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Abstract

Rendering is a process of generating a 2D image from a mathematical description of a 3D
scene. There are many ways to approach this task, driven by demands of a particular appli-
cation. From animated movies, where the visual quality is the primary goal, to interactive
applications (e.g. computer games), where the time available to render one frame is not
much more than a few milliseconds.

The ray tracing algorithm has long been used for o�ine rendering, and the rendering times
were far from interactive. But as the performance of rendering hardware increases, ray
tracing becomes an option for interactive applications.

In this thesis, I will focus on the two di�erent areas of the use of the ray tracing algorithm.
I will attempt to implement an interactive application for the synthesis of images based on
the ray tracing algorithm, with the option to render a particular view in much higher visual
quality, though not in real-time.
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Chapter 1

Introduction

Ray tracing is a very �exible rendering technique because of its ability to simulate optical
e�ects. Unfortunately, it requires much more computational resources than rendering tech-
niques based on rasterisation. It used to be a method suitable only for o�ine rendering, but
with the ever increasing computational power of personal computers, time will soon come
when ray tracing is used in real-time applications, executed on standard personal computers.

In this thesis, I will introduce the most important aspects of implementing the ray tracing
algorithm for interactive applications, discuss possible solutions to each such aspect and
present design and implementation of an interactive ray tracer.

Figure 1.1: The ray tracing algorithm renders an image by casting rays into the scene.
Diagram adopted from wikipedia.org under the terms of GNU Free Documentation License.

1



2 CHAPTER 1. INTRODUCTION

Figure 1.2: Ray tracing can achieve a very high degree of photorealism, as in this picture
rendered with my implementation of the interactive ray tracing algorithm.

1.1 Principle

The ray tracing algorithm renders an image by casting rays into the scene. A ray is cast
through every pixel of the image, tracing the light coming from that direction. When the ray
hits an object, the light incident of that point is evaluated to compute the amount of light
re�ected back to the camera, casting more rays into the scene from this point. Sampling
the scene with many rays from each point of interest would be way to costly to achieve
interactive frame rates, so only the most important directions are sampled.

For di�use surfaces, most re�ected light will usually come directly from light sources, thus
one �shadow ray� is cast towards each light source, to �nd whether the source is visible or
not. If it is not shadowed, the light incident is used to compute the shading of the point of
interest, according to the surface properties.

The steps described above would render an image with shadows and surface shading, but
to obtain light re�ection and eventually refraction, we need to introduce recursion into the
algorithm. If the surface is re�ective, another ray is cast in the direction of ideal re�ection.
This ray is traced in exactly the same way as the primary rays (rays cast from the camera).
The recursion stops when a maximal depth is reached, or the contribution factor drops below
certain threshold.
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To reproduce light refraction at the surfaces of transparent materials, another ray is cast in
the direction of ideal light refraction. The same rules apply as for the re�ected rays.

The information obtained by casting these rays are then put together (modulated according
to surface material properties - colour, shininess, ... and to the angles between the rays and
the surface normal) to evaluate the amount of light that leaves this point in the direction of
the camera.

See the pseudo code of this simpli�ed algorithm in Figure 1.3, diagram illustrating the ray
casting in Figure 1.1 and an example of an image obtained with this algorithm in Figure 1.2.

To improve the visual quality of the resulting images, various advanced rendering techniques
are used. Most notably it is the global illumination (which takes into account di�use-di�use
re�ection), and several techniques simulating the interaction of the ray of light with the lens
(light refraction causing decreased depth of �eld and light scattering causing bloom e�ect).
Some of these techniques are described later in this thesis (Chapter 5).

1.2 Structure of the thesis

In chapter 2 we discuss several methods of scene representation, including acceleration struc-
tures and their construction. In chapter 3 we go over the pixel representation and introduce
the concept of tone mapping. In chapter 4 we present the major optimization techniques,
which help to achieve real-time performance. In chapter 5 we present some advanced ren-
dering techniques. In chapter 6 we introduce the design of the rendering framework. In
chapter 7 we give some more details about the implementation of the rendering framework.
In chapter 8 we present the results of our work. And in chapter 9 we conclude what was
achieved with respect to the goals set and give some pointers for further improvements of
this project.
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TraceRay(ray, depth)

{

if(depth > maximal depth)

return 0;

find closest ray object/intersection;

if(intersection exists)

{

for each light source in the scene

{

if(light source is visible)

{

illumination += light contribution;

}

}

if(surface is reflective)

{

illumination += TraceRay(reflected ray, depth+1);

}

if(surface is transparent)

{

illumination += TraceRay(refracted ray, depth+1);

}

return illumination modulated according to the surface properties;

}

else return EnvironmentMap(ray);

}

for each pixel

{

compute ray starting point and direction;

illumination = TraceRay(ray, 0);

pixel color = illumination tone mapped to displayable range;

}

Figure 1.3: Pseudo-code of a basic ray tracing algorithm.



Chapter 2

Scene representation

2.1 Acceleration structures

The ray tracing algorithm achieves high level of photorealism, and the fact that it is based on
the physical properties of light simpli�es the simulation of real world optical e�ects. Apart
from that, using a proper space-partitioning technique, the asymptotic time complexity can
reduce signi�cantly. Indeed, a balanced space-partitioning data structure can yield worst-
case time complexity O( 3

√
n), and on average close to O(log2(n)).

In this section, I will introduce some of the most popular space partitioning data structures,
and discuss their advantages and disadvantages. The methods for the construction of such
data structures will be discussed later in this chapter.

A more detailed comparison of common acceleration data structures can be found in [1, 2, 3]
and implementation details in [4].

2.1.1 kD-Tree

The kD-Tree (short for k-Dimensional Tree), is a binary tree in which every node splits
the space into two subspaces by a splitting plane perpendicular to one of the k axes (in
the context of ray tracing, we are dealing with the 3-dimensional Euclidian space, so k=3)
[5, 4, 3].

The advantage of kd-trees is primarily the fast traversal, making it probably the most popular
acceleration structure for static scenes [1]. The main problem with kd-trees is that the
rebuild/update time is signi�cant, which limits its use for dynamic scenes, although special
techniques for minimizing this overhead exist [1].

5
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Figure 2.1: kD-tree traversal

kD-tree traversal

When traversing a kd-tree data structure, there are two distinct cases that may occur [2]:

1) Both limiting points of the ray lie at the same side of the splitting plane.
In this case, we can omit traversal of the subspace which does not contain the ray, so
that only the left/right child node needs to be examined.

2) The ray intersects the splitting plane.
It might be the case that the ray-object intersection lies in any of the two subspaces.
Thus, we �rst need to traverse the subspace containing the end of the ray closer to the
observer. If an intersection is found, the traversal ends. Otherwise, the other subspace
has to be traversed.

See �gure 2.1 for illustration.

Data representation

To represent this data structure in program memory, we need one �oating point number to
specify the coordinate of the splitting plane, one pointer to the child nodes (assuming the
memory layout is organised so that the second child is located right after the �rst one), and
a �ag to tell whether this node is a leaf or not and eventually which one of the three axis it
is perpendicular to (2 bits of information).

To further optimize this data structure, we can exploit the fact, that the data is aligned in
memory in blocks of 32 bits (or more), so the lower 2bits of the pointer can accommodate the
�ags, which reduces the size of one node to only 8bytes (assuming 32 bits system). Masking
the pointer to get the actual address or the �ags introduces some extra overhead, but the
advantage of having more compact data structure (so that cache can be better utilized)
overweighs this overhead [4].
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2.1.2 Bounding volumes hierarchy

A bounding volume for a set of objects is a closed volume that completely contains the union
of the objects in the set [5]. If a ray does not intersect the bounding volume, it clearly cannot
intersect any of the objects contained in the volume.

BVH

The e�ciency is further improved by constructing a hierarchy of the bounding volumes,
so that the actual geometry data is encapsulated in many small bounding volumes, which
are than grouped together to created bigger bounding volumes containing them and so on
until, at the top level, only a few bounding volumes exist, containing all the objects in the
scene. By a simple recursive algorithm, one can then traverse through all the levels of this
hierarchy to the geometry data and test the intersection with only a small fraction of the
original number of primitives in the scene.

There are many di�erent types of bounding volumes; bellow, there is a list of the most
popular ones. Generally, the more complex the volume, the slower the intersection test, but
the more closely it encapsulates the objects contained in it [5].

Common types of bounding volumes:

• Bounding sphere

• Bounding box - axes-aligned bounding box (AABB) or oriented bounding box (OBB)

• Discrete Oriented Polytope (DOP)

• Convex Hull

As mentioned in the previous section, bounding volumes hierarchy is most suitable for dy-
namic scenes [1], where many other data structures have problems because of the computa-
tionally expensive rebuild. If an object moves, the volumes encapsulating it move with it,
making the update fairly simple.

2.2 Construction of acceleration structures

Because kd-trees are becoming the number one choice in data structures for the acceleration
of ray tracing, outperforming alternative structures including BVHs (although they might
be more suitable for dynamic scenes than kd-trees [1]) and grids, in this section, I will focus
only on the aspects of building a kd-tree data structure.

More information about building of acceleration structures using heuristic methods can be
found in [6, 7].
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2.2.1 Spatial median splitting

In this naive method, the splitting plane is always positioned at the spatial median of the
voxel, and the dimension in which to split the voxel is chosen is so called �round robin�
fashion - that is, the �rst splitting plane is perpendicular to x, the next one to y, z, x again
and so on [7].

The subdivision is usually performed until a maximal depth is reached, or the number of
triangles in a node falls below a certain threshold.

The construction time of this trivial method is T (n) = 2T (n2 ) + O(n), which gives O(n ×
log(n)), the theoretical lower bound for kd-tree construction. But the e�ectiveness of the
resulting structure for traversal is several times less than if a heuristics based method was
used [7].

2.2.2 Surface area heuristics

Surface area heuristics (SAH) is a method which attempts to estimate the cost of traversal
of a random ray thought a voxel. It considers the geometry of the resulting child voxels as
well as the number of triangles to each side of the plane, and the triangles intersecting the
splitting plane.

The SAH method makes several assumptions to ease the process of evaluating the cost [7]:

• The rays intersecting the parent voxel are uniformly distributed in�nite lines.
• The cost of intersecting n triangles is linear function of the number of triangles.
• The cost of triangle intersection test and traversal step are known.

The SAH cost function roots from the geometry theory, stating that the conditional proba-
bility that a ray hitting a convex voxel will hit its sub-voxel is proportional to the ratio of
the surface area of the sub-voxel to the surface area of the voxel [6].

P (VS |V ) =
SA(VS)

SA(V )

VS . . . sub-voxel,

V . . . voxel,

SA(N) . . . surface area of volume N,

P . . . conditional probability,
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This leads to a cost function of the following form [7]:

CR = KT +KI ×
1

SA(N)
× [nl × SA(nl) + nr × SA(nr)],

where:

CR . . . total cost,

KT . . . cost of traversal step,

KI . . . cost of intersection step,

SA(N) . . . surface area of volume N,

Nl, Nr . . . left/right child sub-voxel,

nr, nl . . . number of triangles intersecting left/right sub-voxel.

The goal of local greedy algorithm is to �nd a split with minimal cost.

Now that we have a tool to evaluate the cost of a split, we need to �nd out what splitting
planes could be candidates for our analyses. Clearly, the minimum of the cost function must
lie on one of the vertices of the triangles intersecting the voxel. There are more informed
methods to avoid evaluating of the cost for vertices that cannot yield the minimum cost, but
for our purpose of implementing an o�ine builder where only the quality of the resulting
kd-tree matters, not the construction time, we can simply evaluate the cost for all three axis
of each proposed vertex and choose the minimum.

2.2.3 Automated termination

For the methods not using any heuristics (e.g. spatial median splitting), the intersection
usually ends when a certain depth is reached or when the number of triangles in the voxel
drops below a threshold.

Given the means to evaluate the cost of traversing a voxel, the automated termination
criterion can be easily modelled using these heuristics. Further subdivision is worth doing if
the minimum cost is less than the cost of not splitting the voxel.

Although the above method works quite well, the problem is that it will stop subdividing
the voxel in a local minimum, which does not necessarily have to be a global minimum. One
possible solution to this would be to evaluate a further few steps even if the criterion tells
us not to, to see whether a few more splits might yield any improvement [7].
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2.3 Geometry representation

2.3.1 Constructive solid geometry

Constructive solid geometry (CSG) is a method of creating a complex surface or object by
using Boolean operators to combine simpler objects [5]. The simplest solid objects used for
the representation are called primitives. Typically they are objects of simple shape: cuboids,
cylinders, prisms, pyramids, spheres, cones, etc.

Clearly, the advantage of using CSG in ray tracing is that the primitives are easy to test
intersection with. On the other hand, it is quite restrictive, as most modelling software
allows the user to model and export the objects only on polygonal bases.

2.3.2 Polygonal meshes

The advantage of using polygons to represent the geometry is that every object can be
modelled in some level of details with su�cient number of polygons.

Another decision to be made is what types of polygons to support. Bellow I will discuss on
what the pros and cons of each approach are.

Triangulation

Every polygon, no matter how complex, can be converted into a bunch of triangles [8]. But
to achieve real-time rendering rates, we are most concerned about the performance, as the
computational time and resources are very limited. Thus, the question is how to get the best
e�ciency.

The advantage of supporting complex polygons is that using a clever method to test the
ray-polygon intersection can be faster than testing every of its triangles separately [9]. On
the other hand, supporting more than one polygon type will introduce additional overhead
in the form of branching required to identify the polygon type and to invoke the proper
intersection test code [9].
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Pixel representation

The illuminance of typical scenes that can be observed in real life ranges from about 10−4 lx,
when only stars enlighten the scene, to that of direct sunlight, which is approximately 105 lx
[10]. The problem is that the luminance of a typical monitor is no more than around
102 cd/m2.

To overcome this restriction, we will store the pixel intensity values as �oating point numbers,
and then, before the frame bu�er can be displayed, a tone mapping function will be applied
to map the values from [0,∞) to [0, 1], so that the image can be displayed on a standard
physical device.

3.1 High dynamic range

Rendering the scene in �oating point numbers will not only preserve details in both bright and
dark regions, but it also allows us to specify light sources far out of the range displayable on
a physical device, and to do the computation with a physically based values, rather than just
some approximation to make the result look realistic. Also, using a proper tone mapping
operator gives us control over the exposure time, which is very useful for adaptive tone
mapping [10, 11, 9].

3.2 Tone mapping

The main purpose of a tone mapping operator is to map the illuminance value to a range
displayable on a standard display device.

The simplest method would be to clamp everything what we cannot display, but clearly, this
method is not good enough to preserve the details and to make the image look natural and
realistic. Another option is to map the values on logarithmic bases, which approximates much
closer the human eye sensation of light than the above approach, but even this method causes

11
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many unnatural e�ects [10, 11, 9]. After testing several di�erent tone mapping operators, I
decided to use the sigmoid operator, proposed by Erik Reinhard (2007) in [12]:

�Sigmoids have several desirable properties. For very small luminance values the mapping is
approximately linear, so that contrast is preserved in dark areas of the image. The function
has an asymptote at one, which means that the output mapping is always bounded between
0 and 1. A further advantage of this function is that for intermediate values, the function
a�ords an approximately logarithmic compression.�

(for more details, see [10, 12, 13, 11])

Sigmoid Curve

L =
Y

Y + c(t)
,

where:

L . . . Relative pixel intensity [0, 1],

Y . . . Illuminance [0,∞),

c(t) . . . Tone mapping constant (variable in time).

Another useful property of this operator is that the constant c represents the exposure time.
This enables us to model the ability of a human eye to adapt to the current overall perceived
light intensity, by changing this value according to the global (or local) average pixel intensity.
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Optimization techniques

Implementing proper space partitioning data structure to traverse the scene geometry and
choosing sensible representation of the geometry data is not good enough to achieve real-
time performance. In this section, I will describe some of the most important optimization
techniques used to speed up the rendering process.

4.1 Cache coherence

On current computers, memory latency presents more of a bottleneck than the CPU [4], so
in a real-time ray tracer, it is essential to minimize this overhead. To do so, there are several
steps that need to be taken. First, to improve special locality, the tree representing the scene
partitioning is stored in a continuous block of data, with the node data structure being as
small as possible. For more details on this, read the �data representation� section of the
chapter about kD-Trees (2.1.1. Similar technique is used to store the geometry data, where
the geometry representation of a triangle stores only a pointer to shading data, instead
of storing the data itself directly in the data structure, because a triangle geometry data
structure is accessed on average 3 times more often than the shading data corresponding to
the triangle.

4.2 MIMD

The computation of each pixel value is independent of any other pixel, which makes the
algorithm easily parallelisable amongst multiple cores. Ideally I would implement the ray
tracer in CUDA to exploit the computational power of the GPU, which is, for parallel
task like this one, much higher than that of the CPU. But even a ray tracer implemented in
C/C++, running on CPU, can bene�t from the MIMD level of parallelism (short for Multiple
Instruction Multiple Data), as most of current CPUs have more than one processing core.
This can yield speed up factor almost linearly proportional to the number of cores [4].

13
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4.3 SIMD

The SIMD (Single Instruction Multiple Data) level of parallelism is a bit harder to exploit.
One possible way is to trace patches of rays [4] (most CPUs consist of 4 ALUs, meaning it
can perform the operation on four 32b numbers at the same time, thus the patch would be
of four rays). Ideally, this would speed up the traversal of the BSP tree by a factor of 4, but
this technique introduces a signi�cant overhead. Even though we choose the patch to consist
of spatially coherent rays, it might be the case that while some of the rays in the patch
does not intersect a splitting plane, others does, so we need to traverse both subspaces with
the whole patch. According to Erik Reinhard (2002) - Practical parallel rendering [4], this
technique can yield about 2 times faster traversal. The SIMD parallelism could be used in
the ray-triangle intersection test as well, but coding the computation properly should allow
the compiler to do most of the job for us.

4.4 Program structure

Function calls and recursion causes additional overhead, so it is sensible to omit those in the
critical parts of the code. Ray traversal and intersection test is performed many times for
each pixel, yielding in millions of times of execution per frame. This is clearly the section
of the code we need to focus at most. Replacing function calls with inline functions or code
pastes is fairly easy; the more tricky part is to get rid of the recursion. To implement the ray
traversal using a loop, we need to use a stack to push the data on every time a ray intersects
a splitting plane. Restructuring the program to minimize the overhead together with using
some compiler dependent optimizations (e.g. branch hints) yielded about 1.3 times faster
traversal in my implementation.

Figure 4.1: The di�erence between SIMD and MIMD level of parallelism. Diagram adopted
from wikipedia.org under the terms of GNU Free Documentation License.
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Advanced rendering techniques

Most of the techniques described in this section are too costly to compute in real-time, but
they can be used to increase the photorealism of the resulting image in o�ine rendering. A
survey of most of these techniques can be found in [2, 14].

5.1 Anti-aliasing

Anti-aliasing is a technique of minimizing the artifacts known as aliasing when the signal is
sampled at lower frequency than the actual resolution of the signal [5, 2]. What this means in
ray tracing is that sampling the scene with only one ray per pixel can lead to visible artifacts
decreasing the overall visual quality of the resulting image. Using a proper anti-aliasing
method can make the resulting image appear softer and more realistic.

Supersampling

Supersampling is a technique to eliminate the aliasing of the image. Samples are taken at
several instances inside each pixel, and the average colour is then calculated. It means that
the image has to be rendered at higher resolution to be then downsampled to the desired
size.

Types of supersampling

These methods basically just di�er in where the extra samples are taken inside the pixel
[2, 5]:

• Grid algorithm

• Random algorithm

15
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• Poisson Disc algorithm

• Jitter algorithm

• Rotated Grid algorithm

See �gure 5.1 for illustration.

Figure 5.1: Sampling patterns for di�erent supersampling methods.

5.2 Ambient occlusion

Ambient occlusion is a shading method which helps to add realism to local re�ection models
by taking into account attenuation of light due to occlusion. It attempts to approximate
the way light radiates in real life, especially o� what are normally considered non-re�ective
surfaces [5, 2]. Ambient occlusion is a global method (unlike Phong shading, which takes into
account only light coming directly from light sources, not the scene geometry), but it is only
an approximation of what would be achieved with a proper global illumination technique.

Calculation of ambient occlusion

Ambient occlusion is usually calculated by casting rays in every direction from the surface
through the hemisphere, counting the fraction of rays which hit the background (sky) [2].
The higher this ratio is, the brighter the surface appears. This technique can generate for
example dark corners, which would not be achieved with a local shading method [2, 15].

See �gure 5.2 for illustration. Several images rendered with ambient occlusion are presented
in 8.2. Most notably it is 8.3 and 8.2, which are rendered without direct illumination.

5.3 Bloom e�ect

Bloom e�ect is used to reproduce an artifact of real-world cameras (and human eye as well).
When there is a very bright object in the scene, the light appears to bleed into surrounding
objects. This e�ect is caused by scattering of the light in the lens [5, 2].
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Figure 5.2: Calculation of ambient occlusion. Visibility rays are cast from the point of
interest through the hemisphere - the more rays hit a surface, the more occluded the point
is.

Figure 5.3: An example of bloom on a photo taken with a real-world camera. Notice the
light on the window bleeding on the darker areas around it. This picture was published
under the terms of GNU Free Documentation Licence.

Reproduction of the bloom

When the image is represented in high dynamic range (HDR), this e�ect can be reproduced
by convolving the image with a kernel of an Airy disc (to simulate very good lenses), or
by applying the Gaussian blur (for less perfect lenses), before converting the image into
�xed-range (LDR) [2].

See �gures 5.3 and 8.6 for illustration.
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5.4 Depth of �eld

Depth of �eld (DOF) is the portion of a scene that appears acceptably sharp in the image.
When a real-world lens is focused to one distance, the sharpness decreases gradually on each
side of the focused distance [5, 2, 16]. Although sometimes it might be desirable to have a
very deep DOF, in most cases it looks more realistic to have a smaller DOF, and it is also
useful to emphasise the subject of interest while de-emphasising the rest of the scene.

Theory and implementation of DOF

In the simplest implementation of a ray tracer, the rays are casted from the camera through a
point at the viewing plane corresponding to the pixel being rendered. This method will result
in the entire image being sharp (in�nite DOF). In real-world lenses, the light is refracted at
the surface and due to the shape of the lens, it leaves under a di�erent angle than the ray of
light travelling through the centre of the lens. This physical property of light is the reason
for the e�ect of decreased sharpness of images further from the focus point. Because the ray
tracing is a simulation of the behaviour of light, this e�ect can be easily simulated.

This optical system has two basic properties, which can be used to reproduce the e�ect of
�nite DOF. First, rays of light passing through the optical centre of the lens are not refracted,
they leave the lens at the same direction as they came [16]. Second, the rays hitting the
�sharp plane� at the same point will project to the same point on the �projection plane� [16].
This idea is illustrated on �gure 5.4.

Figure 5.4: Depth of �eld.

Before casting a ray, intersection of a line from the camera to a pixel being rendered, and
the surface of the imaginary lens (plane perpendicular to the viewing direction), has to be
computed. This point is then used as a starting point of the ray to be traced, and the
direction of the ray is derived from the point of perfect sharpness (every ray has to pass
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through this point). This ray is then traced in the same way as would be the original ray in
the in�nite DOF algorithm [2, 16].

Example

The e�ect of DOF can be best illustrated with a real-world camera photograph. Figure 5.5 is
a photograph of a kitty taken with focal ration f/2.8. The face of the cat is in focus, making
the background appear blurred and isolating the cat.

Figure 5.5: Photograph of a cat illustrating DOF. Photographed by David Corby and pub-
lished under the terms of GNU Free Documentation License.

5.5 Ray propagation

In the above discussion we assumed that the radiance is constant along a ray. This assump-
tion holds only if the scene is placed in vacuum, and becomes very inaccurate if the rays pass
through a fog, smoke, dust, etc [14]. There are three main ways in which the ray is a�ected
by the participating media [14]:

1. Absorption
particles present in the medium causes the energy of the light to convert to another
form of energy, usually heat.

2. Emission
luminous particles present in the environment add energy to the ray.
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3. Scattering
light scatters to other directions due to collisions with the particles.

Absorption

Absorption is described by a constant σa, the probability that light is absorbed in the medium
per distance travelled in that medium.

The fraction of light absorbed can be described with the following equation [14]:

α = e−
∫ d

0
σa(p+lω)dl

where:

d . . . distance travelled in the medium,

p . . . position,

ω . . . direction,

σa . . . probability function.

Note that the term above can be signi�cantly simpli�ed for special cases, e.g. homogenous
fog: e−σd

Scattering

The scattering e�ect includes two di�erent components:

1. Out-scattering
Out-scattering is when the light is scattered from the direction of the ray being traced
out in other directions. It results in light attenuation and can be modelled with the
same equation as absorption.

2. In-scattering
In-scattering is when the light is scattered from other directions towards the direction
of the ray being traced. It adds energy to the ray.
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Design of Rendering Framework

In the previous chapters, I discussed the theoretical aspects of the ray tracing algorithm. In
this chapter, I will introduce the design patterns I decided to use in my implementation of
the interactive ray tracer.

6.1 Application overview

The project consists of 5 independent applications, which can interact with each other
through a user interface (UI) application (see 6.1).

6.2 Modularity

Ray tracing server

The Ray Tracing Server (RTS) is designed to run in the background, accepting commands
from the user via shared memory and a message queue (through user interface), and storing
the results into a block of shared memory, so that other applications running on the same
machine (UIs) can access it.

The main task of the RTS is to render given scene interactively; the camera can be controlled
by a user via the UI, and various options (image quality, etc.) can be set via the UI as well.
Two modes of camera control are supported; one in which the camera can move freely
throughout the scene, and second in which collisions are detected, so that the user cannot
go through solid objects, and can walk through the terrain, jump, crawl, climb, etc.

The user can also export current camera settings into a �le, so that it can be imported later
by the RTS, or it can be used by the o�ine renderer to render the view in higher visual
quality. Not only single images can be exported, but the user can also start/stop recording
to export a full video sequence.

21
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Figure 6.1: Application overview.

O�ine renderer

The O�ine Renderer is a console application (but can be run from the UI as well), which
accepts a scene description �le (specifying rendering quality, references to the camera de-
scription �le, geometry �le, output �le name and format, environment maps, and more),
to produce a synthesised image of the scene, taken from the speci�ed camera. The O�ine
Renderer achieves higher level of photorealism than the interactive RTS, by enabling com-
putationally expensive tasks such as ambient occlusion, bloom e�ect, and by rendering the
scene in higher resolution with anti-aliasing.

BSP builder

The BSP Builder is responsible for the import of 3D models and construction of kd-trees.
Once the kd-tree is computed, it is stored in a binary �le in a form which can be loaded
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very quickly. This geometry �le (.bsp) is then used by the RTS and the O�ine Renderer. A
large number of 3D �le formats is supported (more than 25, including .3ds, .obj, .x). The
BSP Builder uses a heuristic method, known as Surface Area Heuristics (SAH), to construct
optimal kd-trees.

Graphical user interface

The Graphical User Interface (GUI) provides an interface between the user and all parts of
the application (including RTS, O�ine Renderer, and BSP Builder). Its main purpose is
to send commands to the RTS via message queue and shared memory and to provide the
user with the outcome of the computation done by the RTS. Although the O�ine Renderer
and BSP Builder are designed to work as standalone applications and can be executed from
the command line, it might be preferable to use the GUI, as it provides more user-friendly
access to all the features of these applications.

Console user interface

The Console User Interface (CUI) is a small application providing the user with access to
RTS running on the same machine. It can pass commands from the user to a running RTS
process or acquire and display information. The CUI can work concurrently with the GUI,
connecting to the same RT server, and provides a subset of functionality provided by the
GUI, in a command line manner.

Inter-process communication

For the purpose of connecting the RTS with the UIs, I wrote a small library giving the
programmer access to the RTS without the need to know anything about the source code of
the ray tracer, or even to possess it.

Thus, it would be fairly easy to extend the concept of modularity to applications communi-
cating with the RT Server over network. One would just need to write a bridge application
listening on a network port and passing the commands to the RTS through the IPC library,
and possibly streaming the video output back to the client.
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Chapter 7

Implementation

In this chapter, I will discuss the choices I made on how to implement the techniques and
data structures described in the previous chapters, brie�y explain their implementation, and
present some diagrams scratching the modularity and program �ow of the ray tracer.

7.1 Ray tracer

7.1.1 Acceleration structure

Traversal of the scene partitioning hierarchy is the key aspect of a fast ray tracing algorithm.
I decided to use the kd-tree for this task. Its advantage is that the traversal step is very fast
(basically just two �oating point comparisons), and if the tree is suitably constructed and
balanced, the number of triangle intersection tests to be performed per ray can be very low
- only a few tests for scenes with millions of triangles. See chapters 2.1.1 and 4 for details
on the implementation.

7.1.2 Geometry representation

The proposed ray tracer is intended to be an alternative of classical scanline algorithms,
thus it should support �le formats normally used in applications like computer games, that
is polygonal meshes, rather than constructive solid geometry (CSG), which is rarely found
in applications of this kind.

Next decision to be made is whether to support complex polygons or only triangles. Every
polygon can be converted into several triangles in a pre-processing step, so this choice have
no e�ect on what �le formats will be supported. As mentioned above (section 2.3.2), testing
ray-polygon intersection with a complex polygon can be faster that testing every of the
triangular polygons derived from it, but to allow this feature, extra overhead is introduced
in the form of branching, which is present in every intersection test, even if the tested polygon

25
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is triangular. I believe that the strategy of minimizing the time needed to compute a ray-
triangle intersection will lead to a better overall performance that introducing various types
of polygons, so in my implementation, every polygon is triangulated before the construction
of a kd-tree and only triangles are supported in the rendering process. Chapter 2.3 deals
with this matter in more details.

7.1.3 Pixel representation

As discussed in chapter 3, pixel intensities are computed in �oating point numbers and then
tone mapped onto the range displayable on a physical device using the sigmoid curve. For
more details, see chapter 3.

7.1.4 Optimizations

All implemented optimization techniques are described in chapter 4. In this section, I will
just brie�y summaries the implementation of these techniques.

MIMD level of parallelism is exploited using OpenMP (Multi-processing API). Each pro-
cessing unit is given severel lines of pixels to render, when its job is done, it gets more.
The computation of every pixel is independent of the others, so there is almost no overhead
caused by the communication between threads. The rendering performance scales almost
linearly with the number of processing units.

The memory latency is minimized using a well design memory layout and cache aware pro-
gramming techniques. More details can be found in 2.1.1 and 4.1.

The program structure is designed to minimize the overhead regarding the function calls and
recursion in the most critical sections of execution, as is the ray traversal. To avoid the need
for recursive function calls, a special stack is implemented to manage the recursive nature of
the ray tracing algorithm.

The MMX/SSE extensions (SIMD level of parallelism) are not explicitly used in the traversal,
although it would lead to quite signi�cant performance improvement (see 4.3). Even though
the rays are not traced in packets, the program still gains some performance improvement by
doing the mathematical computation of the intersection test in parallel, using MMX/SSE.

7.1.5 Ambient occlusion

Three di�erent methods for evaluation of the directions to which the sample rays are cast
were tested. First, I used a regular grid, because randomly distributed samples do not seem
as a suitable method for interactive scene viewing (the randomness creates noise which alters
every frame, creating a strange shivering e�ects in the occluded areas). The regular sampling
method did not give satisfactory results, creating visual artifacts. Random algorithm did
not give good result either, as expected, especially for small numbers of samples.
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The algorithm I used in the �nal version of my project is what I call �rotated grid� ' algorithm.
It is based on the regular sampling method, but the distribution of the rays is then slightly
altered in a way that is unique for each point being sampled. This solution suppressed the
artifacts introduced in the regular sampling method completely, and created much less noise
than the random algorithm. Even for as low as 9 samples per point the noise is almost
unnoticeable, and when combined with anti-aliasing, even lower number of samples yields
satisfactory results. See �gure 8.12 for comparison of di�erent sampling methods.

7.1.6 Bloom

As the image is rendered in high dynamic range, the computation of the bloom is fairly
simply. The image is convolved with the kernel of a gaussian �lter - producing gaussian blur.
When it is tone mapped to low dynamic range, the light appears to bleed from very bright
objects on the surrounding areas.

The size of the kernel of the gaussian �lter can be set via a con�guration �le or through
command line arguments, giving the user control over the strength of the bloom.

7.1.7 Anti-aliasing

The type of supersampling I decided to use is known as the grid algorithm. It is the simplest
and fastest sampling method, where the samples are distributed regularly. The disadvantage
is that the regular nature of this sampling method might prevent it from removing some of
the aliasing artifacts, which would probably be removed with an irregular algorithm. On
the other hand, it will remove most of the artifacts and apart from being fast and easy to
implement, it enables us to render the scene in just the same way as if no anti-aliasing was
used, and do the �ltering in a postprocessing step. In cases when the anti-aliasing is disabled,
the conditional branches would still cause a little overhead in the code that gets executed
millions of times every frame, so it is an advantage to move this code to where it is executed
only if it needs to be.

7.1.8 Environment mapping

The environment map is implemented as a cube map - the environment is mapped on a cube
of in�nite size. Because the camera moves only �nite distances, it will be always positioned
in the centre of this cube. Thus, the relative coordinates of an intersection of a ray and
this cube are independent on the size of the cube. To simplify the computation, we will
assume that the cube has unit size and is positioned at the centre of the coordinate system.
From a direction of a ray, the relative coordinates of the intersection point can be derived
analytically.

The equations obtained from the above assumptions are implemented in the cube map class,
so that when a ray does not hit any of the objects in the scene, it is passed to the cube map
object to evaluate the light coming from the environment.
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Because the resolution of the environment map is �nite, the ray does not always hit the centre
of a pixel - it has to be interpolated. Depending on the preferences set in the con�guration
�le, either bilinear or nearest-neighbour interpolation method is used.

7.1.9 Fog

Two types of fog are implemented in the proposed ray tracer - homogenous and exponential.

The homogenous fog assumes the particles causing the light absorption, emission and scat-
tering (dust, smoke, drops of water, etc.) are distributed uniformly throughout the entire
scene. Thus, the attenuation of the light depends only on the distance that the light travel
through the environment.

The exponential fog takes into account the e�ects of gravity, causing higher density of the
particles at lower altitudes. The attenuation factor is no longer constant along the ray,
leading to a more complex equation describing the light attenuation, emission and scattering.

A general equation describing the absorption of the light as a function of absorptive particles
density is given in section 5.5, as is its simpli�ed form for homogenous distribution. The
emission and scattering of light is described analogously and simpli�ed equations for special
cases can be derived from the equation 5.5.

Note that as the environment map is placed at an in�nite distance from the camera, the ray
propagation through either the homogenous or the exponential fog will prevent it from being
viewed and the colour of distant objects will converge to the colour of the fog.

7.1.10 Construction of kD-trees

Because the proposed ray tracer is targeted primarily to static scenes, the construction of
kd-trees can be done o�ine. Thus, the construction time is not much of an issue; the e�ec-
tiveness of the resulting data structure for traversal is important. As discussed in section 2.2,
using a heuristic method for the kd-tree construction can improve the traversal performance
signi�cantly. I used the SAH method to construct e�ective kd-trees which are then stored in
a binary �le. Thus, we do not need to recompute them every time the ray tracer is started.

7.2 User control

The previous section outlines the implementation of methods for generation of the image.
In this section, I will focus on the ways in which the interactive mode can by controlled by
the user.
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7.2.1 Collision system

One can take the advantage of having implemented the ray traversal through the acceleration
structure and use this methods not only for ray tracing, but for the collision detection as
well.

To �nd the altitude of the terrain at the coordinates of the player, a ray is cast downwards
from the camera, in the direction of the gravity acceleration. The distance from the camera
to the nearest intersection is the height of the camera above the surface.

To prevent the player from penetrating the surface of solid objects, a ray (or more pre-
cisely a line segment), starting at the current camera position and ending at the position
the camera should be in the next frame if no collision occurred, is traversed through the
acceleration structure and if no intersection is found, the player can do the movement (no
surface penetration will occur).

The information obtained in the previous two steps can be used to restrict the player in a
way that can be found in most game engines, so that the player can walk on the surfaces of
the solid objects, jump or free fall a�ected by the gravity, and lots more.

Two modes of camera control are implemented in the proposed interactive ray tracer:

Viewing mode - the camera can �y freely through the scene, not restricted by the geom-
etry.

Walk-through mode - the collisions are detected and basic physical laws are applied to
restrict the movements of the player.

7.2.2 Progressive rendering

When the camera stays static and the resulting image would look the same as the previous
frame (exposure time is adapted to the illumination level etc.), the ray tracing server signals
idle to the user interfaces (a special �ag in the shared memory is set). The GUI responds
with a request to export the current camera and scene states, followed by a call to the o�ine
renderer, which renders the view in higher visual quality (anti-aliasing, bloom, eventually
ambient occlusion, higher resolution, etc.). When the rendering is done, the GUI displays
the resulting image. If the process is interrupted (user moves the camera, etc.), the o�ine
renderer is stopped immediately, as the frame being rendered is already out-dated.

This feature can be disabled either on the UI side (RTS signals idle, but the UI ignores it
- other UIs might still use it, and processing time is not wasted rendering the same frame
again and again), or on the RTS side (UI send a request to disable the idle mode - RTS
never stops rendering, until the idle mode is enabled again).
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7.3 Class diagram

The diagram 7.1 illustrates the modularity and dependencies of both RTS and the O�ine
Renderer. The program is divided into several function blocks; the core of the ray tracer,
which is responsible for the most essential tasks, and optional modules, which can be enabled
to extend the functionality of the ray tracer.

Outline of the function blocks

Core: I/O, scene representation, static camera, ray traversal, pixel colour evaluation
Interactive: dynamic camera, scene update, user control, collision system
Inter-Process Communication: shared memory, message queue, image bu�er manage-

ment
Non-Essential: environment map, fog

7.4 Code portability

All parts of the application are coded in C++ and are platform independent to the extended
supported by the 3rd party libraries used in this project. The project was tested on several
versions of MS Windows and Linux systems, both 32b and 64b.

Table 7.1 summarizes the libraries employed in the project, their purpose and the parts of
the project dependent on them.

Name Description Usage

Boost IPC - shared memory, message queue RTS, UI
ASSIMP Import of 3D models BSP Builder
OpenMP Multiprocessing API RTS, O�ine Renderer - can be disabled
CImg Image loading/saving RTS, O�ine Renderer
ImageMagick Support for advanced image formats RTS, O�ine Renderer - non-essential
Qt GUI framework GUI

Table 7.1: 3rd party libraries

7.5 Program �ow

The diagram 7.2 illustrates the program �ow of the Ray Tracing Server. Once the scene
is loaded and server initialized, the program enters an in�nite loop, where it serves user
requests. It updates the scene and either renders the scene or, if the outcome would be the
same as the previous frame and the idle mode is enabled, it raises the idle �ag and sleeps
for a brief moment. This loop is repeated until an exit signal is sent (e.g. via GUI or CUI,
see Chapter 6 for more details on inter-process communication).
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7.6 Summary of features

• Simulation of optical e�ects including:

� shadows,

� light re�ection,

� Phong shading,

� bloom e�ect,

� ray propagation.

• Environment mapping.

• Ambient occlusion.

• Anti-aliasing.

• HDR rendering; tone mapping.

• KD-tree construction using heuristic methods.

• GUI and/or console control.

• Own �le format for e�cient storing of scenes
(pre-computed kd-tree, geometry, lights, etc.).

• Real-time performance.

• Collision system.

• MIMD level of parallelism.

• Portability to all major operating systems.



32 CHAPTER 7. IMPLEMENTATION

Figure 7.1: Class diagram of the ray tracer.
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Figure 7.2: Flowchart of the Ray Tracing Server.
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Chapter 8

Results

In this chapter we present results of the performance tests, and several sample images ren-
dered with the proposed ray tracing algorithm.

8.1 Performance

In this section, we present a summary of the results of some performance test done on the
presented ray tracer.

Note that the testing was performed on a standard personal computer (see Table 8.2). The
tests can be easily reproduced by running the script%PATH%/scripts/performance/run.sh,
which can be found on the attached DVD.

The results of the tests can be found in table 8.1, details about the hardware in table 8.2.
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View Rendering
time

FPS Number of
polygons

Scene Resolution

Looking at the girl 60 ms 16.7 156442 girl.obj 320 x 240
Inside the cathedral 100 ms 10 139225 cgr-c.3DS 320 x 240
Outside, looking at a
mirror

130 ms 7.7 139225 cgr-c.3DS 320 x 240

In the centre of the
scene

220 ms 4.5 281952 ladybirds_6.obj 320 x 240

Table 8.1: Performance test results.

Processor Intel Core 2 Duo
Frequency 1.6 GHz
Main memory 2 GB, DDR2
Cache L1 2x32 KB, 8-way set associative
Cache L2 2 MB, 8-way set associative
OS Linux Debian, 64 bit

Table 8.2: Hardware the tests were performed on.

8.2 Images

In this section, we present some images generated with the ray tracer described in previous
sections. The most interesting points to notice are pointed out below each picture.
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Figure 8.1: Rendered image of an elephant and a knight surrounded with mirrors.

This image demonstrates the ability of the ray tracer to render point-light shadows and light
re�ection. Notice the clear re�ection of the scene in the mirrors and the deformed image on
the surface of the cone, due to its convex shape.

Figure 8.2: Environment map re�ecting in the scene geometry.

Notice the dark corners at the bottom of the green wall and the ambient shadows under the
table and chairs. Also, the re�ection of the environment map and the geometry is clearly
visible.
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Figure 8.3: Interior of the cathedral in Sibenik, Croatia.

This is an interior view of the cathedral in Sibenik, rendered without direct illumination.
What you might observe here is the e�ect of ambient occlusion. Notice that without it, the
walls would all have the same tone of gray colour and the relief would not be recognizable
at all. Give a closer look to the stairs, to see the dark corners of the wall and stairs.

Figure 8.4: Interior of the cathedral in Sibenik, Croatia.

Another view of the cathedral, with no direct illumination. Examine the red carpet near on
the �oor to see the smooth shading. You might also notice the re�ection of the scene in the
glass window above the door.
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Figure 8.5: Scene with two opposite mirrors demonstrating the recursive nature of the ray
tracing algorithm.

This image demonstrates recursive light re�ection. The scene contained two mirrors with the
camera placed in-between. In the picture on the right, the maximum depth of recursion was
set to 5, while the picture on the left was generated with much higher value. You might also
observe shadows from multiple light sources, colour interpolation, environment mapping, etc.
Anti-aliasing was used to produce the smooth edges.

Figure 8.6: Render of a scene producing the e�ect of light scattering in the lens, known as
a bloom.

The image on the left demonstrates per vertex colours. Notice the smooth colour interpo-
lation between the red, green, and blue corners. The image on the right shows the bloom
e�ect. Notice the blurred corners and colour bleeding into surrounding objects. Also, note
that the light sources in this scene were 100 times more intense than those in the scene on
the left. It is due to the tone mapping that all details and colours are preserved. You might
also notice that the stars visible in the background of the image on the left are not visible
in the image on the right. This is because the much higher intensity of light re�ected o�
the geometry made the exposure time to adapt to this level of illumination, making the less
bright objects barely noticeable - just as if you were watching starts during a sunny day.



40 CHAPTER 8. RESULTS

Figure 8.7: Fish eye view (FOV 150 degrees, rectangular).

This image was rendered with a very wide �eld of view (150 deg).

Figure 8.8: Elephant close up.

Close up of an elephant surrounded with mirrors. Notice the realistic re�ection of the models
in the mirrors.
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Figure 8.9: Picture of a girl in a red dress, levitating on the earth's orbit.

This set of pictures was rendered without any source of direct illumination. All shading is
based on the ambient occlusion technique. Examine the occluded areas to see the ambient
shadows and the shading.
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Figure 8.10: Picture of a cow watching the sunset.

On this image you might observe point-light shadows, Phong shading, environment mapping
and after careful examination also light re�ection and ambient shadows might be noticeable.

Figure 8.11: Image of a scene in a fogy environment.

This image demonstrates the e�ects of light propagation through absorptive environments.
In this setting, it should reproduce the look and feel of scene placed in a fogy environment.
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Figure 8.12: Comparison of two sampling methods used for the computation of ambient
occlusion.

The two images were renderer with exactly the same camera settings; they only di�er in
the sampling algorithm used for the ambient occlusion computation. The image on the
right shows the artifacts caused by regular sampling. In the one on the left, some noise
is noticeable, but considering only 7 visibility rays were shoot per point, the noise is quite
minimal.

Figure 8.13: Comparison of images rendered with and without ambient occlusion.

These two images compare the results of using ambient occlusion and not using it. You
might notice that the image on the right (no ambient occlusion) looks very �at. That is
because no light source was present to shade the geometry. Even though the image on the
left was rendered with exactly the same settings, including lighting conditions, it does not
look so �at at all. Notice the dark corners, shading of the rabbit and ambient shadows under
the ladybird, cow and chairs. Combined with the re�ection, it gives interesting look to the
scene even without lighting.
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Chapter 9

Conclusion

We have proposed and implemented a program generating an image of a 3D scene using the
ray tracing algorithm. The data is represented in memory in the form of kd-tree acceleration
structure. The computation of pixel intensities is carried out in �oating point numbers to
be then tone-mapped to a range displayable on a standard physical device.

Two applicationaly di�erent areas are targeted: interactive (real-time) and photorealistic
(o�ine) rendering.

The interactive mode o�ers camera export and movement recording, the camera can be
controlled using standard input devices. Two modes of camera control are supported: a
viewing mode (no interaction with the scene geometry) and a walk-through mode (movement
restricted by the scene geometry and gravitational force).

The photorealistic mode o�ers rendering of the scene in higher visual quality. Optical e�ects
including ambient occlusion (approximation of global illumination) and bloom are simulated.
The aliasing artifacts are suppressed using supersampling.

The two rendering modes described above can cooperate to o�er what is called progressive
rendering, or a view or video sequence can be exported in the interactive mode to be rendered
o�ine.

The interactive ray tracer is designed as a server, communicating with the user interface
using IPC techniques. The o�ine renderer and the program for construction of kd-trees are
also designed as stand-alone applications, so that any part can be changed independently.

The algorithm is implemented in the C++ programming language, using Boost C++ libraries
for platform independent implementation of inter-process communication. To support a wide
range of 3D scene formats, ASSIMP library is used for the import of this data, which are
then stored in a specialised format incorporating the constructed kd-tree. The graphical user
interface is implemented in the Qt framework. The MIMD level of parallelism is achieved
using OpenMP multiprocessing API. The resulting program is platform independent to the
extend of these libraries, and was successfully tested on several versions of Linux and MS
Windows.
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During performance testing, real-time frame rates have been achieved, although only in a
limited resolution.

9.1 Further work

At any state of a software development, there are always things to improve. Here are some
suggestions for further work on this project.

To improve the visual quality of generated images, a proper global illumination technique
could be implemented (currently, this is approximated with the ambient occlusion).

To extend the client-server design, a network interface could be implemented to accept
commands through a socket, passing them to the ray tracing server, and streaming the video
output back to the client.
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Appendix A

Manual

A.1 Tutorial

In this section, I will explain the basics of working with the application in an easy-to-read
style. A more thorough description of individual functions can be found in the subsequent
sections.

The ray tracing server can be started either from the console,

RTServer scene.scn

or from the GUI (see �gure A.3).

"Menu->Connection->Start new server" or Ctrl+S

If the server is up and running, we can proceed to connecting to it.

"Menu->Connection->Connect" or Ctrl+C

If the connection was successful (the server is running and the shared memory and message
queue were successfully opened), the output of the renderer should appear on the screen
(�gure A.1).

Now, we can start controlling the camera using the keyboard (see A.3.2).

The camera can be exported (�gure A.2)

"Menu->Action->Export camera"
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to be used in the o�ine renderer or as initial settings next time the server is started.

To record a video sequence, go to

"Menu->Action->Recording"

and click start. From now on the server records camera position and exposure time for every
frame, storing it in the speci�ed path. To stop the recording, simply go to the recording
menu again and click stop (�gure A.2).

Clicking on "Menu->Action->Statistics" will display current frame rate, camera resolu-
tion, etc. (�gure A.4).

Defaultly, progressive rendering is enabled, meaning that when the camera becomes station-
ary, the view is rendered in higher visual quality. This feature can be disabled through

"Menu->Settings->Progressive Rendering" or Ctrl+H.

If it is disabled and you still want the particular view to be rendered and displayed in higher
quality, simply click

"Menu->Action->Quick Render" or hit Ctrl+R.

To stop the server, click "Menu->Commands->Stop Server" or hit Ctrl+K.

A.2 Console

The executables that can be controlled from the console:

RTServer Ray Tracing Server

Renderer O�ine Renderer

BSPBuilder kD-Tree construction

CUI Console User Interface

Calling any of them without any arguments will display a brief help.



A.2. CONSOLE 51

A.2.1 Ray tracing server

This command starts a new instance of the ray tracing server. Once started, it can be
controlled from the console using CUI (A.2.4).

Command: RTServer

Usage: <bin-name> <scene> [options]

Where:

<bin-name>name of the executable

<scene> scene description file

[options] optional arguments

A.2.2 O�ine renderer

This command starts the o�ine renderer to render a particular view in the photorealistic
mode. The quality of the generated image can be set via the con�guration �les (.cam,
.set), or speci�ed as command line arguments (the arguments override the settings in the
con�guration �le).

Command: Renderer

Usage: <bin-name> <scene> [options]

Where:

<bin-name>name of the executable

<scene> scene description file

[options] optional arguments

-o <path> output file

-a <integer> anti-aliasing

-b <integer> bloom effect

-w <integer> image width (horizontal resolution)

-h <integer> image height (vertical resolution)

-l <path> video sequence (<path> = list of .cam files)

-ao enable ambient occlusion

-nao disable ambient occlusion

-aon <integer> enable ambient occlusion (<int> = number of samples)

-aok <float> enable ambient occlusion (<float> = sampling interval)

-dbg <path> export debug scene and exit

-help display this help and exit

A.2.3 BSP builder

This command constructs a kd-tree of a given scene and stores it in a specialised �le. The
output �le is readable by the ray tracing server and the o�ine renderer.
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Command: BSPBuilder

Usage: <bin-name> <input-file> <output-file> [options]

Where:

<bin-name> name of the executable

<input-file> input file name (.3DS, .x, .obj, ...)

<output-file> output file name (.bsp)

[options] optional arguments

-f fast build

-v verbose

-vv very verbose

-m <integer>kd-tree quality (applies only to fast build mode)

-hist <integer>display histogram (<integer> = number of bands)

A.2.4 Console user interface

The console user interface passes commands from the console to the ray tracing server.

Command: CUI

Usage: <bin-name> <command> [options]

Supported commands:

exit Tell the server to stop

free Release shared memory

fps Print fps

resolution <width> <height>Request change of resolution

export <target>Export camera/video sequence/scene

about Display information about the program

Export options:

export camera <path> <width> <height> <anti-aliasing> <bloom>

<anti-aliasing> super sampling factor (integer)

<bloom> sigma (gaussian convolution coefficient)

export video <start/stop> <path>

A.3 GUI

The graphical user interface is primarily targeted on operating the ray tracing server. How
to use it is described in section A.1, in this section, a short description of the menu items
and the key bindings is given.
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A.3.1 Menu structure

File

Exit Terminates the GUI application

Connection

Connect Connects to a ray tracing server

Start new server Starts a new ray tracing server

Action

Export Camera Displays camera export dialog

Quick Render Renders and displays current view in higher visual quality

Statistics Displays statistics (FPS, resolution, ...)

Commands

Stop server Stops the server to which the GUI is currently connected to

Pause server Pauses the server (stops rendering but continues accepting requests)

Ping server Ping the server

Display

Ignore Aspect Ration If checked, the image is scaled according to the size of the
window

Smooth Transformation If checked and the window size does not match the size of
the image, smooth �lter is used

Settings

Progressive Rendering If checked and the camera becomes stationary, the view is
rendered in higher visual quality

Con�gure Displays con�guration dialog

Help

About Displays information about the project

A.3.2 Key bindings

The codes of keys being pressed are stored in a block of shared memory, so that the ray
tracing server can access and process it. The key bindings can be overridden from the GUI,
which then informs the server about the new bindings. The default key bindings is listed
below.

General:

WASDIO / Arrows Movement

CapsLock + Arrows Rotation
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F Viewing/Walk-through mode

Numbers Lights on/o�

M + Number Choose environment map

B Bloom e�ect on/o�

Walk-through mode:

C Crouch

Ctrl Crawl

Space Jump

Shift Sprint

Shortcuts:

E Export current camera settings

H Export high quality camera settings

R Render current view in higher visual quality

R+L Render current view in higher visual quality, enabling anti-aliasing

A.3.3 Screenshots

Figure A.1: Main window
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Figure A.2: �Export Camera� and �Recording� dialogs

Figure A.3: �Start new server� dialog
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Figure A.4: �Statistics� dialog

Figure A.5: �About� dialog



Appendix B

Contents of the DVD

ConsoleUI Console user interface (source code + project)
Data

3DScenes 3Ds Max scene �les
Environment Maps Environment maps (png)
Icons Application icons
Models Models (3ds, obj)

Documentation
diagrams Diagrams (ddd)
doxygen Doxygen settings
latex Source code of this thesis in LATEX
refman Reference manual generated by doxygen
txt Text �les (README, etc.)
rtaia.pdf This thesis (pdf)

Executable
images Images generated with the ray tracer
linux64 Application executables (64b Linux OS)
scripts Bash and batch scripts (performance tests, sample images generation)
win32 Application executables (32b MS Windows OS)

GUI
icons GUI icon
src Source code of the GUI
∗.pro Project �le (Qt Creator)

RayTracer
include Third party libraries (not including Boost and ASSIMP)
shared Source code shared by the ray tracer and user interface (IPC)
src Source code of the ray tracer (RTS, Renderer, BSPBuilder)
∗.cbp Project �les (Code::Blocks)
∗.workspace Workspace �les (Code::Blocks)
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Appendix C

List of abbreviations

kD-Tree k-Dimensional Tree

BSP Binary Space Partitioning

SAH Surface Area Heuristics

AABB Axes Align Bounding Box

OBB Oriented Bounding Box

DOP Discrete Oriented Polytope

CSG Constructive Solid Geometry

HDR High Dynamic Range

LDR Low Dynamic Range

CPU Central Processing Unit

GPU Graphics Processing Unit

MIMD Multiple Instruction Multiple Data

SIMD Single Instruction Multiple Data

CUDA Compute Uni�ed Device Architecture

OpenMP Open Multi-Processing API

DOF Depth Of Field

MPx Mega Pixel

DDR Double Data Rate

RAM Random Access Memory
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SA Set Associative

FPS Frames Per Second

API Application Programming Interface

ASSIMP Open Asset Import Library

RTS Ray Tracing Server

UI User Interface

GUI Graphical User Interface

IPC Inter-process Communication
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