents of a gradient of a function and c is a nonzero constant.

SOLUTION 12.3. We show two different proofs of Lemma 12.8.2. Proof A invokes the properties of a

variational fixed-ends problem, while Proof B utilizes standard properties of differential calculus in the

context of Euler’s equations.

PROOF. [Proof A] To prove that x (t) is the same for variational problems (12.8.2) and (12.8.3), we

reduce problem (12.8.3) to problem (12.8.2). Consider the integral of variational problem (12.8.3). In

view of the linearity of the integral operator, we can write∫ cF (x, ẋ) +
n∑
j=1

fj (x) ẋj

dt = c

∫
F (x, ẋ) dt+

∫ n∑
j=1

fj (x) ẋjdt

= c

∫
F (x, ẋ) dt+

∫ n∑
j=1

fj (x) dxj .

Consider the integral that involves the summation. Since the fj (x) are the components of ∇g, for some

function g (x), we can restate this integral as

(12.8.4)
∫ n∑

j=1

fj (x) dxj =
∫ n∑

j=1

∂g (x)
∂xj

dxj .

Since integral (12.8.4) is the integral of total differential

∂g (x)
∂x1

dx1 + . . .+
∂g (x)
∂xn

dxn = dg (x) ,

the value of integral (12.8.4) is independent of the integration path. Hence, term
∑
fj (x) ẋj has no effect

on the choice of function x (t). Recalling that c 6= 0, we have reduced variational problem (12.8.3) to

variational problem (12.8.2) and, hence, the proof is complete.

12See also Section 12.5.5
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[Proof B] Consider variational problem (12.8.2). The corresponding Euler’s equations are

(12.8.5)
∂F

∂xi
− d

dt

(
∂F

∂ẋi

)
= 0, i ∈ {1, . . . , n} .

Now, consider variational problem (12.8.3). The corresponding Euler’s equations are

∂

[
cF +

n∑
j=1

fj (x) ẋj

]
∂xi

− d
dt


∂

[
cF +

n∑
j=1

fj (x) ẋj

]
∂ẋi

 = 0, i ∈ {1, . . . , n} ,

which we can write as

(12.8.6) c

[
∂F

∂xi
− d

dt

(
∂F

∂ẋi

)]
+

∂

[
n∑
j=1

fj (x) ẋj

]
∂xi

− d
dt


∂

[
n∑
j=1

fj (x) ẋj

]
∂ẋi

 = 0,

where i ∈ {1, . . . , n}. To prove that solution x (t) is the same for equations (12.8.5) and (12.8.6), we

prove that these two systems of equations are equivalent to one another. Recalling that c 6= 0, to prove that

equations (12.8.5) and (12.8.6) are equivalent, we need to show that

(12.8.7)

∂

[
n∑
j=1

fj (x) ẋj

]
∂xi

=
d
dt


∂

[
n∑
j=1

fj (x) ẋj

]
∂ẋi

 , i ∈ {1, . . . , n} .

Consider the left-hand side of equation (12.8.7). Using the linearity of the differential operator, we can

write

(12.8.8)

∂

[
n∑
j=1

fj (x) ẋj

]
∂xi

=
n∑
j=1

∂fj (x)
∂xi

ẋj , i ∈ {1, . . . , n} .

Consider the right-hand side of equation (12.8.7). Using the linearity of the differential operator and taking

into account the fact that the only term of
∑
fj (x) ẋj that is dependent on ẋi is the term where j = i, we

obtain

(12.8.9)
d
dt


∂

[
n∑
j=1

fj (x) ẋj

]
∂ẋi

 =
dfi (x)

dt
=

n∑
j=1

∂fi (x)
∂xj

ẋj , i ∈ {1, . . . , n} .



340 12. EULER’S EQUATIONS

Examining the coefficients of ẋj in expressions (12.8.8) and (12.8.9), we see that we need to show the

equality given by

(12.8.10)
∂fj (x)
∂xi

=
∂fi (x)
∂xj

, i, j ∈ {1, . . . , n} .

Recall that [f1 (x) , . . . , fn (x)] are the components of∇g, for some function g (x), namely, [∂g/∂x1, . . . , ∂g/∂xn].

Thus, we can write the left-hand side of equation (12.8.10) as

∂fj (x)
∂xi

=
∂

∂xi

[
∂g (x)
∂xj

]
=
∂2g (x)
∂xi∂xj

, i, j ∈ {1, . . . , n} .

Analogously, we can write the right-hand side of equation (12.8.10) as

∂fi (x)
∂xj

=
∂

∂xj

[
∂g (x)
∂xi

]
=
∂2g (x)
∂xj∂xi

, i, j ∈ {1, . . . , n} .

Hence, due to the equality of mixed partial derivatives — which we can write as ∂2g/∂xi∂xj = ∂2g/∂xj∂xi

— the proof is complete. �

EXERCISE 12.4. Consider a variational problem given by integral (12.5.6). Let f (x, z) = 1, and let the

endpoints be (0, 0) and (1, 1). Find function z (x) that renders this integral stationary and calculate the

value of the integral along this function. Choose another function that connects the endpoints and show

that the resulting value of the integral is greater than the one corresponding to the extremizing function.

In view of Section 12.5.6, provide a geometrical illustration.

SOLUTION 12.4. The variational problem in question is

(12.8.11) δ

1∫
0

√
1 +

(
dz
dx

)2

dx = 0.

Since integral (12.8.11) depends only on z′, in view of Section 12.5.3, the extremizing function is a straight

line given by z (x) = x. Inserting z = x into integral (12.8.11), we obtain the distance along the extrem-

izing function, namely,
1∫

0

√
2 dx =

√
2,

as also expected from Pythagoras’ theorem. Now, let us calculate the distance along another curve, for

instance, z (x) = x2. Integral (12.8.11) becomes

1∫
0

√
1 + (2x)2 dx =

1
4

[
2x
√

1 + (2x)2 + Arc sinh (2x)
]1

0

≈ 1.48,

which is greater than
√

2, as expected.

In view of Section 12.5.6, integral (12.8.11) is the surface area of a strip whose width is equal to unity, due

to f (x, z) = 1, and whose length corresponds to the curve z (x), between x = 0 and x = 1. Since the



12.8. EXERCISES 341

width of the strip is constant, the least surface area corresponds to the shortest curve connecting the two

points. Hence, the extremizing function is z (x) = x, which is a straight line.

EXERCISE 12.5. Express Euler’s equation (12.2.2) as the corresponding Hamilton’s equations in dz/dx

and dp/dx.

SOLUTION 12.5. Consider integrand (12.1.1), namely, F (z, z′;x). In view of Legendre’s transformation,

discussed in Appendix B, let the variable of transformation be denoted by

(12.8.12) p :=
∂F

∂z′
,

and the new function be

(12.8.13) H (z, p;x) = pz′ − F
(
z, z′;x

)
,

which is the Hamiltonian corresponding to F . Hence, by the duality of Legendre’s transformation, we can

write

(12.8.14) z′ =
∂H

∂p
.

Invoking Euler’s equation (12.2.2) and in view of expression (12.8.12), we can write

(12.8.15)
∂F

∂z
=

d
dx

(
∂F

∂z′

)
=

dp
dx
≡ p′.

Hence, using expression (12.8.13) to express function F in terms of function H , we obtain

(12.8.16) p′ =
∂F

∂z
=

∂

∂z

[
pz′ −H (z, p;x)

]
= −∂H

∂z
.

Thus, using equations (12.8.14) and (12.8.16), we can write a system of first-order ordinary differential

equations in dz/dx and dp/dx, namely,

(12.8.17)


z′ = ∂H

∂p

p′ = −∂H
∂z

,

which are the required Hamilton’s equations.

EXERCISE 12.6. In view of Exercise 12.5, prove the following theorem.

THEOREM 12.8.3. For an integral given by expression (12.1.1), namely,

b∫
a

F
[
z (x) , z′ (x) ;x

]
dx,

if F does not explicitly depend on x, the corresponding Hamiltonian, H , is the first integral of equation

(12.2.2).
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SOLUTION 12.6. PROOF. We can formally write

(12.8.18)
dH (p, z;x)

dx
=
∂H

∂p

dp
dx

+
∂H

∂z

dz
dx

+
∂H

∂x
.

Invoking equations (12.8.17), the first two terms on the right-hand side of equation (12.8.18) vanish and,

hence, this equation is reduced to
dH (p, z;x)

dx
=
∂H

∂x
.

In view of expression (12.8.13), H does not depend on x explicitly if and only if F does not depend on x

explicitly. In such a case, we obtain
dH
dx

= 0,

and, hence, H is constant. Using expressions (12.8.12) and (12.8.13), we can write

H = pz′ − F =
∂F

∂z′
z′ − F = C,

where C denotes a constant. This is the first integral of equation (12.2.2) that is given by expression

(12.5.4). �



CHAPTER 13

Variational principles

There is hardly any other branch of mathematical sciences in which abstract math-

ematical speculations and concrete physical evidence go so beautifully together

and complement each other so perfectly. [. . . ] In spite of all differences in the in-

terpretation, the variational principles of mechanics continue to hold their ground

in the description of all the phenomena of nature.

Cornelius Lanczos (1949) The variational principles of mechanics

Preliminary remarks

In Chapter 11, we derived Lagrange’s ray equations, which, as shown in Chapter 12, are the stationarity

conditions for a definite integral. In this chapter, we will show that this definite integral corresponds to the

traveltime of a signal between two points in an anisotropic inhomogeneous continuum. Consequently, we

can study ray theory in terms of Fermat’s variational principle of stationary traveltime.

In general, physical applications of the calculus of variations are based on the fact that the behaviours

of physical systems appear to coincide with the extremals of certain integrals. For instance, while in ray

theory this integral corresponds to the traveltime, in classical mechanics this integral is given in terms of

the kinetic and potential energies.

We begin this chapter with the statement of Fermat’s principle as a theorem dealing with rays. Proof of

this theorem is rooted in Hamilton’s ray equations, where the mathematical concept of a ray originates.

Hence, we investigate several properties of the ray-theory Hamiltonian and the resulting Lagrangian and,

using these properties, obtain a proof of this theorem. We also discuss another variational principle that is

pertinent to our studies; namely, Hamilton’s principle of stationary action.

13.1. Fermat’s principle

NOTATION 13.1.1. In this section, to show the generality of the formulation, all expressions are derived

for an n-dimensional space.

343
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13.1.1. Statement of Fermat’s principle. 1In 1657, Pierre de Fermat formulated his variational prin-

ciple for the propagation of light. He stated that light travels along a curve that renders the traveltime min-

imum. In modern notation, a generic form of this principle, to which we refer as the principle of stationary

traveltime, can be restated by the following theorem.

THEOREM 13.1.2. Rays are the solutions of the variational problem

(13.1.1) δ

B∫
A

ds
V (x,n)

= 0,

where ds is an arclength element and V (x,n) is the ray velocity in direction n = dx/ds at point x. A

and B are the fixed endpoints of this variational problem.

Note that, in expression (13.1.1) and throughout Section 13.1, n denotes a vector tangent to the ray and

not a vector normal to the wavefront, as is the case in other sections of this book.

13.1.2. Properties of Hamiltonian H. In order to prove Theorem 13.1.2, we must show that the

solution of variational problem (13.1.1) is equivalent to the solution of Hamilton’s ray equations (8.2.7);

namely,

(13.1.2)


ẋi = ∂H

∂pi

ṗi = − ∂H
∂xi

, i ∈ {1, . . . , n} .

Let us investigate the properties of the Hamiltonian that is given by expression (8.2.8); namely,

H (x,p) =
1
2
p2v2 (x,p) ,

and which, in view of v being homogeneous of degree 0 in the pi, can also be stated as

(13.1.3) H (x,p) =
1
2
p2v2

(
x,

p
|p|

)
,

where |p| is the magnitude of the phase-slowness vector.

By examining expression (13.1.3), we note the following properties of this Hamiltonian. H is homoge-

neous of degree 2 in the pi. Also, sinceH does not explicitly depend on time, its value is conserved along

the ray. The latter property can be stated by the following lemma.

LEMMA 13.1.3. HamiltonianH (x,p), given by expression (13.1.3), is conserved along the ray.

1This section is based on the work that was published by Bóna, A., and Slawinski, M.A., (2003) Fermat’s principle for
seismic rays in elastic media. Journal of Applied Geophysics 54, 445 – 451.
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PROOF. DifferentiatingH (x,p) with respect to t, we get

dH
dt

=
n∑
i=1

∂H
∂xi

ẋi +
n∑
i=1

∂H
∂pi

ṗi +
∂H
∂t

.

SinceH does not explicitly depend on time, we write

dH
dt

=
n∑
i=1

∂H
∂xi

ẋi +
n∑
i=1

∂H
∂pi

ṗi.

Using system (13.1.2), we obtain

dH
dt

= −
n∑
i=1

ṗiẋi +
n∑
i=1

ẋiṗi = 0,

as required. �

Moreover, the value of the Hamiltonian, which is conserved along the ray, is equal to 1/2. This results

from the fact that the eikonal equation, which is shown in equation (7.3.8), must be satisfied along the

rays. Hence, in view of this equation, which states that p2v2 = 1, and expression (8.2.8), we require that

(13.1.4) H (x,p) =
1
2

along a ray.

13.1.3. Variational equivalent of Hamilton’s ray equations. To show that rays obtained from Hamil-

ton’s ray equations (13.1.2) are solutions of variational problem (13.1.1), we express these equations in the

context of the calculus of variations. As stated in Section 12.7, Lagrange’s ray equations (11.2.6); namely,

(13.1.5)
∂L
∂xi
− d

dt
∂L
∂ẋi

= 0, i ∈ {1, . . . , n} ,

possess the form of Euler’s equations. Consequently, in view of Chapter 12, we can state the following

proposition.

PROPOSITION 13.1.4. Rays are the solutions of the variational problem

(13.1.6) δ

∫
Ldt = 0,

where the ray-theory Lagrangian L is given by expression (11.1.1), namely

(13.1.7) L (x, ẋ) =
n∑
j=1

pj (x, ẋ) ẋj −H (x,p) .

13.1.4. Properties of Lagrangian L. To examine variational formulations (13.1.1) and (13.1.6), we

must study the properties of Lagrangian L, given by expression (13.1.7), in terms of the corresponding

Hamiltonian,H. We begin by stating the following lemma.
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LEMMA 13.1.5. IfH (x,p) is homogeneous of degree 2 in the pi, then

L (x, ẋ (x,p)) = H (x,p) ,

where, by Legendre’s transformation, ẋi = ∂H/∂pi.

PROOF. Consider Lagrangian

L (x, ẋ (x,p)) =
n∑
i=1

piẋi −H.

In view of Legendre’s transformation, we can write

L (x (t) , ẋ (x (t) ,p (t))) =
n∑
i=1

pi
∂H
∂pi
−H.

IfH is homogeneous of degree 2 in the pi, by Theorem A.2.1, stated in Appendix A, we obtain

L (x (t) , ẋ (x (t) ,p (t))) = 2H−H = H,

which completes the proof. �

In view of the conserved value of Hamiltonian H, as shown in Lemma 13.1.3, and following expression

(13.1.4), we obtain the following corollary of Lemma 13.1.5.

COROLLARY 13.1.6. Along each ray, Lagrangian L is equal to 1/2.

In view of H being homogeneous of degree 2 in the pi, the analogous property of L is shown in the

following lemma.

LEMMA 13.1.7. If Hamiltonian H (x,p) is homogeneous of degree 2 in the pi, then Lagrangian L (x, ẋ)

is homogeneous of degree 2 in the ẋi.

PROOF. By Lemma 13.1.5, H (x,p) = L (x, ẋ (x,p)), where ẋ and p are related by Legendre’s

transformation ẋi = ∂H/∂pi. Let p′ := ap, where a is a constant. The corresponding Hamilton’s

equations are

ẋ′i =
∂H (x,p′)

∂p′i
=
∂H (x,ap)
∂ (api)

, i ∈ {1, . . . , n} .

By the homogeneity ofH and the property of the differential operator, we can write

ẋ′i =
∂H (x,ap)
∂ (api)

=
a2 ∂H(x,p)

∂pi
∂(api)
∂pi

=
a2 ∂H(x,p)

∂pi

a
, i ∈ {1, . . . , n} .

Hence,

ẋ′i = a
∂H (x,p)

∂pi
, i ∈ {1, . . . , n} ,
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which, in view of Hamilton’s ray equations, given by system (13.1.2), can be stated as

ẋ′i = aẋi, i ∈ {1, . . . , n} .

Consequently, we can write

L (x,aẋ) = L
(
x, ẋ′

)
,

which, by Lemma 13.1.5, yields

L (x,aẋ) = L
(
x, ẋ′

)
= H

(
x,p′

)
= H (x,ap) = a2H (x,p) = a2L (x, ẋ) ,

where the expression in the middle results from the homogeneity of H. This means that Lagrangian

L (x, ẋ) is homogeneous of degree 2 in the ẋi. �

Lemma 13.1.7 implies that variational problem (13.1.6) has a fixed parametrization since L is homoge-

neous of degree 2 in the ẋi. For a variational problem to be independent of parametrization, the integrand

must be homogeneous of degree 1 in the ẋi, as shown in Exercise 13.1.

Note that, as shown in Section 8.2, the solutions of Hamilton’s ray equations (13.1.2) are parametrized by

time; hence, the solutions of system (13.1.5) are also parametrized by time. Also note that, in view of the

homogeneity of the Lagrangian and its not being explicitly dependent on t, Beltrami’s identity together

with Euler’s homogeneous-function theorem imply that L is conserved along any ray, as shown in Exercise

13.2. As expected, this result is consistent with Corollary 13.1.6.

13.1.5. Parameter-independent Lagrange’s ray equations. Parametrization independence is nec-

essary to state Fermat’s principle since its generic form, shown in expression (13.1.1), is parametrization

independent. This results from the fact that the integrand in expression (13.1.1) is homogeneous of degree

1 in the ẋi.

Let us consider a Lagrangian given by

(13.1.8) F =
√

2L,

where L is given by expression (13.1.7). Note that, following Definition A.1.1, stated in Appendix A, F
is absolute-value homogeneous of degree 1 in the ẋi. Under certain conditions, which are satisfied in our

case, the solutions of Lagrange’s ray equations (13.1.5) are also the solutions of the equations given by

(13.1.9)
∂F
∂xi
− d

dt

(
∂F
∂ẋi

)
= 0, i ∈ {1, . . . , n} .

This is stated by the following lemma.

LEMMA 13.1.8. A solution of equations (13.1.5) that satisfies the condition given in Corollary 13.1.6,

where L is given by expression (13.1.7), is also a solution of equations (13.1.9), where F =
√

2L.
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PROOF. Inserting L = F2/2 into equations (13.1.5), we obtain

∂

∂xi

(
F2

2

)
− d

dt

[
∂

∂ẋi

(
F2

2

)]
= F ∂F

∂xi
− d

dt

[
F ∂F
∂ẋi

]
= F

[
∂F
∂xi
− d

dt

(
∂F
∂ẋi

)]
− dF

dt
∂F
∂ẋi

= 0, i ∈ {1, . . . , n} .

Since L = 1/2 along a ray, as shown in Corollary 13.1.6, then F = 1 and, hence, dF/dt = 0 along the

solutions of equations (13.1.5). Thus, equations (13.1.5) become equations (13.1.9), as required. �

Consequently, equations (13.1.9) can also be viewed as Lagrange’s ray equations.

If we can show that

(13.1.10) F =
|ẋ|

V
(
x, ẋ
|ẋ|

) ,
where |ẋ| = ds/dt and ẋ/ |ẋ|= n, then we prove Theorem 13.1.2, since the right-hand side of equation

(13.1.10) is the integrand of equation (13.1.1).

13.1.6. Ray velocity. In order to show that the right-hand side of equation (13.1.10) is the integrand

of equation (13.1.1), we must formulate ray velocity in a variational context. Since, as shown in Lemma

13.1.7, Lagrangian L is homogeneous of degree 2 in the ẋi, we can write

L (x, ẋ) = L (x, |ẋ|n) = |ẋ|2 L (x,n) ,

where n = ẋ/ |ẋ| is a unit vector tangent to the ray. Since, as stated in Corollary 13.1.6, the value of

Lagrangian L along a ray is 1/2, we can write

1
2

= |ẋ|2 L (x,n) .

Since this expression is valid along any ray, the ray velocity V , given by |ẋ|, can be expressed as

(13.1.11) V (x,n) := |ẋ| = 1√
2L (x,n)

,

which is consistent with expression (8.4.3).

Now, we are ready to complete the proof of Theorem 13.1.2.

13.1.7. Proof of Fermat’s principle.

PROOF. By Lemma 13.1.8, rays are the solutions of Euler’s equations stated in system (13.1.9). Con-

sequently, rays are the solutions of variational problem

(13.1.12) δ

∫
F dt = 0.
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In view of expression (13.1.8), we can restate this variational problem as

δ

∫
F (x, ẋ) dt = δ

∫ √
2L (x, ẋ) dt = 0.

Since, as stated in Lemma 13.1.7, L is homogeneous of degree 2 in the ẋi, we can write

δ

∫
F (x, ẋ) dt = δ

∫ √
2 |ẋ|2 L (x,n) dt = δ

∫
|ẋ|
√

2L (x,n) dt = 0.

In view of expressions (13.1.11) and since |ẋ| dt = ds, we conclude that

δ

∫
F (x, ẋ) dt = δ

∫
ds

V (x,n)
= 0.

Hence, the solutions of Hamilton’s ray equations that correspond to rays are the solutions of variational

problem (13.1.1). �

Theorem 13.1.2 states that seismic rays in anisotropic inhomogeneous continua obey Fermat’s principle of

stationary traveltime. Since our proof relies on Legendre’s transformation, discussed in Appendix B, it is

valid only if the Hamiltonian,H, is regular; namely,

det
[
∂2H
∂pi∂pj

]
6= 0, i, j ∈ {1, . . . , n} .

In other words, we are unable to prove Theorem 13.1.2 at the inflection points of the phase-slowness

surface. As stated in Theorem 9.3.1, for an elastic continuum defined by constitutive equations (3.2.1), the

innermost phase-slowness surface is always convex and, hence, the Hamiltonian associated with the fastest

wave is always regular. For the slower waves, however, there are points where the Hamiltonian is irregular.

This does not mean that Fermat’s principle does not hold in general; however, the proof of Theorem 13.1.2

in the context of a phase-velocity function giving an irregular Hamiltonian remains an open problem.

Heuristically, the principle of stationary traveltime can be justified by the fact that among all signals of

finite duration, the signals arriving at the receiver at the same instant constructively interfere and, conse-

quently, contribute to the recorded observation, while the contribution of a multitude of signals arriving at

different times is negligible.

13.2. Hamilton’s principle: Example

13.2.1. Introductory comments. Born and Wolf, in their classic book entitled “Principles of optics”,

make the following statement.

Variational considerations are of considerable importance as they often reveal analogies

between different branches of physics. In particular there is a close analogy between

geometrical optics and the mechanics of a moving particle; this was brought out very
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clearly by the celebrated investigations of Sir W.R. Hamilton, whose approach became of

great value in modern physics, especially in applications to de Broglie’s wave mechanics.

In this book, we focus on the variational formulation of geometrical optics without explicitly studying the

analogies among different branches of physics.2 In this section, however, we will illustrate the analogy

with classical mechanics by deriving the wave equation using Hamilton’s variational principle.

13.2.2. Action. Fermat’s principle, discussed in Section 13.1, plays an important role in ray theory.

Another variational principle, which is pertinent to wave phenomena in elastic continua, is that of Hamil-

ton. As stated by Arnold, in “Mathematical methods of classical mechanics”,

the fundamental notions of classical mechanics arose by the transforming of several very

simple and natural notions of geometrical optics, guided by a particular variational prin-

ciple — that of Fermat, into general variational principles.

In this section, we will illustrate Hamilton’s principle in a simple context where the resulting Lagrange’s

equations of motion can be viewed as a restatement of Newton’s second law of motion. Consequently,

using the particular case of Hamilton’s variational principle, we derive the one-dimensional wave equation,

which corresponds to homogeneous continua.

While Newton proposed to measure motion by the rate of change of momentum, Leibniz suggested another

quantity, the vis viva3. In the standard formulation of classical mechanics, vis viva, which underlies the

concept of action, can be viewed as twice the kinetic energy.

The commonly accepted definition of action is

(13.2.1) A :=

t2∫
t1

L dt,

where L is the classical-mechanics Lagrangian that is defined by

(13.2.2) L := T − U ,

with T and U denoting the kinetic energy and the potential energy, respectively.4

2Interested readers might refer to Basdevant, J-L., (2007) Variational principles in physics: Springer-Verlag, where the author
discusses these principle in such branches of physics as thermodynamics and quantum mechanics.

3living force. Readers interested in the origin of this entity might refer to Toretti, R., (1999) The philosophy of physics:
Cambridge University Press, pp. 33 – 36. Readers interested in the principle of vis viva as seen by early mechanicians might refer
to Kuhn, T.S., (1996) The structure of scientific revolutions (3rd edition): The University of Chicago Press, pp. 189 – 191.

4Readers interested in developments of the definition of action might refer to Ekeland, I., (2000) Le meilleur des mondes
possibles: Mathématiques et destinée: Seuil, pp. 57 – 98, or — for the English version — to Ekeland, I., (2006) The best of all
possible worlds: Mathematics and destiny, pp. 44 – 78.
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In classical mechanics, the principle of least action was proposed by de Maupertuis who, in 1744 in a docu-

ment appropriately entitled Accord des différentes lois de la nature qui avait jusqu’ici paru incompatibles5,

stated that

l’action est proportionnelle au produit de la masse par la vitesse et par l’espace. Main-

tenant, voici ce principe si digne de l’Être suprême: Lorsqu’il arrive quelque changement

dans la Nature, la quantité d’action employée pour ce changement est toujours la plus

petite qu’il soit possible.6

However, careful analysis of the variational methods led to the formulation of the principle of stationary

action rather than the principle of least action. The stationary-action principle was rigorously stated by

Hamilton who wrote that

although the law of least action has thus attained a rank among the highest theorems of

physics, yet its pretensions to a cosmological necessity, on the grounds of economy in the

universe, are now generally rejected. And the rejection appears just, for this, among other

reasons, that the quantity pretended to be economized is in fact often lavishly expended.7

In other words, action may be either a minimum or maximum. As a result, in classical mechanics, the

principle of stationary action proposed by Hamilton states that

if the positions of a conservative system are given at two instants, t1 and t2, the value of the

time integral of Lagrangian L is stationary for the path actually described by this system,

as compared to any other path that connects the two positions and obeys the constraints of

the system.

In other words, in view of definition (13.2.1), finding a stationary value of action is equivalent to variational

problem

(13.2.3) δA = δ

t2∫
t1

L dt = 0.

From the variational principle of action, it is possible to derive many equations of mathematical physics.

In particular, a variational derivation of the wave equation is shown in Section 13.2.4. In the context of

this illustration, the potential energy is assumed to be a function of position alone, while the kinetic energy

is assumed to be a function of velocity alone. In other words, for this illustration of Hamilton’s principle,

we confine our interests to homogeneous continua.

5Agreement of various laws of nature which until now appeared incompatible
6Action is proportional to the product of mass, velocity, and displacement. Consequently, the principle so worthy of the

Supreme Being: When there is a change in Nature, the value of action used for this change is the smallest possible.
7Hamilton, W.R., (1833) On a general method of expressing the paths of light, and of the planets, by the coefficients of a

characteristic function: Dublin University Review
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13.2.3. Lagrange’s equations of motion. In this section, we introduce Lagrange’s equations of mo-

tion using the concepts of particle mechanics in order to familiarize the reader with this classical formula-

tion. In the context of seismic wave propagation, the reader can omit this section and proceed directly to

Section 13.2.4.

Considering Hamilton’s principle, stated in equation (13.2.3), and in view of the stationarity conditions,

discussed in Chapter 12, the motion of a particle must satisfy Euler’s equations. The parametric form of

Euler’s equations can be written as

(13.2.4)
∂L
∂xi
− d

dt

(
∂L
∂ẋi

)
= 0, i ∈ {1, 2, 3} ,

where t denotes time, xi is the position coordinate and, hence, ẋi is a component of the velocity vector

tangent to the trajectory of this particle. Equations (13.2.4) are Lagrange’s equations of motion. In the

context of this section, since the kinetic energy does not depend on position, Lagrange’s equations of

motion (13.2.4) are just a restatement of Newton’s second law of motion. To justify this equivalence,

consider the following description.

Considering the first term of Lagrange’s equations of motion (13.2.4) and recalling that T is assumed to

be a function of velocity alone, we obtain

∂L
∂xi

=
∂ [T (ẋ)− U (x)]

∂xi
= −∂U

∂xi
=: Fi, i ∈ {1, 2, 3} ,

which is the expression for a component of force in a conservative field. Considering the expression in

parentheses in the second term of Lagrange’s equations of motion (13.2.4) and recalling that U is assumed

to be a function of position alone, we obtain

(13.2.5)
∂L
∂ẋi

=
∂ [T (ẋ)− U (x)]

∂ẋi
=
∂T

∂ẋi
=: pi, i ∈ {1, 2, 3} ,

which is the expression for a component of momentum.

Since the first term of equations (13.2.4) is the component of force, while the second term is the rate

of change of the corresponding component of momentum, Lagrange’s equations of motion (13.2.4) are

equivalent to Newton’s second law of motion; namely,

Fi −
dpi
dt

= 0, i ∈ {1, 2, 3} .

Also, as shown in Exercises 13.6 and 13.7, we can derive Hamilton’s equations of motion from Newton’s

laws of motion.

To gain further insight into Lagrange’s equations of motion, let us invoke Beltrami’s identity (11.3.1) to

write
∂L
∂t

+
d
dt

(
n∑
i=1

ẋi
∂L
∂ẋi
− L

)
= 0.
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If L does not depend explicitly on time — a concept used in Exercise 13.2, below, in the context of ray

theory — this equation becomes
d
dt

(
n∑
i=1

ẋi
∂L
∂ẋi
− L

)
= 0,

which implies that the term in parentheses is constant, C.8 If L is homogeneous of degree 2 in the ẋi, in

view of Theorem A.2.1 from Appendix A, we obtain 2L−L = C. Thus, Lagrangian L is conserved along

trajectory x (t). This constant of motion can be viewed also as the conserved energy of the system. To see

that — in view of expression (13.2.5), and expression (B.3.1) from Appendix B — we write the conserved

energy as the classical-mechanics Hamiltonian, namely,

H =
n∑
i=1

ẋipi − L.

Herein, H = T + U : the sum of kinetic and potential energies. We illustrate the relation between this

expression and the definition of L stated by expression (13.2.2) in Exercise 13.5.

Lagrange’s equations of motion (13.2.4) apply to discrete systems, where the Lagrangian depends on the

position of each particle. However, as shown in the following section, we can use the principle of stationary

action in the context of continua, where the motion is defined by coordinates that are functions of both time

and position variables.9

13.2.4. Wave equation.

Continuous systems and Lagrangian density. A seismological application of stationary-action princi-

ple (13.2.3) and, consequently, of Lagrange’s equations of motion for elastic continua, is exemplified by

the derivation of the wave equation.10 The coordinates of a three-dimensional continuous system are given

by three position variables, x1, x2, x3, and the time variable, t. Consequently, the displacement is given

as a function of four independent variables; namely, u = u (x1, x2, x3, t). Hence, for a three-dimensional

continuum, Lagrangian L is associated with an element of volume and is given by

(13.2.6) L =
∫∫∫

L dx1 dx2 dx3,

where L is the Lagrangian density

L = L

(
u,
∂u

∂xi
,
∂u

∂t
, xi, t

)
, i = {1, 2, 3} .

8Readers interested in a different derivation of this conserved quantity might refer to Basdevant, J-L., (2007) Variational
principles in physics: Springer-Verlag, pp. 54 – 55.

9Readers interested in the energy propagation in the seismological context of the continuum using the Lagrange equations of
motion and the generalized coordinates, might refer to Udías, A., (1999) Principles of seismology: Cambridge University Press,
pp. 36 – 38.

10Readers interested in further descriptions of the Lagrangian formulation for continuous systems might refer to Goldstein,
H., (1950/1980) Classical mechanics: Addison-Wesley Publishing Co., pp. 548 – 555.
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Variational derivation of wave equations. Consider oscillations of a finite-length string with fixed

ends. Let the string itself be massless, have a length l, and contain n equal masses, mi, spaced at equal

intervals, ∆x. Let the longitudinal displacements of masses be u0, . . . , un+1, with u0 = un+1 = 0 being

the boundary conditions corresponding to fixed ends. Assume the force, F , required to stretch a length

∆x of the string by amount u, to be

(13.2.7) F =
k

∆x
u,

where k denotes a constant.

Note that the term k/∆x has the units of [N/m] and expression (13.2.7) can be viewed as a one-dimensional

statement of Hooke’s law.

The potential energy, U , is associated with the elasticity of the string and is given by the strain-energy

function, discussed in Chapter 4. Following equation (4.5.1), we write the potential energy of a segment

of the string as

Ui =

∆u∫
0

Fdu =
k

∆x

∆u∫
0

udu =
1
2
k

∆x
(∆u)2 ,

where ∆u ≡ ui− ui−1. Summing all the segments, the potential energy along the entire string containing

n discrete mass points is

(13.2.8) U =
n∑
i=1

Ui =
1
2
k

n∑
i=1

(ui − ui−1)2

∆x
.

If n→∞ and ∆x→ 0 in such a way that (n+ 1) ∆x = l, the potential energy, U , can be written as

U =
1
2
k
∞∑
i=1

[
u (xi, t)− u (xi−1, t)

xi − xi−1

]2

(xi − xi−1) ,

where xi − xi−1 ≡ ∆x. Thus, in the limit, the term in brackets represents a partial derivative with respect

to x, while the summation results in integration. Hence, we can write

(13.2.9) U =
1
2
k

l∫
0

[
∂u (x, t)
∂x

]2

dx.

The kinetic energy, T , for the entire string containing n discrete mass points, each of which has a mass m,

is

(13.2.10) T =
1
2
m

n∑
i=1

[
∂u (xi, t)

∂t

]2

.
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Rearranging and using the limit, we can write

(13.2.11) T =
1
2
m

∆x

∞∑
i=1

[
∂u (xi, t)

∂t

]2

∆x =
1
2
ρ

l∫
0

[
∂u (x, t)
∂t

]2

dx,

where ρ := lim
∆x→0

m/∆x, is the mass density of the one-dimensional continuum.

Since the kinetic energy, given in expression (13.2.11), is not a function of position, we can invoke

the classical-mechanics Lagrangian, given by expression (13.2.2). Thus, using expressions (13.2.9) and

(13.2.11), we can write

L (x, t) = T (ẋ)− U (x)

=
1
2
ρ

l∫
0

[
∂u (x, t)
∂t

]2

dx− 1
2
k

l∫
0

[
∂u (x, t)
∂x

]2

dx

=

l∫
0

{
ρ

2

[
∂u (x, t)
∂t

]2

− k

2

[
∂u (x, t)
∂x

]2
}

dx.(13.2.12)

Since we are presently dealing with a one-dimensional continuum, considering expression (13.2.6), we

can write

(13.2.13) L =

l∫
0

L dx,

where, in view of integral (13.2.12), L is the Lagrangian density given by

(13.2.14) L ≡ ρ

2

(
∂u

∂t

)2

− k

2

(
∂u

∂x

)2

.

To invoke a variational formulation, in view of expression (13.2.13) and following equation (13.2.3), we

can write

δ

t∫
0

L dt = δ

t∫
0

l∫
0

L dx dt = 0.

Thus, we seek the stationary value of a definite integral that depends on two variables. In view of the

corresponding Euler’s equation, namely, equation (12.4.1), we can write the stationarity condition as

(13.2.15)
∂L

∂u
−
[
∂

∂t

(
∂L

∂ut

)
+

∂

∂x

(
∂L

∂ux

)]
= 0,

where ut := ∂u/∂t and ux := ∂u/∂x.

Equation (13.2.15) is Lagrange’s equation of motion for a one-dimensional continuum.
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Inserting the Lagrangian density, stated in expression (13.2.14), into equation (13.2.15) and considering ρ

and k as constants, we obtain

−
[
∂

∂t

(
ρ
∂u

∂t

)
− ∂

∂x

(
k
∂u

∂x

)]
= −ρ∂

2u

∂t2
+ k

∂2u

∂x2
= 0.

Rearranging, we can write
∂2u

∂x2
=

1
k
ρ

∂2u

∂t2
,

which is a one-dimensional wave equation for longitudinal waves in elastic continua, where
√
k/ρ denotes

the speed of propagation with the units of speed resulting from [k] =
[
kgm/s2

]
and [ρ] = [kg/m].

Note that the solution of the one-dimensional wave equation is surface u (x, t) — in the xt-space — that

renders
∫∫

Ldxdt stationary. This illustrates the fact that a solution of Euler’s equation involving two

variables is a surface, as stated in Section 12.4.2.

The variational approach to the one-dimensional wave equation for transverse waves is shown in Exercise

13.9.

Closing remarks

As shown in this chapter, rays — originally formulated in terms of Hamilton’s ray equations (8.2.7) —

coincide with the curves exhibiting stationary traveltime. This property allows us to invoke Fermat’s

principle and, hence, to study ray theory using the tools of the calculus of variations. In Chapter 14, we

will use the stationarity of traveltime to study raytracing techniques.

Variational formulations are equivalent to Hamilton’s ray equations provided we can, using Legendre’s

transformation, write a given ray-theory Hamiltonian as the corresponding ray-theory Lagrangian. This

requirement is satisfied for all convex phase-slowness surfaces. As stated in Theorem 9.3.1, the phase-

slowness surface of the fastest wave is convex. Consequently, we can always use Fermat’s principle to

study the qP wave. When dealing with the qS wave, we must be aware of the inflection points of its

phase-slowness surface. The study of such points belongs to the realm of singularity theory, which is not

considered in this book.11

11Interested readers might refer to Hanyga, A., and Slawinski, M.A., (2001) Caustics in qSV rayfields of transversely isotropic
and vertically inhomogeneous media: Anisotropy 2000: Fractures, converted waves, and case studies: SEG (Special Issue), 409
– 418.
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13.3. Exercises

EXERCISE 13.1. Consider a traveltime integral in an anisotropic inhomogeneous continuum; namely,

(13.3.1) Č =

b∫
a

F (x, ẋ) dt.

Show that if F (x, ẋ) is homogeneous of degree 1 in ẋ, the integral is independent of parametrization.

SOLUTION 13.1. Let s = f (t) be an arbitrary parametrization. Hence,

ds =
df
dt

dt =: ḟdt,

and

(13.3.2) ḟ =
ds
dt

.

Consider F (x, ẋ), where

ẋ =
dx
ds

ds
dt

,

which, in view of expression (13.3.2), can be written as

ẋ =
dx
ds

df
dt

=: x′ḟ .

For the value of the integral (13.3.1) to be independent of parametrization, we require

(13.3.3) F (x, ẋ) dt = F
(
x,x′

)
ds.

Consider the left-hand side of equation (13.3.3). Since ẋ = x′ḟ and dt = ds/ḟ , we can write it as

F (x, ẋ) dt = F
(
x,x′ḟ

) ds
ḟ

.

If F is homogeneous of degree 1 in ẋ, following Definition A.1.1, stated in Appendix A, we obtain

F (x, ẋ) dt = ḟF
(
x,x′

) ds
ḟ

= F
(
x,x′

)
ds,

which is equation (13.3.3), as required.

REMARK 13.3.1. Exercise 13.1 shows that the general statement of Fermat’s principle, namely,

δ

∫
F (x, ẋ) dt = 0,

is independent of parametrization. This is the case since F (x, ẋ) dt = ds/V is homogeneous of degree 1

in ẋ. Note that ds is homogeneous of degree 1 in ẋ, while V is homogeneous of degree 0 in ẋ. 12

12See also Section 11.3
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EXERCISE 13.2. In view of Lemma 13.1.7, use Beltrami’s identity (11.3.1), namely,

(13.3.4)
∂L
∂t

+
d
dt

(
n∑
i=1

ẋi
∂L
∂ẋi
− L

)
= 0,

to show that Lagrangian L is conserved along the ray.

SOLUTION 13.2. Since L, given by expression (13.1.7), does not explicitly depend on t, equation (13.3.4)

becomes d (
∑n

i=1 ẋi∂L/∂ẋi − L) /dt = 0, which implies that
∑n

i=1 ẋi∂L/∂ẋi − L = C, where C

denotes a constant. Since, by Lemma 13.1.7, L is homogeneous of degree 2 in the ẋi, in view of Theorem

A.2.1, we obtain 2L−L = C. Thus, Lagrangian L is equal to a constant and, hence, it is conserved along

the ray.

EXERCISE 13.3. Consider the system of six characteristic equations for an isotropic inhomogeneous con-

tinuum, derived in Exercises 8.8 and 8.9; namely,

(13.3.5)


dxi
dt = v2pi

dpi
dt = −∂ ln v

∂xi

, i ∈ {1, 2, 3} .

Express system (13.3.5) as three second-order equations.

SOLUTION 13.3. Solving the first equation of system (13.3.5) for the components of the phase-slowness

vector, we get

pi =
1

v2 (x)
dxi
dt

, i ∈ {1, 2, 3} .

Differentiating with respect to t, we can write

dpi
dt

=
d
dt

[
1

v2 (x)
dxi
dt

]
, i ∈ {1, 2, 3} ,

which we can equate to the second equation of set (13.3.5) to obtain

(13.3.6)
∂ ln v
∂xi

+
d
dt

[
1

v2 (x)
dxi
dt

]
= 0, i ∈ {1, 2, 3} ,

as required.

EXERCISE 13.4. Consider the traveltime integral in an isotropic inhomogeneous continuum. Show that

equations (13.3.6) are equivalent to a parametric form of Euler’s equations.

SOLUTION 13.4. Let the integrand of the traveltime integral in an isotropic inhomogeneous continuum be

written as

F (x, ẋ; t) =

√
3∑
i=1

ẋiẋi

V (x)
,
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where ẋ ≡ dx/dt. We invoke equations (13.1.9), namely,

(13.3.7)
∂F
∂xi
− d

dt

(
∂F
∂ẋi

)
= 0, i ∈ {1, 2, 3} ,

which are a parametric form of Euler’s equations. Considering integrand F and the first term of equations

(13.3.7), we obtain

∂F
∂xi

= − 1
V 2 (x)

∂V (x)
∂xi

√√√√ 3∑
i=1

ẋiẋi, i ∈ {1, 2, 3} .

Using the fact that t denotes time, and, hence, as shown in expression (8.4.3),

(13.3.8)

√√√√ 3∑
i=1

ẋiẋi =: V (x) ,

where V is the magnitude of ray velocity, we can write

∂F
∂xi

= − 1
V (x)

∂V (x)
∂xi

, i ∈ {1, 2, 3} .

Using the chain rule, we can rewrite this expression as

(13.3.9)
∂F
∂xi

= − ∂

∂xi
lnV (x) , i ∈ {1, 2, 3} .

Considering integrand F and the second term of equations (13.3.7), we obtain

∂F
∂ẋi

=
1

V (x)
ẋi√

3∑
i=1

ẋiẋi

, i ∈ {1, 2, 3} ,

which, using expression (13.3.8), we can write as

(13.3.10)
∂F
∂ẋi

=
1

V 2 (x)
dxi
dt

, i ∈ {1, 2, 3} .

Consequently, using expressions (13.3.9) and (13.3.10), we can write Euler’s equations (13.3.7) as

(13.3.11)
∂ lnV
∂xi

+
d
dt

[
1

V 2 (x)
dxi
dt

]
= 0, i ∈ {1, 2, 3} .

Since in isotropic continua, phase and ray velocities coincide, namely, V ≡ v, equations (13.3.11) are

equivalent to equations (13.3.6), as required.

REMARK 13.3.2. Exercises 13.3 and 13.4 show that the characteristic equations that are the solutions of

the eikonal equation in isotropic inhomogeneous continua are tantamount to Euler’s equations that provide

the stationarity condition for the traveltime of the signal in such continua. In other words, these exercises

verify Fermat’s principle in isotropic inhomogeneous continua.13

13Readers interested in a formulation linking rays and Fermat’s principle in isotropic inhomogeneous continua might also
refer to Elmore, W.C., and Heald, M.A., (1969/1985) Physics of waves: Dover, pp. 320 – 322.
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EXERCISE 13.5. Recall the classical-mechanics Lagrangian given in expression (13.2.2), namely,

(13.3.12) L := T − U ,

where T and U are the kinetic and potential energies. Let the classical-mechanics Hamiltonian be

(13.3.13) H := T + U .

Using the standard expression for kinetic energy and letting pi be a component of linear momentum, verify

Legendre’s transformation between L and H.

SOLUTION 13.5. In view of Legendre’s transformation, discussed in Appendix B, we can write

H =
n∑
i=1

piẋi − L,

where pi = mvi, with vi being a component of velocity given by vi = dxi/dt ≡ ẋi. Hence, we can write

(13.3.14) H = m
n∑
i=1

ẋ2
i − L = mv2 − L,

where v stands for the magnitude of velocity. Recalling definitions (13.3.12) and (13.3.13), we can write

expression (13.3.14) as

T + U = mv2 − (T − U) ,

where T and U are the kinetic and potential energies, respectively. Simplifying, we obtain

T =
1
2
mv2,

which is the standard expression for kinetic energy.

EXERCISE 13.6. Given Newton’s second law of motion, stated as a single second-order ordinary differ-

ential equation, namely,

(13.3.15) m
d2xi
dt2

= −∂U (x)
∂xi

, i ∈ {1, 2, 3} ,

where U (x) denotes the scalar potential, write the corresponding two first-order ordinary differential

equations in t to be solved for the xi and the pi, where pi is a component of the linear momentum.

SOLUTION 13.6. We can denote the components of the momentum vector as

(13.3.16) pi := m
dxi
dt

, i ∈ {1, 2, 3} .

Differentiating both sides of equations (13.3.16) with respect to t, we obtain

dpi
dt

= m
d2xi
dt2

, i ∈ {1, 2, 3} ,
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which are equations (13.3.15). Hence, Newton’s second law of motion can be written as a set of two

first-order differential equations,

(13.3.17)


dxi
dt = pi

m

dpi
dt = − ∂U

∂xi

, i ∈ {1, 2, 3} .

EXERCISE 13.7. 14Using expression (13.3.13), show that equations (13.3.17), obtained in Exercise 13.6,

correspond to Hamilton’s equations of motion that are given by
dxi
dt = ∂H

∂pi

dpi
dt = − ∂H

∂xi

, i ∈ {1, 2, 3} .

SOLUTION 13.7. Consider expression (13.3.13). Using the standard expression for the kinetic energy, as

well as the definition of linear momentum, we can write this expression as

(13.3.18) H = T + U =
1
2
m

(
dxi
dt

)2

+ U =
1

2m
p2
i + U , i ∈ {1, 2, 3} .

Differentiating equations (13.3.18) with respect to both the pi and the xi, we obtain
∂H
∂pi

= pi
m

∂H
∂xi

= ∂U
∂xi

, i ∈ {1, 2, 3} .

Using Newton’s second law of motion, which is stated in expression (13.3.17), we obtain
dxi
dt = ∂H

∂pi

dpi
dt = − ∂H

∂xi

, i ∈ {1, 2, 3} ,

which are Hamilton’s equations of motion, as required.

EXERCISE 13.8. Considering a free-falling body in the vacuum, show that Hamilton’s principle is consis-

tent with Newton’s concept of acceleration due to gravity.

SOLUTION 13.8. Let T = mv2/2 and U = mgz, where m is mass, v is velocity, g is acceleration due to

gravity and z denotes height. Since v = dz/dt, we can write the classical-mechanics Lagrangian as

L = T − U =
1
2
m

(
dz
dt

)2

−mgz.

14See also Section 13.2.3
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Consider the action integral

A =

t1∫
t0

L dt.

Hamilton’s principle implies

δ

t1∫
t0

(T − U) dt = δ

t1∫
t0

(
1
2
m (ż)2 −mgz

)
dt = 0,

where ż := dz/dt . Invoking Euler’s equation, which corresponds to Lagrange’s equations of motion

(13.2.4), we obtain

∂L
∂z
− d

dt

(
∂L
∂ż

)
= −mg − d

dt
(mż) = −mg −mz̈ = 0,

which can be written as
d2z (t)

dt2
= −g,

where g is the free-fall acceleration, as required.

EXERCISE 13.9. Following Section 13.2.4, derive a one-dimensional wave equation for transverse waves.

SOLUTION 13.9. Let the transverse displacements of masses be u0, . . . , un+1, with u0 = un+1 = 0,

which are boundary conditions corresponding to fixed ends. The potential energy, U , is associated with

the tension, µ, of the string. The potential energy per segment is

(13.3.19) dU = µ

[√
(∆x)2 + (ui − ui−1)2 −∆x

]
,

where the term in parentheses constitutes the extension of the segment ∆x, which is the difference be-

tween its original length, ∆x, and its strained length,
√

(∆x)2 + (ui − ui−1)2. We can rewrite expression

(13.3.19) as

dU = µ∆x

√1 +
(
ui − ui−1

∆x

)2

− 1

 .

Expanding the square root as a power series gives us

dU = µ∆x

[
1
2

(
ui − ui−1

∆x

)2

− 1
8

(
ui − ui−1

∆x

)4

+ . . .

]
.

Assuming that the term in parentheses is much smaller than unity, which implies that the transverse dis-

placement is much smaller than the length of a segment, we obtain

dU ≈ µ

2
∆x
(
ui − ui−1

∆x

)2

.
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Thus, the potential energy for the entire string is

U ≈ 1
2
µ

n∑
i=1

(
ui − ui−1

∆x

)2

∆x.

Letting n −→ ∞ and ∆x −→ 0 in such a way that n∆x = l, where l is the length of the string, and

noticing that the term in parentheses represents a partial derivative with respect to x, we can write

U =
1
2
µ
∞∑
i=1

[
∂u (xi, t)

∂x

]2

∆x.

Thus, in the limit, we obtain

U =
1
2
µ

l∫
0

[
∂u (x, t)
∂x

]2

dx.

The kinetic energy is given by expression (13.2.11); namely,

T =
1
2
ρ

l∫
0

[
∂u (x, t)
∂t

]2

dx.

Thus, using L, given in expression (13.2.2), we can write

L = T − U =

l∫
0

[
ρ

2

(
∂u

∂t

)2

− µ

2

(
∂u

∂x

)2
]

dx.

Invoking Hamilton’s principle, stated in expression (13.2.3), we obtain

δ

t∫
0

L dt = δ

t∫
0

l∫
0

[
ρ

2

(
∂u

∂t

)2

− µ

2

(
∂u

∂x

)2
]

dx dt = 0.

Using the corresponding Euler’s equation (12.4.1), we get

(13.3.20)
∂2u

∂x2
=

1
µ
ρ

∂2u

∂t2
.

Equation (13.3.20) is a one-dimensional wave equation for transverse waves where the transverse displace-

ment, u, is assumed to be much smaller than the length of the string, l.





CHAPTER 14

Ray parameters

En général la conservation des forces vives donne toujours une intégrale première
des différentes équations différentielles de chaque problème; ce qui est d’une
grande utilité dans plusieurs occasions.1

Joseph-Louis Lagrange (1788) Mécanique Analytique

Preliminary remarks

In the context of ray theory, the trajectories of seismic signals as well as their traveltimes can be obtained by

solving Hamilton’s ray equations or Lagrange’s ray equations, discussed in Chapters 8 and 11, respectively.

In certain cases, particular properties of the continuum result in simplifications of these equations, thereby

allowing us to obtain their solutions more easily, as well as to gain further insight into these solutions.

In Chapter 13, we showed that rays are the solutions of the variational problem of stationary traveltime and,

hence, they are the solutions of the corresponding Euler’s equations. For the continua that exhibit particular

homogeneities, Euler’s equations can be simplified by obtaining the corresponding first integrals, which

were introduced in Section 12.6. First integrals are the conserved quantities. In ray theory, these quantities,

which are constant along a given ray, are called ray parameters.

We begin this chapter, in which we study only two-dimensional continua, with the formulation of the

ray parameter for an anisotropic continuum that is homogeneous along one axis. By integrating the ray-

parameter expression, we obtain the expression for the ray. Also, using the ray parameter, we obtain

the expression for the traveltime. Then we briefly discuss a case in which ray equations do not possess

corresponding ray parameters. We conclude this chapter by discussing the conserved quantities in the

context of Hamilton’s ray equations.

1

In general, the conservation of living forces yields always a first integral of various differential equations of
each problem; this is of great utility on numerous occasions.

365
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14.1. Traveltime integrals

Let us consider a two-dimensional continuum that is contained in the xz-plane. The traveltime between

two points A and B within this continuum can be stated as

(14.1.1) Č =

B∫
A

√
1 + (z′)2

V (x, z, z′)
dx =:

B∫
A

F dx,

where z′ := dz/dx. Since dz/dx = cot θ, where θ is the ray angle, we see that the ray velocity, V ,

is a function of position, (x, z), and direction, z′. In other words, integral (14.1.1) allows us to study

traveltimes in anisotropic inhomogeneous continua.

Also, let us view the x-axis and the z-axis as the horizontal and vertical axes, respectively, where the

vertical axis corresponds to depth within a geological model.

In view of Fermat’s principle, discussed in Chapter 13, rays correspond to curves along which the travel-

time is stationary. Since integral (14.1.1) is of the type given by integral (12.1.1), in general, we can obtain

such a curve using Euler’s equation (12.2.2). Consequently, F is a ray-theory Lagrangian.

As discussed in Section 12.5, a particular form of the integral, whose stationary value we seek, may result

in simplifications of Euler’s equation. Herein, we wish to study special cases of traveltime integral (14.1.1)

that are pertinent to seismic investigations.

14.2. Ray parameters as first integrals2

In this section, we will study horizontally layered media. In such a case, where the ray velocity, V , may

vary with depth, z, and direction, z′, traveltime integral (14.1.1) becomes

(14.2.1) Č =

B∫
A

√
1 + (z′)2

V (z, z′)
dx ≡

B∫
A

F
(
z, z′

)
dx.

Since traveltime integral (14.2.1) does not exhibit an explicit dependence on x, to obtain the ray, we use

Beltrami’s identity (12.3.1), namely,

∂F
∂x

+
d

dx

(
z′
∂F
∂z′
− F

)
= 0,

which immediately leads to

(14.2.2) z′
∂F
∂z′
− F = C,

where C is a constant. Expression (14.2.2) is first integral (12.5.4) and C is a conserved quantity along the

ray.

2This section is based on Slawinski, M.A., and Webster, P.S., (1999) On generalized ray parameters for vertically inhomoge-
neous and anisotropic media, Canadian Journal of Exploration Geophysics, 35, No. 1/2, 28 – 31.
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We wish to study this conserved quantity. Inserting integrand F, given in integral (14.2.1), into expression

(14.2.2), we obtain

(14.2.3) z′
∂

(√
1+(z′)2

V (z,z′)

)
∂z′

−

√
1 + (z′)2

V (z, z′)
= −

V ′z′
√

1 + (z′)2

V 2
− 1

V
√

1 + (z′)2
= C,

where, for convenience, we denote V := V (z, z′) and V ′ := ∂V/∂z′. The chain rule implies −V ′/V 2 =

∂ [1/V (z, z′)] /∂z′ and, hence, we get

(14.2.4)
∂

∂z′

(
1
V

)
z′
√

1 + (z′)2 − 1

V
√

1 + (z′)2
= C.

Expression (14.2.4) is a first integral of Euler’s equation (12.2.2) for traveltime integral (14.2.1).

In order to express the first integral in terms of the ray angle, we use z′ ≡ dz/dx = cot θ, where θ is the

ray angle measured from the z-axis. Also, the differential operator in expression (14.2.4) can be restated

as ∂/∂z′ = (∂θ/∂z′) ∂/∂θ. Hence, using trigonometric identities, we obtain another form of expression

(14.2.4) given by

(14.2.5) p = cos θ
∂

∂θ

[
1

V (z, θ)

]
+

sin θ
V (z, θ)

,

where p = −C and where V and θ denote ray velocity and ray angle, respectively. Since p is conserved

along a given ray, z (x), we refer to this conserved quantity as ray parameter. Expression (14.2.5) is the

ray parameter for anisotropic vertically inhomogeneous continua.

For expression (14.2.5) to be valid, the ray velocity may vary along the z-axis but not along the x-axis. The

directional dependence of velocity, however, need not exhibit any particular symmetry. In other words, the

angular velocity dependence is arbitrary.

Note that in the context of elasticity theory, the availability of exact and explicit ray-velocity expressions

V (θ) is limited due to the requirements of Legendre’s transformation. An explicit, closed-form expression

for V (θ) is only possible for the case of elliptical velocity dependence.

14.3. Example: Elliptical anisotropy and linear inhomogeneity

14.3.1. Introductory comments. In this section, we study a particular case of wave propagation that

is associated with both an elliptical velocity dependence with direction and a linear velocity dependence

with depth. This assumption allows us to obtain analytic expressions for rays and traveltimes. Also, the

same case was treated in Section 8.5 in the context of Hamilton’s ray equations. Thus, our examination

of Sections 8.5 and 14.3 will allow us to investigate the same physical problem using the two different

approaches that are available to study seismic ray theory.
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Since Euler’s equation (12.2.2), or its Beltrami’s identity (12.3.1), is a second-order ordinary differential

equation, in view of Definition 12.6.1, first integral (14.2.4) and ray parameter (14.2.5) are first-order

ordinary differential equations. If the integration of the ray parameter is possible, this integration results

in a solution of Euler’s equation and its Beltrami’s identity, which can be given by z (x) or x (z). In other

words, the expressions for ray velocity, V , that result in integrable expression (14.2.5) allow us to obtain

rays by integration.3 Ray velocity that results in a conveniently integrable ray parameter is provided by the

case of elliptical velocity dependence with direction and linear velocity dependence with depth.

14.3.2. Rays.

Derivation. To obtain an analytic expression for a ray, we wish to use an exact ray-velocity expression

to be inserted into expression (14.2.5). For this purpose, we consider expression (8.7.13), namely,

(14.3.1) V (θ) = Vz

√√√√ 1 + tan2 θ

1 +
(
Vz
Vx

)2
tan2 θ

,

which gives the magnitude of the ray velocity as a function of the ray angle for the case of elliptical velocity

dependence. For convenience, let the measure of ellipticity be given by

(14.3.2) χ :=
V 2
x − V 2

z

2V 2
z

,

where Vx and Vz stand for the magnitude of the horizontal and the vertical ray velocities, respectively.

This definition of χ is consistent with definition (8.5.1) since — for elliptical velocity dependence — the

ray and phase velocities are equal to one another along the axes of the ellipse.

Using χ, we can write expression (14.3.1) as

V (θ) = Vz

√
1 + 2χ

1 + 2χ cos2 θ
.

Let us assume that the ray velocity varies along the z-axis in such a way that χ remains constant. This

implies that the ratio of magnitudes of horizontal and vertical ray velocities remains constant. In such a

case, we can write

(14.3.3) V (θ, z) = Vz (z)
√

1 + 2χ
1 + 2χ cos2 θ

.

3For certain cases with applications to continua exhibiting folded layers, readers might refer to Epstein, M., and Slawinski,
M.A., (1999) On rays and ray parameters in inhomogeneous isotropic media. Canadian Journal of Exploration Geophysics. 35,
No. 1/2, 7 – 19.
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Furthermore, we assume that the magnitude of the ray velocity increases linearly along the z-axis.4 In

such a case, we can write expression (14.3.3) as

(14.3.4) V (θ, z) = (a+ bz)
√

1 + 2χ
1 + 2χ cos2 θ

,

where a and b are positive constants.

Inserting expression (14.3.4) into expression (14.2.5), we obtain

p = cos θ
∂

∂θ

 1

(a+ bz)
√

1+2χ
1+2χ cos2 θ

+
sin θ

(a+ bz)
√

1+2χ
1+2χ cos2 θ

=
1

(a+ bz)
√

1 + 2χ

(
cos θ

∂

∂θ

√
1 + 2χ cos2 θ + sin θ

√
1 + 2χ cos2 θ

)
=

sin θ

(a+ bz)
√

1 + 2χ
√

1 + 2χ cos2 θ
.(14.3.5)

To obtain an expression for a ray, we wish to state ray parameter (14.3.5) in terms of position variables x

and z. Dividing both the numerator and the denominator by sin θ, we rewrite expression (14.3.5) as

p =
1

(a+ bz)
√

1 + 2χ
√

1 + 2χ+1
tan2 θ

.

Squaring both sides and rearranging, we obtain

(14.3.6)
1

tan2 θ
=

1− p2 (a+ bz)2 (1 + 2χ)
p2 (a+ bz)2 (1 + 2χ)2 .

Since 1/ tan2 θ = (dz/dx)2, we have a first-order ordinary differential equation, which is a special case

of first integral (12.5.4). We can write equation (14.3.6) as

(14.3.7)
dz
dx

=

√
1− p2 (a+ bz)2 (1 + 2χ)

p (a+ bz) (1 + 2χ)
,

which can be restated as

(14.3.8) dx =
p (a+ bz) (1 + 2χ)√

1− p2 (a+ bz)2 (1 + 2χ)
dz.

4Readers interested in a seismological formulation of linearly increasing velocity might refer to Epstein, M., and Slawinski,
M.A., (1999) On raytracing in constant velocity-gradient media: Geometrical approach, Canadian Journal of Exploration Geo-
physics. 35, No. 1/2, 1 – 6, and to Slawinski, R.A., and Slawinski, M.A., (1999) On raytracing in constant velocity-gradient
media: Calculus approach, Canadian Journal of Exploration Geophysics. 35, No. 1/2, 24 – 27.
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To integrate equation (14.3.8), we set the initial conditions in such a way that z (0) = 0. In other words,

the source is located at the origin of the coordinate system. Hence, integrating both sides, namely,
x∫

0

dξ =

z∫
0

p (a+ bζ) (1 + 2χ)√
1− p2 (a+ bζ)2 (1 + 2χ)

dζ,

where ξ and ζ are the integration variables, we obtain

(14.3.9) x =
1
pb

[√
1− p2a2 (1 + 2χ)−

√
1− p2 (a+ bz)2 (1 + 2χ)

]
,

which describes the ray given by x (z) for elliptical velocity dependence with direction and a linear velocity

dependence with depth.

Interpretation. To obtain a geometrical interpretation of equation (14.3.9), we rearrange it and write

(14.3.10)

(
x−
√

1−p2a2(1+2χ)

pb

)2

(
1
pb

)2 +

(
z + a

b

)2(
1

pb
√

1+2χ

)2 = 1.

This is the equation of an ellipse whose axes are parallel to the axes of the coordinate system with the

origin of this system located at the source. The centre of the ellipse is located at

(14.3.11)

[√
1− p2a2 (1 + 2χ)

pb
,−a

b

]
.

Equation (14.3.10) is identical to equation (8.5.16), which we obtained in Section 8.5.6 using Hamilton’s

ray equations.

In a seismological notation, with the z-axis being vertical and pointing downwards, the centre of the ellipse

is located on the horizontal line positioned a/b units above the x-axis. In view of v (z) = a + bz, this

line corresponds to the level where the velocity vanishes. Ellipse (14.3.10) passes through the origin, as

can be verified by setting z = 0 in equation (14.3.9). The segment of the ellipse that is below the x-

axis corresponds to the ray. This interpretation is consistent with with our discussion in Section 8.5, as

expected.

The greater the distance between the source and the centre of the ellipse, the smaller the curvature of the

ray. For constant-velocity fields, where b = 0, the centre of the ellipse is located infinitely far from the

source. In such a case, the ray is a straight line, as also shown in Exercise 14.3. For a signal propagating

along the z-axis, θ = 0 and, following expression (14.3.5), p = 0. Hence, in view of expression (14.3.11),

the x-coordinate of the centre of the ellipse is located infinitely far from the source. In such a case, the ray

is a vertical straight line. For the isotropic case, where χ = 0, equation (14.3.10) reduces to the expression

for a circle. In such a case, the rays are circular arcs.
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14.3.3. Traveltimes. We can use ray parameter (14.2.5) to obtain the traveltime along the corre-

sponding ray. For this purpose, we wish to rewrite integral (14.2.1) to include the ray parameter for a

given source-receiver pair.

Integral (14.2.1) can be viewed as
∫

ds/V , where ds is the arclength element along the ray. In the xz-

plane, the arclength element can be written as ds = dx/ sin θ or as ds = dz/ cos θ, where θ is the ray

angle. We choose the former case, since along the x-axis a ray is expressed as a single-valued function;

this is not the case along the z-axis due to the downgoing and upgoing signal. Thus, traveltime integral

(14.2.1) between the source at (0, 0) and the receiver at (X,Z) can be written as

(14.3.12) Č =

X∫
0

dx
V (z, θ) sin θ

,

where V (z, θ) is given by expression (14.3.4).

To integrate, we must express sin θ in terms of constants a, b, χ, p, and integration variable x. Combining

expressions (14.3.4) and (14.3.5), we write

V (z, θ) sin θ = (a+ bz)
√

1 + 2χ
1 + 2χ cos2 θ

p (a+ bz)
√

1 + 2χ
√

1 + 2χ cos2 θ = p (a+ bz)2 (1 + 2χ) ,

which is the denominator in integral (14.3.12). To proceed with integration, we must express z in terms of

x. To do so, we write expression (14.3.9) as(
pbx−

√
1− p2a2 (1 + 2χ)

)2
= 1− p2 (a+ bz)2 (1 + 2χ) .

Combining the last two equations, we get(
pbx−

√
1− p2a2 (1 + 2χ)

)2
= 1− pV (z, θ) sin θ.

Solving for V sin θ, we obtain

(14.3.13) V (z, θ) sin θ =
1−

(
pbx−

√
1− p2a2 (1 + 2χ)

)2

p
,

which is the denominator in integral (14.3.12) expressed in terms of variable x. Inserting expression

(14.3.13) into integral (14.3.12) and using the fact that p is constant for a given source-receiver pair, we

write

(14.3.14) Č = p

X∫
0

dx

1−
(
pbx−

√
1− p2a2 (1 + 2χ)

)2 .



372 14. RAY PARAMETERS

Integrating between z = 0 and z = Z, while treating p as a constant, we obtain — as shown in Exercise

14.5 — the expression for the value of the traveltime; namely,

(14.3.15) Č =
tanh−1

[
pbX −

√
1− p2a2 (1 + 2χ)

]
+ tanh−1

√
1− p2a2 (1 + 2χ)

b
,

which is expression (8.5.17), as could be expected. We treat p as a constant since, for a given source-

receiver pair in a laterally homogeneous continuum, p is a conserved quantity along the ray.

To find the expression for p that corresponds to the source at (0, 0) and the receiver at (X,Z), we can write

expression (14.3.9) as

(14.3.16) X =
1
pb

[√
1− p2a2 (1 + 2χ)−

√
1− p2 (a+ bZ)2 (1 + 2χ)

]
.

Solving for p, we obtain

(14.3.17) p =
2X√

[X2 + (1 + 2χ)Z2]
[
(2a+ bZ)2 (1 + 2χ) + b2X2

] .

Expression (14.3.17) is identical to expression (8.5.18), which we obtained in Section 8.5.7 using Hamil-

ton’s ray equations. Herein, however, p is treated as a constant for a particular choice of X and Z.

Studying the properties of the continuum in terms of a, b and χ, we can use expression (14.3.15) with p

given by expression (14.3.17) to obtain the traveltime between the source and the receiver. These expres-

sions are convenient to use for inverse problems that are based on traveltime measurements.5 For such

a study, we might wish to know if the receiver has been reached by a downgoing or an upgoing signal

travelling along an elliptical arc. As shown in Exercise 14.7, the subsurface receiver at (X,Z) is reached

by the downgoing signal from the source at (0, 0) if

X <

√
1 + 2χ
b

(2a+ bZ)Z.

For the value ofX equal to the right-hand side, the signal is at its deepest point when it reaches the receiver.

Also as shown in Exercise 14.7, the curve distinguishing between the downgoing and upgoing arrivals is a

hyperbola whose asymptote is

x =
√

1 + 2χ
(
z +

a

b

)
.

As shown in Section 6.10.3, by using a linear transformation of coordinates we can treat elliptical veloc-

ity dependence as an isotropic case. Consequently, we can also obtain the traveltime and ray-parameter

expressions by such a transformation, as illustrated in Exercise 14.8.

5Interested readers might refer to Slawinski, M.A., Wheaton, C.J., and Powojowski, M. (2004) VSP traveltime inversion for
linear inhomogeneity and elliptical anisotropy: Geophysics, 69, 373 – 377.
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14.4. Rays in isotropic continua

In Sections 14.2 and 14.3, we studied ray equations in two-dimensional anisotropic continua and obtained

analytic expressions for rays and traveltimes. The availability of analytic expressions resulted from the

assumption of homogeneity along the x-axis and, hence, from the existence of a first integral. In this sec-

tion, to emphasize the convenience of first integrals, we look briefly at ray equations in a two-dimensional

isotropic continuum that is contained in the xz-plane. The traveltime between two points A and B within

this continuum can be stated as

(14.4.1) Č =

B∫
A

√
1 + (z′)2

V (x, z)
dx.

Since the continuum is isotropic, V is not a function of z′. However, the integrand is an explicit function

of x, z and z′, and, hence, the corresponding Euler’s equation does not have a first integral.

In view of the stationarity of traveltime and Section 12.5.6, the corresponding ray equation, which results

from Euler’s equation (12.2.2), is given by equation (12.5.8), namely,

(14.4.2) V
d2z

dx2
− ∂V

∂x

(
dz
dx

)3

+
∂V

∂z

(
dz
dx

)2

− ∂V

∂x

dz
dx

+
∂V

∂z
= 0,

where, due to the isotropy of the continuum, phase and ray velocities coincide, namely, v ≡ V . Equation

(14.4.2) is a nonlinear ordinary differential equation, which requires numerical methods to obtain rays and

corresponding traveltimes.

14.5. Lagrange’s ray equations in xz-plane

In this chapter, as well as in Chapter 12, Euler’s equations and Lagrange’s ray equations are formulated

in the context of explicit functions. Such a formulation is convenient for many raytracing applications.

It rules out, however, complicated rays that are given by multiple-valued functions. To generalize the

formulation so as to allow such rays, we can formulate our problem in a parametric form.

Consider traveltime integral (14.1.1). An analogous parametric representation can be given in terms of

x (t), z (t), ẋ :=dx/dt and ż :=dz/dt. Then, the traveltime integral is

(14.5.1) Č =
∫

ds
V

=
∫ √

ẋ2 + ż2

V (x, z, ẋ, ż)
dt :=

∫
F dt,

where F is a two-dimensional form of expression (13.1.10).

In view of the principle of stationary traveltime, we can use Lagrange’s ray equations (13.1.9). In the

two-dimensional case, discussed herein, these equations constitute the system

(14.5.2)


∂F
∂x −

d
dt

(
∂F
∂ẋ

)
= 0

∂F
∂z −

d
dt

(
∂F
∂ż

)
= 0

,
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where F denotes the integrand of the traveltime integral.

Also, the equations of system (14.5.2) are related by Beltrami’s identity; namely,

(14.5.3)
∂F
∂t

+
d
dt

(
ẋ
∂F
∂ẋ

+ ż
∂F
∂ż
−F

)
= 0.

The justification for this form of Beltrami’s identity is shown in Exercise 11.1.

In view of Theorem A.2.1, stated in Appendix A, F cannot depend explicitly on parameter t. Mathemati-

cally, we can justify this corollary in the following way.

Since ray-velocity function, V , is homogeneous of degree 0 in the variables ẋ and ż and
√
ẋ2 + ż2 is

absolute-value homogeneous of degree 1 in the same variables, the integrand of the traveltime integral is

absolute-value homogeneous of degree 1 in these variables. Thus, since F is absolute-value homogeneous

of degree 1, it follows from Theorem A.2.1 that

(14.5.4) F = ẋ
∂F
∂ẋ

+ ż
∂F
∂ż

.

Consequently, the term in parentheses of Beltrami’s identity (14.5.3) vanishes and equation (14.5.3) im-

plies that F cannot depend explicitly on t, and, hence, V does not explicitly depend on t, which justifies

our corollary.

Physically, this independence means that the ray-velocity function does not change with time. In other

words, the properties of the continuum are time-invariant.

Also, the parametric formulation of the traveltime integral conveniently allows us to obtain ray parameters.

Consider system (14.5.2). If F is not explicitly dependent on x, the first equation becomes ∂F/∂ẋ =

p, where p is a conserved quantity. This conserved quantity is equivalent to ray-parameter expression

(14.2.5), as shown in Exercise 14.4.

14.6. Conserved quantities and Hamilton’s ray equations

In this chapter, we study the conserved quantities along the ray in the context of the calculus of variations.

In other words, we study these quantities using the Lagrangian formulation of the ray theory. In view of

the fact that we can study ray theory in terms of both the Hamiltonian and Lagrangian formulations, let us

briefly look at the conserved quantities in terms of Hamilton’s ray equations (8.2.7); namely,
ẋi = ∂H

∂pi

ṗi = − ∂H
∂xi

, i ∈ {1, 2, 3} .

Before discussing ray parameters, to gain more insight into Hamilton’s ray equations let us consider H
itself. If H does not explicitly depend on t, it is conserved along the ray, as stated by Lemma 13.1.3.
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Also, in view of expression (13.3.13), we can infer that in classical mechanics the Hamiltonian that is

independent of time implies the conservation of energy.

Let us return to ray parameters. Examining the second equation, we see that ifH does not explicitly depend

on the xi, the corresponding pi is constant along solution curve x (t), since dpi/dt = 0. To elucidate the

consequences of this statement, recall expression (8.2.8); namely,

H =
1
2
p2v2 (x,p) .

We see that H does not explicitly depend on the xi if and only if function v does not depend on the xi
coordinate. Since phase velocity, v, is a function of the properties of the continuum, we conclude that H
does not depend on the xi if and only if the continuum is homogeneous along the xi-axis.

Also, in view of Lagrange’s ray equations (11.2.6), namely,

(14.6.1)
∂L
∂xi
− d

dt

(
∂L
∂ẋi

)
= 0, i ∈ {1, 2, 3} ,

if L does not explicitly depend on the xi, the equation of system (14.6.1) that corresponds to the given

subscript i is reduced to

(14.6.2)
d
dt

(
∂L
∂ẋi

)
= 0,

which implies that the term in parentheses of expression (14.6.2) is constant. In view of Legendre’s

transformation, following expressions (B.3.2), shown in Appendix B, we can write

(14.6.3) pi =
∂L
∂ẋi

,

where p = pi is the conserved quantity along the solution curve x (t).

Expressions given by dpi/dt = 0 and d(∂L/∂ẋi) /dt = 0, formulated in terms of Hamilton’s and La-

grange’s ray equations, respectively, result from the homogeneity of the continuum along the xi-axis.

These are different formulations of the same conserved quantity. Fundamentally, this quantity results from

Noether’s theorem, which relates the conserved quantities to the symmetries.

The fact that the same ray parameter can be obtained from both Hamilton’s ray equations and Lagrange’s

ray equations allows us to use both phase velocities, v, and ray velocities, V , as well as phase angles,

ϑ, and ray angles, θ, to study rayfields in the context of conserved quantities. For instance, considering

anisotropic vertically inhomogeneous continua, we can write

p =
sinϑ
v (z, ϑ)

= cos θ
∂

∂θ

[
1

V (z, θ)

]
+

sin θ
V (z, θ)

,

where the relation between the magnitudes of phase and ray velocities is given by expressions (8.4.9), while

the relation between the phase and ray angles is given by expression (8.4.12). An example illustrating this

equivalence is shown in Exercise 10.1.
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Closing remarks

In this chapter, we used ray parameters, which are first integrals of ray equations, to obtain expressions

for rays and traveltimes. In a general inhomogeneous continuum, there are no ray parameters since the

integrand of the traveltime integral is an explicit function of all the coordinates. In other words, the inho-

mogeneity of the continuum does not possess any convenient symmetry that would allow us to formulate

expressions for conserved quantities. In such cases, we can still solve Hamilton’s or Lagrange’s ray equa-

tions to obtain rays, even though these equations may be analytically and numerically involved.
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14.7. Exercises

EXERCISE 14.1. Using polar coordinates, formulate the conserved quantity for radially inhomogeneous

continua, where the traveltime integral is given by

b∫
a

√
r2 + (r′)2

V (r)
dξ.

Explain the physical context of the conserved quantity.

SOLUTION 14.1. Consider Beltrami’s identity given by expression

∂F
∂ξ

+
d
dξ

(
r′
∂F
∂r′
− F

)
= 0,

where F denotes the integrand of the traveltime integral and r′ := dr/ dξ. Due to the explicit absence of

the latitude angle, ξ, we obtain

r′
∂F
∂r′
− F = C,

where C is a constant. Thus, performing the partial differentiation, we obtain

C = − r2

V (r)
√
r2 + (r′)2

,

which is the expression for the conserved quantity. The conserved quantity results from the traveltime

integral’s invariance to the latitude angle. In other words, the velocity field consists of concentric circles.

REMARK 14.7.1. Noticing that
r√

r2 + (r′)2
= sin θ,

where θ is the ray angle measured between the ray and the radial direction, we can write

(14.7.1) C = −r sin θ
V (r)

,

which is a standard form of the ray parameter for radially inhomogeneous continua.6 Note that ray param-

eter (14.7.1) has different units than ray parameter (14.2.5).

EXERCISE 14.2. Given expression (14.3.5), examine how the value of the anisotropy parameter χ affects

the maximum depth of a ray.

SOLUTION 14.2. Solving equation (14.3.5) for z, we obtain

z =
1
pb

(
sin θ

√
1 + 2χ

√
1 + 2χ cos2 θ

− pa

)
.

6Readers interested in traveltime expressions for rays whose ray parameter is given by expression (14.7.1) might refer to
Kennett, B.L.N., (2001) The seismic wavefield, Vol. I: Introduction and theoretical development: Cambridge University Press,
pp. 171 – 174.
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The maximum depth is given by setting θ = π/2. Thus, we get

(14.7.2) zmax =
1
pb

(
1√

1 + 2χ
− pa

)
.

To state expression (14.7.2) in terms of the take-off ray angle, we set z = 0 in expression (14.3.5), and

denote the corresponding θ as θ0. Hence, expression (14.3.5) becomes

(14.7.3) p =
sin θ0

a
√

1 + 2χ
√

1 + 2χ cos2 θ0

.

Inserting expression (14.7.3) into expression (14.7.2), we obtain

zmax =
a

b

(√
1 + 2χ cos2 θ0

sin θ0
− 1

)
,

which gives the maximum depth for a given take-off angle. This expression shows that for χ ∈ (−0.5, 0),

the maximum depth reached is less than that for the isotropic case, χ = 0. Conversely, for χ ∈ (0,∞), the

maximum depth reached is greater than that for the isotropic case, χ = 0. In other words, negative values

of parameter χ increase the curvature of the ray while positive values decrease it.

REMARK 14.7.2. In most seismological studies of sedimentary layers, χ is positive. Hence, as shown in

Exercise 14.2, the presence of anisotropy in a vertically inhomogeneous medium tends to straighten the

rays and, hence, increase the maximum depth they reach.

EXERCISE 14.3. Using expression (14.3.9) show that in homogeneous continua rays are straight lines.

SOLUTION 14.3. Consider equation (14.3.9); namely,

x (z; a, b) =

√
1− p2a2 (1 + 2χ)−

√
1− p2 (a+ bz)2 (1 + 2χ)

pb
.

For a homogeneous continuum, b = 0; hence, we can write

lim
b→0

x (z; a, b) = lim
b→0

√
1− p2a2 (1 + 2χ)−

√
1− p2 (a+ bz)2 (1 + 2χ)

pb
.

Since both the numerator and the denominator vanish, we invoke de l’Hôpital’s rule to write

lim
b→0

x (z; a, b) = lim
b→0

∂
h√

1−p2a2(1+2χ)−
√

1−p2(a+bz)2(1+2χ)
i

∂b
∂(pb)
∂b

.

Performing the differentiation, we get

lim
b→0

x (z; a, b) = lim
b→0

p (a+ bz) (1 + 2χ) z√
1− p2 (a+ bz)2 (1 + 2χ)

.

Taking the limit, we obtain

lim
b→0

x (z; a, b) =
pa (1 + 2χ)√

1− p2a2 (1 + 2χ)
z.
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Since the term given by the fraction is constant and there is no additional term, this is the equation of a

straight line going through the origin, (x, z) = (0, 0).

To interpret this result, let us rewrite the above expression as

z (x) =

√
1− p2a2 (1 + 2χ)

pa (1 + 2χ)
x,

which describes the ray in an elliptically anisotropic homogeneous continuum. Let us also recall expres-

sion (14.3.5) and consider it for b = 0. Thus we get

p =
sin θ

a
√

1 + 2χ
√

1 + 2χ cos2 θ
.

Combining these two expressions, we get

z (x) =

√
1−

(
sin θ√

1+2χ cos2 θ

)2

sin θ
√

1+2χ√
1+2χ cos2 θ

x.

Simplifying, we obtain

z (x) = cot θ x,

where cot θ is the slope of the line. This is true for both isotropic homogeneous and anisotropic homoge-

neous cases; χ does not appear in the final result.

EXERCISE 14.4. Show that the parametric form of the ray parameter, given by p = ∂F/∂ẋ and discussed

in Section 14.5, is equivalent to ray parameter (14.2.5).

SOLUTION 14.4. Using the first equation of system (14.5.2) and considering the case where x is not

explicitly present in the integrand, F , we obtain the conserved quantity given by

(14.7.4) p =
∂F
∂ẋ

.

In view of F given in expression (14.5.1), we obtain

(14.7.5) p =
1
V

ẋ√
ẋ2 + ż2

+
√
ẋ2 + ż2

∂

∂ẋ

(
1
V

)
.

In order to state expression (14.7.5) in terms of the ray angle, θ, we can write the differential operator as

∂

∂ẋ
=
∂θ

∂ẋ

∂

∂θ
+
∂ż

∂ẋ

∂

∂ż
=
∂θ

∂ẋ

∂

∂θ
=

1
∂ẋ
∂θ

∂

∂θ
.

Since ẋ = ż tan θ, we obtain
∂

∂ẋ
=

1
ż 1

cos2 θ

∂

∂θ
=

cos2 θ

ż

∂

∂θ
.
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Thus, returning to expression (14.7.5), we can write

p =
sin θ
V

+
√
ẋ2 + ż2

cos2 θ

ż

∂

∂θ

(
1
V

)
=

sin θ
V

+
√

tan2 θ + 1 cos2 θ
∂

∂θ

(
1
V

)
=

sin θ
V

+ cos θ
∂

∂θ

(
1
V

)
,

which is identical to expression (14.2.5), as required.

EXERCISE 14.5. Integrate traveltime expression (14.3.14), namely,

(14.7.6) p

X∫
0

dx

1−
(
pbx−

√
1− p2a2 (1 + 2χ)

)2 ,

using the fact that p is constant.

SOLUTION 14.5. Let us make the following substitution.

ζ := pbx−
√

1− p2a2 (1 + 2χ).

Thus, we rewrite integral (14.7.6) as

1
b

pbX−
√

1−p2a2(1+2χ)∫
−
√

1−p2a2(1+2χ)

dξ
1− ζ2

.

Using partial fractions, we write

1
2b

pbX−
√

1−p2a2(1+2χ)∫
−
√

1−p2a2(1+2χ)

(
1

1− ζ
+

1
1 + ζ

)
dζ.

Integrating, we get

1
2b

ln
1 + ζ

1− ζ

∣∣∣∣pbX−
√

1−p2a2(1+2χ)

−
√

1−p2a2(1+2χ)

.

Evaluating, we obtain

1
2b

(
ln

1−
√

1− p2a2 (1 + 2χ) + pbX

1 +
√

1− p2a2 (1 + 2χ)− pbX
− ln

1−
√

1− p2a2 (1 + 2χ)
1 +

√
1− p2a2 (1 + 2χ)

)
.

Using an identity for hyperbolic functions, namely,

tanh−1 ζ =
1
2

ln
1 + ζ

1− ζ
,
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we can also write

tanh−1
[
pbX −

√
1− p2a2 (1 + 2χ)

]
+ tanh−1

√
1− p2a2 (1 + 2χ)

b
.

EXERCISE 14.6. In a manner analogous to the one described in Section 14.3.3, derive the traveltime

expression by integrating traveltime integral (14.2.1) along the z-axis. Discuss the validity of the resulting

expression.

SOLUTION 14.6. In the xz-plane, the arclength element can be written as ds = dz/ cos θ, where θ is the

ray angle. Hence, traveltime integral (14.2.1) between the source at (0, 0) and the receiver at (X,Z) is

(14.7.7) Č =

Z∫
0

dz
V (z, θ) cos θ

,

where V (z, θ) is given by expression (14.3.4). Hence, we can explicitly write

(14.7.8) Č =

Z∫
0

dz

(a+ bz)
√

1+2χ
1+2χ cos2 θ

cos θ
.

To integrate, we must express cos θ in terms of constants a, b, χ, p, and integration variable z. Using

expression (14.3.5) and trigonometric identities, we obtain

(14.7.9) cos θ =

√
1− p2 (a+ bz)2 (1 + 2χ)

1 + 2χp2 (a+ bz)2 (1 + 2χ)
.

Inserting expression (14.7.9) into integral (14.7.8), after algebraic manipulation, we obtain

(14.7.10) Č =

Z∫
0

dz

(a+ bz)
√

1− p2 (a+ bz)2 (1 + 2χ)
.

Integrating between z = 0 and z = Z, while treating p as a constant, we obtain the expression for the

value of the traveltime; namely,

(14.7.11) Č =
1
b

ln

a+ bZ

a

1 +
√

1− p2a2 (1 + 2χ)

1 +
√

1− p2 (a+ bZ)2 (1 + 2χ)

 ,
with p given by expression (14.3.17).

REMARK 14.7.3. Expression (14.7.11) is valid for the downgoing rays only, which could be illustrated by

plotting this expression versus x for a set value of Z; such a plot would exhibit a cusp at x that corresponds

to the case of the signal reaching the receiver, (X,Z), at its deepest point — just prior to its beginning an

upward path. Between the source and the cusp, the receiver is reached by a downgoing signal travelling

along an elliptical trajectory. Beyond the cusp, the receiver is reached by an upgoing signal travelling along
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this trajectory. The cusp in such a plot is the result of the traveltime beyond the cusp being calculated with

the opposite sign than the traveltime before the cusp, due to the change of the direction of integration that

is set by dz.

EXERCISE 14.7. In view of Remark 14.7.3 and considering a source at (0, 0), derive an expression for the

curve in the xz-plane that separates the receiver locations, (X,Z), reached by the downgoing signal from

those reached by the upgoing one.

SOLUTION 14.7. At a given depth (set value of Z), the receivers at different horizontal locations (varying

values ofX) are reached either by a downgoing or upgoing signal. The receiver at (0, Z), which is directly

below the source, is reached by the downgoing signal whose takeoff ray angle is θ = 0. As X grows, so

does θ, until the takeoff ray angle corresponds to the ray that horizontally grazes the receiver at (X,Z);

the takeoff angle is at its maximum. From that point on, the receiver is reached by the upgoing signal

travelling along an elliptical arc. Consequently, the ray takeoff angle begins to decrease, and the receiver

at an infinite horizontal distance would be reached by a ray whose takeoff angle is nearly zero — the ray

is nearly vertical at takeoff. In view of expression (8.5.11), we see that the increase or decrease in the ray

angle corresponds to the increase or decrease of the phase angle, since χ > −1/2, as we can deduce from

definition (8.5.1). Also, in view of expression (8.5.12), we see that the increase or decrease of the phase

takeoff angle corresponds to the increase or decrease of ray parameter. Hence, to find point x at depth Z

at which the ray angle reaches its largest value, let us write expression (14.3.17) as

p (x;Z) =
2x√

[x2 + (1 + 2χ)Z2]
[
(2a+ bZ)2 (1 + 2χ) + b2x2

] ,
and consider its derivative, namely,

dp
dx

=
8a2Z2 (1 + 2χ) + 8abZ3 (1 + 2χ) + 2b2

(
Z4 (1 + 2χ)2 − x4

)
((
x2 + (1 + 2χ)2 Z2

)(
b2x2 + (1 + 2χ) (2a+ bZ)2

)) 3
2

.

To find x that corresponds to the maximum of the takeoff angle, we set the numerator to zero and proceed

to rearrange the resulting equation using the fact that a,b,χ,Z are real and a,b,Z are positive. Thus we

obtain the required solution, namely,

x =

√
1 + 2χ
b

(2a+ bZ)Z.

We can rewrite this solution as
x2(

a
b

)2 (1 + 2χ)
−
(
z + a

b

)2(
a
b

)2 = 1,

which is an expression for hyperbola. To find its asymptote, we set the right-hand side to zero, and solve

for x to obtain

x =
√

1 + 2χ
(
z +

a

b

)
.
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EXERCISE 14.8. Consider the traveltime expression for the downgoing signal between the source at (0, 0)

and the receiver at (X,Ξ) in an isotropic and linearly inhomogeneous continuum in the xζ-plane, namely,7

(14.7.12) Č =
1
b

ln

α+ bΞ
α

1 +
√

1− p2α2

1 +
√

1− p2 (α+ bΞ)2

 ,

where

(14.7.13) p =
2X√

(X2 + Ξ2)
[
(2α+ bΞ)2 + b2X2

] .
Using a transformation of coordinates, derive equations (14.7.11) and (14.3.17) .

SOLUTION 14.8. Since equations (14.7.11) and (14.3.17) deal with an elliptical velocity dependence,

consider the magnitudes of the horizontal and vertical velocities given by

(14.7.14) vx = a
√

1 + 2χ,

with χ given by expression (14.3.2), and by

(14.7.15) vz = a,

respectively.

Note that, since vx and vz are the magnitudes of velocities along the symmetry axes, expressions (14.7.14)

and (14.7.15) are the same for both phase and ray velocities.

Regardless of the inhomogeneity of the model, infinitesimal wavefronts resulting from any point source

within the medium are ellipses with axes (dt) vx and (dt) vz , where dt is the traveltime increment and vx
and vz are the magnitudes of velocity at a given point. We can write such a wavefront as

(dx)2

(dt)2 v2
x

+
(dz)2

(dt)2 v2
z

= 1,

which, using expressions (14.7.14) and (14.7.15), we can rewrite as

(14.7.16)
(dx)2

1 + 2χ
+ (dz)2 = (dt)2 a2.

Since vx and vz are the magnitudes of velocities along the x-axis and the z-axis, respectively, we can scale

the z-axis by a factor of
√

1 + 2χ to obtain circular wavefronts, which correspond to an isotropic case. In

other words, we transform the xz-plane into the xζ-plane, where

(14.7.17) ζ = z
√

1 + 2χ.

7Readers interested in the derivation of expressions (14.7.12) and (14.7.13), might refer to Slotnick, M.M., (1959) Lessons
in seismic computing: Society of Exploration Geophysicists, Lesson 37.
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Thus, in view of expression (14.7.17), we let z = ζ/
√

1 + 2χ in expression (14.7.16) to write it as

(14.7.18) (dx)2 + (dζ)2 = (dt)2 α2,

where

(14.7.19) α = a
√

1 + 2χ

is the velocity in the xζ-plane. Equation (14.7.18) describes infinitesimal circular wavefronts in the xζ-

plane.

Since equations (14.7.11) and (14.3.17) deal with the magnitude of the velocity that increases linearly, let

us set v (ζ) = α + bζ. Note that the units of b are [1/s]. Consequently, its value does not depend on the

scaling of position coordinates. Substituting expression (14.7.19) into expressions (14.7.12) and (14.7.13),

as well as — in view of expression (14.7.17) — letting Ξ = Z
√

1 + 2χ, we obtain expressions (14.7.11)

and (14.3.17), as required.

EXERCISE 14.9. In view of Lemma 12.8.2, show that if V (z, θ) = A(z)B (θ), whereB (θ) = 1/ (1 + C cos θ),

then the ray in an anisotropic inhomogeneous continuum, V (z, θ) is the same as the ray in an isotropic

inhomogeneous continuum, A(z).

SOLUTION 14.9. To express B (θ), where θ is measured from the z-axis, in terms of z′, we invoke

trigonometric identity cos θ = cot θ/
√

1 + cot2 θ. Noting that cot θ = dz/dx := z′, we obtain cos θ =

z′/
√

1 + (z′)2. Consequently,

B
(
z′
)

=
1

1 + C z′√
1+(z′)2

,

and,

(14.7.20) V
(
z, z′

)
= A (z)B

(
z′
)

=
A (z)

1 + C z′√
1+(z′)2

.

Consider traveltime integral

Č =

x2∫
x1

√
1 + (z′)2

V (z, z′)
dx =

x2∫
x1

√
1 + (z′)2

A(z)

1+C z′√
1+(z′)2

dx.

Upon algebraic manipulations, we obtain

Č =

x2∫
x1

√
1 + (z′)2 + Cz′

A (z)
dx ≡

x2∫
x1

F dx.
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To find the ray, we invoke Euler’s equation (12.2.2) to obtain

(14.7.21)
∂F
∂z
− d

dx

(
∂F
∂z′

)
= −

(√
1 + (z′)2 + Cz′

) ∂A
∂z

A2
− d

dx

 1
A

 z′√
1 + (z′)2

+ C

 = 0.

Considering only factors which contain C, gives us

−Cz′
∂A
∂z

A2
+ Cz′

∂A
∂z

A2
= 0.

Thus, Euler’s equation is independent of C. In view of expression (14.7.20), the ray resulting from equa-

tion (14.7.21) is the same for both V (z, z′) and A (z).
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Introduction to Part 4

Physics is the science upon which all other sciences rest, since it attempts to ex-

plain the nature of the universe of things. [. . . ] Mathematics is a language, which

enables us to express certain kinds of ideas (e.g., order, patterns) much more pre-

cisely than whatever everyday language we speak. [. . . ] Mathematical physics

can therefore be regarded as the ‘dialect’ of mathematics spoken by physicists

when they wish to express and use the ‘laws’ or theories of physics clearly and

unambiguously.

Michael Grant Rochester (1997) Lecture notes on mathematical physics

In the presentation of this book, we assume that the reader is familiar with several mathematical subjects

typically taught in undergraduate studies in the faculty of science. These subjects consist of linear algebra,

differential and integral calculus, vector and tensor calculus, as well as ordinary and partial differential

equations. Another subject that plays an important role in this book — but is not commonly included in

an undergraduate curriculum — consists of the calculus of variations. Chapter 12 is devoted to the aspects

of this subject that are pertinent to this book.

In Part IV, we describe two additional mathematical concepts that are used in the book and with which the

reader might not be familiar; namely, Euler’s homogeneous-function theorem and Legendre’s transforma-

tions. Notably, in the context of this book, the applications of these two concepts are often associated with

one another. In view of Euler’s theorem, different degrees of homogeneity exhibited by several functions

formulated in this book give us insight into their physical meanings and allow us to manipulate them. Le-

gendre’s transformation is the tool that allows us to transform Hamilton’s ray equations into Lagrange’s ray

equations. Consequently, this transformation links the concepts discussed in Part 2 with those discussed

in Part 3.

Throughout the book, the meaning of a given symbol used in an equation is stated in the proximity of

the pertinent equation to avoid ambiguity among several meanings that can be associated with the same

symbol. To facilitate clarity, certain symbols are uniquely associated with a particular mathematical or

physical meaning. These symbols, together with their meanings, are listed in List of symbols.
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APPENDIX A

Euler’s homogeneous-function theorem

Mathematicians can pursue many conflicting directions to derive new results. In

the absence of internal criteria that favour or justify one direction rather than an-

other, a choice must be based on external considerations. Of these, certainly the

most important is the traditional and still most justifiable reason for the creation

and development of mathematics, its value to the sciences.

Morris Kline (1980) Mathematics: The loss of certainty

Preliminary remarks

In this book, seismological quantities are expressed in terms of mathematical entities. In accordance

with physical principles, we require that these entities possess certain mathematical properties. Using

these properties, we can study these mathematical formulations to obtain further insight into their physical

meaning. The homogeneity of a function and Euler’s homogeneous-function theorem are of particular use

in our work.

We begin this appendix by stating the definition of a homogeneous function. Then, we state and prove

Euler’s homogeneous-function theorem.

A.1. Homogeneous functions

Several functions that play an important role in this book are homogeneous. Notably, the Hamiltonian,

stated in expression (8.2.8); namely,

(A.1.1) H (x,p) =
1
2
p2v2 (x,p) ,

where p2 ≡ p · p, is homogeneous of degree 2 in p. To see this property, consider Definition A.1.1.

DEFINITION A.1.1. A real function f (x1, . . . , xn) is homogeneous of degree r in the variables x1, . . . , xn

if

f (cx1, . . . , cxn) = crf (x1, . . . , xn) ,

for every real number c. If f (cxi) = |c|r f (xi), where i ∈ {1, . . . , n}, we say that f is absolute-value

homogeneous of degree r in the xi.
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REMARK A.1.2. Both terms “degree” and “order” are commonly used to describe the homogeneity of a

function. In this book, we use the former term since it refers to the value of the exponent and, hence, is

consistent with other uses of this term, such as “degree of a polynomial”.

Now, consider the fact that v is the phase-velocity function that depends on position x and direction, which

is given by the vector normal to the wavefront; namely, p. Since the orientation of the wavefront, indicated

by p, does not depend on the magnitude of p, we can rewrite expression (A.1.1) as

(A.1.2) H (x,p) =
1
2
p2v2

(
x,

p
|p|

)
,

where p/ |p| is a unit vector normal to the wavefront. Hence, we see that v is homogeneous of degree 0

in p. In other words, we can multiply p by any number and v remains unchanged. In view of Definition

A.1.1, we can write

v

(
x,
cp
|cp|

)
= c0v

(
x,

p
|p|

)
= v

(
x,

p
|p|

)
.

This immediately implies that function (A.1.2) is homogeneous of degree 2 in p, since

H (x,cp) =
1
2

[(cp) · (cp)] v2

(
x,
cp
|cp|

)
=

1
2
c2p2v2

(
x,
cp
|cp|

)
=
c2

2
p2v2

(
x,

p
|p|

)
= c2H (x,p) .(A.1.3)

We can also illustrate Definition A.1.1 by the following straightforward example.

EXAMPLE A.1.3. Consider function

(A.1.4) f (x1, x2, x3) = x1x2x3 + x1x
2
2 + x2x

2
3.

Let

f (cx1, cx2, cx3) = cx1cx2cx3 + cx1 (cx2)2 + cx2 (cx3)2

= c3
(
x1x2x3 + x1x

2
2 + x2x

2
3

)
= c3f (x1, x2, x3) .

Thus, in view of Definition A.1.1, f is homogeneous of degree 3 in the xi.

Homogeneity of a function allows us to use Euler’s homogeneous-function theorem, stated in Theorem

A.2.1. This theorem plays an important role in the formulations described in this book. It allows us to

simplify numerous expressions and gain insight into their physical meaning.

A.2. Homogeneous-function theorem

1Euler’s homogeneous-function theorem can be stated in the following way.

1Interested readers might refer to Olmsted, J.M.H., (1961) Advanced calculus: Prentice-Hall, Inc., p. 272.
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THEOREM A.2.1. If function f (x1, . . . , xn) is homogeneous of degree r in

x1, . . . , xn, then

(A.2.1)
n∑
i=1

∂f

∂xi
(x1, . . . , xn)xi = rf (x1, . . . , xn) .

PROOF. In view of Definition A.1.1, we can write

(A.2.2) f (cx1, . . . , cxn) = crf (x1, . . . , xn) .

Differentiating both sides of equation (A.2.2) with respect to c, we obtain

(A.2.3)
n∑
i=1

fi (cx1, . . . , cxn)
∂ (cxi)
∂c

= rcr−1f (x1, . . . , xn) ,

where fi denotes the derivative of function f with respect to its ith argument. To obtain the expression

stated in Theorem A.2.1, we consider a particular case where c = 1. Letting c = 1, we can rewrite

equation (A.2.3) as

(A.2.4)
n∑
i=1

∂f

∂xi
(x1, . . . , xn)xi = rf (x1, . . . , xn) ,

which is equation (A.2.1), as required. �

To illustrate Theorem A.2.1, we can study function (A.1.4), as shown in the following example.

EXAMPLE A.2.2. Using function (A.1.4), namely,

f (x1, x2, x3) = x1x2x3 + x1x
2
2 + x2x

2
3,

we can write the left-hand side of equation (A.2.1) as

3∑
i=1

∂f

∂xi
xi =

(
x2x3 + x2

2

)
x1 +

(
x1x3 + 2x1x2 + x2

3

)
x2 + (x1x2 + 2x2x3)x3

= 3
(
x1x2x3 + x1x

2
2 + x2x

2
3

)
= 3f (x1, x2, x3) .(A.2.5)

Expression (A.2.5) is the right-hand side of equation (A.2.1) for a function that is homogeneous of degree

3 in the xi, as expected from Theorem A.2.1.

Equation (A.2.1) is often invoked in this book. For instance, in the proof of Lemma 13.1.5 — knowing

thatH is homogeneous of degree 2 in p, as shown in expression (A.1.3) — we can write
n∑
i=1

∂H
∂pi

pi = 2H,

which allows us to complete that proof.
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The following example illustrates equation (A.2.1) in the context of physics.

EXAMPLE A.2.3. Following the standard classical-mechanics formulation, let the kinetic energy be

T (v) =
1
2
mv2,

where m and v denote mass and velocity, respectively. In view of Definition A.1.1, T is homogeneous of

degree 2 in v since

T (cv) =
1
2
m (cv)2 =

c2

2
mv2 = c2T (v) ,

where c denotes a constant. Thus, following Theorem A.2.1, we can write

∂T

∂v
v = 2T .

We can directly verify this result; namely,

∂T

∂v
v =

[
∂

∂v

(
mv2

2

)]
v = mv2 = 2T .

Closing remarks

Note that a multivariable function can be homogeneous in a particular set of variables. In this book,

H (x,p), given in expression (8.2.8), is homogeneous of degree 2 in p. L (x, ẋ), given in expression

(11.1.1), is homogeneous of degree 2 in ẋ. F (x, ẋ), given in expression (13.1.8), is absolute-value homo-

geneous of degree 1 in ẋ. None of these functions is homogeneous in x. The properties of homogeneity

of these functions allow us to prove Theorem 13.1.2, which is the statement of Fermat’s principle.

Certain functions used in our studies exhibit no homogeneity. For instance, traveltime integrand F (z, z′),

given in expression (14.2.1), is not homogeneous in either variable.

Euler’s homogeneous-function theorem is explicitly used in Chapters 8, 11 and 13.



APPENDIX B

Legendre’s transformation

To penetrate into symplectic geometry while bypassing the long historical route, it

is simplest to use the axiomatic method, which has, as Bertrand Russell observed,

many advantages, similar to the advantages of stealing over honest work.

Vladimir Igorevitch Arnold (1992) Catastrophe theory

Preliminary remarks

Legendre’s transformation is a transformation in which we replace a function by a new function that

depends on partial derivatives of the original function with respect to original independent variables. In

the context of this book, we replace the ray-theory Hamiltonian, H (x,p), by the ray-theory Lagrangian,

L (x, ẋ), which depends on the ẋi = ∂H/∂pi, where i ∈ {1, 2, 3}.

We begin this appendix with the derivation of Legendre’s transformation in a geometrical context, where

we consider functions of single variables. Then we proceed to multivariable functions and formulate Le-

gendre’s transformation betweenH (x,p) and L (x, ẋ). We conclude by using Legendre’s transformations

of these functions to derive the corresponding ray equations.

B.1. Geometrical context

B.1.1. Surface and its tangent planes1. Legendre’s transformation can be illustrated in a geometrical

context. Let an n-dimensional surface in the (n+ 1)-dimensional space be given by equation

(B.1.1) y = f (x1, . . . , xn) .

Consider the set of all possible n-dimensional planes that are tangent to this surface. The envelope of these

planes is the original surface. We wish to derive the equation that describes these tangent planes.

A general form of the equation of an n-dimensional plane is y = u1x1 + . . .+unxn−v, where u1, . . . , un

and v are real numbers that define the plane uniquely and, hence, can be viewed as coordinates of the

1Readers interested in the geometrical motivation of the Legendre transformation might refer to Courant, R., and Hilbert, D.,
(1924/1989) Methods of mathematical physics: John Wiley & Sons., Vol. II, pp. 32 – 39.
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plane. The transformation from the equation of a surface, given by equation (B.1.1), to the equation that

describes all of its tangent planes, given by

v = g (u1, . . . , un) ,

is Legendre’s transformation.

Note that Legendre’s transformation is possible if the surface is differentiable and if there are no tangent

planes to this surface that are parallel to each other. Otherwise, for the same set (u1, . . . , un), we have

different values of v. In other words, v is not a single-valued function of (u1, . . . , un).

B.1.2. Single-variable case. To illustrate the geometrical context, consider a smooth curve in the xy-

plane. We can describe this curve as a set of points in the plane, where the y-coordinate is determined

by the function of one variable; namely, y = f (x). Also, this curve can be regarded as the envelope of

its tangent lines. We wish to derive equation v = g (u) that describes all the lines y = ux − v, in the

xy-plane, that are tangent to the original curve.

The line y = ux − v is tangent to the curve y = f (x), at some point x, if and only if the line passes

through the point (x, f (x)) and has the same slope as the curve at this point. In other words,

(B.1.2) v = ux− f (x) ,

and

(B.1.3) u =
df
dx

,

respectively.

To derive function g (u), we would like to express x in terms of u. This is not always possible since we

might not be able to uniquely solve equation (B.1.3) for x. Our ability to express x in terms of u depends

on the form of function f (x).

Assuming that we can obtain x = x (u), the set of all tangent lines is described by v = g (u) where

(B.1.4) g (u) = ux (u)− f (x (u)) .

Function g (u) is Legendre’s transformation of f (x), where u and x are the transformation variables

related by equation (B.1.3). This construction is illustrated by the following example.

EXAMPLE B.1.1. Let f (x) = x2. Then, following equation (B.1.3), we can write

(B.1.5) u =
df
dx

= 2x.

Hence, solving for x, we obtain

x =
u

2
.
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Consequently, following equation (B.1.4), we write

g (u) = ux (u)− f (x (u)) =
u2

2
−
(u

2

)2
=
u2

4
.

Therefore, g (u) = u2/4 is Legendre’s transformation of f (x) = x2, where u and x are the transformation

variables related by equation (B.1.5).

We can also view Legendre’s transformation in a different way. Consider a curve y = f (x) and a straight

line y = ux, where u is a real number. For a given x-coordinate, we can view h (x) = ux − f (x) as the

distance between a point on the curve and a point on the straight line. We wish to find point x (u) that

maximizes that distance. Therefore, we set

dh
dx

= u− df
dx

= 0,

which gives

u =
df
dx

.

If we can solve this equation for x, namely, x = x (u), then g (u) = h (x (u)) is Legendre’s transformation

of f (x).

B.2. Duality of transformation

Legendre’s transformation is often referred to as a dual transformation since if transformation of f leads to

g, then, transformation of g must lead to f .2 We can illustrate this property by inverting the transformation

shown in Example B.1.1.

EXAMPLE B.2.1. Let g (u) = u2/4. In view of equation (B.1.4), consider a new function given by

f (x) = ux− g (u)

= ux− u2

4
,(B.2.1)

where the new independent variable is

(B.2.2) x =
dg
du

=
u

2
.

Herein, we can uniquely express u in terms of x; namely, u = 2x. Hence, we can write function (B.2.1)

as

f (x) = 2x2 − (2x)2

4
= x2,

as expected from Example B.1.1. Therefore, f (x) = x2 is Legendre’s transformation of g (u) = u2/4,

where x and u are the transformation variables related by equation (B.2.2).

2For a proof of this duality, readers might refer to Arnold, V.I., (1989) Mathematical methods of classical mechanics (2nd
edition): Springer-Verlag, p. 63.
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B.3. Transformation between Lagrangian L and HamiltonianH

NOTATION B.3.1. In this appendix, to familiarize the reader with the fact that the phase slowness is a

covector, p, while the ray velocity is a vector, ẋ, following the standard convention, their components

appear as subscripts and superscripts, respectively. This distinction is not used in the text of the book.

REMARK B.3.2. Throughout this book, we formulate our expressions in terms of orthonormal coordinates.

The distinction between vectors and covectors becomes important if curvilinear coordinates are used.

NOTATION B.3.3. In this appendix, to show the generality of the formulation, all expressions are derived

for an n-dimensional space. 3

In the context of this book, Legendre’s transformation relates the ray-theory Lagrangian, L, to the ray-

theory Hamiltonian, H. The transformation between functions L (x, ·) and H (x, ·) is analogous to the

transformation between functions f (·) and g (·), discussed above, where · stands for the variables of

transformation. Note that x, while specifying the point in the continuum where the transformation is

performed, plays no role in this transformation. At point x, variables ẋ and p are the active variables of

transformation.

Let L = L (x, ẋ). In view of expression (B.1.4), consider a new function given by

(B.3.1) H (x,p) =
n∑
i=1

ẋipi − L (x, ẋ) ,

where, in view of expression (B.1.3), the new variables are

(B.3.2) pi =
∂L
∂ẋi

, i ∈ {1, . . . , n} .

Following expression (B.3.1), we can write the differential ofH (x,p) as

dH =
n∑
i=1

(
pidẋi + ẋidpi

)
−

n∑
i=1

(
∂L
∂xi

dxi +
∂L
∂ẋi

dẋi
)

=
n∑
i=1

(
pidẋi + ẋidpi −

∂L
∂xi

dxi − ∂L
∂ẋi

dẋi
)

.(B.3.3)

In view of expression (B.3.2), the first and the last term in expression (B.3.3) cancel one another. Thus,

we obtain

(B.3.4) dH =
n∑
i=1

(
ẋidpi −

∂L
∂xi

dxi
)

.

3Readers interested in an insightful description of Legendre’s transformation, including the duality of the transformation and
the application of the transformation toL andH, might refer to Lanczos, C., (1949/1986) The variational principles in mechanics:
Dover, pp. 161 – 172.
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Also, we can formally write the differential ofH (x,p) as

(B.3.5) dH =
n∑
i=1

(
∂H
∂xi

dxi +
∂H
∂pi

dpi

)
,

which is a statement of the chain rule.

Equating the right-hand sides of equations (B.3.4) and (B.3.5), we can write

(B.3.6)
n∑
i=1

(
ẋidpi −

∂L
∂xi

dxi
)

=
n∑
i=1

(
∂H
∂xi

dxi +
∂H
∂pi

dpi

)
.

By examining equation (B.3.6), we conclude that

(B.3.7) ẋi =
∂H
∂pi

, i ∈ {1, . . . , n} .

Examining expressions (B.3.2) and (B.3.7), we recognize the duality of these expressions. Thus, we can

write the counterpart of expression (B.3.1), namely,

(B.3.8) L (x, ẋ) =
n∑
i=1

ẋipi −H (x,p) ,

where the active variables are given by expression (B.3.7).

B.4. Transformation and ray equations

Knowing that H (x,p) is Legendre’s transformation of L (x, ẋ), and vice-versa, we wish to consider the

effect of this transformation on the corresponding ray equations. Herein, in view of the duality of the

transformation, we derive Hamilton’s ray equations from Lagrange’s ray equations. This process is the

inverse of the transformation used in Chapter 11.

Recall Lagrange’s ray equations (11.2.6), which, in general, can be written as

(B.4.1)
∂L
∂xi

=
d
dt
∂L
∂ẋi

, i ∈ {1, . . . , n} .

By examining equation (B.3.6), we conclude that

(B.4.2) −∂L (x, ẋ)
∂xi

=
∂H (x,p)

∂xi
, i ∈ {1, . . . , n} ,

where relations between ẋ and p are given by expressions (B.3.2) and (B.3.7). Hence, using expressions

(B.3.2) and (B.4.2), we can write equation (B.4.1) as

−∂H
∂xi

=
dpi
dt

, i ∈ {1, . . . , n} ,

which can be immediately restated as

(B.4.3) ṗi = −∂H
∂xi

, i ∈ {1, . . . , n} .
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Thus, we conclude that using the new function, given in expression (B.3.1), and the new variables, given

in expression (B.3.2), we obtain expression (B.3.7), while, invoking Lagrange’s ray equations (11.2.6),

we obtain expression (B.4.3). We notice that the system composed of equations (B.3.7) and (B.4.3) are

Hamilton’s ray equations (8.2.7); namely,

(B.4.4)


ẋi = ∂H

∂pi

ṗi = − ∂H
∂xi

, i ∈ {1, . . . , n} .

Hence, Legendre’s transformation of L, which leads to H, allows us to derive Hamilton’s ray equations

from Lagrange’s ray equations. In view of this derivation, we recognize that the first equation of system

(B.4.4) is the definition of a variable for Legendre’s transformation, while the second equation is endowed

with the physical content since it results from Lagrange’s ray equations.

Closing remarks

In the context of our work, the fundamental physical principles are directly contained in Hamilton’s ray

equations, which originate in Cauchy’s equations of motion. The fundamental justification of Lagrange’s

ray equations relies on Legendre’s transformations and, hence, it is subject to the singularities of this trans-

formation.4 Furthermore, if we wish to express the governing equations explicitly in terms of Lagrangian

L, we need to solve equations (B.3.7) for the pi, in a closed form, which is not always possible.

In the context of elastic continua, the desired transformation is possible for any convex phase-slowness

surface. Furthermore, if H is a quadratic function in the pi — in other words, the phase-slowness surface

is elliptical — we can always obtain explicit, closed-form expressions for the ray velocity and the ray

angle.

Legendre’s transformation links the Hamiltonian formulation discussed in Part 2 with the Lagrangian one

discussed in Part 3. The transformation is explicitly used in Chapters 11 and 13.

4In general, depending on the context, we can view either the Hamiltonian or the Lagrangian formulation as being more
fundamental. Readers interested in this question might refer to Marsden, J.E., and Ratiu, T.S., (1999) Introduction to mechanics
and symmetry: A basic exposition of classical mechanical systems (2nd edition): Springer-Verlag, pp. 1 – 6.



APPENDIX C

List of symbols

Our symbolic mechanism is eminently useful and powerful, but the danger is ever-

present that we become drowned in a language which has its well-defined gram-

matical rules but evidently loses all content and becomes a nebulous sham.

Cornelius Lanczos (1961) Linear differential operators

REMARK C.0.1. Symbols listed herein correspond to the given meaning throughout the entire book.

C.1. Mathematical relations and operations

= equality

≈ approximation

≡ identity

:= definition

∼ asymptotic relation

◦ orthogonal-transformation operator

· scalar product

× vector product

∇ gradient

∇· divergence

∇× curl

d total derivative

∂ partial derivative

D material time derivative

δ variation

δij Kronecker’s delta

εijk permutation

401



402 C. LIST OF SYMBOLS

∈ “belongs to a set”

→ “maps to” or “tends to”

Θ coordinate-rotation angle

J Jacobian

R real numbers

Rn n-dimensional space of real numbers

ei unit vector along the xi-axis

f (·)|a function f (·) evaluated at · = a
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C.2. Physical quantities

C.2.1. Greek letters.

εkl strain tensor

see expression (1.4.6)

ϑ phase angle

see expressions (9.2.22) and (8.4.5)

θ ray angle

see expressions (8.7.4) and (8.4.12)

κ compressibility

see expressions (5.12.10)

λ Lamé’s parameter

see expressions (5.12.2)

µ Lamé’s parameter, also known as rigidity modulus

see expressions (5.12.2)

ν Poisson’s ratio

see expressions (5.14.31) and (5.14.34)

ξij rotation tensor

see expression (1.5.1)

Ψ rotation vector

see expression (1.5.2)

ρ mass density

see expression (2.1.1)

σij stress tensor

see expression (2.5.2) and Figure 2.5.1

ϕ dilatation

see expression (1.4.18)

φ displacement angle

see expression (9.2.28)

ω angular frequency

see expression (6.9.2)
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C.2.2. Roman letters.

cijkl elasticity tensor

see expression (3.2.1)

Cmn elasticity-matrix entries, also known as elasticity parameters

see expression (4.2.8)

E Young’s modulus

see Remark 5.14.7

F ray-theory Lagrangian, absolute-value homogeneous of degree 1 in the xi
see expression (13.1.8)

F ray-theory Lagrangian, inhomogeneous

see expression (14.1.1)

H ray-theory Hamiltonian, homogeneous of degree 2 in the pi
see expression (8.2.8)

H classical-mechanics Hamiltonian

see Exercise 13.5

L ray-theory Lagrangian, homogeneous of degree 2 in the ẋi
see expression (11.1.1)

L classical-mechanics Lagrangian

see expression (13.2.2)

W strain energy

see expressions (4.1.3) and (4.1.1)
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absolute-value homogeneous function, see also Euler’s

homo-geneous-function theorem and homogeneous

function

arclength element, 374

definition, 391

ray-theory Lagrangian F , 347, 374, 394

traveltime integral, 374

acoustic impedance, 172, 173

action, see also Hamilton’s principle

classical mechanics, 254, 322, 350, 351, 362

definition, 350
least, 351

quantuum mechanics, 254

stationary, 188, 343, 351, 353

action-at-a-distance, 39, 40, 64

adiabatic process, 88

amplitude

displacement, 184, 276, 277

interface, 291, 296–298, 300, 301, 304, 305, 307, 308

measurement, 271

signal, 141

transport equation, 187

wavefront, 211

angle

deformation, 21, 24–26

displacement, 280, 284, 290, 403

isotropy, 286, 287

Euler’s, 105, 106

group, see ray

incidence, 291, 293

elliptical velocity dependence, 301–303

latitude, 377

phase, 182, 229, 240, 241, 243, 256–258, 278, 280, 284,

290–293, 316, 375, 403

elliptical velocity dependence, 182, 243, 259, 289,

294, 303, 306

interface, 292, 293, 301, 302, 307

intersection point, 283

isotropy, 286, 287, 306

ray parameter, 375

phase-advance, 302

phase-delay, 302

polarization, see displacement

ray, 229, 241–243, 255–258, 284, 289, 290, 293, 316,

317, 375, 378, 400, 403

elliptical velocity dependence, 259, 289, 294–296,

303, 306, 368, 371, 381

interface, 293, 303

isotropy, 306

ray parameter, 367, 375, 377, 379

traveltime, 366

reflection, 291, 293, 304

rotation, 103, 109, 112, 114, 130, 402

natural coordinate system, 106, 274, 275

transmission, 291, 293, 304

elliptical velocity dependence, 302

angular frequency, 177, 211, 308, 403

angular momentum

rate of change, 52

ansatz, see trial solution

antisymmetry

rotation tensor, 25, 32

tensor, 26, 224

arclength

element, 331, 344, 371, 381

405
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parameter, 252, 253, 259

asymptotic

method, 149, 187

relation, 401

series, 142, 187, 212, 214

units, 215

solution, 209

atomic structure, 8, 68

Babich, Vasiliy M. (1930–), 142

balance principle, 33, 36, 55

angular momentum, 33–36, 50–52, 54, 55, 67, 85, 225

spatial description, 35

conservation principle, 34

electric charge, 33

energy, 33, 55, 79, 82, 301, 308

irreversibility

entropy, 33

linear momentum, 4, 33–36, 39, 40, 43, 45, 46, 50–52,

55, 86, 87, 188, 205

spatial description, 35

magnetic flux, 33

mass, 4, 33–36, 50, 52, 55, 86, 87, see also conservation

of mass

basis

symmetric matrix, 95

trigonometric polynomial, 115, 129

Beltrami’s identity, 314, 327
classical-mechanics Lagrangian, 352

Euler’s equation, 327, 330, 336

Lagrange’s equations of motion, 352

ray parameter, 366, 368, 377

ray-theory Lagrangian F , 374

ray-theory Lagrangian L, 314, 315, 347, 358

Beltrami, Eugenio (1835–1900), 314

Benndorf, Hans (1870–1953), xvii

Bernoulli, Daniel (1700–1782), 154

Bernoulli, Johannes (1667–1748), 322

body force, 39, 47, 48, 50, 54, 55

Cauchy’s equations of motion, 47, 74

conservation of linear momentum, 39

conservative system, 47

stress tensor, 43

Cauchy’s tetrahedron, 43

surface force, 39, 48

body wave, see wave

boundary condition

wave equation, 156

boundary conditions, 325, 326, 354, 362

dynamic, 296–298, 300, 304, 305

kinematic, 296, 297, 300, 304, 305

calculus of variations, xxii, 141, 311, 314, 322, 389

conserved quantity, 374

Lagrange’s ray equations, 345

physical application, 343

ray theory, 323, 334, 335, 356

stationarity condition, 321, 323

definite integral, 323

minimum/maximum, 335

Cauchy’s equations of motion, see also Hamilton’s

equations of motion, Lagrange’s equations of motion

and Newton’s law of motion

balance of angular momentum, 53

balance of linear momentum, 33, 46, 87, 141

body force, 47, 50

conservation of linear momentum, 40, 46

constitutive equations, 143

elastic continuum, 143

Hamilton’s ray equations, 321, 400

one-dimensional continuum, 74

stress-strain equations, 56, 141

anisotropic inhomogeneous, 179, 187, 209

isotropic homogeneous, 144, 187, 209

isotropic inhomogeneous, 206, 207

surface force, 47

three-dimensional continuum, 55

units, 47

unknowns, 33, 47

wave equation, 56, 73, 150, 205

Cauchy’s first law of motion, 47

Cauchy’s second law of motion, 54

Cauchy’s stress principle, 11, 38, 41

Cauchy’s stress tensor, 45, see also stress tensor

Cauchy’s tetrahedron, 42, 43, see also tetrahedron

Cauchy, Augustin-Louis (1789–1857), 4, 8, 38

causality, 292, 321

central force, 50–52
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Červený, Vlastislav (1932–), 142

characteristic equation

eikonal equation, 225, 226, 228

plane wave, 204

wave equation, 155, 204, 205

characteristics

curve, 155, 230, 231, 233, 234, 261

equations, 229, 231, 233–235, 252, 255–257, 259–261,

358, 359

method, 229, 230

Christoffel’s equations, 218, 267–272, 275, 276

Christoffel’s matrix, 219, 269

positive definiteness, 219, 220, 225

symmetry, 219, 224

orthogonal eigenvectors, 270

real eigenvalues, 270

transversely isotropic continuum, 276

classical continuum mechanics, 54, 63

classical mechanics, 350

action, 254, 343

geometrical optics, 350

Hamilton’s equations

conservation of energy, 375

Lagrange’s equations, 335

least action, 351

ray theory, 254

stationary action, 351

wave equation, 350

compact support, 160, 168, 174, 176, 202

complex

conjugate

reflection, 309

function

eikonal and transport equations, 185

number

evanescent wave, 302

reflection and transmission, 301

transverse isotropy, 130

plane

phase shift, 302

compressibility, 120, 121, 403

compression, 24, 41, 42, see also tension

condensed-matter physics, 88

conservation of mass, see also balance principle

balance of mass, 35

balance principles, 33, 55, 86

equation of continuity, 4, 33, 35, 87

moving-volume integral, 36, 52

spatial description, 35

symmetry of stress tensor, 52

conservation principle

balance principle, 34

space-time, 36

conservative system, 47, 80, 80, 89, 351

conserved quantity, 237, 292–295, 302, 304, 366, 367, 372,

374, 375, 377, 379

constant phase

phase velocity, 219

wavefront, 181, 292

constitutive equations, see also Hooke’s law and

stress-strain equations

balance of energy, 55

elastic continuum, 55, 56, 349

elastic material, 56

empirical relation, 63

Hooke’s law, 65

isotropic homogeneous continuum, 143

matrix form, 68

phenomenology, 86

principle of determinism, 64

principle of local action, 64

principle of material frame indifference, 64

principle of objectivity, 64

stress-strain equations, 70, 73

constructive interference, 149, 349

continuity, see also equality

function, 57

phase, 291, 292, 296, 304

wavefront, 292

phase slowness, 293

continuity equation, see equation of continuity

continuum mechanics, 3

anisotropy/inhomogeneity, 68

atomic structure, 8

axiomatic format, 9

primitive concepts, 9

balance principle, 33

Cauchy’s stress principle, 11, 38
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deformation, 26, 33

displacement, 11

emergence, 8

exact solution, 4

granular structure, 8

history, 4

Hooke’s law, 65

nonrelativistic, 10, 64

particle mechanics, 38

physical reality, 7

primitive concepts, 9

consistency, 10

manifold of physical experience, 10, 11, 64

material body, 10

system of internal forces, 11

weak deductive completeness, 10

seismology, xxi, 3, 63

stress tensor, 45

convective derivative, 14

coordinate plane

orthotropic continuum, 107

traction, 41, 42, 48

coordinate system, see also material coordinates and

spatial coordinates

characteristics, 154

curvilinear, 398

Laplacian, 146

strain tensor, 21

elasticity parameter, 87

natural, 106

definition, 105
generally anisotropic continuum, 105

isotropic continuum, 118

monoclinic continuum, 105, 106, 110, 272, 274, 275

orthotropic continuum, 107, 108

pure-mode direction, 107

tetragonal continuum, 111

orientation

Euler’s angle, 106

strain energy, 113

orthonormal, 29, 41, 94, 105, 106, 398

calculus of variations, 333

Jacobian, 12

Laplacian, 145, 146

raytracing, 370

point symmetry, 102

polar, 241, 377

reference

material symmetry, 99

tetrahedron, 44

transformation, 24, 29, 31, 59, 60, 93, 103, 372

isotropic continuum, 120

isotropic tensor, 119, 120

Jacobian, 94, 124

material symmetry, 93, 94, 100, 101

orthogonal, 94, 124

strain energy, 83, 84

transverse isotropy, 129

coupling, see also decoupling

wave, 305

covector, 398

crystal lattice, 68, 123

crystallography, 123

cubic continuum, xxv, 106, 116, 117, 122

Curie’s symmetry group, 122

curl, 145, 151–153, 401

S wave, 147, 150

displacement potential, 151, 153

rotation, 25, 26, 32

shape change, 145

d’Alembert, Jean Le Rond (1717–1783), 154, 173

dashpot, 71

Debye, Pieter Debye (1884–1966), 142

decoupling, see also coupling

SH wave

transversely isotropic continuum, 305

wave, 305

dielectric tensor, 66

diffeomorphism

Legendre’s transformation, 314

differential equation, xxii, 74, 75, 389

balance of angular momentum, 53

balance principles, 63, 87

continuum mechanics, 3

mathematical physics, 143

method of characteristics, 229

ordinary
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Beltrami’s identity, 368

calculus of variations, 321

characteristic equations, 230, 233

Euler’s equation, 325, 327–330, 373

first integral, 333, 334

Hamilton’s equations, 341, 360, 361

Hamilton’s ray equations, 237, 311, 313

Lagrange’s ray equations, 311, 313

Newton’s second law, 360

ray parameter, 368, 369

partial, 231, 233

anisotropic inhomogeneous continuum, 210

Cauchy’s equations of motion, 47

eikonal equation, 187, 220, 229, 230

equation of continuity, 35

Euler’s equation, 327, 328

system, 87

wave equation, 148, 155, 176, 179, 183

WKBJ method, 254

dilatation, 24, 145, 403

P wave, 146

definition, 24
displacement potential, 152

equations of motion, 145, 207

Lamé’s parameters, 120

scalar, 31

trace, 31

dilatational wave, see wave

Dirac’s delta, 202
derivative, 203

distribution, 174

displacement, xxii, 270–272

P wave, 183

SH wave, 183

SV wave, 183

amplitude, 17

direction

measurement, 271

gradient, 17, 20, 26, 30, 31

infinitesimal, 15–18, 28, 271

Lagrange’s density, 353

longitudinal, 354

material point, 11, 12, 17, 271

potential, 143, 149, 151, see also scalar potential and

vector potential

reduced wave equation, 177

strain tensor, 21, 23

transverse, 362, 363

vector, 18, 19, 25, 47, 66, 207, 210, 270–274, 279, 280

SH wave, 279

S wave, 280

qP wave, 280

conservation of linear momentum, 39

conservation of mass, 33, 36

coordinate transformation, 29

curl, 25, 32

direction, 107, 218, 267, 271–276, 279–281,

283–285, 287, 305

divergence, 24

equations of motion, 49, 50, 144

interface, 291, 296, 297, 299, 301, 302, 304

plane wave, 148, 149

strain energy, 81, 89

strain tensor, 70

velocity, 17, 156, 157

distribution, 174, see also distribution theory and

generalized function

wave equation

solution, 38, 188

distribution theory, 174, 188, see also distribution and

generalized function

divergence, 35, 53, 145, 147, 152, 401

P wave, 146, 150

dilatation, 24, 25, 152

displacement potential, 151, 152

space-time, 36

stress tensor, 47

volume change, 145

divergence theorem

balance of angular momentum, 53

balance of linear momentum, 46

conservation of mass, 34

time derivative of volume integral, 37

eigenspace

anisotropic continuum, 285

isotropic continuum, 285
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eigenvalue

phase velocity, 218, 270, 273, 283

solvability condition, 269

stability conditions, 85, 137

eigenvector

displacement, 218, 270, 271, 274, 283

eikonal equation, 186, 219, 269
anisotropic inhomogeneous continuum, 186, 209, 217,

218, 220, 221, 225, 226, 229, 230, 236–238, 257, 267,

345

Cauchy’s equations of motion, 56, 73

characteristics, 233

inhomogeneous continuum, 226, 228

isotropic homogeneous continuum, 264

isotropic inhomogeneous continuum, 184, 187, 252, 359

scaling factor, 235

solution surface, 233

wave equation, 185, 187

eikonal function, 184, 187, 211, 220, 231, 255

elastic continuum, xxii, 33, 79, see also elastic material

constitutive equations, 56, 63

crystal lattice, 123

elasticity parameters, 88

equations of motion, 141, 143

Hooke’s law, 83

Legendre’s transformation, 400

linear, 66, 83, 85, 87
phase-slowness surface, 281, 349

convexity, 281

point symmetry, 102

seismology, 4

strain energy, 79–83, 87, 89

stress-strain equations, 73, 141

symmetry classes

partial ordering, 122

variational principle, 350, 353, 356

wave phenomena, 143

elastic material, 56, 63, 65, 66, 73, 79, see also elastic

continuum

elastic medium, xxii, 3, 63, 141, 188

elastic wave, see wave

elasticity constant, see elasticity parameter

elasticity matrix, 69, 83, see also elasticity tensor

arbitrary coordinate system, 105

Christoffel’s equations

isotropic continuum, 285

monoclinic continuum, 272, 275

transversely isotropic continuum, 275

displacement direction

isotropic continuum, 286, 287

monoclinic continuum, 274, 275

transversely isotropic continuum, 279

elasticity tensor, 68

formulation, 68, 69

interface, 299

invariants, 119, 126

material symmetry, 93, 94, 99–102, 122

generally anisotropic continuum, 103

isotropic continuum, 118

monoclinic continuum, 104, 106, 127

orthotropic continuum, 107, 108

tetragonal continuum, 111

transversely isotropic continuum, 112, 114

natural coordinate system, 105

phase-slowness curve, 286

positive definite

Christoffel’s matrix, 225

isotropic continuum, 120, 136, 137

stability conditions, 84, 85, 91

strain energy

Christoffel’s matrix, 224

symmetry, 122

isotropic continuum, 130

strain energy, 83, 99

elasticity parameter, 83, 404

anisotropic continuum

Christoffel’s equations, 268, 269

invariants, 119

phase velocity, 267, 271

ray velocity, 240

anisotropic inhomogeneous continuum, 179

eikonal equation, 220

condensed-matter physics, 88

elastic continuum, 86, 87

elastic material, 87

Green-river shale, 285, 290

interface, 291, 298, 301

material symmetry, 88, 104, 122, 123
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isotropic continuum, 118, 119, 132

orthotropic continuum, 108

tetragonal continuum, 111

transversely isotropic continuum, 112

natural coordinate system, 105, 106, 274

normalized, 269

phase-slowness curve, 282

phase-slowness surface, 281

spring constant, 89

stability conditions, 84

strain energy, 83, 84

temperature dependence, 88

traveltime, 284

elasticity tensor, 66, 404, see also elasticity matrix

anisotropic inhomogeneous continuum, 210

components, 66

independence, 68, 82, 83

stress-strain equations, 70

units, 66

vanishing, 104, 109

elasticity matrix, 68

equations of motion

anisotropic inhomogeneous continuum, 211

isotropic continuum, 120

property tensor, 66

rank, 60, 66, 119

symmetry, 67, 93, 122

strain energy, 79, 81

elasticity theory

elastic continuum, 5, 86

elasticity tensor

isotropic continuum, 120

Hamilton’s ray equations, 264

linearity, 26, 65, 70

ray angle, 242

ray velocity, 367

strain tensor, 20

stress tensor, 45

stress-strain equations, 63

stress/strain, 8, 18, 38

electric charge, 66

electric displacement, 66

electric field, 66

electromagnetic theory, 154, 331

elliptical anisotropy, 243, 243, 244, 367

elliptical velocity dependence, 183, 243, 243
interface

amplitude, 296

angle, 291, 293–296

isotropy, 372, 383

phase velocity, 368

phase-slowness surface, 400

ray angle, 258, 259, 289, 317

ray parameter, 368

ray velocity, 242, 258, 367, 368

rays, 243, 246, 367, 370, 379

transversely isotropic continuum, 182, 288

phase slowness, 181

phase velocity, 288

traveltime, 243, 246, 367

wave equation, 179, 180, 182

phase velocity, 182

ellipticity, 368, see also elliptical velocity dependence

emergence, 8

energy, 4, 55, 79, 82, 84, 88, 89

evanescent wave, 302

incident wave, 173, 296, 301, 308

kinetic, 159, 350–355, 360, 361, 363, 394

potential, 4, 79, 80, 159, 350, 351, 353, 354, 362, 363

strain, 79–82, 84–90, 92, 99, 112, 118, 130, 135, 136,

159, 354, 404

Christoffel’s matrix, 224

coordinate transformation, 83, 84, 113, 116

units, 159, 237

wave function, 159, 160, 191, 192

entropy, 33

envelope

plane-wave solution

elliptical velocity dependence, 181

tangent lines, 396

tangent planes, 395

equality, see also continuity

displacement, 291, 296, 297, 304

mixed partial derivatives

displacement potential, 151–153

eikonal equation, 211, 231

equations of motion, 207

Euler’s equation, 340
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strain energy, 81

theorem, 81

wave equation, 144, 146, 147, 149, 189, 190, 192

phase slowness, 292, 300

stress tensor, 297, 298

traction, 291, 296–298, 304

equation of continuity

balance principles, 4, 33, 87

constitutive equations, 56, 70, 74

derivation, 35, 36

elastic continuum, 141

material time derivative, 37, 57, 58

unknowns, 33, 47, 55, 70

equivoluminal wave, see wave

Euler’s angle, 105, 106

Euler’s equation, 323, 325, 334, 338, 339, 359, 366, 373,

385

Beltrami’s identity, 327, 336

first integral, 333, 365, 373

formulation, 325, 327

generalizations, 327–329

Hamilton’s equations, 341

Lagrange’s equations of motion, 352, 362

Lagrange’s ray equations, 334, 335, 345, 348

parametric form, 334, 335, 358, 359

ray parameter, 367, 368

special cases, 329, 331, 332, 366

wave equation, 355, 356, 363

Euler’s homogeneous-function theorem, 391, 392, 394, see

also absolute-value homogeneous function and

homogeneous function

characteristic equations, 235, 236

classical-mechanics Lagrangian, 353

example, 393

Fermat’s principle, 346, 347

Hamilton’s ray equations, 229

kinetic energy, 394

Legendre’s transformation, 389

proof, 392

ray-theory Lagrangian F , 374

ray-theory Lagrangian L, 358

strain energy, 90

Euler, Leonhard (1707–1783), 4, 154, 173, 325

Euler-Lagrange equation, 325, 335, see also Euler’s

equation, Lagrange’s equations of motion and

Lagrange’s ray equations

Eulerian description, 12, see also spatial description

evolution equation

solution

domain of dependence, 168

range of influence, 168

Fermat’s principle, 350, see also variational principles

calculus of variations, 333, 356, 359

interface, 304

proof, 343, 348

limitations, 349, 356

parameter independence, 347, 357, 394

statement, 344
quantum electrodynamics, 322

ray parameter, 366

ray theory, 335

variational principles, 314, 322, 350

Fermat, Pierre de (1601–1665), 322, 344

first integral, 333–335, 341, 342, 365–369, 373, 376

fluid, 47, 120, 147

forces vives, 365, see also vis viva

Fourier’s transform, 177–179

gauge invariance, 331

gauge transformation, 150

Gauss’s divergence theorem, see divergence theorem

generalized function, 174, 174, 188, see also distribution

and distribution theory

generally anisotropic continuum, 103, 105, 122, 123, 179,

182

elasticity matrix, 103

natural coordinate system, 105

phase velocity, 271

point symmetry, 103

ray angle, 293

Snell’s law, 293

geometrical optics, 349, 350

gradient, 145, 151, 153, 184, 255, 294, 295, 401

calculus of variations, 338

characteristic equations, 232

displacement, 16, 17, 30, 31
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displacement potential, 150

displacement vector, 26

eikonal function, 184, 185, 218, 255

material time derivative, 14

phase-velocity function, 239

scalar field, 21

vector field, 21

velocity, 17, 263

grains, 3, 8, 68

gravitation, 48

gravitational force, 39

gravity, 48, 361

Green, George (1793–1841), 4

Green-river shale

elasticity parameters, 285

pure-mode direction, 290

ray and displacement angles, 290

group angle, see angle

group velocity, see ray velocity

halfspace

anisotropic homogeneous continuum, 149

elliptical velocity dependence, 294

Hamilton’s equations

Euler’s equation, 341

Hamilton’s equations of motion, 352, 361

Hamilton’s principle, 188, 335, 343, 349–351, 351, 352,

361–363, see also action and variational principles

Hamilton’s ray equations, see also Hamilton’s equations,

Hamilton’s equations of motion and Lagrange’s ray

equations

analytical solution, xxvi, 243, 245, 247, 251

anisotropic inhomogeneous continuum, 229, 267, 311,

314, 324

conserved quantity, 292, 293, 365, 374, 375

Fermat’s principle, 343–347, 349, 356

ray, 313, 314, 376

ray angle, 293

elliptical velocity dependence, 183, 245, 250, 370, 372

high frequency, 253

isotropic homogeneous continuum, 264

isotropic inhomogeneous continuum, 255

Legendre’s transformation, 312, 313, 315, 316, 389,

399, 400

method of characteristics, 236, 237

ray theory, xxvii, 243, 253, 321, 365, 367

Hamilton, William Rowan (1805–1865), 142, 322, 351

Hamilton-Jacobi equation, 220

Hamiltonian, 341

classical-mechanics, 237, 353, 360, 361, 375, 404

definition, 360
ray-theory, 237, 255, 288, 292, 311, 313, 315, 321,

343–346, 349, 356, 391, 395, 398, 404

definition, 237, 245
heat equation, 163

Heaviside’s function, 71, 72, 75, 76, 202, 203

Heckmann diagram, 66

Helmholtz von, Hermann (1821 – 1894), 177

Helmholtz’s decomposition, 149

Helmholtz’s equation, 177

Herman’s theorem, 116

hexagonal continuum, see transversely isotropic

continuum

high frequency

approximation, 180, 253, 254

anisotropic inhomogeneous continuum, xxii

eikonal equation, 186, 212, 214

equations of motion, 141

inhomogeneous continuum

wave equation, 186

signal, 141

Hilbert, David (1862–1943), 322

homogeneous continuum

anisotropic continuum, 182

differential equations, 74

displacement potential, 151

elliptical velocity dependence, 180

equations of motion, 143–146, 148, 151, 207, 210

Hamilton’s ray equations, 264

layered, 291, 292, 331, 365, 372, 375

plane wave, 148, 149

rays, 265, 330, 378, 379

stress-strain equations, 209

wave equation, 141, 179, 183, 187, 209, 350, 351

extension, 179

homogeneous equation

Christoffel’s equations

nontrivial solution, 269
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homogeneous function, see also ab-solute-value

homogeneous function and Euler’s

homo-geneous-function theorem

arclength element, 357, 374

classical-mechanics Lagrangian, 353

definition, 391

example, 392

kinetic energy, 394

multivariable function, 394

parameter independence, 347

phase velocity, 220, 235, 236, 239, 344, 392

ray velocity, 357, 374

ray-theory Hamiltonian, 344, 346, 391–394, 404

ray-theory Lagrangian F , 347, 357, 374, 394

ray-theory Lagrangian L, 314, 346–349, 358, 394, 404

strain energy, 81, 86, 89, 90

traveltime integral, 374

homogeneous-function theorem, see Euler’s

homogeneous-fun-ction theorem

Hooke’s law, 65, 75, 83, 354, see also constitutive

equations and stress-strain equations

constitutive equations, 65

history, 65

linearity, 66

Hooke, Robert (1635–1703), 65

Hookean solid, 65, 70, 72

Huygens’ principle, 166, 177, 220, 292

hydrostatic pressure, 46, 121

incident wave, see wave

initial condition

characteristic equations, 233

ray, 370

wave equation, 154–156, 163

integral equation

balance of angular momentum, 51

balance of linear momentum, 46

conservation of angular momentum, 52

conservation of linear momentum, 39

conservation of mass, 34, 35

vanishing of integrand, 57

wave propagation, 188

interface, 149, 291, 293

amplitude, 296

boundary conditions, 296–298, 300, 301, 304, 305

conserved quantity, 291, 292, 294

energy, 296

energy transmission, 301, 302

halfspace, 294

Snell’s law, 292, 293

wave, 187

wavefront, 292

welded contact, 296

interface wave, see wave

inverse

derivative, 30

function, 330

Legendre’s transformation, 399

mapping, 12

matrix, 101

problem, 284, 372

transformation, 27, 60

transpose, 29

trigonometric function, 287

isothermal process, 88

isotropic continuum, 106, 118, 122

characteristic equations, 259, 261, 264, 358

Christoffel’s equation, 285

displacement, 271, 272, 285–287

displacement potential, 151

eikonal equation, 186, 220

elasticity matrix, 130, 131

elasticity parameters, 118

Lamé’s parameters, 119

elasticity tensor, 119, 120

equations of motion, 141, 143–145, 187, 207, 209, 210

Euler’s equation, 330, 332, 333, 358, 359

Fermat’s principle, 359

interface, 296, 307

intersection point, 283, 286

Lamé’s parameters, 118, 132

natural coordinate system, 118

orthogonal transformation, 118

Poisson’s ratio, 132, 133

ray, 370, 373, 378, 384

ray equations, 252, 253, 255

ray parameter, 306

rigidity modulus, 133
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strain energy, 135, 136

stress-strain equations, 119, 120, 131, 132, 209

transport equation, 220

wave equation, 143, 146, 148, 149

extension, 179

Young’s modulus, 134

isotropic tensor

definition, 119
isotropic continuum, 119, 120, 131

Jacobian, 27, 94, 124, 124, 402

Keller, Joseph B. (1923–), 142

Kelvin-Voigt model, 71, 72

kinetic energy, see energy

Kirchhoff, Gustav (1824–1887), 177

Kronecker’s delta, 54, 91, 96, 97, 131, 132, 134, 136, 144,

206, 401

Lagrange’s equations of motion, 51, 350, 352, 353, 362

Lagrange’s ray equations

anisotropic inhomogeneous continuum, 314, 324

Fermat’s principle, 343, 345, 347, 348, 365

ray, 313, 376

singularity, 314

two-dimensional, 373

Beltrami’s identity, 314, 315, 327

conserved quantity, 293, 375

Euler’s equation, 323, 334, 335

Euler-Lagrange equation, 335

Legendre’s transformation, 312, 313, 316, 321, 389,

399, 400

ray theory, xxvi, xxvii, 243, 311, 321

Lagrange, Joseph-Louis (1736–1813), 154, 324, 328

Lagrangian

classical-mechanics, 351, 353, 360, 361, 404

continuous system, 353, 355, 363

definition, 350
Noether’s theorem, 334

ray-theory, 356

Fermat’s principle, 343

ray-theory F , 348, 357–359, 404

definition, 347
Fermat’s principle, 348, 349

ray-theory L, 311, 312, 314–317, 345, 347, 348, 358,

395, 398, 400, 404

definition, 312
properties, 345–347

ray-theory F, 404

definition, 366
Lagrangian density, 353, 355, 356

Lagrangian description, 12, see also material description

Lamé’s parameters, 118–121, 131, 132, 135, 136, 146,

147, 206, 286, 403

Lamé’s theorem, 152

Laplace’s equation, 163

layered medium, 183, 275, 331, 366

Legendre’s transformation, xxii, 400

classical mechanics, 360

conserved quantity, 375

duality, 313, 341

elliptical velocity dependence, 242, 293

Euler’s equation, 341

Euler’s homogeneous-function theorem, 389

Fermat’s principle, 346, 356

regularity, 349

formulation

definition, 395

duality, 397

geometrical context, 395, 396

limitations, 396

ray theory, 399, 400

ray-theory Lagrangian L, 398

single variable, 396, 397

singularity, 400

Hamilton’s ray equations, 237

Lagrange’s ray equations, 311, 313, 314, 321, 389

ray angle, 289, 316

ray velocity

elliptical velocity dependence, 367

ray-theory Hamiltonian

regularity, 313, 314

ray-theory Lagrangian L, 311, 312

transformation variable, 238

level curve

phase slowness, 294

level set

characteristic equations, 229–231, 255, 256



416 INDEX

eikonal function, 184, 211, 255

wavefront, 211, 218

linear momentum

balance, see balance principle

Hamilton’s equations of motion, 360, 361

Legendre’s transformation, 360

rate of change, 39, 40, 43, 51

linear stress-strain relation, 63, see also constitutive

equations, Hooke’s law and stress-strain equations

linear velocity dependence, 243, 246, 367–370, 384

linear-momentum density, 51

linearity

differential operator

balance of angular momentum, 53

Beltrami’s identity, 337

displacement potential, 151–153

equations of motion, 207

Euler’s equation, 339

wave equation, 144, 146, 147

integral operator

balance of linear momentum, 46

calculus of variations, 338

superposition principle, 29

linearized theory, 15–17

balance of angular momentum, 52, 53

Cauchy’s equations of motion, 47, 49, 50, 70

elasticity, 26

longitudinal direction, see pure-mode direction

longitudinal wave, see wave

mass, see also balance principle

density, 47, 403

Cauchy’s equations of motion, 49

Cauchy’s tetrahedron, 43

Christoffel’s equations, 267, 269, 271

conservation of mass, 33, 34

elastic continuum, 83, 87

equations of motion, 55, 56

Green-river shale, 290

inhomogeneous continuum, 206, 210

interface, 298, 300, 301, 307

material time derivative, 36

normalization, 269

one-dimensional continuum, 355

phase velocity, 220, 267

primitive concepts, 10

ray theory, 291

ray velocity, 240

units, 61

wave equation, 146, 147

gravitational, 64

inertial, 64

material coordinates, 12, 14, 22, 24, 27, 70

material description, 11–13, 15, 27, 35

definition, 11, 12
material point, 10–14, 17, 27, 271

definition, 10
material symmetry, 93, 94, 99, 100, 102, 112, 113, 123, see

also point symmetry, generally aniso-tropic

continuum, monoclinic continuum, orthotropic

continuum, tetragonal continuum, tranversely

isotropic continuum and isotropic continuum

definition, 93
elasticity matrix, 99
strain energy, 113

material time derivative, 13–16, 401

operator, 14, 14, 37, 40, 47, 52, 57, 58

Maupertuis, Pierre-Louis Moreau de (1601–1665), 322,

351

Maxwell model, 72

Maxwell’s equations, 154

methodological holism, 8

methodological individualism, 8

momentum phase space, see xp-space

monoclinic continuum, 103, 108, 117, 122, 267, 271, 272

displacement, 272

elasticity matrix, 104

natural coordinate system, 105, 106, 274

phase velocity, 272

pure-mode direction, 107

natural coordinate system, see coordinate system

Newton’s law of motion, 36, 352

second, 39, 40, 49, 50, 154, 350, 352, 360, 361

third, 42, 43, 50, 51, 297, 298

strong, 51, 51, 52, 54

weak, 40, 51
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Noether’s theorem, 334, 375, see also conserved quantity,

first integral and ray parameter

Noether, Emmy (1882–1935), 334

Noll, Walter (1925–), 4

orthogonal matrix, 29, 94, 101

orthorhombic continuum, see ortho-tropic continuum

orthotropic continuum, 106–108, 111, 117, 122

elasticity matrix, 108

oscillatory motion, 177

Ostrogradsky theorem, see divergence theorem

P wave, see wave

particle, 8, 10–12, 321, 349, 352, 353

particle mechanics, 12, 36, 38, 39, 352

permutation symbol, 53, 54, 401

phase advance, 302

phase delay, 302

phase factor

interface

evanescent wave, 302

phase shift, 302

plane wave, 297

sign convention, 302

trial solution

anisotropic inhomogeneous continuum, 211

elliptical velocity dependence, 177, 304

isotropic inhomogeneous continuum, 184

plane wave, 184

phase shift, 302

phase slowness, see also phase-slow-ness

covector, 398

magnitude

Christoffel’s equations, 268

eikonal equation, 229

elliptical velocity dependence, 182

Snell’s law, 292

rate of change

Hamilton’s ray equations, 237

phase space

momentum, see xp-space

velocity, see xẋ-space

phase velocity, 17, 181
eikonal equation, 219

elliptical velocity dependence, 258, 259

eikonal equation, 243

wave equation, 181, 182

expression

monoclinic continuum, 273

transversely isotropic continuum, 277, 278

Hamilton’s ray equations

ray parameter, 375

magnitude, 239, 240, 242, 243, 268, 271, 281

elliptical velocity dependence, 288

interface, 292–294, 302

phase-slowness, see also phase slowness

curve, 241

interface, 293–295, 300

intersections, 282, 284, 286

polar reciprocity, 241, 316

surface, 268, 281

bicubic equation, 281

Fermat’s principle, 349, 356

interface, 293, 295

intersections, 282

Legendre’s transformation, 400

polar reciprocity, 241

properties, 281

sheets, 281, 283

vector, 184, 257

direction, 219, 271

eikonal function, 184

elliptical velocity dependence, 181, 182

gradient, 239

interface, 292, 293, 296, 299–301

isotropic inhomogeneous continuum, 358

Legendre’s transformation, 316, 317

magnitude, 264, 292

surface, 281

wave equation, 181

wavefront, 218

Planck’s constant, 254

plane wave, see wave

point symmetry, 102, 103, 107, 108, 121

Poisson’s ratio, 132–134, 136, 137, 403

polar reciprocal, 182, 241, 317

potential energy, see energy

pressure, see also hydrostatic pressure
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pressure wave, see wave

primary wave, see wave

pure-mode direction, 107, 274, 274, 290

qP wave, see wave

qS wave, see wave

qSV wave, see wave

quantum electrodynamics, 265, 293, 301, 322

quantum mechanics, 254, 322, 350

ray angle, see angle

ray equation, see Hamilton’s ray equations and Lagrange’s

ray equations

ray parameter, 365, see also conserved quantity and first

integral

Beltrami’s identity, 327

first integral, 334, 365, 376

elliptical velocity dependence, 368

generally inhomogeneous continuum, 376

Hamilton’s ray equations, 237, 293

integration, 368

Lagrange’s ray equations, 374, 379

lateral symmetry, 331

anisotropic continuum, 366, 367

elliptical velocity dependence, 368

ray, 369

ray equations, 374, 375

spherical symmetry, 377

traveltime, 371

ray theory, xxi, xxii, xxvi, 141, 142, 179

asymptotic methods, 187

calculus of variations, 321, 323, 332, 334, 335

eikonal equation, 209

Fermat’s principle, 343, 356

first integral, 334

Hamilton’s ray equations, xxvii, 229, 252, 253, 267,

321, 365

interface, 291

Lagrange’s ray equations, xxvii, 254, 321, 335, 365

natural coordinate system

pure-mode direction, 107

ray, 237
ray parameter, 365, 374

variational principles, 343, 350

wave theory, 254

WKBJ method, 254

ray velocity, 17, 183, 229, 237, 239, 239, 243

conserved quantity, 294–296

curve

elliptical velocity dependence, 317

polar reciprocity, 241, 316, 317

two-dimensional continuum, 241

expression, 293

elliptical velocity dependence, 242, 258, 259, 317,

368, 400

linear velocity dependence, 368, 369

function

homogeneity, 374

time invariance, 374

magnitude, 239, 242

elliptical velocity dependence, 246

Fermat’s principle, 344, 348

isotropic continuum, 306, 373

isotropic inhomogeneous continuum, 359

two-dimensional continuum, 240

phase velocity, 375

ray parameter, 375

elliptical velocity dependence, 367, 368

two-dimensional continuum, 367

surface, 241

traveltime integral

two-dimensional continuum, 366

vector, 242, 258, 398

magnitude, 259

wavefront slowness, 246

rayfield, 375

raytracing, 314, 335, 356, 373

receiver, see also source

constructive interference, 349

displacement vector, 271, 296

ray parameter, 371, 372

traveltime, 321, 371, 372, 381, 383

reductionism, 8

reflected wave, see wave

reflection angle, see angle

rigidity, 120, 120, 121, 147, 403

Rivlin, Ronald (1915–2005), 4

rotation
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tensor, 25, 403

antisymmetry, 25, 26

vector, 25, 26, 403

S wave, 147

curl, 32

displacement potential, 152, 153

equations of motion, 145, 146, 207

rotational wave, see wave

Rudzki, Maurycy Pius (1862–1916), xvii, xxii, xxiii

Runge, Carl (1856–1927), 142

S wave, see wave

scalar potential, see also vector potential

classical mechanics, 360

displacement, 150–152

scaling factor

characteristic equations, 232, 234–236, 252, 259

scattering, 168, 172, 173

Schwartz, Laurent (1915–2002), 174

secondary wave, see wave

SH wave, see wave

shear wave, see wave

singularity, see also caustic

Legendre’s transformation, 314, 356, 400

Snell’s law, see also reflection angle and transmission

angle

elliptical velocity dependence, 296

generally anisotropic continuum, 293

isotropic continuum, 307

philosophical insight, 293

physical insight, 293

quantum electrodynamics, 293

Snell, Willebrord Van Roijen (1591–1626), 142

Sobolev, Sergei Lvovich (1908–1989), 173, 174

solid, 121, 137, 147

solution surface, 229–233

solvability condition, 269, 270, 273

Sommerfeld, Arnold (1868–1951), 142

source, see also receiver

coordinate system, 370

displacement vector, 271

elliptical velocity dependence, 370

plane wave, 149, 305

ray parameter, 371, 372

traveltime, 321, 371, 372, 381, 383

spatial coordinates, 12, 14, 15, 17, 27, 28, 70

spatial description, 11–13, 15–17, 27, 35

definition, 11, 12
spring, 65, 71

spring constant, 89

stability conditions, 84, 85

Christoffel’s matrix, 225

elasticity matrix, 84, 85, 121

isotropic continuum, 136, 137

transversely isotropic continuum, 127–129

stationarity, see calculus of variations and variational

principles

steady-state equation, 163, 177

stiffness matrix, see elasticity matrix

stiffness tensor, see elasticity tensor

Stokes, George Gabriel (1819–1903), 70

Stokesian fluid, 70–72

strain energy, see energy

strain tensor, 21, 403

components

column matrix, 69

displacement vector, 70

elasticity tensor, 67

independence, 67, 68

isotropic continuum, 134, 135

square matrix, 98

strain energy, 81, 89, 91, 115

stress-strain equations, 66, 70, 73

transformation, 98, 99, 113

definition

infinitesimal displacement, 21

deformation, 7, 18

derivation, 18–21

equations of motion

anisotropic inhomogeneous continuum, 210

isotropic homogeneous continuum, 144

Hooke’s law, 65

physical meaning, 21

components, 21

deformation, 21

length change, 22

shape change, 24

volume change, 24
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property tensor, 66

rank, 21, 60, 66

rotation tensor, 26

symmetry, 21

constitutive equations, 68

elasticity tensor, 67

matrix form, 74

stress-strain equations, 67, 120, 131, 132

trace, 24, 31

units, 21, 66

stress tensor, 45, 403

Cauchy’s equations of motion, 46

components, 47, 62

anisotropic inhomogeneous continuum, 210

column matrix, 69

compressional, 46

Hooke’s law, 66

independence, 47, 54, 67

interface, 297, 298

isotropic continuum, 134, 136

shear, 46

square matrix, 95

stress-strain equations, 67, 68, 70, 73, 82

tensile, 46

transformation, 95, 97, 101, 127

conservation of linear momentum, 40

couple, 51

derivation, 41–45

equations of equilibrium, 47

equations of motion

anisotropic inhomogeneous continuum, 209

isotropic homogeneous continuum, 144

force, 18, 33

Hooke’s law, 65, 66

nonsymmetric

balance of angular momentum, 54

property tensor, 66

rank, 59, 66

strain energy, 80

symmetry, 54, 55, 61, 298, 299

balance of angular momentum, 52–54, 225

constitutive equations, 68

elasticity tensor, 67

stress-strain equations, 67

traction

direction, 45, 46

orientation, 45

units, 61, 66

stress vector, see traction

stress-strain equations, see also constitutive equations and

Hooke’s law

Cauchy’s equations of motion, 74, 87, 141, 179, 209

Christoffel’s equations, 271

constitutive equations, 73

dilatation, 24

displacement vector, 70

elastic continuum, 85, 87, 94, 141

elastic material, 73

equations of motion

anisotropic inhomogeneous continuum, 209, 210

isotropic homogeneous continuum, 143, 144

isotropic inhomogeneous continuum, 206

formulation, 65–69

Cauchy’s approach, 66, 80

Green’s approach, 66, 80

matrix form, 67, 69, 74, 102

tensor form, 68

vector form, 98

generally anisotropic continuum, 103

Hooke’s law, 65

infinitesimal displacement, 70

interface, 298

isotropic continuum, 119, 120, 131, 132

Lamé’s parameters, 120, 121, 134

Poisson’s ratio, 133

strain energy, 135

Young’s modulus, 134

linearity, 4, 73

monoclinic continuum, 127

orthotropic continuum, 107

quotient rule, 60

strain energy, 82–84, 91

spring constant, 89

transformation, 93–100

invariance, 101

point symmetry, 102

wave equation, 205

superposition principle, 29
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surface force, 38, 39

body force, 39, 48

Cauchy’s equations of motion, 47

stress, 38

stress tensor, 41, 43

Cauchy’s tetrahedron, 43

traction, 39

surface wave, see wave

symmetrization, 114

symmetry, 12, 88, 93, 94, 122, 123, 127, 131, 268, 293,

305, see also antisymmetry, material symmetry and

symmetrization

angular velocity dependence, 367

axis

five-fold, 112, 114

four-fold, 111

monoclinic continuum, 267, 271–274

tetragonal continuum, 111

transversely isotropic continuum, 275, 276, 278, 279,

282, 283, 296, 300, 301, 305

Christoffel’s equations, 270

class

Curie’s symmetry group, 122

elasticity parameters, 122

identification, 119

partial ordering, 122

relations among, 117, 121

symmetry group, 121

conserved quantity, 375, 376

coordinate transformation

strain energy, 84

elasticity matrix, 118, 130

stability condition, 85, 137

strain energy, 83, 99

elasticity tensor, 85, 93, 211

strain energy, 79, 81

stress-strain equations, 67, 68

elliptical velocity dependence, 293, 294, 306

group, 94, 102, 103, 107, 109, 111–114, 116, 118, 127

cubic continuum, 117

matrix, 95

plane, 105

monoclinic continuum, 105, 272

orthotropic continuum, 106, 107

tetragonal continuum, 111

reflection, 104, 127

rotation

transversely isotropic continuum, 282

strain energy, 112, 116

strain tensor, 21, 66–69, 89, 98, 120, 131, 132

stress-strain equations, 67, 69

stress tensor, 47, 52, 54, 55, 61, 66–69, 95, 298, 299

Christoffel’s matrix, 225

stress-strain equations, 67, 69

tensor, 26, 224

tangent space, see xẋ-space

Taylor’s series

displacement, 16, 19, 22

tension, 41, 42, 65, 362, see also compression

test function, 164, 174–176

tetragonal continuum, 106, 111, 117, 122

elasticity matrix, 111

tetrahedron, 42–44, 48

torque, 51

total differential

calculus of variations, 331, 338

strain energy, 82

traction, 11, 38, 41–46, 59, 60, 62, 291, 296–298, 304

Cauchy’s stress principle, 38

definition, 38
surface force, 38, 39

transformation, see also Legendre’s transformation

coordinate, 24, 31, 83, 84

material symmetry, 93

material/spatial, 27

matrix, 27, 29–31, 59

generally anisotropic continuum, 121

isotropic continuum, 118, 121

Jacobian, 27, 124

orthotropic continuum, 107

point symmetry, 102

strain energy, 113, 114

tetragonal continuum, 111

transversely isotropic continuum, 112, 130

orthogonal, 93, 94, 103, 109, 125

eigenvalues, 119

elasticity matrix, 99–101
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orthonormal coordinate system, 93, 94

strain tensor, 98, 99

stress tensor, 95, 97

stress tensor, 60

transmission angle, see angle

transmitted wave, see wave

transport equation

anisotropic inhomogeneous continuum, 217, 220

isotropic inhomogeneous continuum, 187, 220

transverse wave, see wave

transversely isotropic continuum, 106, 112, 122, 123, 268,

272, 275, 291

SH wave

ray-theory Hamiltonian, 288

S wave, 288

Christoffel’s equations, 275, 276

displacement, 276, 279

phase velocity, 278

elasticity matrix, 112

elasticity parameters, 276

elliptical velocity dependence

phase velocity, 182

ray velocity, 242, 259

interface, 296, 304, 305

amplitude, 300, 301

boundary conditions, 296, 299, 300

phase-slowness curve

intersection point, 282

phase-slowness surface, 281, 282

rotation invariance, 116

stability conditions, 127, 129

traveltime

eikonal function, 218

elliptical velocity dependence, 251, 261, 262, 371,

380–382

downgoing signal, xxvii, 251, 262, 371, 372, 381–383

upgoing signal, xxvii, 251, 371, 372, 381, 382

equation

isotropic inhomogeneous continuum, 373

expression

elliptical velocity dependence, 372, 381, 383

ray parameter, 376

Hamilton’s ray equations, 243

integral, 321, 333, 357

conserved quantity, 365

elliptical velocity dependence, 371, 381

Fermat’s principle, 343

first integral, 367

invariance, 384

isotropic inhomogeneous continuum, 358

lateral homogeneity, 331, 366

parametric form, 374

polar coordinates, 377

ray parameter, 365

total derivative, 331

two-dimensional continuum, 366, 373, 374

variational principle, 343

inverse problem, 284

ray parameter, 371

ray theory, 141

variational principle, 321

traveltime increment

wavefront

elliptical velocity dependence, 383

trial solution

anisotropic inhomogeneous continuum, 209–212

equations of motion, 220

Christoffel’s equations, 270

displacement vector, 270

eikonal function, 184, 211

elliptical velocity dependence, 181

harmonic wave, 176

high frequency, 253

plane wave, 184

reduced wave equation, 177, 206

wave equation, 176, 184

weak inhomogeneity, 184, 185

trigonal continuum, xxv, 106, 109, 122

trigonometric polynomial, 113–115, 129, 130

Truesdell, Clifford (1919–2000), 4

variational principles, see also action, Fermat’s principle

and Hamilton’s principle

least traveltime, 322

stationary action, 335, 350

stationary traveltime, xxii, 304, 333, 335, 343, 344, 349,

356, 365, 373

vector potential, see also scalar potential
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displacement, 150–153

vis viva, 350, see also forces vives

volume-preserving vector field, 147

wave

P, 146

displacement potential, 152

S, 147

displacement potential, 152

P, 24, 146, 147, 154, 183, 186, 187

displacement direction, 272, 273, 285, 286

displacement potential, 149, 152

eikonal equation, 186

plane, 149

speed, 147

transversely isotropic continuum, 276, 290

velocity, 273, 276, 277, 286

SH

amplitude, 296, 301, 304

elliptical velocity dependence, 288, 296

interface, 296

transversely isotropic continuum, 182, 277, 279, 280,

282, 285, 286, 288, 289, 291, 305

velocity, 282, 283, 286, 288

vertical inhomogeneity, 183

SV, 183

transversely isotropic continuum, 277, 282, 285, 286

velocity, 277, 286

S, 26, 147, 154, 187

displacement direction, 271–274, 285, 287

displacement potential, 150, 153

eikonal equation, 186

plane, 149

rigidity, 147

speed, 147

transversely isotropic continuum, 276, 277, 282

velocity, 273, 287

S1, 273, 282

S2, 273, 282

qP

displacement direction, 290

Fermat’s principle, 356

transversely isotropic continuum, 279, 280, 305

qSV

transversely isotropic continuum, 279, 280, 282, 305

velocity, 282, 283

qS

Fermat’s principle, 356

body, xxii, 187, 220

dilatational, 147, 186, 207

elastic, xvii

equivoluminal, 147

evanescent, 302

harmonic, 176, 177, 212

incident, 296, 297

amplitude, 301

boundary condition, 299, 300

displacement direction, 301

energy, 296, 308

phase, 302

interface, 187

longitudinal, 154, 356

monochromatic

interface, 300, 308

trial solution, 181

plane, 143, 148, 149, 176, 184, 204

pressure, 147

primary, 147

pure-mode, 272, 276, 280, 290

reflected, 297

amplitude, 298

boundary condition, 299, 300

displacement direction, 301

energy, 308

evanescent wave, 302

phase, 302

rotational, 147, 186, 207

secondary, 147

seismic, xvii, xxi, xxii, 3, 7, 8

body, 141

continuum mechanics, 33

infintesimal displacement, 15

isotropic continuum, 143

shear, 147, 283

standing, 177

surface, 187

transmitted, 296, 297

amplitude, 298, 301
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boundary condition, 299, 300

displacement, 302

energy, 308

transverse, 154, 356, 362, 363

wave equation

P wave, 24, 146, 186

S wave, 26, 147

approximation

generally anisotropic continuum, 182

balance of linear momentum, 188

Cauchy’s equations of motion, 56, 73, 75

isotropic homogeneous continuum, 141, 187, 209

characteristic equation, 204, 205

displacement potential, 149

P wave, 152

S wave, 153

elliptical velocity dependence, 179

extension, 179

elliptical velocity dependence, 180–182

generally anisotropic continuum, 182

weak inhomogeneity, 183, 187

Fourier’s transform, 177–179

Hamilton’s principle, 188, 335, 350, 351, 353, 363

P wave, 356

S wave, 356, 362

reduced, 176, 177, 179, 184, 203

solution

d’Alembert, 154, 157, 189

distribution, 173–176, see also weak solution

domain of dependence, 161

plane wave, 204

propagation speed, 146, 147, 157, 160, 161

range of influence, 161, 162

scattering, 168

spatial dimension, 163

theory of distributions, 188

stress-strain equations, 119, 143

wave function

P wave, 146

S wave, 147

dilatation, 146, 152

generic, 154

rotation vector, 147, 152

scalar potential, 152

vector potential, 152

wave mechanics, 350

wave theory, xxi

ray theory, 254

wavefield, 3, 229

plane wave, 149

waveform

trial solution, 211, 212

wavefront

anisotropic continuum

infinitesimal, 243

anisotropic inhomogeneous continuum, 204

amplitude, 184, 187

constant phase, 219

displacement vector, 270, 271

eigenvalue, 218

eikonal equation, 220, 229

eikonal function, 211, 218

orientation, 220, 271, 272, 274, 278, 392

phase slowness, 218, 219

phase velocity, 239, 270

phase-slowness vector, 218, 219, 237–240, 242, 258,

268, 392

shape, 184

elliptical velocity dependence, 180–182

infinitesimal, 243, 383, 384

orientation, 181, 182, 242

phase slowness, 181

phase velocity, 181

interface, 292, 305

isotropic homogeneous continuum

plane, 184

isotropic inhomogeneous continuum, 255

eikonal function, 184

planar, 184

shape, 184

ray theory, 141, 321

wave equation

three spatial dimensions, 165

two spatial dimensions, 166

wavelength

displacement, 17, 271

ray theory, 141

short, 185
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weak inhomogeneity, 183

weak derivatives, 174

weak inhomogeneity, 179, 183

eikonal equation, 186
frequency, 185
wavelength, 183

weak solution, 175

wave equation, 173, see also distribution

welded contact, 297, 297, 300, 305

well-posed problem, 158, 159

WKBJ method, 254

xp-space, 229, 230, 233, 237, 311

xẋ-space, 311

Young’s modulus, 132, 134, 136, 404
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