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Astronomer by Jan Vermeer, 1632–1675. A portrait of Antonij van Leeuwen-
hoek?



Preface

Skvoz~ volxebny$i pribor Levenguka . . .
Nikola$i Zabolocki$i

The portrayal of human thought has rarely been more
powerful and convincing than in Vermeer’s Astronomer. The
painting creates the illusion that you see the movement of
thought itself—as an embodied action, as a physical process
taking place in real space and time.

I use Astronomer as a visual metaphor for the principal
aim of the present book. I attempt to write about mathemat-
ical thinking as an objective, real-world process, something
which is actually moving and happening in our brains when
we do mathematics. Of course, it is a challenging task; in-
evitably, I have to concentrate on the simplest, atomic activ-
ities involved in mathematical practice—hence “the micro-
scope” of the title.

Among other things,
• I look at simple, minute activities, like placing brackets in

the sum
a + b + c + d + e.

• I analyze everyday observations so routine and self-evident
that their mathematical nature usually remains unno-
ticed: for example, when you fold a sheet of paper, the
crease for some reason happens to be a perfect straight
line.



VI Preface

• I use palindromes, like MADAM, I’M ADAM, to illustrate
how mathematics deals with words composed of symbols—
and how it relates the word symmetry of palindromes to
the geometric symmetry of solid bodies.

• I even discuss the problem of dividing 10 apples among 5
people!

Why am I earnestly concerned with such ridiculously sim-
ple questions? Why do I believe that the answers are impor-
tant for our understanding of mathematics as a whole?

We cannot seriously discuss mathe-
matical thinking without taking into
account the limitations of our brain.

In this book, I ar-
gue that we cannot seri-
ously discuss mathemati-
cal thinking without tak-
ing into account the limi-
tations of the information-
processing capacity of our
brain. In our conscious
and totally controlled reasoning we can process about 16 bits
per second. In activities related to mathematics this miser-
able bit rate is further reduced to 12 bits per second in ad-
dition of decimal numbers and to 3 bits in counting individ-
ual objects. Meanwhile the visual processing module of our
brain easily handles 10,000,000 bits per second! [166, pp. 138
and 143] We can handle complex mathematical constructions
only because we repeatedly compress them until we reduce a
whole theory to a few symbols which we can then treat as
something simple; also because we encapsulate potentially
infinite mathematical processes, turning them into finite ob-
jects, which we then manipulate on a par with other much
simpler objects. On the other hand, we are lucky to have
some mathematical capacities directly wired in the powerful
subconscious modules of our brain responsible for visual and
speech processing and powered by these enormous machines.

As you will see, I pay special attention to order, symme-
try and parsing (that is, bracketing of a string of symbols) as
prominent examples of atomic mathematical concepts or pro-
cesses. I put such “atomic particles” of mathematics at the fo-
cus of the study. My position is diametrically opposite to that
of Martin Krieger who said in his recent book Doing Mathe-
matics [52] that he aimed at
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Preface VII

a description of some of the the work that mathemati-
cians do, employing modern and sophisticated exam-
ples.

Unlike Krieger, I write about “simple things”. However, I
freely use examples from modern mathematical research,
and my understanding of “simple” is not confined to the
elementary-school classroom. I hope that a professional math-
ematician will find in the book sufficient non-trivial mathe-
matical material.

The book inevitably asks the question “How does the math-
ematical brain work?” I try to reflect on the explosive de-
velopment of mathematical cognition, an emerging branch
of neurophysiology which purports to locate structures and
processes in the human brain responsible for mathematical
thinking [128, 138]. However, I am not a cognitive psycholo-
gist; I write about the cognitive mechanisms of mathemati-
cal thinking from the position of a practicing mathematician
who is trying to take a very close look through the magnify-
ing glass at his own everyday work. I write not so much about
discoveries of cognitive science as of their implications for our
understanding of mathematical practice. I do not even insist
on the ultimate correctness of my interpretations of findings
of cognitive psychologists and neurophysiologists; with sci-
ence developing at its present pace, the current understand-
ing of the internal working of the brain is no more than a
preliminary sketch; it is likely to be overwritten in the future
by deeper works.

Instead, I attempt something much more speculative and
risky. I take, as a working hypothesis, the assumption that
mathematics is produced by our brains and therefore bears
imprints of some of the intrinsic structural patterns of our
mind. If this is true, then a close look at mathematics might
reveal some of these imprints—not unlike the microscope re-
vealing the cellular structure of living tissue.

I am trying to bridge the gap between mathematics and
mathematical cognition by pointing to structures and pro-
cesses of mathematics which are sufficiently non-trivial to
be interesting to a mathematician, while being deeply inte-
grated into certain basic structures of our mind and which
may lie within reach of cognitive science. For example, I pay
special attention to Coxeter Theory. This theory lies in the
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very heart of modern mathematics and could be informally
described as an algebraic expression of the concept of sym-
metry; it is named after H. S. M. Coxeter who laid its foun-
dations in his seminal works [269, 270]. Coxeter Theory pro-
vides an example of a mathematical theory where we occa-
sionally have a glimpse of the inner working of our mind. I
suggest that Coxeter Theory is so natural and intuitive be-
cause its underlying cognitive mechanisms are deeply rooted
in both the visual and verbal processing modules of our mind.
Moreover, Coxeter Theory itself has clearly defined geometric
(visual) and algebraic (verbal) components which perfectly
match the great visual / verbal divide of mathematical cog-
nition.

Mathematics is the study of mental
objects with reproducible properties.

However, in paying at-
tention to the “microcosm”
of mathematics, I try not
to lose the large-scale view
of mathematics. One of
the principal points of the
book is the essential ver-
tical unity of mathematics, the natural integration of its
simplest objects and concepts into the complex hierarchy of
mathematics as a whole.

One of the principal points of the
book is the essential vertical unity of
mathematics.

The Astronomer is, again,
a useful metaphor. The
celestial globe, the fo-
cal point of the paint-
ing, boldly places it into a
cosmological perspective.
The Astronomer is reach-
ing out to the Universe—
but, according to the widely held attribution of the painting,
he is Vermeer’s neighbor and friend Antonij van Leeuwen-
hoek, the inventor of the microscope and the discoverer of the
microcosm, a beautiful world of tiny creatures which no-one
had ever seen before. Van Leeuwenhoek also discovered the
cellular structure of living organisms, the basis of the unity
of life.
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Microstructure of nerve fibers: a drawing by Antonij van Leeuwenhoek,
circa 1718. Public domain.

The next principal feature of the book is that I center my
discussion of mathematics as a whole—in all its astonishing
unity—around the thesis, due to Davis and Hersh [19], that
mathematics is

the study of mental objects with reproducible properties.

In the book, the Davis–Hersh thesis works at three levels.
Firstly, it allows us to place mathematics in the wider con-

text of the evolution of human culture. Chapter 11 of the book
is a brief diversion into memetics, an emerging interdisci-
plinary area of research concerned with the mechanisms of
evolution of human culture. The term meme, an analogue of
“gene”, was made popular by Richard Dawkins [134] and was
introduced into mainstream philosophy and cultural studies
by Daniel Dennett [23]. It refers to elementary units of cul-
tural transmission. I discuss the nature and role of “math-
ematical” memes in detail sufficient, I hope, for making the
claim that mathematical memes play a crucial role in many
meme complexes of human culture: they increase the preci-
sion of reproduction of the complex, thus giving it an evolu-
tionary advantage. Remarkably, the memes may remain in-
visible, unnoticed for centuries and not recognized as rightly
belonging to mathematics. In this book, I argue that this is a
characteristic property of “mathematical” memes:

If a meme has the intrinsic property that it increases
the precision of reproduction and error correction of the
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meme complexes it belongs to, and if it does that with-
out resorting to external social or cultural restraints,
then it is likely to be an object or construction of math-
ematics.

So far research efforts in mathematical cognition have
been concentrated mostly on brain processes during quantifi-
cation and counting (I refer the reader to the book The Num-
ber Sense: How The Mind Creates Mathematics by Stanis-
las Dehaene [138] for a first-hand account of the study of
number sense and numerosity). Important as they are, these
activities occupy a very low level in the hierarchy of math-
ematics. Not surprisingly, the remarkable achievements of
cognitive scientists and neurophysiologists are mostly ig-
nored by the mathematical community. This situation may
change fairly soon, since conclusions drawn from neurophys-
iological research could be very attractive to policymakers
in mathematics education, especially since neurophysiolo-
gists themselves do not shy away from making direct rec-
ommendations. I believe that hi-tech, “brain scan” cogni-
tive psychology and neurophysiology will more and more
influence policies in mathematics education. If mathemati-
cians do not pay attention now, it may very soon be too late;
we need a dialogue with the neurophysiological community.

Cognitive psychology and neuro-
physiology will more and more influ-
ence policies in mathematics educa-
tion. If mathematicians do not pay at-
tention now, it may very soon be too
late; we need a dialogue with the
neurophysiological community.

The development of neu-
rophysiology and cogni-
tive psychology has reached
the point where math-
ematicians should start
some initial discussion of
the issues involved. Fur-
thermore, the already im-
pressive body of litera-
ture on mathematical cog-
nition might benefit from
a critical assessment by
mathematicians.

Secondly, the Davis–Hersh thesis puts the underlying cog-
nitive mechanisms of mathematics into the focus of the study.

Finally, the Davis–Hersh thesis is useful for understand-
ing the mechanisms of learning and teaching mathematics: it
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forces us to analyze the underlying processes of interioriza-
tion and reproduction of the mental objects of mathematics.

In my book, I am trying to respond to a sudden surge of
interest in mathematics education which can be seen in the
mathematical research community. It appears that it has fi-
nally dawned on us that we are a dying breed, that the very
reproduction of mathematics as a social institution and a pro-
fessional community is under threat. I approach the prob-
lems of mathematical education from this viewpoint which
should not be easily set aside: what kind of mathematics
teaching allows the production of future professional math-
ematicians? What is it that makes a mathematician? What
are the specific traits which need to be encouraged in a stu-
dent if we want him or her to be capable of a rewarding career
in mathematics? I hope that my observations and questions
might be interesting to all practitioners and theorists of gen-
eral mathematical education. But I refrain from any critique
of, or recommendations for, school mathematics teaching.

The unity of mathematics means that there are no bound-
aries between “recreational”, “elementary”, “undergraduate”
and “research” mathematics; in my book, I freely move through-
out the whole range. Nevertheless, I am trying to keep the
book as non-technical as possible. I hope that the book will
find readers among school teachers as well as students.

In a few instances, the mathematics used appears to be
more technical. This usually happens when I have to resort
to metamathematics, a mathematical description of the struc-
ture and role of mathematical theories. But even in such
cases, mathematical concepts are no more than a presenta-
tion tool for a very informal description of my observations.

Occasionally I could not resist the temptation to include
some comments on matters of my own professional interest;
however, such comments are indicated in the text by smaller
print.

Photographs in this book

I come from childhood as from a homeland.
Antoine de Saint-Exupéry, Pilot de guerre
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I tried to place on the margins of the book a photograph
of every living mathematician / computer scientist / histo-
rian of mathematics /philosopher of mathematics / scholar of
mathematics mentioned or quoted in the book. The catch is,
I am using childhood photographs. In my book, I write a lot
about children and early mathematical education, and I wish
my book to bear a powerful reminder that we all were chil-
dren once. I hope that the reader agrees that the photographs
make a fascinating gallery—and my warmest thanks go to
everyone who contributed his or her photograph.

I tried to place a photograph of a particular person in those
section of the book where his/her views had some impact on
my writing. The responsibility for my writings is my own, and
a photograph a person should not be construed as his or her
tacit endorsement of my views.

Alexandre Borovik
aged 11 Apologies

This book may need more than one preface, and
in the end there would still remain room for doubt

whether anyone who had never lived through
similar experiences could be brought closer

to the experience of this book by means of prefaces.
Friedrich Nietzsche

I hope that the reader will forgive me that the book reflects
my personal outlook on mathematics. To preempt criticism
of my sweeping generalizations (and of the even greater sin
of using introspection as a source of empirical data), I quote
Sholom Aleichem:

Man’s life is full of mystery, and everyone tries to com-
pare it to something simple and easier to grasp. I knew
a carpenter, and he used to say: “A man he is like a car-
penter. Look at the carpenter; the carpenter lives, lives
and then dies. And so does a man.”

And to ward off another sort of criticism, I should state
clearly that I understand that, by writing about mathematics
instead of doing mathematics, I am breaking a kind of taboo.
As G. H. Hardy famously put it in his book A Mathematician’s
Apology [38, p. 61],
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The function of a mathematician is to do something,
to prove new theorems, to add to mathematics, and
not to talk about what he or other mathematicians
have done. Statesmen despise publicists, painters de-
spise art-critics, and physiologists, physicists, mathe-
maticians have similar feelings; there is no scorn more
profound, or on the whole justifiable, than that of the
men who make for the men who explain. Exposition,
criticism, appreciation, is work for second-rate minds.

Having broken a formidable taboo of my own tribe, I can
only apologize in advance if I have disregarded, inadvertently
or through ignorance, any sacred beliefs of other disciplines
and professions. To reduce the level of offence, I ask the dis-
cerning reader to treat my book not so much as a statement
of my beliefs but as a list of questions which have puzzled
me throughout my professional career in mathematics and
which continue to puzzle me.

Perhaps, my questions are naive. However, I worked on
the book for several years, and it is several months now as I
keep the text on the Web, occasionally returning to it to put
some extra polish or correct the errors. So far, the changes
in the book were limited to expanding and refining the list
of questions, not inserting answers—I cannot find any in the
existing literature. This is one the reasons why I believe that
perhaps at least some of my questions deserve a thorough
discussion in the mathematical, educational and cognitive-
science communities.

My last apology concerns the use of terminology. Some
terms and expressions which attained a specialized meaning
in certain mathematics-related disciplines are used in this
book in their (original) wider and vaguer sense and there-
fore are more reader-friendly. To fend off a potential criticism
from nit-picking specialists, I quote a fable which I heard
from one of the great mathematicians of our time, Israel
Gelfand:

A student corrected an old professor in his lec-
ture by pointing out that a formula on the blackboard
should contain cotangent instead of tangent. The pro-
fessor thanked the student, corrected the formula and
then added:
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“Young man, I am old and no longer see much dif-
ference between tangent and cotangent —and I do not
advise you to do so either.”

Indeed, when mathematicians informally discuss their work,
they tend to use a very flexible language—exactly because
the principal technical language of their profession is excep-
tionally precise. I follow this practice in my book; I hope, it
allows me to be friendly towards all my readers and not only
my fellow mathematicians.
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on universal algebra, to Sergey Utyuzhnikov—on chess, tur-
bulence and dimensional analysis, to Alexander Jones and
Jeremy Gray—on history of Euclidean geometry, to Victor
Goryunov—on multivalued analytic functions, to Thomas Hull
—on history of Origami, to Gordon Royle—on Sudoku, to
Alexander Kuzminykh and Igor Pak—on convex geometry,
Dennis Lomas-on visual thinking; and, finally, to Paul Ernest
and Inna Korchagina for general encouraging comments.

Jody Azzouni, Barbara Sarnecka and Robert Thomas sent
me the texts of their papers [5, 6], [132, 177], [73].

David Petty provided diagrammatic instructions for the
Origami Chinese Junk (Figures 11.6 and 11.7). Dougald Dun-
ham allowed me to use his studies of hyperbolic tessela-
tions in M. C. Escher’s engravings (Figures 5.4, 5.5). Bruno
Berenguer allowed me to use one of his chess diagrams (Fig-
ure 7.6). Ali Nesin made illustrations for Chapter 10. John
Baez provided photograph of Figure 2.3. Simon Thomas pro-
vided me with diagrams used in Section 12.7.

I am lucky that my university colleagues David Broom-
head, Paul Glendinning, Bill Lionheart and Mark Muldoon
are involved in research into mathematical imaging and/or
mathematical models of neural activity and perception; their
advice has been invaluable. Paul Glendinning gave me a per-
mission to quote large fragments of his papers [145, 147].

My work on genetic algorithms shaped my understanding
of the evolution of algorithms; I am grateful to my collabora-
tor Rick Booth who shared with me the burden of the project.
Also, the very first seed which grew into this book can be
found in our joint paper [87].

Anonymous
age unknown

Finally, my thanks go to the blogging community—I have
picked in the blogosphere some ideas and quite a number

MATHEMATICS UNDER THE MICROSCOPE VER. 0.919 5-SEP-2007/12:39 c© ALEXANDRE V. BOROVIK



XVI Preface

of references—and especially to numerous anonymous com-
mentators on my blog.

Acknowledgements: Hospitality

I developed some of the ideas of Section 7.1 in a conversation
with Maria do Rosário Pinto; I thank her and Maria Leonor
Moreira for their hospitality in Porto.

Parts of the book were written during my visits to Uni-
versity Paris VI in January 2004 and June 2005 on invita-
tion from Michel Las Vergnas, and I use this opportunity to
tell Janette and Michel Las Vergnas how enchanted I was by
their hospitality.

Section 10.5 of the book is a direct result of a mathemat-
ical tour of Cappadocia in January 2006, organized by my
Turkish colleagues Ayşe Berkman, David Pierce and Şükrü
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Part I

Simple Things:
How Structures of Human Cognition Reveal

Themselves in Mathematics





1

A Taste of Things to Come

This is the opening chapter of the book, and I use it to set the
tone of my narrative: I start with some simple mathemati-
cal observations and briefly discuss what they possibly say
about the inner working of our mind. Surprisingly, this dis-
cussion very naturally involves some non-trivial ideas and
results from the frontier of mathematical research. But bet-
ter see it for yourselves.

1.1 Simplest possible example

Simplicity, simplicity, simplicity!
I say, let your affairs be as two or three,

and not a hundred or a thousand;
instead of a million count half a dozen,

and keep your accounts on your thumb-nail.

Henry David Thoreau, Walden

In my account, I am not afraid to be very personal, almost
sentimental, and have decided to start the discussion of the
“simple things” of mathematics by turning to my memories
from my school years.

Always test a mathematical theory
on the simplest possible example—
and explore the example to its utmost
limits.

I had my most forma-
tive mathematical experi-
ences at the tender age of
thirteen, when I still lived
in my home village on the
shores of Lake Baikal in



4 1 A Taste of Things to Come

Siberia. I learned elemen-
tary calculus from two
thin booklets sent to me
from a mathematics correspondence school: The Method of
Coordinates [204] and Functions and Graphs [205]. Much
later in my life I met one of the authors of the books, the fa-
mous mathematician Israel Gelfand, and had a chance to do
some mathematics with him. Once I mentioned to Gelfand
that I read his Functions and Graphs; in response, he rather
sceptically asked me what I had learnt from the book. He
was delighted to hear my answer: “The general principle of
always looking at the simplest possible example”. “Yes!” ex-
claimed Gelfand in his usual manner, “yes, this is my most
important discovery in mathematics teaching!” He proceeded
by saying how proud was he, that, in his famous seminars,
he always pressed the speakers to provide simple examples,
but, as a rule, he himself was able to suggest a simpler one. 1

So, let us look at the principle in more detail:

Always test a mathematical theory on the simplest pos-
sible example. . .

This is a banality, of course; everyone knows it, therefore al-
most no-one follows it. So let me continue:

. . . and explore the example to its utmost limits.

This book contains a number of examples pushed to their
intrinsic limits. See, in particular, Section 2.6 and the discus-
sion of Figure 2.13 on page 44 for some examples from the
theory of Coxeter groups and mirror systems. What could be
simpler?

But it is even more instructive to look at an example from
Functions and Graphs.

What is the simplest graph of a function? Of course, that
of a linear function,

y = ax + b.

But what are the simplest non-linear elementary functions?
Quadratic polynomials? Well, Functions and Graphs sug-
gests something different. The simplest non-linear function
is the magnitude, or absolute value, y = |x|.

MATHEMATICS UNDER THE MICROSCOPE VER. 0.919 5-SEP-2007/12:39 c© ALEXANDRE V. BOROVIK



1.1 Simplest possible example 5
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Indeed, it allows

• easy plotting and interpolation;
• standard manipulations with graphs like shifting, stretch-

ing, etc.:
f(x) + c, f(x + c), cf(x), f(cx).

• composition; for example, the composition of y = |t−1| and
t = |x| is

f(x) = ||x| − 1|;
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• iterations:

f(x) = ||x| − 1|
f(f(x)) = |||x| − 1| − 1|

f(f(f(x))) = ||||x| − 1| − 1| − 1|
...

Compare the previous graph, of f(x) = ||x| − 1|, and the
one below, of f(f(x)):
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6 1 A Taste of Things to Come

Sketching the 100-th iteration of f becomes an accessible
exercise. Can one do the same with polynomials?

And, last but not least, the function y = |x| is not differ-
entiable (and not analytic!), thus providing a simple, natural
and powerful example of a non-analytic function. We shall
soon see remarkable implications of this simple observation.

1.2 Switches and flows: some questions for cognitive
psychologists

I could not fail to disagree with you less.
Anonym

(wrongly attributed to Boris Johnson MP)

One naive notion of function—the one which can eventu-
ally be conceptualized as analytic function—describes a func-
tion as a dependency between two quantities which can be
expressed by a formula. Historically, this understanding of
functional dependence led to the development of the concept
of analytic function.2

However, computations with y = |x| require use of two dif-
ferent formulae for y < 0 and y > 0; if you think a few seconds
about how you manipulate functions like

y = ||||x| − 1| − 1| − 1|
you will see that this is not a symbolic manipulation of the
kind we do with analytic expressions, but something quite
the opposite, very discrete and consisting almost entirely of
flipping, as in bipolar switches LEFT—RIGHT, UP—DOWN.

The difference between the “switch”
and “flow” modes of computation is
felt and recognized by almost every
mathematician.

We humans are ap-
parently quite good at
flipping mental switches
(when the number of switches
is reasonably small; the
limitations are possibly
of the same nature as
in the subitizing / count-
ing threshold; see Sec-
tion 4.1). Graphic manipulation with compound functions
built from y = |x| is so efficient because they appear to engage
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some small but efficient switchboards in our brains. In con-
trast, most procedures of formula-based undergraduate cal-
culus obviously follow some smooth, “choiceless” pattern. I
would make a wild guess that the choiceless, rearrangement-
of-formulae routines of elementary calculus and algebra in-
voke a type of brain activity which is ruled by rhythm and
flow, as in music or reciting of chants. I am more confident
in suggesting that, in any case, it is very different from the
switch-flipping of discrete mathematics. I base this milder
conjecture on the anecdotal evidence that problems which re-
quire one to combine the two activities (for example, where
the calculations should follow different routes depending on
whether the discriminant ∆ = b2−4ac of a quadratic equation
ax2 +bx+c = 0 is positive or negative) cause substantial trou-
ble to beginning learners of mathematics, especially if they
have not been warned in advance about the hard choices they
will face.

I claim that the difference between the “switch” and “flow”
modes of computation is felt and recognized by almost ev-
ery mathematician. Most undergraduate students of math-
ematics in their second or third year of study can judge—
and with a surprising degree of certainty and immediacy in
their answers—what kind of mathematics is more suitable
for them, discrete or continuous. They just know, even if they
have never before given any thought to the issue. Perhaps,
we should tell them that there is a difference. 3

Not being a professional neurophysiologist, I can only con-
jecture that the two types of mathematical activities should
be reflected in two different patterns of brain activity, per-
haps even easily noticeable with the help of modern brain
scan technique. Meanwhile, within mathematics itself the
two modes of calculation are recognized as being intrinsically
different and are analyzed to considerable depth. In the next
section I briefly describe the findings of mathematicians.

1.3 Choiceless computation

We choose our joys and sorrows long before we experience
them.

Kahlil Gibran
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So, we started with the absolute value function y = |x| as
an example of “the simplest possible example” and are now
moving to a mathematical description of the difference be-
tween the “switch” and “flow” modes of computation.

As I will frequently do in this book, I use a concept from
computer science as a pointer to possible structures of hu-
man cognition responsible for particular ways of manipulat-
ing mathematical objects. In this case, a possible indicator is
the concept of choiceless polynomial time computation [249].

Some terminology ought to be explained.

1.3.1 Polynomial time complexity

An algorithm is said to have polynomial time complexity (of
degree d) if, when working with inputs of size l, it requires
O(ld) elementary operations (see the endnote 4 for explana-
tion of O()-notation). Let us look, for example, at addition
of two integers. The input size here is the number of digits
required to write the integers down; if both summands are
smaller than n, then each needs at most l = [log10(n)] + 1 dig-
its (here, [log10(n)] denotes log10(n) rounded down to the near-
est integer). To add the integers, we need, in each position, to
add two digits, compute the carry, if necessary, and add it to
the next position. All that requires at most 3 operations, mak-
ing it 3([log10(n)]+1) in total. It is convenient to say succinctly
that the time complexity of addition is O(log10(n)). Notice fur-
ther that the change of the basis of the logarithm amounts to
multiplication by a constant, hence we can use any basis (ac-
tually, computer scientists prefer base 2, since everything is
done in binary numbers) and just write O(log n).

Similarly, multiplication of two integers has time complex-
ity at most O(log2 n), or quadratic time complexity, while mul-
tiplication of two n × n matrices with integer entries, each
smaller than m, requires at most O(n3 log2 m) operations. I
do not consider here various interesting and useful ways to
speed up the standard procedures; see Knuth [304] for a very
comprehensive survey of the huge body of knowledge on fast
practical algorithms.

Why is the class P of polynomial time algorithms so impor-
tant? From a practical point of view, many known polynomial
time algorithms cannot be used on modern computers now or
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1.3 Choiceless computation 9

in the near future, since the constant in O( ), or the power of
the polynomial involved, may be too big for the computation
to be completed in any feasible time.

As frequently happens in mathematics, P is being stud-
ied because it is robust. The actual degree d in the bound
O(nd) for complexity depends on data structures and other
computer science tricks used; but if an algorithm can be im-
plemented as polynomial time one way, it remains polynomial
time in all reasonable implementations, and this allows us to
work at the theoretical level and ignore the details.

Also, there is a school of thought holding that the existence
of a polynomial time algorithm should normally suggest the
existence of a good and practically feasible polynomial time
algorithm. This is how Neal Koblitz (one of the founders of
algebraic cryptography) put it in [305, p. 37]:

The experience has been that if a problem of practical
interest is in P, then there is an algorithm for it whose
running time is bounded by a small power of the input
length.

Hence we have a metamathematical thesis describing a big
class of especially nice algorithms.5 Next, I’ll try to describe
even nicer algorithms—but, unfortunately, these are less ver-
satile and less applicable than polynomial time algorithms.

1.3.2 Choiceless algorithms

For our discussion of the “switch” and “flow” modes of compu-
tation, we have to move to some firm mathematical ground.
Luckily, the necessary formal concept of “choiceless” compu-
tation is already well-known in computer science.

Choiceless computing imposes the
black-and-white vision of mathemat-
ics. But maybe the same is true in
life—if one tries to avoid choices, one
sees the world in just two colors.

In naive terms, a choice-
less algorithm is a routine
which works in a single
uninterrupted flow, never
encountering a choice be-
tween two (or more) dis-
tinct ways to continue the
computation.6

So, what does mathe-
matics say about choice-
less algorithms and their limitations?

MATHEMATICS UNDER THE MICROSCOPE VER. 0.919 5-SEP-2007/12:39 c© ALEXANDRE V. BOROVIK



10 1 A Taste of Things to Come

A benchmark problem in the theory of choiceless compu-
tation is that of evaluation of the determinant of an n × n
matrix. The standard algebraic formula for the determinant

detA =
∑

σ

(−1)sign σa1,σ(1) · · · an,σ(n)

gives a choiceless algorithm working in O(n!)—since the sum
is taken over all n! permutations of indices 1, . . . , n. Therefore,
it does not work in polynomial time. In contrast, the standard
Gaussian elimination procedure works in cubic time, but re-
quires making choices; the first choice is needed at the very
first step, when we have to decide whether to swap rows of
the matrix (aij) according as a11 = 0 or not.

A remarkable result of Blass, Gurevich and Shelah [250,
Theorem 29] asserts that the determinant of a matrix over
the field of 2 elements cannot be found in choiceless polyno-
mial time. In ordinary language, their result says that, if the
determinant is to be calculated efficiently, then choices are
essential and unavoidable.

Yuri Gurevich
aged 2

Probably the most advanced result in the theory of choice-
less algorithms is Shelah’s zero-one law [251, 333] which says
that if a property of a class of objects is recognizable in choice-
less polynomial time (that is, given an object, we can decide
choicelessly and in polynomial time whether the object has
the property in question or not) then the property holds with
probability 0 or 1. Paradoxically, choiceless computing im-
poses the black-and-white vision of mathematics. But maybe
the same is true in life—if one tries to avoid choices, one sees
the world in just two colors, and one color is always preferred.

When using computer science as a source of metaphors
for describing the workings of our brain, it is worth remem-
bering that, despite the immense complexity and power of
the brain, the mental processes of mathematics appear to be
surprisingly resource-limited. Therefore I have a feeling that
branches of logic developed for the needs of complexity the-
ory might provide better metaphors than the general theory
of computation.

1.4 Analytic functions and the inevitability of choice

AEROFLOT flight attendant: “Would you like a dinner?”
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Passenger: “And what’s the choice?”
Flight attendant: “Yes—or no.”

We have mentioned at the beginning of our discussion that
|x| is a non-analytic function. It can be written by a single
algebraic formula

|x| =
√

x2,

with the only glitch that of the two values of the square root
±
√

x2 we have to choose the positive one, namely,
√

x2.

Yuri Gurevich
aged 9

One may argue that in the case of the absolute value func-
tion the choice is artificial and is forced on us by the func-
tion’s awkward definition. But let us turn to solutions of al-
gebraic equations, which give more natural examples of the
inevitability of choice.

The classical formula

x1,2 =
−b±√b2 − 4ac

2a

for the roots of the quadratic equation is the limit of what
we can do with analytic functions without choosing branches
of multivalued analytic functions—but even here, beware of
complications and read an interesting comment from Chris
Hobbs.7 Recall that the inverse of the square function x =
y2 is a two-valued function y = ±√x whose graph has two
branches, positive y =

√
x and negative, y = −√x. Similarly,

the cube root function y = 3
√

x has three distinct branches,
but they become visible only in the complex domain, since
only one cube root of a real number is real, the other two are
obtained from it by multiplying it by complex factors

−1

2
±
√

3

2
i.

The classical formula—which can be traced back to Gero-
lamo Cardano (1501–1576) and Niccolò Tartaglia (1499–1557)—
for the roots of the cubic equation

x3 + ax2 + bx + c = 0

gives its three roots as
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12 1 A Taste of Things to Come

− a

3
+

3

√
−2a3 + 9ab− 27c +

√
(2a3 − 9ab + 27c)2 + 4(a2 + 3b)3

54

+
3

√
−2a3 + 9ab− 27c−

√
(2a3 − 9ab + 27c)2 + 4(a2 + 3b)3

54
,

− a

3
+
−1− i

√
3

2

3

√
−2a3 + 9ab− 27c +

√
(2a3 − 9ab + 27c)2 + 4(a2 + 3b)3

54

+
−1 + i

√
3

2

3

√
−2a3 + 9ab− 27c−

√
(2a3 − 9ab + 27c)2 + 4(a2 + 3b)3

54
,

− a

3
+
−1 + i

√
3

2

3

√
−2a3 + 9ab− 27c +

√
(2a3 − 9ab + 27c)2 + 4(a2 + 3b)3

54

+
−1− i

√
3

2

3

√
−2a3 + 9ab− 27c−

√
(2a3 − 9ab + 27c)2 + 4(a2 + 3b)3

54
.

Please notice the carefully choreographed choice of the branches
of the square root √ and the cube root function 3

√, the rhyth-
mic dance of pluses and minuses. Without that choice, Car-
dano’s formula produces too many values, only three of which
are true roots. Indeed, if we work with multivalued functions
without making any distinction between their branches, we
have to accept that the superposition of an m-valued function
and an n-valued function has mn values. We cannot collect
like terms: an innocent looking expression like

√
x +

√
9x

defines, if we interpret “
√

x” as two-valued, a function with
four branches

±√x±
√

9x = {−4
√

x,−2
√

x, 2
√

x, 4
√

x }.
It is a rigorous mathematical fact [243] that solutions of

Chris Hobbs
aged 6

equations of degree higher than two cannot be analytically
expressed by choiceless multivalued formulae (even if we
allow for more sophisticated analytic functions than radi-
cals); see a discussion of the topological nature of this fact
by Vladimir Arnold [3, p. 38].

This last observation is especially interesting in the his-
toric context. At the early period of development of symbolic
algebra, mathematicians were tempted to introduce func-
tions more general than roots. The following extract from
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Pierpaolo Muscharello’s Algorismus from 1478 is taken from
Jens Høyrup [47]:

Pronic root is as you say, 9 times 9 makes 81. And now
take the root of 9, which is 3, and this 3 is added above
81, so that the pronic root of 84 is said to ne 3.

In effect, Muscharello wanted to introduce the inverse of the
function

z 7→ z4 + z.

Arnold’s theorem explains why such tricks could not lead to
an easy solution of cubic and quadric equations and had been
abandoned.

1.5 You name it—we have it

This section is more technical and can be skipped.
As I have already said on several occasions, this book is about sim-

ple atomic objects and processes of mathematics. However, mathemat-
ics is huge and immensely rich; even the simplest observations about its
simplest objects may already have been developed into sophisticated and
highly specialized theories. Mathematics’ astonishing cornucopian rich-
ness and its bizarre diversity are not frequently mentioned in works on
philosophy and methodology of mathematics—but this point has to be
emphasized, since its makes the question about unity of mathematics
much more interesting.

In this section, I will briefly describe a “mini-mathematics”, a mathe-
matical theory concerned with a close relative of the absolute value func-
tion, the maximum function of two variables

z = max(x, y).

Of course, the absolute value function |x| can be expressed as

|x| = max(x,−x).

Similarly, the maximum max(x, y) can be expressed in terms of the ab-
solute value |x| and arithmetic operations—I leave it to the reader as an
exercise. [?] Oh yes, do it.

The theory is known under the name of tropical mathematics. The
strange name has no deep meaning: the adjective “tropical” was coined
by French mathematicians in the honor of their Brazilian colleague Imre
Simon, one of the pioneers of the new discipline. Tropical mathematics
works with usual real numbers but uses only two operations: addition, x+
y, and taking the maximum, max(x, y)—therefore it is one of the extreme
cases of “switch-flipping”, choice-based mathematics. Notice that addition
is distributive with respect to taking maximum:

a + max(b, c) = max(a + b, a + c).
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14 1 A Taste of Things to Come

This crucial observation is emphasized by renaming the two basic opera-
tions into new “multiplication” and “addition”:

a¯ b = a + b, a⊕ b = max(a, b).

The previous identity takes the more familiar shape of the distributive
law:

a¯ (b⊕ c) = a¯ b⊕ a¯ c.

Of course, operations ¯ and ⊕ are commutative and associative. After
recycling the traditional shorthand

xn = x¯ · · · ¯ x (n times),

we can introduce polynomials as well as matrix multiplication, determi-
nants, etc. For example, the tropical determinant of the matrix A = (aij)
is defined by evaluating the expansion formula (see page 10) tropically
and ignoring the signs of permutations σ involved in the classical formula
for determinant [328, 338]:8

dettrA =
⊕

σ∈Symn

(a1,σ(1) ¯ · · · ¯ an,σ(n))

= max
σ∈Symn

(a1,σ(1) + · · ·+ an,σ(n))

Here the “sum” is taken over the set Symn of all permutations of indices
1, . . . , n; for example,

dettr

∣∣∣∣
a b
c d

∣∣∣∣ = max(a + d, b + c).

Therefore the “sum” involves n! “monomials”—exactly as in the case of
ordinary determinants. Let us return for a second to our discussion of
the complexity of evaluation of determinants in choice-based and choice-
less models of computation. It is not obvious at all that a tropical deter-
minant can be evaluated using O(n3) elementary operations—but it is
true. The evaluation of the tropical determinant is the classical assign-
ment problem in discrete optimization and the bounds for its complexity
are well-known [331, Corollary 17.4b]. Indeed, finding the value of the
tropical determinant amounts to finding a permutation i 7→ σ(i) which
maximizes the sum

a1,σ(1) + · · ·+ an,σ(n).

This is an old problem of applied discrete optimization: a company has
bought n machines M1, . . . , Mn which have to be assigned to n factories
F1, . . . , Fn; the expected profit from assigning machine Mi to factory Fj is
aij ; find the assignment

Mi 7→ Fσ(i)

which maximizes the expected profit

a1,σ(1) + · · ·+ an,σ(n).

Chris Hobbs
aged 16

We also have a full-blown tropical algebraic geometry, where curves in
the plane are made from pieces of straight lines (Figure 1.1)—quite like
the graph of the absolute value function y = |x|, the starting point of our
discussion.
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Fig. 1.1. A cubic curve in the tropical projective plane (adapted from Mikhalkin
[317]).

Tropical mathematics is amusing, but is it relevant? Yes, and very
much so. Moreover, it currently is experiencing an explosive growth.
There are intrinsic mathematical reasons for tropical mathematics to ex-
ist, but its present flourishing is largely motivated by applications.

One application is mathematical genomics: tropical geometry cap-
tures the essential properties of “distance” between species in the phy-
logenic tree.

Another is theoretical physics: tropical mathematics can be treated as
a result of the so-called Maslov dequantization of traditional mathemat-
ics over numerical fields as the Planck constant ~ tends to zero taking
imaginary values [312].

A third one is computer science and the theory of time-dependent sys-
tems, like queuing networks (where tropical mathematics is known under
the name of a (max, +)-algebra). The rationale behind this class of appli-
cations is an observation so simple and banal that it has a certain camp
value. Indeed, we do not normally multiply time by time; instead, we
either add two intervals of time (which corresponds to consecutive execu-
tion of two processes) or compare the lengths of two intervals—to decide
which process ends earlier. Therefore tropical mathematics is mathemat-
ics of time—which also explains its applications to genomics: phylogenic
trees grow in time, and the geometry of phylogenic trees reflects the ge-
ometry of time.

1.6 Why are certain repetitive activities more
pleasurable than others?

Ivan crossed it all out and
decided to begin right off with something very strong,

in order to attract the reader’s attention at once,
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so he wrote that a cat had got on a tram-car,
and then went back to the episode with the severed head.

Michael Bulgakov, The Master and Margarita

Let us our turn our attention to the emotional side of mathe-
matics, more specifically, to the personal psychological expe-
rience of people working with mathematical algorithms and
routines.

I wish to formulate here some of my observations and con-
jectures which may appear to be bizarre and out of tune from
the usual discourse on mathematics. However, I tested some
of them in a warm-up talk that I gave at a forum discus-
sion Where do mathematicians come from? [382], part of a
very peculiar conference, that of the World Federation of Na-
tional Mathematics Competitions (WFNCM). It was held in
July 2006 in Cambridge, England. On my way from Manch-
ester to Cambridge, four hours by train, I had seen three peo-
ple solving Sudoku. In one case, a lady of middle age shared
a table with me and I had a chance to watch, in all detail
and with a growing fascination, how she was solving an ele-
mentary level Sudoku puzzle. Her actions followed a certain
rhythm: first she inspected the puzzle row by row and column
by column until she located a critical cell (which value had
been already uniquely determined by the already known val-
ues in other cells), then, with obvious agitation, checked that
this was indeed the case, happily wrote the digit in, smiled
betraying a childish satisfaction, relaxed for a few seconds,
and, after a short pause, started the search again.

Next day, in my talk at the conference, I pointed out that,
from a mathematical point of view, solving an elementary
level Sudoku puzzle is nothing more than solving a triangle
system of Boolean equations by back substitution, something
very similar to what we do after a Gauss-Jordan elimination
in a system of simultaneous linear equations. But has anyone
ever seen people on a train solving systems of linear equa-
tions from a newspaper?9

Why is Sudoku popular, and systems of linear equations
are not? (Actually, I was slightly wrong: at the time of my
talk, I was unaware of Kakuro which combines linear and
Boolean equations. But one still has to see whether Kakuro
beats Sudoku in popularity.)
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We will not understand the psycho-
logical and neurophysiological roots
of an important aspect of mathemat-
ical practice until we figure out why
bubble wrap popping is such an ad-
dictive and pleasant activity.

Still, why is Sudoku
popular? I believe the an-
swer is in a rhythm of
repeated cycles of opera-
tions each of which en-
gages our brains just up to
a right and most pleasur-
able level of intensity. As
a student, I experienced a
soothing, relaxing effect of
carrying out a recursive algorithm, like long division, or Eu-
clid’s algorithm or a diagonalization of a λ-matrix. Later, in
my research work, I felt a similar emotional impact of in-
ductive arguments in finite group theory: you start with a
minimal counterexample to the theorem, and then simplify
it step by step, like removing layers from an onion, until you
pin-point the core contradiction and destroy the counterex-
ample. My teacher, Victor Danilovich Mazurov, expressed the
principle of a “minimal counterexample” using a line from a
Russian fairy tale:

The oldest brother hid behind the back of the younger
one, the younger one hid behind the youngest one, and
the youngest brother fell on his knees, raised his hands
and pleaded for mercy.

Vladimir and Victor
Mazurov

ages 9 and 6

In mathematical education, especially at its earlier stages,
one of the teacher’s tasks is to give his/her students the op-
portunity to feel this soothing, comforting effect of a rhythmic
repetitive activity. And here I come to the crucial point:

why do people love to pop bubble wrap?

I would not write this now if the audience of my talk at the
WFNMC conference had not immediately agreed with, and
approved of, my comparison of execution of certain types of
recursive algorithms with the bubble wrap popping. I should
perhaps explain that the audience included some of the best
experts on mathematical education in the world, especially
on advanced and non-standard aspects of mathematics teach-
ing. They definitely knew everything about “recreational math-
ematics”, puzzles, brainteasers and conundrums of every pos-
sible kind. Their support allows me to be quite confident in
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my comparison of Sudoku with the bubble wrap popping. In
any case, the lady on the train was doing her Sudoku in an
immediately recognizable bubble wrap popping rhythm.

So, with the authority of the conference on my side, I dare
to formulate my thesis:

We will not understand the psychological and neuro-
physiological roots of an important aspect of mathe-
matical practice until we figure out why bubble wrap
popping is such an addictive and pleasant activity. Why
does it comfort and help to relax? Why is it soothing?

Actually, some years ago I formulated a rather embarrass-
ing conjecture that the attraction to bubble wrap popping is
genetically determined. Bubble wrap triggers in humans ar-
chaic instincts linked to an ape-like behavior: grooming (and
even more importantly, mutual grooming) and destruction of
lice. In apes and monkeys, mutual grooming is an important
part of social bonding, which explains its soothing, comfort-
ing, relaxing effect.

In my search on the web for a confirmation of my con-
jecture I have not managed to get further than numerous
websites devoted to virtual bubble wrap popping. A search
for the words “bubble wrap” is not the best way to find any-
thing meaningful on the web: almost everything sold on the
Internet is mailed in a bubble wrap packaging. As the result,
GOOGLE produces 9,090,000 hits for ”bubble wrap”. I offered
the problem to my colleague Gregory Cherlin, who was more
internet savvy and carried out a successful search. Here are
his principal findings:

• Gene HOXB8 controls normal grooming behavior. Disrup-
tion in mice leads to obsessive grooming behavior. Here is
a summary of information from the National Institutes of
Health website [373]:

This gene belongs to the homeobox family of genes.
The homeobox genes encode a highly conserved fam-
ily of transcription factors that play an important
role in morphogenesis in all multicellular organisms.
Mammals possess four similar homeobox gene clus-
ters, HOXA, HOXB, HOXC and HOXD, which are lo-
cated on different chromosomes and consist of 9 to 11
genes arranged in tandem. This gene is one of several
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homeobox HOXB genes located in a cluster on chro-
mosome 17. HOXB8 knockout mice exhibit an exces-
sive pathologic grooming behavior, leading to hair
removal and self-inflicted wounds at overgroomed
sites. This behavior is similar to the behavior of hu-
mans suffering from the obsessive-compulsive spec-
trum disorder trichotillomania.

• There is quite a range of grooming-related disorders in hu-
mans [379].

• Primates indeed do love to pop bubble wrap [370, p. 8].

Meanwhile, my own search for bubble wrap popping on
Google Scholar led me to the book under the telling title Teens
Together Grief Support Group Curriculum [355]. I have not
seen the whole book, but, apparently, page 57 contains suffi-
ciently revealing words:

Bubble Wrap: Give the teens a square of bubble wrap
to pop for one of their breaks. They really get into the
sound and action of popping the bubbles.

Should we be surprised if it were con-
firmed indeed that the most comfort-
able pace of execution of a recursive
algorithm is set by a gene responsible
for grooming behavior?

As I suspected, the
soothing and comforting
effect of bubble wrap pop-
ping is indeed well-known
to practicing psychothera-
pists.

Yes, it appears that
HOXB8 is indeed the Bub-
ble Wrap Gene and is re-
sponsible for Sudoku be-
ing attractive to humans. I would rather hear more on that
from geneticists and neurophysilogists.

At last I am in position to formulate the moral of this story.
I believe that a real understanding of one of the key issues of
mathematical practice (and especially of mathematics teach-
ing):

• why are some objects, concepts and processes of mathe-
matics are more intuitive, “natural”, or just more conve-
nient and acceptable than others?

cannot be achieved without taking a hard and close look at
the very deep and sometimes archaic levels of the human
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mind and the human neural system. Indeed, Stanislas De-
haene said in his book The Number Sense [138] that

We have to do mathematics using the brain which evolved
30 000 years ago for survival in the African savanna.
In particular, should we be surprised if it were confirmed

indeed that the most comfortable pace of execution of a re-
cursive algorithm is set by a gene responsible for grooming
behavior?

1.7 What lies ahead?

We have seen how the deceptively simple function y = |x|
launched us on a roller coaster ride through several branches
of mathematics. More adventures still lie ahead. They all will
follow a similar plot:
• Usually I start by describing a very simple—sometimes

ridiculously simple—mathematical problem, object or pro-
cedure.

• Then I discuss possible neurophysiological mechanisms
which might underpin the way we think and work with
this object. Sometimes my conjectures are purely specula-
tive, sometimes (for example, in the next chapter) they are
based on established neurophysiological research.

• I usually include a brief description of mathematical re-
sults which deal with mathematical analogues of the con-
jectural neurophysiological mechanisms.

• In the later parts of the book, I will more and more fre-
quently venture into the discussion of possible implica-
tions of our findings for our understanding of mathematics
and its philosophy.

• My conjectures are frequently outrageous and sketchy. I
have no qualms about that. The aim of the book is to ask
questions, not give answers.
I very much value a “global” outlook at mathematical prac-

tice (in recent books best represented by David Corfield’s Phi-
losophy of Real Mathematics [15]), but, in this book, I prefer
to concentrate on the “microscopic” level of study.

Quite often the mathematics discussed or mentioned in
this book is very deep and belongs to mainstream mathemat-
ical research, either recent, or, if we talk about the past, of
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some historic significance. I believe that this is not a coinci-
dence. Mathematics is produced by our brains, which imprint
onto it some of the structural patterns of the intrinsic mech-
anisms of our mind. Even if these imprints are not imme-
diately obvious to individual mathematicians, they are very
noticeable when mathematics is viewed at a larger scale—
not unlike hidden structures of landscape which emerge in
photographs made from a plane or a satellite.

David Corfield,
aged 10

Notes
1 SIMPLEST POSSIBLE EXAMPLES. Of course, simplest, in the relative sense,

examples can be found at every level of mathematics. Here is one example, due
to Gelfand: the simplest non-commutative Lie group is the group of isometries of
the real line R; it is the extension of the additive group R+ by the multiplicative
group {−1, +1 }. Its representation theory is a well-known chapter of elementary
mathematics, namely, trigonometry; however, the connection between represen-
tation theory and trigonometry is not frequently discussed. But this is not the
simplest possible example of a simplest possible example, and its discussion will
lead us beyond the scope of this book.

However, it would be useful to record one consequence of the relation between
representation theory and trigonometry: the formula for matrix multiplication
is more fundamental than almost any trigonometric formula. We shall return to
that later, see Page 213.

2ANALYTIC FUNCTIONS. A function f(x) is analytic at x = a0 if we can write
f(a0 + z) as a power series

f(a0 + z) = a0 + a1z + a2z
2 + a3z

3 + · · ·
converging for all sufficiently small z. For example, the square root function y =√

x is analytic at the point x = 1 since by Newton’s Binomial Formula we have

√
1 + z = 1 +

z

2
− z2

4 · 2!
+

3 · z3

8 · 3!
− 3 · 5 · z4

16 · 4!
+

3 · 5 · 7 · z5

32 · 5!
+ · · ·

for all z such that |z| < 1. But a power series expansion for y =
√

x at x = 0 does
not exist: the function y =

√
x is not analytic at x = 0.

3DISCRETE VS. CONTINUOUS: the two other great divides in mathematics are
between “finite” and “infinite” and between “geometric” and “formula-based”; we
shall discuss them later in the book.

4O()-NOTATION. A few words about O()-notation for orders of magnitude of
functions of natural argument n: we say that f(n) = O(g(n)) if there is a constant
C such that f(n) 6 Cg(n) for all sufficiently large n. Hence f(n) is O(nd) if f(n) 6
Cnd.

5KOBLITZ’S THESIS. Like all general proclamations about mathematics, Koblitz’s
thesis has its natural limits of applicability. As usual, we have all possible com-
plications caused by the non-constructive nature of many mathematical proofs:
sometimes it is possible to prove that a certain algorithm has polynomial com-
plexity O(nd), without having any way to find the actual degree d; one example
can be found in [265]. But we do not venture into this exciting, but dangerous,
territory.

MATHEMATICS UNDER THE MICROSCOPE VER. 0.919 5-SEP-2007/12:39 c© ALEXANDRE V. BOROVIK



22 NOTES

6CHOICELESS ALGORITHMS. A few words of warning are due. Any algorithm
on a clearly described finite set of inputs can be made into a choiceless algorithm
by running it on all possible reorderings of the input structures. Therefore the
concept of choiceless computing is meaningful only if we assume resource limita-
tions and focus on choiceless polynomial time algorithms.

7An interesting comment from Chris Hobbs: on the formula

x1,2 =
−b±√b2 − 4ac

2a

for the roots of the quadratic equation:

I know that this formula is always written with the plus / minus but, as
you’ve argued in the text, it’s not only unnecessary, it’s also wrong. It has
worried me since I first met it as a child that, according to that formula,
there are four roots to a quadratic equation: the square root functions
delivers two and the plus/minus turns them into four (two positive ++
and −−, and two negative −+ and +−). Just a quibble but it’s a shame
that we don’t have a notation for “the negative square root of x” and “the
positive square root of x”.

8TROPICAL MATHEMATICS. The works [328, 338] use min, not max as a basic
operation ⊕, but this makes no difference since in the both cases the results are
similar. Traditionally, max is used in works originating in control theory and min
in papers motivated by applications to algebraic geometry.

9SUDOKU. Sudoku enthusiasts would not forgive me if I move from the subject
without giving a single Sudoku puzzle. Here is the one, kindly provided by Gordon
Royle. It contains only 17 clues (filled squares), but is still deterministic, that is,
can be filled in in only one way. Apparently the existence of deterministic Sudoku
puzzles with less than 17 clues is an open problem.

1

4

2

5 4 7

8 3

1 9

3 4 2

5 1

8 6
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What You See is What You Get

2.1 The starting point: mirrors and reflections

I use, as one of the principal running themes of this book, a
comparison between two approaches to the concept of sym-
metry as it is understood and used in modern algebra. The
corresponding mathematical discipline is well established
and is known under the name theory of finite reflection groups.
The reader should not worry if he or she has never encoun-
tered this name; as will soon be seen, the subject has many
elementary facets.

To start with, the principal objects of the theory can be
defined in the most intuitive way. I give first an informal de-
scription:

Imagine a few (semi-transparent) mirrors in ordinary
three-dimensional space. Mirrors (more precisely, their
images) multiply by reflecting in each other, as in a
kaleidoscope or a gallery of mirrors. Of special inter-
est are systems of mirrors which generate only finitely
many reflected images. Such finite systems of mirrors
happen to be one of the cornerstones of modern mathe-
matics and lie at the heart of many mathematical the-
ories.

As usual, the full theory is concerned with the more gen-
eral case of
n-dimensional Euclidean space, with 2-dimensional mirrors
replaced by (n− 1)-dimensional hyperplanes. To that end, we
give a formal definition:
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A system of hyperplanes (mirrors or images of mirrors)
M in the Euclidean space Rn is called closed if, for any
two mirrors M1 and M2 in M, the mirror image of the
mirror M2 in the mirror M1 also belongs to M (Fig-
ure 2.1).

Nicolas Bourbaki
eternal child

Thus, the principal objects of the theory are finite closed
systems of mirrors. In more evocative terms, the theory can
be described as the geometry of multiple mirror images. This
approach to symmetry is well known and is found, for exam-
ple, in Chapter 5, §3 of Bourbaki’s classical text [259]1, or in
Vinberg’s paper [344]; I have recently used it in my textbook
Mirrors and Reflections [231].

However, closed systems of mirrors are usually known in
mathematics under a different name, and in a completely
different dress, as finite reflection groups. They make up a
classical chapter of mathematics, which originated in semi-
nal works of H. S. M. Coxeter [269, 270] (hence yet another
name: finite Coxeter groups). The theory can be based on the
concept of a group of transformations (as is done in many
excellent books, see, for example, [292, 299]) and can be de-
veloped in group-theoretic terms.

M
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The system M of all mirrors of
symmetry of a geometric body ∆ is
closed: the reflection of a mirror in
another mirror is another mirror
there. Notice that if ∆ is compact
(i.e. closed and bounded) then all
mirrors have a point in common.

Fig. 2.1. A closed system of mirrors. Drawing by Anna Borovik.

So we have two treatments, in two different mathemati-
cal languages, of the same mathematical theory (which I will
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Fig. 2.2. The ability to recognize oneself in the mirror is equated, in popular cul-
ture, to self-awareness of a sentient being. Photo by roseoftimothywoods. Source:
Wikipedia Commons and Flickr. Licensed under Creative Commons Attribution
2.0 License.

call Coxeter theory). This is by no means an unusual thing in
mathematics. What makes mirror systems / Coxeter groups
interesting is that a closer look at the corresponding math-
ematical languages reveals their cognitive (and even neuro-
physiological!) aspects, much more obviously than in the rest
of mathematics. In particular, as we shall soon see, the mir-
ror system / Coxeter group alternative precisely matches the
great visual / verbal divide of mathematical cognition.

Anna Borovik
nee Vvedenskaya

aged 8

It is worthwhile to pause for a second over the question of
why we pay special attention to visual and speech processing.
The answer is obvious: of all our senses, sight and hearing
have the highest information processing rate and are used for
communication. One can only speculate what human math-
ematics would look like if we had an echolocating capacity
(see a discussion of the way bats perceive the world in a pa-
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per by Kathleen Akins [116]). Even more mind-boggling: try
to imagine that humans have electric sensing and communi-
cating facilities of the kind Nile elephant fish Gymnarchus
niloticus have and therefore live in the landscape made not
of shapes and volumes (sight is of no use in the murky wa-
ters of the Nile) but of electromagnetic capacities.2 Would the
concepts and results of vector calculus be self-evident to us?
And another question can be asked: which immediately in-
tuitive mathematical concepts would become less intuitive?
In Section 4.4 I attempt to suggest a partial answer to this
question.

Fig. 2.3. Coxeter’s piano in the Fields Institute, Toronto. Photo by John Baez

I wish to stress that, although the theory of Coxeter groups
formally belongs to “higher” mathematics, the issues raised
in the next two chapters are relevant to the teaching and un-
derstanding of mathematics at all levels, from elementary
school to graduate studies. Indeed, I will be talking about
such matters as geometric intuition. I will also touch on the
role of pictorial proofs and self-explanatory diagrams; some
of these may seem naı̈ve, but, as I hope to demonstrate, fre-
quently lead deep into the heart of mathematics (see Sec-
tion 2.6 for one of the more striking cases).

Erich Ellers
aged 7
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2.2 Image processing in humans

The mirror is one of the most powerful and evocative sym-
bols of our culture; seeing oneself in a mirror is equated to
the self-awareness of a human being. But the reason why the
language of mirrors and reflections happens to be so useful in
the exposition of mathematical theories lies not so much at a
cultural as at a psychophysiological level.

How do people recognize mirror images? Tarr and Pinker
[185] showed that recognition of planar mirror images is done
by subconscious mental rotation of 180◦ about an appropri-
ately chosen axis. Remarkably, the brain computes the posi-
tion of this axis!

This is how Pinker describes the effect of their simple ex-
periment.

So we showed ourselves [on a computer screen] the
standard upright shape alternating with one of its mir-
ror images, back and forth once a second. The percep-
tion of flipping was so obvious that we didn’t bother
to recruit volunteers to confirm it. When the shape al-
ternated with its upright reflection, it seemed to pivot
like a washing machine agitator. When it alternated
with its upside-down reflection, it did backflips. When
it alternated with its sideways reflection, it swooped
back and forth around the diagonal axis, and so on. The
brain finds the axis every time. [172, pp. 282–283]

Interestingly, the brain does exactly the same with ran-
domly positioned three-dimensional shapes, provided they
have the same chirality (that, are both of left-hand or right-
hand type, as gloves, say) and can be identified by a rotation
[183]. The interested reader may wish to take any computer
graphics package which allows animation and see it for him-
self.3

In view of these experiments, it is difficult to avoid the
conclusion that Euler’s classical theorem:

If an orientation-preserving isometry of the affine Eu-
clidean space AR3 has a fixed point then it is a rotation
around some axis.

is hardwired into our brains.
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This illusion of rotation disappears when the brain faces
the problem of the identification of three-dimensional mir-
ror images of opposite chirality; indeed, they can still be
identified by an appropriate rotation, but, this time, in four-
dimensional space. The environment which directed the evo-
lution of our brain never provided our ancestors with four-
dimensional experiences.

It is difficult to avoid the conclusion
that Euler’s Theorem is hardwired into
our brains.

Human vision is a so-
lution of an ill-posed in-
verse problem of recov-
ering information about
three-dimensional objects
from two-dimensional pro-
jections on the retinas of
the eyes. Pinker stresses
that this problem is solvable only because of the multitude
of assumptions about the nature of the objects and the world
in general built into the human brain or acquired from previ-
ous experiences.4

The algorithm of identification of three-dimensional shapes
is only one of many modules in the immensely complex sys-
tem of visual processing in humans. It is likely that various
modules are implemented as particular patterns of connec-
tions between neurons. It is natural to assume that different
modules developed at different stages of evolution [184]. The
older ones are likely to be more primitive and, probably, in-
volve relatively simple wiring diagrams. But since they had
adaptive value, they were inherited and acted as constraints
in the evolution of later additions to the system, in particular
any new modules which happened to process the outputs of,
and interact with, the pre-existent modules. At every stage,
evolution led to the development of an algorithm for solving a
very special and narrow problem. Of course, the evolution is
guided by the universal and basic principle of the survival of
the fittest. But, translated into selection criteria for the grad-
ual improvement of light-sensing organs, the general princi-
ple became highly specialized and changing over time. First it
favored higher sensitivity to diffuse light of a few cells which
previously had quite different functions; at the next step of
evolution it favored individuals with light-sensitive cells po-
sitioned in a more efficient way, and, most probably, only after
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that started to favor individuals who had some mechanism
for discriminating between light stimuli applied to different
groups of cells. Therefore we should expect that the image
processing algorithms of our brain have a multilayered struc-
ture which reflects their ontogenesis—and, not unlike many
modern software systems, are full of outdated “legacy code”.

The “flipping” algorithm for the recognition of mirror im-
ages of a flat object and the closely related (and possibly
identical) “rotation” algorithm for making randomly orien-
tated three-dimensional objects coincide provide rare cases
where we can glimpse the inner workings of our mind. Ob-
serve, however, that the algorithms are solutions of relatively
simple mathematical problems with a very rigid underlying
mathematical structure, namely, the group of isometries of
three-dimensional Euclidean space. There is no analogue of
Euler’s Theorem for four-dimensional space!5

The reader has possibly noticed that I prefer to use the
term “algorithm” rather than “circuit”, emphasizing the strong
possibility that a given algorithm can be implemented by dif-
ferent circuit arrangements if some of the arrangements be-
come impossible as the result of trauma, especially during
the early stages of a child’s development.

Studies of compensatory developments are abundant in
the literature. When I was looking for some recent studies,
my colleague David Broomhead directed me to the paper
[144], a case study of a young woman who has been unable to
make eye movements since birth but has surprisingly normal
visual perception. This is astonishing because the so-called
saccadic movements of the eyes are crucial for tracing the
contours and the key features of objects. Try to experiment
with a mirror: you will not see your eyes moving. During each
saccade, the eye is in effect blind. We see the world frame-by-
frame, as in cinema. The continuity of the moving world is the
result of the work of sophisticated interpolating routines in-
tegrated into the visual processing modules of our brain. Not
surprisingly, continuity is one of the most intuitive (although
hard-to-formalize) concepts of mathematics.

David Broomhead,
aged 8

The woman in the study reported in [144] compensates for
her lack of eye movement by quick movements of her head
which follow the usual highly regular patterns of saccadic
movements. I quote from the paper: “Her case suggests that
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saccadic movements, of the head or the eye, form the optimal
sampling method for the brain”. The italics are mine, since
I find the choice of words very suggestive: mathematics is
encroaching on the inner working of the brain, raising some
really interesting metamathematical questions.

2.3 A small triumph of visualisation: Coxeter’s proof
of Euler’s Theorem

If you need convincing that visualization is a purposeful tool
in learning, teaching and doing mathematics, there is no bet-
ter example than the proof of Euler’s Theorem as given by
Coxeter [271, p. 36]; I quote it verbatim. Remember that Cox-
eter’s book was first published in 1948, so it was written for
readers who were likely to have taken a standard course of
Euclidean geometry and therefore had developed their geo-
metric imagination.

In three dimensions, a congruent transformation
that leaves a point O invariant is the product of at most
three reflections: one to bring together the two x-axes,
another for the y-axes, and a third (if necessary) for the
z-axes.

Since the product of three reflections is opposite, a
direct transformation with an invariant point O can
only be the product of reflections in two planes through
O, i.e., a rotation.

I add just a few comments to facilitate the translation into
modern mathematical language: a congruent transformation
is an isometry; a direct transformation preserves the orien-
tation (chirality), while an opposite one changes it. Coxeter
refers to the fact that the product of two mirror reflections is
a rotation about the line of intersection of the mirrors. This is
something that everyone has seen in a tri-fold dressing table
mirror; the easiest way to prove the fact is to notice that the
product of two reflections leaves invariant every point on the
line of intersection of the mirrors.6

Erich Ellers
aged 15

We humans are blessed with a remarkable piece of math-
ematical software for image processing directly hardwired
into our brains. Coxeter made full use of it, and expected the
reader to use it, in his lightning proof of Euler’s Theorem.
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(See a further discussion of Coxeter’s proof in Section 6.3.)
The perverse state of modern mathematics teaching is that
“geometric intuition”, the skill of solving geometric problems
by looking at (simplified) two- and three-dimensional models
has been largely expelled from classroom practice.

The perverse state of modern math-
ematics teaching is that “geometric
intuition” has been largely expelled
from classroom practice.

However, our geomet-
ric intuition involves at
least two quite different
(although closely related)
cognitive components: vi-
sual processing and motor
control. The latter is para-
doxical; our hands can
move and act with ex-
treme precision, but we receive much less of information feed-
back from the feeling of the motion itself, or from the position
of our body and hands.

Fig. 2.4. Grinding a plane mirror (after David Henderson and Daina Taimina
[210]).

To illustrate mathematical implications of this difference,
I offer a small problem directly related to Euler’s Theorem. I
quote it from the book by David Henderson and Daina Taim-
ina [210], where it is discussed in a slightly different context:

When grinding a precision flat mirror, the following
method is sometimes used: Take three approximately
flat pieces of glass and put pumice between the first
and second pieces and grind them together. Then do the
same for the second and the third pieces and then for
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the third and first pieces. Repeat many times and all
three pieces of glass will become very accurately flat.

See Figure 2.4. Now close your eyes and try to imagine
your hands sliding gently one piece of glass all over the other.
Do you see why this works?

Now I separate the question into two sub-questions, which,
I believe, refer to two different levels of our intuition.

(A)Why do we need three pieces of glass to achieve the perfect
flatness? [?]Indeed, why?

(B)A trickier question: if only two pieces of glass are used, and
the resulting surface is not plane, then (assuming that the
grinding was thorough and even) what is this surface? [?]

Can you an-
swer it?

The reader may wish to ponder on these questions for a while;
I give the answers in Section 4.5.

It is futile to talk about mathemati-
cal practice without first acknowledg-
ing that it can only be understood
alongside its interaction with the hu-
man brain.

I am writing this book
because I believe it is fu-
tile to talk about math-
ematical practice without
first acknowledging that
it can only be under-
stood alongside its inter-
action with the human
mind, and, in particular,
the human brain. But our
mind—or our cognitive system—is not homogeneous: its dif-
ferent parts developed at different stages of evolution, they
have different levels of sophistication, an interaction between
different modules is frequently awkward. We will not get
much understanding of how mathematics lives in our mind
without taking into account all the complexities and limita-
tions of its constituent parts.

2.4 Mathematics: interiorization and reproduction

What is Mathematics, Really?
Reuben Hersh [41]
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But Didactylos posed the famous philosophical
conundrum:

“Yes, But What’s It Really All About, Then,
When You Get Right Down To It,

I Mean Really?”
Terry Pratchett [360, p. 167]

I have already quoted Davis and Hersh [19, p. 399], to say
that mathematics is

the study of mental objects with reproducible properties.
A famous mathematician David Mumford uses this formu-

lation in his paper [57, p. 199] and further comments on it:

I love this definition because it doesn’t try to limit
mathematics to what has been called mathematics in
the past but really attempts to say why certain com-
munications are classified as math, others as science,
others as art, others as gossip. Thus reproducible prop-
erties of the physical world are science whereas repro-
ducible mental objects are math. Art lives on the men-
tal plane (the real painting is not the set of dry pig-
ments on the canvas nor is a symphony the sequence of
sound waves that convey it to our ear) but, as the post-
modernists insist, is reinterpreted in new contexts by
each appreciator. As for gossip, which includes the vast
majority of our thoughts, its essence is its relation to a
unique local part of time and space.

If we accept this definition of mathematics, then we have
to address two intertwined aspects of learning and mastering
mathematics:

• The development of reproduction techniques for our own
mental objects.

• Interiorization of other people’s mental objects.

There is a natural hierarchy of methods of reproduction.
A partial list in descending order includes: proof; axiomati-
zation; algorithm; symbolic and graphic expression. I wish
to make it clear that reproduction is more than communica-
tion: you have to be able to reproduce your own mental work
for yourself. Maybe it even makes sense to view recovery pro-
cedures for lost or forgotten mathematical facts as a distinct
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group of reproduction methods, as they have very specific fea-
tures; see Chapter 9 for a more detailed discussion of recov-
ery procedures.

Interiorization is less frequently discussed. For our pur-
poses, we mention only that it includes visualization of ab-
stract concepts; transformation of formal conventions into
psychologically acceptable “rules of the game”; development
of subconscious “parsing rules” for processing strings of sym-
bols (most importantly, for reading mathematical expres-
sions). At a more mundane level, one cannot learn an ad-
vanced technique of symbolic manipulation without first pol-
ishing one’s skills in more routine computations to the level of
almost automatic perfection. Interiorization is more than un-
derstanding; to handle mathematical objects effectively, one
has to imprint at least some of their functions at the subcon-
scious level of one’s mind.

Interiorization is more than under-
standing; to handle mathematical
objects effectively, one has to imprint
at least some of their functions at the
subconscious level of one’s mind.

My use of the term “in-
teriorization” is slightly
different from the under-
standing of this word, say,
by Weller et al. [115]. I put
emphasis on the subcon-
scious, neurophysiological
components of the process.
Meanwhile, I am happy
to borrow from [115] the
terms encapsulation (and the reverse procedure, de-
encapsulation), to stand for the conversion of a mathemati-
cal procedure, a learnt sequence of action, into an object. The
processes of encapsulation and de-encapsulation is one of the
principal themes of the book.

It is a popular misconception that
mathematics is a dull repetitive activ-
ity.

It has to be clarified
that reproduction does not
mean repetition. It is a
popular misconception that
mathematics is a dull
repetitive activity. Actu-
ally, mathematicians are
easily bored by repetition.
Perhaps this could create some difficulty in neurological stud-
ies of mathematics. Certain techniques for study of patterns
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of activation of the brain are easier to implement when the
subject is engaged in an activity which is relatively simple
and can be repeated again and again, so that the data can
be averaged and errors of measurements suppressed. This
works in studies like [160] which compared activation of
brains of amateur and professional musicians during actual
or imagined performance of a short piece of violin music. In-
deed, you can ask a musician to play the same several bars
of music 10, 20, perhaps even 100 times—this is what they
do in rehearsals. But it is impossible to repeat the same cal-
culation 20 times: very soon the subject will remember the
final and intermediate results. Moreover, most mathemati-
cians will treat as an insult a request to repeat 20 times a
similar calculation with varying data.

Some mathematical activities are of a synthetic nature
and can be used as means of both interiorization and repro-
duction. A really remarkable one is the generation of exam-
ples, especially very simple (ideally, the simplest possible)
examples—as discussed in Section 1.1. Really useful exam-
ples can be loosely divided into two groups: “typical”, generic
examples of the theory; or “simplest possible”, almost degen-
erate examples, which emphasize the limitations and the log-
ical structure of the theory. Of course, one of the attractive
features of Coxeter Theory is that it is saturated by beauti-
ful examples of both kinds; I discuss some “simplest” cases in
Section 2.6.

Proof is the key ingredient of the emo-
tional side of mathematics.

Proof, being the high-
est level of reproduction
activity, has an important
interiorization aspect: as
Yuri Manin stresses in his
book Provable and Un-
provable, a proof becomes
such only after it is accepted (as the result of a highly rig-
orous process) [315, pp. 53–54]. Manin describes the act of
acceptance as a social act; however, the importance of its per-
sonal, psychological component can hardly be overestimated.
One also should note that proof is the key ingredient of the
emotional side of mathematics; proof is the ultimate expla-
nation of why something is true, and a good proof often has a
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powerful emotional impact, boosting confidence and encour-
aging further questions “why?”

Visualization is one of the most powerful techniques for
interiorization. It anchors mathematical concepts and ideas
firmly into one of the most powerful parts of our brain, the
visual processing module. Returning to the principal exam-
ple of this book, mirrors and reflections, I want to point
out that finite reflection groups allow an approach to their
study based on a systematic reduction of this whole range of
complex geometric configurations to simple two- and three-
dimensional special cases. Mathematically this is expressed
by a theorem: a finite reflection group is a Coxeter group,
which means that all relations between elements are conse-
quences of relations between pairs of generating reflections.
But a pair of mirrors in the n-dimensional Euclidean space
is no more sophisticated a configuration than a pair of lines
on the plane, and all the properties of the former can be de-
duced from that of the latter. This provides a mathematical
explanation of why visualization is such an effective tool in
the theory of finite reflection groups.

2.5 How to draw an icosahedron on a blackboard

My understanding of visualization as an interiorization tech-
nique leads me to believe that drawing pictures, and devising
new kinds of pictures to draw, is an important way of facili-
tating mathematical work. This means that pictures have to
be treated as mathematical objects, and, consequently, must
be reproducible. Students in the classroom should be able to
draw right away the figures we put on the blackboard.

Satyan Devadoss
aged 3

I have to emphasize the difference between drawings or
sketches which are supposed to be reproduced by the reader
or student, and more technically sophisticated illustrative
material (I will call these illustrations), especially computer-
generated images designed for the visualization of complex
mathematical objects (see a book by Bill Casselman [262]
for an introduction into the art of illustrating mathematical
texts). It would be foolish to impose any restrictions on the
technical perfection of illustrations. However, one should be
aware of the danger of excessive details; as William Thurston—
one of the leading geometers of our time—stresses,

MATHEMATICS UNDER THE MICROSCOPE VER. 0.919 5-SEP-2007/12:39 c© ALEXANDRE V. BOROVIK



2.5 How to draw an icosahedron on a blackboard 37

Fig. 2.5. What different nations eat and drink. A statistical diagram from a
calendar published in Austro-Hungaria in 1901. Source: Marija Dalbello [17],
reproduced with permission. See [18] for a discussion of the historical context.

This style of graphical representation of quantitative information strikes us now
as patronizing and non-mathematical. It would be interesting to trace the cultural
change over the 20th century: why do we expect a much more slim and abstract
mode of presentation of information? Is this a result of the visual information
overload created by TV and Internet? It is worth mentioning that the level of
basic numeracy in the middle classes of the Austro-Hungarian Empire, the target
readership of the Šareni svjetski koledar, was almost definitely higher than in the
modern society.

words, logic and detailed pictures rattling around can
inhibit intuition and associations. [75, p. 165]

For that reason I believe that drawings should be intention-
ally very simple, even primitive. Mathematical pictures rep-
resent mental objects, not the real world! In the words of
William Thurston,

[people] do not have a very good built-in facility for in-
verse vision, that is, turning an internal spatial under-
standing back into a two-dimensional image. Conse-
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quently, mathematicians usually have fewer and poorer
figures in their papers and books than in their heads.
[75, p. 164]

We have to be careful with our drawings and make sure that
they correctly represent out “internal spatial understand-
ing”.

This illustration is omitted since
Elsevier (apparently, current own-
ers of the back catalog of Aca-
demic Press) have never responded
to my numerous inquiries about
sale/transfer of reproduction rights
for a drawing made by a 3 years old
girl.

Fig. 2.6. Vision vs. “inverse vision”: a picture by Nadia (drawing 3 from Selfe
[179]) as opposed to a picture by a normal child, see Snyder and Mitchell [181] for
a detailed discussion.

The pictures in Figure 2.6, taken from Selfe [179] and Sny-
der and Mitchell [181], illustrate the concept of “inverse vi-
sion” as introduced by Thurston. The picture (a) on the left
is drawn from memory by Nadia, a three-and-a-half year old
autistic child who at the time of making the picture has not
yet developed speech [179]. Picture (b) is a representative
drawing of a normal child, at age four years and two months.
It is obvious that a normal child draws not a horse, but a
concept of a horse.

Nicholas Humphrey [152] drew even bolder conclusions
from Nadia’s miraculous drawings. He observed that Nadia’s
pictures have most suggestive resemblance to cave paintings
of 30,000–20,000 years ago—compare Figures 2.7 and 2.8.
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This illustration is omitted since
Elsevier (apparently, current own-
ers of the back catalog of Aca-
demic Press) have never responded
to my numerous inquiries about
sale/transfer of reproduction rights
for a drawing made by a 3 years old
girl.

You can only trust my word that Na-
dia’s drawing is strikingly similar to a
cave painting from Chauvet Cave,
Figure 2.8.

Fig. 2.7. Horses by Nadia, at age of 3 years 5 months (drawing 13 from [179].

Humphrey conjectured that human language developed in
two stages. At the first stage it referred only to people and
relations between people; natural world (including animals)
had no symbolic representations in the language and there-
fore early people had no symbols for the external world. Cave
paintings such as the one in Figure 2.8, are symbolically un-
processed images on the retina of the painter’s eye, placed
one over another without much coordination or a coherent
plan. At the same time, people could already have words and
symbols which referred to other people—which is consistent
with the simultaneous presence, in some cave paintings, of
strikingly realistic animals and highly schematic human fig-
ures, see Figure 2.9.

Mathematical pictures are symbolic
images, not representations of reality.

Mathematical pictures
are symbolic images, not
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Fig. 2.8. Horses from Chauvet Cave (Ardeche). Document elaborated with the
support of the French Ministry of Culture and Communication, Regional Direc-
tion for Cultural Affairs—Rhône-Alpes, Regional Department of Archaeology.

representations of reality.
Like a matchstick human
in Figure 2.9, they are pro-
duced by “inverse vision”.
I dare to say that they do
not belong to art. I propose that image processing which leads
to creation of paintings and drawings in visual arts is differ-
ent from that of mathematics.7 Mathematical pictures there-
fore should not provoke an inferiority complex in readers who
have not tried to draw something since their days in elemen-
tary school; they should instead act as an invitation to read-
ers to express their own mental images.

Figure 2.10 illustrates the most effective way of drawing
an icosahedron, so simple that it is accessible to the reader
with very modest drawing skills. First we mark symmetri-
cally positioned segments in an alternating fashion on the
faces of the cube (left), and then connect the endpoints (right).
The drawing actually provides a proof of the existence of the
icosahedron: varying the lengths of segments on the left cube,
it is easy to see from continuity principles that, at certain
length of the segments, all edges of the inscribed polyhedron
on the right become equal. [?] Moreover, this construction

If edges of
the cube have
length 1, find
the length of
the segments
which indeed
makes all tri-
angle faces
equilateral,
Figure 2.10.
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Fig. 2.9. A symbolic human and a naturalistic bull. Rock painting of a hunting
scene, c.17000 BC / Caves of Lascaux, Dordogne, France. Source: Wikipedia Com-
mons. Public domain.

helps to prove that the group of symmetries of the resulting
icosahedron is as big as one would expect it to be; see [231]
for more detail.

Figure 2.10 works as a proof because it is produced by
“inverse vision”. To draw it, you have to run, in your head,
the procedure for the construction of the icosahedron. And,
of course, the continuity principles used are self-evident—
they are part of the same mechanisms of perception of motion
which glue, in our minds, cinema’s 24 frames per second into
continuous motion.

I hope that now you will agree that Figure 2.10 deserves to
be treated as a mathematical statement. It is useful to place
it in a wider context. Of course, construction of the icosahe-
dron is the same thing as construction of the finite reflection
group H3; this can be done by means of linear algebra—which
leads to rather nasty calculations, or by means of represen-
tation theory—which requires some knowledge of represen-
tation theory. It also can be done by quaternions—which is
nice and beautiful, but requires knowledge of quaternions.
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Fig. 2.10. A self-evident construction of an icosahedron. Drawing by Anna
Borovik.

This construction of the icosahedron is adapted from the method of H. M. Tay-
lor [39, pp. 491–492]. John Stillwell has kindly pointed out that it goes back to
Piero della Francesca and can be found in his unpublished manuscript Libellus
de quinque corporibus regolaribus from around 1480.

The graphical construction is the simplest; using computer
jargon, it is a WYSIWYG (“What You See Is What You Get”)
mode of doing mathematics, which deserves to be used at ev-
ery opportunity.

John Stillwell (left)
aged 6

2.6 Self-explanatory diagrams

This section is more technical and can be skipped.
Self-explanatory diagrams have been virtually expunged from modern

mathematics. I believe they can be useful, not only in proofs, etc., but
also as means of a metamathematical discussion of the structure and
interrelations of mathematical theories.

Figure 2.11 is one example, taken from Mirrors and Reflections [231]:
the isomorphism of the root systems D3 (shown on the left inscribed into
the unit cube [−1, 1]3) and A3 is not immediately obvious, but the corre-
sponding mirror systems coincide most obviously. The mirror system D3

(the system of mirrors of symmetry of the cube) is shown in the middle by
tracing the intersections of mirrors with the surface of the cube, and, on
the right, by intersections with the surface of the tetrahedron inscribed in
the cube. Comparing the last two pictures we see that the mirror system
of type D3 is isomorphic to the mirror system of the regular tetrahedron,
that is, to the system of type A3.

As we shall soon see, this isomorphism has far-reaching implications.
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Fig. 2.11. An example of a self-explanatory diagram. Drawing by Anna Borovik.

Indeed, at the level of complex Lie groups the isomorphism D3 ' A3

becomes a rather mysterious isomorphism between the 6-dimensional or-
thogonal group SO6(C) and 1

2
SL4(C), the factor group of the 4-dimensional

special linear group SL4(C) by the group of scalar matrices with diagonal
entries ±1 (or, if you prefer to work with spinor groups, between Spin6(C)
and SL4(C)).

This is not yet the end of the story. The compact form of SL4(C) is SU4,
and hence the embedding

SU4 ↪→ Spin6(C)

features prominently in the representation theory of SU4, and hence in
the SU4-symmetry formalism of theoretical physics.

But the underlying reason for the isomorphisms retains all the audac-
ity of Keplerian reductionism: the tetrahedron can be inscribed into the
cube. Compare with Figure 2.12.

Because of their truly fundamental role in mathematics, even the sim-
plest diagrams concerning finite reflection groups (or finite mirror sys-
tems, or root systems—the languages are equivalent) have interpreta-
tions of cosmological proportions. Figure 2.13 is even more instructive. It
is a classical case of the simplest possible example as discussed in Chap-
ter 1. For example, it is the simplest rank 2 root system, or the simplest
root system with a non-trivial graph automorphism; the latter, as we shall
see in a minute, has really significant implications.

Figure 2.13 also demonstrates that the root system D2 = {±ε1 ± ε2 }
is isomorphic to A1 ⊕ A1 = {±ε1,±ε2 }. At the level of Lie groups, this
isomorphism plays an important role in the description of the struc-
ture of 4-dimensional space-time of special relativity, namely, it yields
the structure of the Minkowski group (the group of isometries of the 4-
dimensional space-time of special relativity theory with the metric given
by the quadratic form x2 + y2 + z2 − t2).

Indeed, the isomorphism of root systems D2 ' A1 ⊕ A1 leads to the
isomorphisms

Spin4(C) ' SL2(C)× SL2(C)

and
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Fig. 2.12. A fragment of a famous engraving from Kepler’s Mysterium Cosmo-
graphicum.
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Fig. 2.13. This diagram demonstrates the isomorphism of the root systems
D2 = {±ε1 ± ε2 } and A1 ⊕A1 = {±ε1,±ε2 }. Drawing by Anna Borovik.

SO4(C) ' SL2(C)⊗ SL2(C)

(the tensor product of two copies of SL2(C), each acting on its canonical 2-
dimensional space C2). The connected component of the Minkowski group
is a real form of SO4(C)). Hence it is the group of fixed points of some in-
volutory automorphism τ of SO4(C)). What is this automorphism τ? Let
us look again at the quadratic form x2 + y2 + z2 − t2; it is a real form of
the complex quadratic form z2

1 + z2
2 + z2

3 + z2
4 , but has lost the symmetric

pattern of coefficients. One can see that this means that τ swaps the two
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copies of SL2(C) in SL2(C)⊗SL2(C) and therefore has to be the symmetry
between the two diagonals of the square in Figure 2.13. Being an invo-
lution, τ fixes pointwise the “diagonal” subgroup in SL2(C) ⊗ SL2(C) iso-
morphic to PSL2(C). (It is PSL2(C) rather than SL2(C) because its center
〈−Id⊗−Id〉 is killed in the tensor product.) Hence the connected compo-
nent of the Minkowski group is isomorphic to PSL2(C).

Three cheers for Kepler!

Notes
1Groupes et Algebras de Lie, Chap. 4, 5, et 6 is one of the better books by Bour-

baki; it even contains a drawing, in an unexpected deviation from their usual
aesthetics. See an instructive discussion of the history of this volume by its main
contributor, Pierre Cartier [68].

2See discussion of electromagnetic imaging in fish in Nelson [165], Rasnow and
Bower [174].

3To reproduce Tarr’s experiments, I was using PAINTSHOP PRO, with 3-dimensional
images produced by XARA, two software packages picked up from the cover CD of
a computer magazine.

4PICTORIAL PROOFS. Jody Azzouni [5, p. 125] commented on pictorial proofs
that they work only because we impose many assumptions on diagrams admissi-
ble as part of such proofs. As he put it,

We can conveniently stipulate the properties of circles and take them as
mechanically recognizable because there are no ellipses (for example) in
the system. Introduce (arbitrary) ellipses and it becomes impossible to
tell whether what we have drawn in front of us is a circle or an ellipse.

It is likely that his remark would not surprise cognitive psychologists; they be-
lieve that this is what our brain is doing anyway.

54-DIMENSIONAL INTUITION. An interesting question: can one be habituated
in a 4-dimensional space (say, with a flight simulator). Of course, a 3-dimensional
image, stereo or holographic, could help. To put the point more radically, do we
learn the number of dimensions?

6EULER’S THEOREM. I accept that the reader has every right to insist, if so
inclined, that the “best” way to prove Euler’s Theorem is by reduction to algebra:
the characteristic polynomial of a “generic” three-dimensional orthogonal matrix
is a cubic with real coefficients, hence has a real root and a pair of conjugate
complex roots; the orthogonality means that the eigenvalues have magnitude 1,
hence should be equal to ±1 and cos θ ± i sin θ. If the matrix has determinant
+1 then the real eigenvalue is +1, and the corresponding eigenvector gives the
direction of the axis of rotation, while θ is the angle of rotation. But is that really
better than Coxeter’s proof?

7The situation could be different in ornamental art, especially when images of
other people and of the natural world are prohibited by cultural conventions or re-
ligion. The creators of the Islamic mosaics in the Alhambra had in fact discovered
most of the planar crystallographic groups—an intellectual achievement which
firmly places their work in the realm of mathematics. See Branko Grünbaum [35]
for the most up-to-date discussion of symmetry groups present in the Alhambra.
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The Wing of the Hummingbird

3.1 Parsing

So far I have emphasized the role of visualization in mathe-
matics, and its power of persuasion. Here I will try to unite
the visual and symbolic aspects of mathematics, and touch
on the limitations of visualization.

Indeed, visualization works perfectly well in the geomet-
ric theory of finite reflection groups, but needs to be refined
for the more general theory of infinite Coxeter groups. We
take a brief look at this more general theory, which is of
special interest for us at this point. As truly fundamental
mathematical objects, Coxeter groups provide an example
of a theory where the links between mathematical teaching
and learning and cognitive psychology lie exposed. Besides
the power of geometric interpretation and visualization, the
theory of Coxeter groups relies on manipulation of words in
canonical generators (chains of consecutive reflections, in the
case of reflection groups) and provides one of the best exam-
ples of the effectiveness of the language metaphor in mathe-
matics.

It is tempting to try to link the psychology of symbolic ma-
nipulation in mathematics with the Chomskian conjecture
that humans have an innate facility for parsing human lan-
guage. Basically, parsing is the recognition/identification of
the structure of a string of symbols (phonemes, letters, etc.)
We parse everything we read or hear. Here is an example
from Steven Pinker’s book [173, pp. 203–205] where this the-
sis is vigorously promoted:
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Remarkable is the rapidity of the motion of the wing of the
hummingbird.

To make sense of the phrase, we have to mentally bracket
sub-phrases, making something like

[Remarkable is
[the rapidity of

[the motion of
[the wing of

[the hummingbird]]]]].

A sentence might have a different bracket pattern, just com-
pare

[Remarkable is [the rapidity of [the motion]]]

and

[[The rapidity [that [the motion] has]] is remarkable].

Some patterns are harder to deal with than others: for exam-
ple,

[[The rapidity that [the motion that [the wing] has] has] is
remarkable].

Some bracketings are close to incomprehensible, even though
the sentence conveys the same message:

[[The rapidity that [the motion that [the wing that [the
hummingbird] has] has] has] is remarkable]. [?]

To illustrate
the difficulty of
parsing, Gre-
gory Cherlin
kindly offered
a brainteaser
from his child-
hood:
Punctuate:
Smith where
Jones had had
had had had
had had had
had had had
the professor’s
approval.

Different human languages have different grammars, re-
sulting in different parsing patterns. The grammar is not in-
nate; Pinker emphasizes that what is innate is the human
capacity to generate parsing rules. Generation of parsing pat-
terns is a part of language learning (and young children are
extremely efficient at it). It is also a part of the interioriza-
tion of mental objects of mathematics, especially when these
objects are represented by strings of symbols.1

David Pierce
aged 6

Cognitive scientists are very much attracted to case stud-
ies of “savants”, autistic persons with an ability to han-
dle arithmetic or calendrical calculations disproportionate to
their low general IQ. As Snyder and Mitchell formulated it
[181],
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. . . savant skills for integer arithmetic . . . arise from an
ability to access some mental process which is common
to us all, but which is not readily accessible to normal
individuals.

The parsing mechanisms of the hu-
man brain are the key to the under-
standing of low-level arithmetic and
formula processing.

What are these “hid-
den” processes? In one of
the extreme cases (men-
tioned by Butterworth [129]),
a severely autistic young
man was unable to un-
derstand speech, but could
handle factors and primes
in numbers. This suggests
that certain mathematical actions are related not so much to
language itself, but to the parsing facility, one of the compo-
nents of the language system. An autistic person may have
difficulty in handling language for reasons unrelated to his
parsing ability; for example he may fail to recognize the
source of speech communication as another person (or to un-
derstand the difference between what he knows and what
the other person knows). But, in order to achieve such feats
as “doubling 8 388 628 up to 24 times to obtain 140 737 488
355 328 in several seconds” [181, p. 589], an autistic person
still has to be able to input into his brain the numbers given,
inevitably, as strings of phonemes or digits.

I propose a conjecture that the parsing mechanisms of the
human brain are the key to the understanding of low-level
arithmetic and formula processing.

Moving several levels up the hierarchy of mathematical
processes, we have a fascinating idea in the theory of auto-
matic theorem proving: rippling, a formalization of a common
way of mathematical reasoning where “formulae are manip-
ulated in a way that increases their similarities by incremen-
tally decreasing their differences” [261, p. 13]. This is facil-
itated by subdividing the formula into parts which have to
be preserved and parts which have to be changed. Again, we
see that in order to understand how humans use rippling in
mathematical thinking (and whether they actually use it),
we have to understand how our brain parses mathematical
formulae.
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To be on the cautious side, I am prepared to accept that
parsing might be much more prominent in the input/output
functions of the brain than in the internal processing of in-
formation. In a rare case of a savant with higher than nor-
mal general intellectual abilities, Daniel Tammet is able to
vividly describe the way he perceives the world, language,
and numbers. It is obvious from his words that number pro-
cessing happens to be directly wired into the visual module
of his brain. For him, many numbers have a unique visual
form.

“Different numbers have different colours, shapes and
textures . . . [The number] one is very bright and shin-
ing, like someone flashing a light into my face. Two is
like a movement from right to left. Five is a clap of
thunder or the sound of a wave against a rock. Six I
find more difficult: it’s more like a hole or a chasm.
When I multiply numbers, I see two shapes in a land-
scape. The space between the images makes a third
shape, like a jigsaw piece. And that third shape gradu-
ally crystallises: I see a fuzziness that becomes clearer
and clearer.” [356]

He adds that the whole process takes place in flash, “like
sparks flying off”.

Although Daniel Tammet suffers from Asperger’s syndrome
(a form of autism) which to some degree inhibits his so-
cial skills—he has to remind himself that other people have
thoughts entirely separate from his own and not to assume
that they automatically know everything he knows—he has
outstanding linguistic skills, speaks seven languages and
learned Icelandic in a week. He can also recite π to 22,514
decimal places. His case appears to confirm the thesis by Sny-
der and Mitchell; indeed, he has “an ability to access some
mental process . . . which is not readily accessible to normal
individuals”. This very access, however, requires parsing of
the input.

3.2 Number sense and grammar

I turn to another remarkable insight from cognitive psychol-
ogy, which links mechanisms of language processing to mas-
tering arithmetic.
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When infants learn to speak (in English) and count, there
is a distinctive period, lasting five to six months, in their de-
velopment, when they know the words one, two, three, four,
but can correctly apply only the numeral “one”, when talking
about a single object; they apply the words “two, three, four”,
apparently at random, to any collection of more than one ob-
ject. Susan Carey [131] calls the children at this stage one-
knowers. The most natural explanation is that they react to
the formal grammatical structures of the adults’ speech: one
doll, but two dollS, three dollS. At the next stage of devel-
opment, they suddenly start using the numerals two, three,
four, five correctly. Chinese and Japanese children become
one-knowers a few months later—because the grammar of
their languages has no specific markers for singular or plu-
ral in nouns, verbs, and adjectives.

In learning basic arithmetic, grammar
precedes the words!

When the native lan-
guage is Russian, the “one-
knower” stage is replaced
by “one-(two-three-four) knower”
stage, where children dif-
ferentiate between three
categories of quantities:
single object sets, the sets of two, three of four objects (with-
out further differentiation between, say, two or three objects),
and sets with five or more objects. This happens because mor-
phological differentiation of plural forms goes further in Rus-
sian than in English.

When I heard about special plural forms of two, three or
four nouns in a lecture by Susan Carey at the Mathemati-
cal Knowledge 2004 conference in Cambridge, I was mildly
amused because it made no sense to me, as a native Russian
speaker. Still, I started to write on note paper:

one doll odna kuklA
two dollS dve kuklY
three dollS tri kuklY
four dollS qetyre kuklY
five dollS p�t~ kukOL

...
...

ten dollS des�t~ kukOL
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I was startled: yes, Susan Carey was right! I had been using,
all my life, the morphological rules for forming plurals,—but
using them subconsciously, without ever paying attention to
them. But, apparently, an infant’s brain is tuned exactly to
picking up the rules: it is easier for the child to associate
the number of objects with the morphological marker in the
noun signifying the object than with the word one or two. The
interested reader will find a detailed discussion of plurality
marking in Sarnecka et al. [177]. Meanwhile, one of the read-
ers of my blog brought my attention to an even more strik-
ing example: in Russian, in some rare cases, the whole noun
changes, not just the plurality marker. For example, one year,
two yearS, three, four, five yearS are translated into Russian
as odin god, dva, tri, qetyre godA, p�t~ LET. Notice the same
thresholds: one / two, four / five. In learning basic arithmetic,
grammar precedes the words!

Barbara Sarnecka
aged 3

We shall return to the discussion of the four /three thresh-
old in the context of subitizing and short-term memory, in
Section 4.1. However, in the particular case of the Russian
language, there is a possibility of a historic explanation of
the peculiar behaviour of plurality markers: they are rem-
nants from the times when an indo-european predecessor of
Russian language used a system of numerals based on num-
ber 4 [364]. It might happen, however, that the historic ex-
planation is only intermediate, since it does not answer the
crucial question: why a base 4 system had appeared in the
first instance, and why, apparently, its subsequent evolution
led to a bifurcation into a base 9 system of numerals (now ex-
tinct, but still traceable in formulae from Russian fairy tales:
v tridev�tom carstve, in a three times ninth kingdom) and the
decimal one, now predominant.2

3.3 What about music?

It would be interesting to see to what extent the parsing
mechanisms of language processing are at work in wider au-
ditory perception; for example, are they relevant for the per-
ception of music? Do we parse notes by the same neurologi-
cal mechanism which we use for parsing phonemes? Unfortu-
nately, I cannot regard myself an expert in music and there-
fore restrict myself to a few quotations.
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My first quotation comes from a review, written by com-
poser Dorothy Kerr, of the recent book Music and Mathemat-
ics [30] (strongly recommended!). Kerr, in effect, links music
with the predictive nature of auditory processing.

For a composer, some of the moments of greatest excite-
ment lie in achieving a successful integration of ‘math-
ematical’ and ‘musical’ processes, though we may not
think about it in these terms. Take the canon (a musi-
cal device that is essentially a translational symmetry)
as an example: a very simple experiment that anyone
can do is to set up a time delay between two copies of
the same sound source (such as that produced when
listening to digital radio simultaneously with an ana-
logue receiver).3 At first—provided the time interval
allows it to be readily perceived—this simple geomet-
rical effect can be very engaging to the ear (given how
easy it is to create a satisfying effect in this way it is
perhaps not surprising that canon is one of the earliest
and most prevalent devices of musical composition). Af-
ter the canon we have made has been going for a while,
the novelty wears off and we develop the need for some
kind of change or a new layer of interest. The nature
and precise timing of such alterations, a calculation we
usually make using our intuition, is one of the most ba-
sic aspects of the art of composition. [. . . ] A process that
is too obvious trails far behind the listener’s ability to
predict its outcomes. (Such music—to borrow the words
of Harrison Birtwistle—‘finishes before it stops’.)

The second quotation is from Thomas Mann’s Der Zauber-
berg, a book famous for—among other things—a detailed
study of the phenomenology of time. It describes music as
parsing in its purest form:

“I am far from being particularly musical, and then
the pieces they play are not exactly elevating, neither
classic nor modern, but just the ordinary band-music.
Still, it is a pleasant change. It takes up a couple of
hours very decently; I mean it breaks them up and fills
them in, so there is something to them, by comparison
with the other days, hours and weeks that whisk by
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Fig. 3.1. Contrapunct. Here is a pair of mirror fugues of Bach’s Art of Fugue,
a subject (blue) and its melodic inversion (red). Where the subject ascends, the
mirror descends, and vice versa. A kind offering from Owl.

like nothing at all. You see an unpretentious concert-
number lasts perhaps seven minutes, and those seven
minutes amount to something; they have a beginning
and an end, they stand out, they don’t easily slip into
the regular humdrum round and get lost. Besides they
are again divided up by the figures of the piece that
is being played, and these again into beats, so there is
always something going on, and every moment has a
certain meaning, something you can take hold of . . . ”
(Translation by H. T. Lowe-Porter.)

Of course, this gives only one dimension of music, essen-
tially ignoring the harmony. In words of Daniel Barenboim,

The music can only be of interest if the different strands
of the polyphonic texture are played so distinctly that
they can all be heard and create a three-dimensional
effect—just as in painting, where something is moved
into the foreground and something else in background,
making one appear closer to the viewer than the other,
although the painting is flat and one-dimensional.

I would not dare to venture further and leave it to someone
else to develop this wonderful theme.
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3.4 Palindromes and mirrors

To illustrate the role of parsing and other word processing
mechanisms in doing mathematics, let us briefly describe
Coxeter groups in terms of words.

We work with an alphabet A consisting of finitely many
letters, which we denote a, b, etc. A word is any finite se-
quence of letters, possibly empty (we denote the empty word
ε). Notice that we have infinitely many words. To impose an
algebraic structure onto the amorphous mass of words, we
proclaim that some of them are equivalent to (or synonymous
with) other words; we shall denote the equivalence of words
V and W by writing V ≡ W . We demand that concatenation
of words preserve equivalence: if U ≡ V then UW ≡ V W
and WU ≡ WV : if mail is the same as post then mailroom is
the same as postroom. We denote the language defined by the
equivalence relation ≡ by L≡.

So far all that was just the proverbial “general nonsense”
which we frequently find in the formal exposition of mathe-
matical theories. Mathematicians treat such formalities with
great respect but frequently ignore them in actual work; for-
mal definitions play the same role as fine print in insurance
policies. Beware the fine print when you make a claim!

It is remarkable how little we have to add in order to cre-
ate the extremely rigid, crystalline structure of a Coxeter
group. To that end, we say that a word is reduced if it is not
equivalent to any shorter word. Now we introduce just two
axioms which define Coxeter languages:

Michel Las Vergnas
aged 9

DELETION PROPERTY. If a word is not reduced, then it is
equivalent to a word obtained from it by deleting some
two letters.
(Of course, it may happen that the new word is still not
reduced, in which case the process continues in the same
fashion, two letters at a time.)

REFLEXIVITY. Words like aa obtained by doubling a letter
are not reduced (hence are equivalent to the empty word,
by the Deletion Property); aardvark is not a reduced word.

Actually, a Coxeter language is exactly a Coxeter group,
but I intentionally ignore this crucial fact and formulate ev-
erything in terms of words and languages.
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I will now give a (straightforward) reformulation of a clas-
sical theorem of 20th century algebra, due to Coxeter and
Tits. My formulation is a bit of a caricature devised specifi-
cally for the purposes of the present book.

To emphasize the language aspects, let us make palin-
dromes, that is, non-empty reduced words such as “level” that
read the same backwards as forwards, the central object of
the theory. 4

Now the Coxeter–Tits Theorem becomes a theorem about
representation of palindromes by mirrors.

·
·
·
·
·
·

T
T

T
T

T
T

a

b

aba ≡ bab

Fig. 3.2. The Palindrome Representation Theorem: The three mirrors of symme-
try of the equilateral triangle correspond to the palindromes a, b and aba. Together
with the equivalences aa ≡ bb ≡ ε (the empty word), the equivalence aba ≡ bab
warrants that the corresponding Coxeter language does not contain any other
palindromes.

The Palindrome Representation Theorem. Assume that
a Coxeter language L≡ contains, up to equivalence, only
finitely many palindromes.5 Then:
• There exists a finite closed systemM of mirrors in a finite-

dimensional Euclidean space Rn such that the mirrors in
M are in one-to-one correspondence with the equivalence
classes of the palindromes.

• Moreover, if M1 and M2 are mirrors and P1, P2 their palin-
dromes, then the palindrome associated with the reflected
image of the mirror M1 in the mirror M2 is P2P1P2, if the
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latter is reduced, or a palindrome obtained from the word
P2P1P2 by reduction.

• Finally, every closed finite system of mirrors in the Eu-
clidean space Rn can be obtained in this way from the sys-
tem of palindromes in an appropriate Coxeter language.

The interested reader will find the ingredients of a proof of
this result in Chapters 5 and 7 of [256]. It involves, at some
point, the following equivalence [231, Exercise 11.8]:

a1 · · · al ≡ a
al−1···a1

l · aal−2···a1

l−1 · · · aa1
2 · a1,

where bak···a1 is an abbreviation of a palindromic word

a1 · · · ak · b · ak · · · a1;

the foregoing identity expresses an arbitrary word as the con-
catenation of palindromical words; its proof consists of rear-
rangement of brackets and the cancellation of doubled let-
ters aiai whenever they appear. Proofs like that are one of the
many reasons why, in order to master the theory of Coxeter
groups expressed in a “linguistic” manner, the novice reader
has to develop an ability to manipulate imaginary mental
brackets with a rapidity comparable only with the remark-
able rapidity of the motion of the wing of the hummingbird,
or the rapidity of parsing thereof.

We can re-use space, but, unfortu-
nately, cannot re-use time.

I reiterate that I de-
vised the palindrome for-
mulation of the Repre-
sentation Theorem specif-
ically for the needs of the
present book. When after-
wards I made a standard
search on GOOGLE and MathSciNet [371], I was pleased to
discover that my formulation appeared to be new.

I was also pleasantly surprised to find more than a hun-
dred papers on palindromes produced by computer scientists.
The set of all palindromic words in a given alphabet is one
of the simplest examples of a language which can be gener-
ated only by a device with some kind of memory, say, with
a stack or push-down storage which works on the principle
“last in—first out”, like bullets in a handgun clip. It makes
palindromes a very attractive test problem in the study of
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the complexity of word processing, for example, for comparing
two fundamental concepts of algorithmic complexity: space-
complexity, measured by the amount of memory required,
and time-complexity. The difference between the two com-
plexities is deeply philosophical: we can re-use space, but,
unfortunately, cannot re-use time. I was particularly fasci-
nated to learn that palindromes are recognizable by Turing
machines working within sublogarithmic space constraints
[339]. Hence, in this particular problem, it is possible to over-
write and re-use the memory.

Perhaps it is exactly the necessity to engage—and re-use—
one’s low-level memory that turns palindromes into such pop-
ular and addictive brainteasers.

3.5 Parsing, continued: do brackets matter?

Understanding the role of interiorization and reproduction
is crucial for any serious discussion of what is actually hap-
pening in teaching and learning mathematics, and it is very
worrisome that this cognitive core is so frequently absent
from professional discourse on mathematical education. This
is especially true for the discussion of the merits of computer-
assisted learning of mathematics, where the use of technol-
ogy has changed the cognitive content of standard elemen-
tary routines which for centuries served as building blocks
for learning mathematics.

Typing a command is like saying a
sentence, while clicking a mouse is
equivalent to pointing a finger in con-
versation.

And here is a small case
study. For some years I
had been teaching courses
in mathematical logic based
on two well-known soft-
ware packages: SYMLOG
[241] and TARSKI’S WORLD
[230] (reviews: [86, 94,
97]). SYMLOG used a DOS
command line interface which was extremely weak even by
the standards of its time, while TARSKI’S WORLD very suc-
cessfully exploited the graphical user interfaces of Apple and
Windows for the visualization of one of the key concepts
of logic, a model for a set of formulae (see [8] for the dis-
cussion of the underlying philosophy and [334] for under-
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lying mathematics—it is highly non-trivial). Also, TARSKI’S
WORLD made very clever use of games to explain another
key concept, the validity of a formula in an interpretation (al-
though the range of interpretations was limited [97]). How-
ever, when it came to a written test, students taught with
SYMLOG made virtually no errors in the composition of logi-
cal formulae, while those taught with TARSKI’S WORLD very
obviously struggled with this basic task. The reason was easy
to find: SYMLOG’s very unforgiving interface required retyp-
ing the whole formula if its syntax had not been recognized,
while TARSKI’S WORLD’s user-friendly formula editor au-
tomatically inserted matching brackets. Although TARSKI’S
WORLD’s students had no difficulty with rather tricky logic
problems when they used a computer, their inability to han-
dle formulae without a computer was alarming. Indeed, in
mathematics, the ability to reproduce your mental work has
to be media-independent. Relieving the students of a repeti-
tive and seemingly mindless task led them to lose a chance
to develop an essential skill.

It is appropriate to mention that, besides visualization,
there is another mode of interiorization, namely verbaliza-
tion. Indeed, we understand and handle much better those
processes and actions which we can describe in words. In
naive terms, typing a command is like saying a sentence,
while clicking a mouse is equivalent to pointing a finger in
conversation. The reader would no doubt agree that, when
teaching mathematics, we have to incite our students to
speak. The tasks of opening and closing matching pairs of
brackets, however dull and mundane they may be, activate
deeply rooted neural mechanisms for the generation of pars-
ing rules, and are crucial for the interiorization of symbolic
mathematical techniques.

Sadly, it appears to be acceptable to
promote educational software with-
out spelling out what students will lose
as the result of its use. In pharmaceuti-
cal research, a similar practice would
constitute a criminal offence.

I understand that my
claims will inevitably pro-
voke the stock response
from the promoters of
computer assisted learn-
ing: computers are valu-
able tool, they help stu-
dents to save time wasted
on routine calculations, al-
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low them to concentrate
on deeper conceptual un-
derstanding of mathematics, etc. I agree with all that. But I
am concerned that the discourse on computer-assisted learn-
ing is anti-scientifically skewed and suffers from a cava-
lier approach to the assessment of the implications for the
learner. In medical sciences, promotion of a new medicine
without a careful study of its side effects is an academic, regu-
latory (and, frequently—criminal) offence. In the educational
circles, it appears to be acceptable to promote a new piece
of software for learning a particular chapter of mathematics
without spelling out what students will lose as the result of
its use. Educational software has to be judged on the balance
of gains and losses.

3.6 The mathematics of bracketing and Catalan
numbers

We have not begun to understand the relationship
between combinatorics and conceptual mathematics.

Jean Dieudonné [22]

The parsing examples we have considered so far have been
of a special kind, binary parenthesizing; I do not want to ven-
ture into anything more sophisticated because even placing
parentheses in an expression made by repeated use of a bi-
nary operation, such as

a + b + c + d

is already an immensely rich mathematical procedure. In
various disguises, it appears throughout all of mathematics.
There is no better example than Richard Stanley’s famous
collection of 66 problems on Catalan numbers [336, Exer-
cise 6.19, pp. 219–229] (solutions can be found in [337]). I
quote a couple of examples.

The number of different ways to parenthesize the formal
sum

a1 + a2 + · · ·+ an + an+1 (n + 1 numbers)
is called the n-th Catalan number and is denoted Cn; it can
be shown that
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Cn =
1

n + 1

(
2n

n

)
.

For example, when n = 3, we have 5 ways to place the brack-
ets in a + b + c + d, namely:

a+(b+(c+d)), a+((b+c)+d), (a+(b+c))+d, (a+b)+(c+d), ((a+b)+c)+d

(following the usual convention, I skip the outermost pair of
brackets).

Remarkably, when you count ways to triangulate a convex
(n + 2)-gon by n − 1 diagonals without crossing, you come to
exactly the same result:
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This mysterious coincidence is resolved as soon as we treat
drawing diagonals as taking the sums of vectors

~a +~b + ~c + ~d

going along the n + 1 sides of the (n + 2)-gon , with the last
side (the base of the polygon) representing the sum:
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Now the one-to-one correspondence between parenthesiz-
ing the vector sum and drawing the diagonals becomes self-
evident:
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~a + (~b + (~c + ~d)) ~a + ((~b + ~c) + ~d) (~a + (~b + ~c)) + ~d (~a +~b) + (~c + ~d) ((~a +~b) + ~c) + ~d
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I do not remember the exact formulation of the problem
which led me, as a schoolboy, to the discovery of this corre-
spondence between parenthesizing and triangulations, but I
remember my feeling of elation—it was awesome.

As a teaser to the reader I give another class of combinato-
rial objects which are also counted by Catalan numbers. Take
graph paper with a square grid, and assume that the unit
(smallest) squares have length 1. A Dyck path is a path in the
grid with steps (1, 1) and (1,−1). I claim that the number of
Dyck paths from (0, 0) to (2n, 0) which never fall below the co-
ordinate x-axis y = 0 is, again, the Catalan number Cn. I give
here the list of such paths for n = 3, arranged in a natural
one-to-one correspondence with the patterns of parentheses
in a + b + c + d:
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r ¡¡@@¡
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(a + (b + (c + d))) (a + ((b + c) + d)) ((a + (b + c)) + d)

¡
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r
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@r
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r
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r
((a + b) + (c + d)) (((a + b) + c) + d)

Can you describe the rule? Notice that I added, for your
convenience, the exterior all-embracing pairs of parenthe-
sis, they are usually omitted in algebraic expressions. (Notice
also that this correspondence gives, after some massaging, an
algorithm for checking the formal correctness of bracketing—
so that the algorithm says that the bracketing (a + (b + c)) is
correct while (a + b) + c) + ((d + e) is not).)

One more example is concerned with n nonintersecting
chords joining 2n points on the circle:
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Again, there are

Cn =
1

n + 1
·
(

2n

n

)

different ways to draw the chords. [?]

Can you find
a one-to-one
correspondence
between the 5
chord diagrams
and the 5 ways
to parenthe-
size the sum
a + b + c + d? (I
can give you a
hint: there are
3 chords and 3
symbols “+”.
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Richard Stanley makes a wry comment on his list of Cata-
lan numbers problems [336, pp. 219–229] that, ideally, the
best way to solve all 66 problems is to construct directly
the one-to-one correspondences between the 66 sets involved,
66 · 65 = 4290 bijections in all! It is likely, however, that all
66 sets could be shown bijective to one specific set; the set of
all rooted trivalent trees with n internal nodes is the most
likely candidate for the special role since all 66 sets have a
very distinctive hierarchical structure.

Fig. 3.3. Stashef ’s associahedron: binary parenthesizings of n symbols can be
arranged as vertices of a convex (n − 2)-gon, with two vertices connected by an
edge if the corresponding parenthesizings differ by position of just one pair of
brackets.

This is still not the end of the story: the striking influ-
ence of a seemingly mundane structure, grammatically cor-
rect parenthesizing, can be traced all the way to the most
sophisticated and advanced areas of modern mathematics re-
search. A brief glance at Stasheff ’s associahedra (Figure 3.3)
suggests that they live in the immediate vicinity of Coxeter
Theory.6 Actually, generalized associahedra can be defined for
any finite Coxeter group (Stasheff ’s associahedra being asso-
ciated, of course, with the symmetric group Symn viewed as
the Coxeter group of type An−1); for some recent results see,
for example, Fomin and Zelevinsky [283].

Andrei Zelevinsky
aged 16
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3.7 The mystery of Hipparchus

It appears that the importance of parsing has been appre-
ciated by mathematicians and philosophers since ancient
times. The following fragment from Plutarch, a famous Greek
biographer of the 2nd century A.D., remained a mystery for
centuries:

Chrysippus says that the number of compound propo-
sitions that can be made from only ten simple propo-
sitions exceeds a million. (Hipparchus, to be sure, re-
futed this by showing that on the affirmative side there
are 103,049 compound statements, and on the negative
side 310,952.)

Here Plutarch refers to two prominent thinkers of Classi-
cal Greece: the philosopher Chrysippus (c. 280 B.C.–207 B.C.)
and the astronomer Hipparchus (c. 190 B.C.–after 127 B.C.).
Only in 1994 did David Hough notice that 103,049 is the
number of arbitrary (non-binary) parenthesizings of 10 sym-
bols, that is, the number of all possible expressions like

(xxxx)((xx)(xx)xx).

This suggests that, for Chrysippus and Plutarch, “compound”
propositions were built from “simple” propositions simply by
bracketing.

The mathematics and history of Hipparchus’ number is
discussed in detail in a paper by Richard Stanley [226]. The
number of parenthesizings of n symbols is known as the
Schröder number s(n); the first 11 values of the Schröder
numbers are

1, 1, 3, 11, 45, 197, 903, 4279, 20793, 103049, 518859.

In 1998, Laurent Habsieger, Maxim Kazarian and Sergei
Lando [207] suggested a very plausible explanation of the
second Hipparchus number, of compound statements on “neg-
ative side”. They observe that

s(10) + s(11)

2
= 310, 954

and, assuming a slight arithmetic or copying error in Plutarch’s
text, suggest we interpret the compound statements on the
“negative side” as parenthesizings of expressions
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NOT x1x2 · · ·x10

under the following convention: the negation NOT is applied
to all the simple propositions included in the first pair of
brackets that includes NOT. This means that the parenthe-
sizings

[NOT [P1] · · · [Pk]]

and
[NOT [[P1] · · · [Pk]]]

give the same result, and most of the negative compound
propositions can be obtained in two different ways. The only
case which is obtained in a unique way is when one only takes
the negation of x1. Therefore twice the number of negative
compound propositions equals the total number of parenthe-
sizings on a string of 11 elements

NOT x1x2 · · ·x10

plus the total number of parenthesizings on a string of 10
elements

(NOT x1)x2 · · · x10.

This, indeed, provides the value (s(10) + s(11))/2 = 310, 954.
Nowadays, the thinkers of Classic Antiquity do not enjoy

the same authority and revered status that they had up to
the 18th century. Armed with the machinery of enumerative
combinatorics, we may look condescendingly at the fantastic
technical achievement of Hipparchus (which became possible
perhaps only because he was an astronomer and could handle
sophisticated arithmetic calculations, possibly using Babylo-
nian base-60 arithmetic) But I find it highly significant that
ancient Greek philosophers, in their quest for understand-
ing of the logical structure of human thought, identified the
problem of parsing and attempted to treat it mathematically.

Notes
1PARSING RULES. David Pierce has drawn my attention to an interesting ques-

tion related to parsing rules for mathematical formulae. To what extent “infix”
notation for binary operations and relations, when the symbol for operation or re-
lation is placed between the symbols for objects, like a+b and a < b, is made more
natural for humans by the nature of their innate grammar generating rules? Or
is the predominance of infix notation more of a cultural phenomenon, a fossilized
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tradition? Why does “reverse polish notation” (or “suffix” notation) puzzle most
people when they first encounter it? In reverse polish notation, the expression

(a + b)× (c + d)

is written as
ab + cd +×.

It has serious advantages in computing: when using a hand-held calculator de-
signed and programmed for the use of reverse polish notation, one is not troubled
with saving the intermediate results into the memory, this is done automatically;
on an ordinary calculator, one has to save the intermediate result a+b when calcu-
lating (a+b)×(c+d). Notice that infix notation does not generalize from binary to
ternary operations, and ternary operations and relations are not frequently found
in mathematics. Is that because our writing is linear, reflecting the linear nature
of speech? Words denoting ternary or higher arity relations are infrequent in hu-
man languages. The predicate “a is between c and d” is a noticeable exception
in English. Interestingly, the “betweenness” relation among points on a line was
famously absent from Euclid’s axiomatization of geometry (see Section 11.4).

2SINGULAR, DUAL, TRIAL, PAUCAL. . . In general, languages tend to treat
numbers from 1 to 4 differently, see [153]. Owl remarked that traces of the Dual
category still can be found in Russian (and it is still present in Slovenian. Appar-
ently, Dual was mostly purged from Russian in the language reform of Peter the
Great.

Barbara Sarnecka wrote to me:

. . . usually the options are
(a) Singular (1) / Plural (2+)
(b) Singular (1) / Dual (2) / Plural (3+)
(c) Singular (1) / Dual (2) / Trial (3) / Plural (4+)
(d) Singular (1) / Dual (2) / Paucal (approximately 3–4) / Plural (approxi-

mately 5+)
Anyway, Russian is the only language I know of where the dual and pau-
cal categories have been merged into one, so that is quite interesting. Is
it possible that there was, earlier, a singular/dual/paucal/plural system,
and that Peter [the Great] tried to simplify it by combining the dual and
paucal categories?

I would be happy to learn more about—although this theme leads well beyond
the scope of my book. As I have already mentioned in the main text, I shall return
to the discussion of thresholds for pluralities in Section 4.1.

3CANON IN POETRY. My dear old friend Owl reminded me that canon can be
found in poetry, where it is sometimes used to a totally mesmerizing effect:

V posade, kuda ni odna noga
Ne stupala, lix~ voro�ei da v~�gi
Stupala noga, v besnovato$i okruge,
Gde i to kak ubitye sp�t snega, –

Posto$i, v posade kuda ni odna
Noga ne stupala, lix~ voro�ei
Da v~�gi stupala noga, do okna
Dohlestnuls� obryvok xal~no$i xlei.
(Boris Pasternak)
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4 PALINDROMES AND COXETER GROUPS. My “palindrome” formulation of the
Coxeter-Tits Theorem is one of many manifestations of cryptomorphism, the re-
markable capacity of mathematical concepts and facts for translation from one
mathematical language to another; see more on that in Section 4.2. I recall again,
that, in this book, I have adopted a “local”, “microscopic” viewpoint. Although the
“palindrome theory” is of little “global” value for mathematics, it demonstrates
some interesting “local” features of mathematics.

5Without the assumption about the finiteness of the number of palindromes,
the Palindrome Representation Theorem is still true if we accept mirrors in non-
Euclidean spaces. Section 5.1 contains some examples of mirror systems in the
hyperbolic plane.

6An elementary construction of associahedra can be found in Loday [313].
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Simple Things

I remember simple things.
I remember how I could not understand simple things.

This makes me a teacher.
Hovik Khudaverdyan

4.1 Parables and fables

And he spake this parable unto them, saying,
What man of you, having an hundred sheep,

if he lose one of them,
doth not leave the ninety and nine in the wilderness. . .

Luke 15:3–15:4

Hovik Khudaverdyan
aged 6

Philosophers of mathematics find it useful to look at math-
ematical texts as narratives (see, for example, David Corfield
[16] and Robert Thomas [73]). Indeed, even an average, run-
of-the-mill mathematical paper has a multi-layered structure
of complexity comparable with that of a serious novel, like
War and Peace or Ulysses. The analogy is, however, much
deeper; for me, its most appealing aspect is a parallelism be-
tween the development of a character in a novel or play, and
specialization of an abstract mathematical structure.

However, I wish to follow the principal line of this book
and to look at something smaller and simpler than a novel.

Robert Thomas
aged 13

So-called mathematical folklore is virtually unknown out-
side professional circles: it is the corpus of small problems,
examples, brainteasers, jokes, etc., not properly documented
and existing mostly in oral tradition. It is a small universe
on its own; but in all its diversity, one can easily notice the
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prominent role of fables or parables, that is, general state-
ments (or problems) which are intentionally set in the least
general terms, or illustrated by a simple, highly specialized
example.

In the written tradition, there is at least one famous para-
ble, the celebrated Pigeon-Hole Principle:

If you were to put 6 pigeons in 5 holes, then at least one
hole would contain more than one pigeon.

Hans Freudenthal
1905–1990

In the Russian mathematical literature, the Pigeon-Hole
Principle is known under the name of the Dirichlet Principle.
1 The name emphasizes its pedigree and status; however, the
principle itself is usually formulated in terms of 6 rabbits and
5 hutches.

What always struck me since the time when I first encoun-
tered the Pigeon-Hole Principle, was the persistence of the
numbers 6 and 5 in its formulation. I felt that the choice was
somehow very precise and convincing; I have sometimes seen
alternative formulations, as a rule, with similar small num-
bers, but they somehow looked less attractive.

David Pierce
Aged 13

I can now see a possible explanation of the persistence
of the “6/5” formulation in works on the neurophysiology of
counting. Indeed, it is now an established fact that the mech-
anisms of perception of small ensembles of objects are very
different from counting larger ensembles; up to 5 objects, we
have subitizing, i.e. “suddenizing”, immediate perception of
the quantity which does not interfere with our ability to keep
track of each individual object [138]; subitizing starts to fail
at 6 objects, and, as a rule, has to be switched to counting
when we have 7 or more objects.2

The cultural significance of the subitizing/counting thresh-
old was understood early on. Comments from one of the first
experimental psychologists who wrote about subitizing and
a related phenomenon, short-term memory (George A. Miller
[163], 1956) were interesting for being both suggestive and
very cautious:

And finally, what about the magical number seven?
What about the seven wonders of the world, the seven
seas, the seven deadly sins, the seven daughters of At-
las in the Pleiades, the seven ages of man, the seven
levels of hell, the seven primary colors, the seven notes
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of the musical scale,3 and the seven days of the week?
What about the seven-point rating scale, the seven cat-
egories for absolute judgment, the seven objects in the
span of attention, and the seven digits in the span of
immediate memory? For the present I propose to with-
hold judgment. Perhaps there is something deep and
profound behind all these sevens, something just call-
ing out for us to discover it. But I suspect that it is only
a pernicious, Pythagorean coincidence.
Unlike subitizing, in counting our attention moves from

one object to another. On the other hand, and somewhat sur-
prisingly, experimental studies (using PET, positron emission
tomography scans) have failed to find differences in the neu-
rophysiological activities of brain in subitizing and counting
[171].

Even if it turns out that subitizing and counting are both
implemented by the same system of neuron circuits, they
should correspond to two different modes of its activity, with
some kind of a phase transition between the two. The task
of mentally putting 6 pigeons (recall, the borderline value)
into 5 holes should, therefore, put the system in the critical
zone. It is tempting to suggest that the criticality of the 6/5
combination may provoke the strongest response, leading to
a new pattern of interaction (or interference) between neuron
circuits.

Again, this is my speculative guess based on introspection,
but I believe that mathematicians may like the classical “6/5”
formulation of the Pigeon-Hole Principle because they hear,
deep inside themselves, a subtle click made by a mathemat-
ical concept attaching itself to the neuron circuitry of their
brains.

After I wrote this paragraph, I come across the following
excerpt from Vandervert [189, p. 87]:

The experience of intuition “is” the feel of the entrain-
ment, so to speak, of the neuro-algorithms of percep-
tion with the newer ontogenetic neural subcircuitry re-
toolments (Edelman [141]) that undergird mathemati-
cal discovery. We might speculate that the “aha” expe-
rience and exclamation occur upon recognition of the
locking-in of the entrainment of the two systems of al-
gorithms.
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I am in agreement with this position; however, I prefer to
express the same ideas is simpler words, leaving it to exper-
imental neuroscientists to develop an appropriate terminol-
ogy. Also, I would rather avoid the use of the word “intuition”
as both excessively general and, at the same time, restricted
to the process of mathematical discovery. The “locking-in” can
be much more frequently found in routine everyday activities
such as understanding and digesting other people’s mathe-
matics. It can definitely be found in the act of accepting a
proof. Remember Coxeter’s proof of Euler’s Theorem (Sec-
tion 2.3); do you hear that click in your brain?

It is likely that some mental objects have a higher degree
of affinity to the hard-wired structures of human cognition
and anchor themselves more easily than others, while more
sophisticated ones require the mediation of mental objects
which have already been interiorized. For the moment, let us
treat this as no more than a metaphor for the inner working
of a mathematician’s brain.

As I discuss in more detail in Section 12.5, computer sci-
ence and complexity theory might provide some hints for the
further development of this metaphor, for predicting or ex-
plaining why certain objects are easier to interiorize than
others. It is worth mentioning that computer scientists and
cognitive scientists have already started to think about ab-
stract models of counting and subitizing. For example, a pos-
sible model of counting is discussed by da Rocha and Mas-
sad [175], who claim that such models can be constructed
from the so-called Distributed Intelligent Processing Sys-
tems. Peterson and Simon [170] claim to have an executable
model of subitizing of up to 4 objects (apparently, it is avail-
able for download from the Internet). But what I would re-
ally like to see is an abstract model of counting (possibly,
a further development of [175] or [170]) which explains the
subitizing/counting threshold (and the “6/5” formulation of
the Pigeon-Hole Principle) at the “software level”, thus ac-
counting for the indiscernibility of these two activities at the
physiological, “hardware” level.

In short term memory, we also have a threshold 7± 2 sim-
ilar to that of the subitizing threshold: people usually can
memorize a 7 digit telephone number, but encounter serious
difficulties with 10 digit numbers. Mathematical analogues of
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memory are easier to formulate than that of subitizing. Since
memory is an adaptive, ever changing and dynamic system,
stable patterns in dynamical systems (the words “dynamical
system” are now understood as a precise mathematical term)
appear to be natural candidates for mathematical phenom-
ena whose behavior might be analogous to the behavior of
human memory. Can the 7 ± 2 threshold be found in mathe-
matical dynamical systems?

I quote, at length, from a paper by Paul Glendinning [147]
who explains recent works by Kaneko aimed at exactly this
elusive target: find a natural 7 ± 2 threshold in the behavior
of dynamical systems [154, 155].

Kaneko’s starting point is the idea of an attractor of a dynamical sys-
tem. Classically attractors are thought of as invariant sets which ‘attract’
nearby points. That is, there exists an open neighbourhood of the set such
that any solution with initial conditions in this neighbourhood eventually
tends to the invariant set. There are all sorts of variants on this defi-
nition, but the defining feature of the attractor is a neighbourhood on
which some property of attraction holds. Twenty years ago Milnor [318]
pointed out that this is a topological definition and introduced a measure-
theoretic definition in which the open neighbourhood is replaced by a set
of positive measure locally (or, again, a variant of this idea). The differ-
ence between the definitions is one of how to give the words ‘lots’ or ‘most’
mathematical meaning—either in a topological sense (open neighbour-
hoods) or in a measure-theoretic sense (positive measure). The term Mil-
nor attractor is now used to describe an attractor which attracts a large
set in measure but not in topology. The important point here is that in any
neighbourhood of a Milnor attractor, there are points which move away
from the attractor, and which may be in the basin of another attractor.
This gives Milnor attractors an interesting property: for a topological at-
tractor all solutions close enough to the attractor are attracted, which is a
sort of stability, whilst for a Milnor attractor there are points arbitrarily
close to the attractor which move away from the attractor.

Suppose now that a ‘memory’ is an attractor of a dynamical system
(the brain: neurons etc). To be stable to perturbations, i.e. to be a useful
memory, it is natural to ask that a memory should be a topological at-
tractor rather than a Milnor attractor. The memory of a telephone num-
ber of N digits may be represented by systems in RN (although more
subtle questions about information content could be explored). Kaneko
[155] considers an ‘prototype’ system of globally coupled maps and shows
that the proportion of points which tend to Milnor attractors and hence
the proportion which correspond to poor memory increases until N ∼ 7
and then plateaus. In other words, in order to minimize the proportion of
easily forgotten states one should keep the dimension below 7. He has a
rough, but appealing, argument to support this for the systems he con-
siders which basically comes down to a combinatorial balance between
(N − 1)! and 2N , the balance being at N ∼ 5.

Shuji Ishihara and Kunihiko Kaneko [154] extend this idea to a more
conventional neural net model. This has N inputs xi(0), i = 1, . . . , N , and
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a feed forward mechanism which passes information through successive
layers indexed by ` where

xi(` + 1) = tanh

(
β√
N

∑

k

aik(`)xk(`)

)

and where aik(`) are chosen randomly from a Gaussian distribution with
standard deviation 1. The tanh function acts as a sigmoidal on-off switch
for large enough β, with solutions approaching values close to ±1. If 0 <
β < 1 then solutions decay to zero. There is an intermediate range of
β where the behavior of the system depends significantly on N . If N is
less than about (you’ve guessed it) 7, then the output at layer L assumes
only a small number of distinct values and there is a clear separability
of inputs (Ishihara and Kaneko work with L = 30, but the principle is
independent of the depth of layers used). If N is larger then the dynamics
as a function of layer is chaotic, and small changes in the input (which
we would hope should stabilize) create large differences in the output.
This critical changeover in behaviour is striking, and once again suggests
that there is a critical size of systems above which information becomes
garbled.

The subitizing and short memory thresholds are just two
of many problems which make me yearn to see the dawn
of cognitive metamathematics which would turn the “soft-
ware/hardware” metaphor into a theory. I believe that these
are not unrealistic expectations. The development of brain
scan techniques appears to have reached a level where at
least some of the ideas mentioned in this book can, with due
effort, be made into experimentally refutable conjectures.

However, we shall still have only isolated experiments and
observations until mathematicians start, in earnest, to de-
velop mathematical models of mathematical cognition—this
is where the true cognitive metamathematics will be born.

It is time now to return to the discussion of the 4/5 thresh-
old in use of plurality markers in Russian, see Section 3.2.
I mention there an alternative explanation of their appear-
ance: the predecessor of the Indo-European language had nu-
merals formed from base 4 (fingers of the hand) with thumb
marking the next register [364].

Numerological theories (like conspiracy theories), how-
ever, are famous for their resilience. Indeed, there still re-
mains a possibility that phase transitions in behavior of at-
tractors in dynamical systems would provide a uniform ex-
planation for both the subitizing threshhold 5/6 and the fact
that we have 4+1 fingers. This phase transition can manifest
itself in a variety of ways:
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(a)In differentiation of cells in embryogenesis, where a 4 + 1
finger anatomy can happen to be the easiest to achieve.

(b)In a relative ease of the neural control of complex move-
ments of a hand with 4+1 fingers in comparison with other
designs (here, nature tends to prefer simple solutions—
this has been already observed by neuroscientists [121]).

(c) In the dynamics of patterns of activation of neural paths
in image processing in humans which imposes the subitiz-
ing/counting threshold.

(d)Finally, in the architecture of short term memory and its
influence on word processing in humans.
It is possible, of course, that some other mathematical the-

ory can work in place of the theory of dynamical systems.
So far, highly speculative applications of dynamical systems
bring to mind an old adage:

if all you have is a hammer, everything looks like a nail.

4.2 Cryptomorphism

The reader will find in this book a number of reformulations
of well-known theorems and theories intentionally made in
a “toy” language—a typical example is my “palindrome” for-
mulation of the Coxeter–Tits Theorem in Section 3.4, see foot-
note 4 in Chapter 3. These are instances of cryptomorphism,
the remarkable capacity of mathematical concepts and facts
for a faithful translation from one mathematical language to
another. Such translations constitute an important but un-
derrated part of mathematical practice; they remain virtually
unknown outside professional circles. It can be felt that many
teachers of mathematics view “multiple representations” of
mathematical objects as a hindrance, see a more detailed dis-
cussion in Section 7.5.

One of the reasons why the “language” aspect of mathe-
matics is ignored in mainstream mathematical education is
that most translations, as much of mathematical work gen-
erally, never make it from scratch paper to publication. The
situation is different in “Olympiad” or “competition” math-
ematics which pays more attention to what is happening on
scratch paper, and which also needs a steady flow of new orig-
inal (or attractively disguised old) problems for higher level
competitions.
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To give you the flavor, here is a “double” problem from a
classical Olympiad problem book [203, Problem 145]. [?]Solve the both

versions of the
problem. a. Two people play on a chessboard, moving, in turns,

the same piece, the King. The following moves are
allowed: one square left, one square down, or the di-
agonal move left-down. The player who places the
King in the leftmost square in the first (bottom) row,
wins. At what initial positions does the first player
have a winning strategy?4

b. Two players take, in turns, stones from two heaps.
They are allowed either to take one stone from one
heap, or to take one stone from both heaps. The
player who picks the last stone wins. At what initial
numbers of stones in the two heaps does the first
player have a winning strategy?

Is all that just a game? Does the bewildering variety of
mathematical languages which can be express the same fact
matter? Let us listen to two expert opinions.

4.2.1 Israel Gelfand on languages and translation

My position on the issues of cryptomorphism and “multiple
presentation” is much influenced by my conversations with
Israel Gelfand. He once said to me:

Many people think that I am slow, almost stupid. Yes,
it takes time for me to understand what people are say-
ing to me. To understand a mathematical fact, you have
to translate it into a mathematical language which
you know. Most mathematicians use three, four lan-
guages. But I am an old man and know too many lan-
guages. When you tell me something from combina-
torics, I have to translate what you say in the lan-
guages of representation theory, integral geometry, hy-
pergeometric functions, cohomology, and so on, in too
many languages. This takes time.

It is amusing to watch how fellow mathematicians, not ac-
customed with the peculiarities of Gelfand’s style, speak to
him the first time. Very soon they become bewildered why
he insists on their giving him really basic, everyone-always-
knew-it kinds of definitions; then they are taken aback when
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he becomes furious at the merest suggestion that the defi-
nition is easier to write down than to say orally (“I know,
you want to cheat me, do not try to cheat me!”). Next morn-
ing, their second conversation is usually even more entertain-
ing, because Gelfand starts it with the demand to repeat all
the definitions; then he proceeds by questioning everything
which was agreed yesterday, and eventually settles for a def-
inition given in a completely different language.

Mathematical languages unstop-
pably develop towards ever in-
creasing degree of compression of
information.

I have observed such
scenes many times and
came to the conclusion
that, for him, a defini-
tion of some simple ba-
sic concept, or a clear for-
mulation of a very sim-
ple example, is a kind
of synchronization marker
which aligns together many different languages and makes
possible the translation of much more complex mathematics.

4.2.2 Isadore Singer on the compression of language

Mathematicians are so sensitive
to mathematical language issues
because they can see dramatic
changes in the languages used over
their working life.

Another aspect of the Ba-
bel of mathematical lan-
guages, their unstoppable
development towards ever
increasing degree of com-
pression of information,
is succinctly expressed by
Isadore Singer in a recent
interview [61]:

I find it disconcert-
ing speaking to my young colleagues, because they
have absorbed, reorganized, and simplified a great deal
of known material into a new language, much of which
I don’t understand. Often I’ll finally say, “Oh; is that all
you meant?” Their new conceptual framework allows
them to encompass succinctly considerably more than
I can express with mine. Though impressed with the
progress, I must confess impatience because it takes
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me so long to understand what is really being said. [61,
p. 231]

One of the reasons why research mathematicians are so
sensitive to mathematical language issues is that they can
see dramatic changes in the languages used over their work-
ing life.

4.2.3 Cognitive nature of cryptomorphism

Returning to the running example of this book, we see that
palindromes and mirrors are, essentially, cryptomorphic ob-
jects. They are sufficiently basic and “atomic” to belong si-
multaneously to two different realms of cognition, the ver-
bal/symbolic and the visual, although the status of palin-
dromes is clearly borderline: to appreciate a palindrome, you
have to see the symmetry of its presentation in type. Remem-
ber the peculiar typesetting of “ABBA” on their posters? And
a question to experimental psychologists: do blind people (es-
pecially if they are blind from birth) aesthetically appreciate
palindromes when they read them in Braille? In more gen-
eral terms, is there any significant difference in perception of
symmetry by blind people from that of sighted?

Wilfrid Hodges
aged 10

A similar observation appears to be valid also in the case
of musical palindromes, where the visual symmetry of the
score is of importance, see the analysis of symmetry in music
in Wilfrid Hodges’ paper The geometry of music [44]. (In par-
ticular, Hodges discusses the paradoxical results of playing a
recording of palindromic music (Haydn’s Menuet al Rovescio
for piano) backwards: the individual notes, as produced by
musical instruments, are not reversible in time. For exam-
ple, piano notes start with a bang and then fade away.

No cognitive theory of mathematical
practice can be complete without a
discussion of the nature and role of
cryptomorphism.

I believe that no cogni-
tive theory of mathemat-
ical practice can be com-
plete without a discussion
of the nature and role of
cryptomorphism. The cru-
cial point here is the un-
derstanding of relations
between the conscious use
of cryptomorphism and the neurophysiological interaction
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between various structures of our brain, for example, be-
tween the visual and verbal modules.

Even isolated glimpses into what is happening in our
brains—for example, case studies of people who compen-
sate for lack of function in certain sensory faculties—are of
great interest. (Like the case study of compensation of sacca-
dian eye movements [144] briefly mentioned earlier, see Sec-
tion 2.2.)

I would hope that, eventually, it will become possible to
identify certain elementary mathematical structures and con-
cepts which are sufficiently atomic and are especially nim-
ble in moving from one cognitive structure to another; essen-
tially, they can be viewed as elements of the human cognitive
system. Let us call these elementary particles of mathemat-
ics mathlets. I want to suggest, not so much as a conjecture
but rather as the starting point of a discussion, that crypto-
morphism, as part of mathematical thinking, is supported,
at the level of basic cognitive structures, by transcription of
mathlets from one cognitive subsystem of our mind to an-
other. I discuss some examples in the next section.

4.3 Some mathlets: order, numerals, symmetry

Everything should be made
as simple as possible, but not simpler.

Albert Einstein

4.3.1 Order and numerals

Order is almost definitely one of these mathlets, elementary
particles of mathematics. Frank Smith [108] points out that
the understanding of order precedes counting and under-
standing of numerals. What struck me most in Frank Smith’s
lively discussion of pedagogical practice is that children need,
as the foundation of all their arithmetical (and more gener-
ally, mathematical activities) one, just one, fixed linearly or-
dered discrete set explicitly produced by a simple recursive
rule.

His thesis is supported by Susan Carey [131, 67]:
research suggests that it is not until after children have
worked out how the count list represents number [. . . ]
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that they know which analog magnitudes correspond
to which numbers above five in their count list.

And also:

Children may here make a wild analogy—that between
the order of a particular quantity within an ordered
list, and that between this quantity’s order in a series
of sets related by additional individuals. These are two
quite different bases of ordering—but if the child rec-
ognizes this analogy, she is in the position to make the
crucial induction: For any word on the list whose quan-
tificational meaning is known, the next word on the
list refers to a set with another individual added. Since
the quantifier for single individuals is ‘one,’ this is the
equivalent to the following induction: If number word
X refers to a set with cardinal value n, the next num-
ber word in the list refers to a set with cardinal value
n + 1.

(See Sections 5.2 and 5.3 for the discussion of how infinity
creeps into this inductive process.)

One may argue that the analogy referred to by Susan
Carey is, more precisely, between the position of a word for
a quantity, in a list of such words, and the size of a set whose
quantity is named by that word—this should be more likely
at least at the early stages of learning numbers and agrees
better with the phenomenon of “one-, two-, four-knowers,” see
Section 3.2.

All other ordered sets which appear, explicitly or implicitly,
in children’s mathematical practice (and just everyday life),
are understood by reference to that distinguished ordered set
of (verbal) numerals, or can be immediately reduced to it,
even if they appear in visual perception (objects on the line),
tactile and spatial perception (leftmost-left-right-rightmost),
or as the pitch and relative height of tones in music (although
in pitch perception, the order frequently happens to be cyclic;
many people perceive tones which differ by octave as identi-
cal), or as the relative measure of muscular tension (weighing
objects in the hand).

This list of manifestations of order in human senses can
be easily continued, and can be related to a huge body of psy-
chological literature.
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There are reasons to believe that the correspondence be-
tween verbal numerals and the intuitive perception of order
is not inborn, but learnt. Children have to bridge gaps be-
tween “approximate” arithmetic, estimation activities (even
after they are verbally expressed) and “exact” symbolic arith-
metic. The term “approximate” arithmetic refers to the abil-
ity to distinguish between quantities—by choosing, say, a box
with larger number of bananas; such ability can be found
in very young children as well as in apes and other animal
species. This is how Dehaene et al. describe it:

[. . . ] even within the small domain of elementary arith-
metic, multiple mental representations are used for
different tasks. Exact arithmetic puts emphasis on language-
specific representations and relies on a left inferior
frontal circuit also used for generating associations be-
tween words. Symbolic arithmetic is a cultural inven-
tion specific to humans, and its development depended
on the progressive improvement of number notation
systems. [. . . ]
Approximate arithmetic, in contrast, shows no depen-
dence on language and relies primarily on a quantity
representation implemented in visuo–spatial networks
of the left and right parietal lobes. [137, p. 973]

The transfer of order between the different sensor mech-
anisms can be conscious or subconscious. One of more strik-
ing examples of subconscious transfer is given by Leontiev’s
experiments [159, pp. 193–218] on training tone-deaf adults
to distinguish the pitches of sounds by developing a correla-
tion between pitch and muscular tension. Interestingly, vi-
sual perception played the role of intermediary: the subjects
had to pull a lever and equalize two gauges, one for pitch
and another for the force applied. After some training of that
kind, subjects attained a reasonable ability to recognize pitch
even without gauges and levers. Their test performance de-
teriorated, however, when the devious experimenter engaged
subjects’ hands (or feet, if, in the training period, the lever
was pushed by foot) in some activity. This example is even
more puzzling because my applied mathematics colleagues
told me that the sound receptors in our inner ear are actu-
ally doing, at the hardware level, a Fourier transform [178].
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At what point do the brains of tonally challenged people start
to ignore hardware readings?

In learning arithmetic, understanding of ordinal numbers
precedes understanding of cardinal numbers. Might one sug-
gest that the early-childhood distinction between ordinals
and cardinals is mirrored in the mathematical difference
in the transfinite realm?5 When learning set theory, ordinal
numbers are more intuitive than cardinals—perhaps because
a fragment of the theory of ordinals concerned with countable
ordinals is relatively accessible and has many elementary as-
pects. Historically, Georg Cantor introduced ordinal numbers
first, and only later came to the concept of cardinality of a set.
I briefly mention ordinals in Section 6.2.2, see, in particular,
Figure 6.1. One might also note that the cardinal number
one need not correspond to the first ordinal; the first ordinal
could be zero, or minus-sixteen. In English, the words ‘first’
and ‘second’ have no etymological connection with ‘one’ and
‘two’. The first is the foremost, the thing in front of everything
else; the second is the following. In modern English, the word
‘number’ as used in expressions like “we have a number of op-
tions” has an implicit meaning “more than one”.

I return to discussion of order in Section 6.3.

4.3.2 Ordered / unordered pairs
The fact that order is built into human languages becomes
especially transparent when we notice that our language is
not good at describing an unordered pair of two objects: we
cannot name two objects without giving preference to one of
them, simply because one of the names will precede the other
in time.

Vladimir Uspenky [380] finds this aspect of human lan-
guages essential for understanding their logical structure
and laments that it has not attracted due attention of re-
searchers. I quote at length Uspenky’s analysis of the use of
an unordered pair as opposed to an ordered pair, in a scene
from Dostoevsky’s Idiot. Uspensky quotes a conversation be-
tween Prince Myshkin and Lebedeff in which Prince Myshkin
asks Lebedeff ’s given name and patronymic (the latter is
formed from the father’s given name; in Russia, it is custom-
ary to use the name and the patronymic as a polite form of
address).
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“Listen to me, Lebedeff,” said the prince [. . . ] “By the
way—excuse me—what is your Christian name? I have
forgotten it.”
“Ti-Ti-Timofey.”
“And?”
“Lukianovitch.”
Everyone in the room began to laugh.
“He is telling lies!” cried the nephew. “Even now he can-
not speak the truth. He is not called Timofey Lukianovitch,
prince, but Lukian Timofeyovitch. Now do tell us why
you must needs lie about it? Lukian or Timofey, it is all
the same to you, and what difference can it make to the
prince? He tells lies without the least necessity, simply
by force of habit, I assure you.”
“Is that true?” said the prince impatiently.
“My name really is Lukian Timofeyovitch,” acknowl-
edged Lebedeff, lowering his eyes, and putting his hand
on his heart.
“Well, for God’s sake, what made you say the other?”
“To humble myself,” murmured Lebedeff.
“What on earth do you mean?” [. . . ] cried the prince. . . (Trans.
by Eva Martin)

Humility may show in man’s desire to give as little infor-
mation about himself as possible—because he does not think
that this information is of any value to others. Explicitly
asked about his name and patronymic, Lebedeff cannot give
just a partial answer “Lukian”, since it would not be polite.
The complete answer is the ordered pair (Lukian, Timofey);
obviously, an unordered pair {Lukian, Timofey} (which is, of
course, the same as {Timofey, Lukian}) contains less infor-
mation than the ordered one. Poor Lebedeff is trying to con-
vey just an unordered pair of names {Lukian, Timofey}, but,
of course, cannot; his attempt is hampered by the linear na-
ture of human speech which imposes order against the will of
the speaker.

Uspensky then quotes a scene from Gogol’s Dead Souls:
Chichikov’s visit to Manilov.

. . . it is time that we returned to our heroes, who, dur-
ing the past few minutes, have been standing in front
of the drawing-room door, and engaged in urging one
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another to enter first. . . . Finally the pair entered si-
multaneously and sideways; with the result that they
jostled one another not a little in the process. (Trans.
by D. J. Hogarth)

We see that Gogol avoids calling his characters by names:
if he did so, he would create an undesirable expression that
one of the friends was more persistent in his politeness than
the other.

4.3.3 Processes, sequences, time

Closely related to order is our innate facility for thinking
about processes or sequences of actions which take place
in time. Indeed, phonetic parsing takes place in time; our
writing is mostly linear, one symbol at a time; we read two-
dimensional flowcharts by tracing paths, arrow by arrow; re-
viewers and editors of mathematical papers grudgingly toler-
ate nested subscripts and superscripts, like xin , but branch-
ing combinations of nested superscripts and subscripts like

x
ml

k
in

are considered to be contrary to the norms of good writing.
Thurston stresses that our intuition of process can be

. . . used to good effect in mathematical reasoning. One
way to think of a function is as an action, a process,
that takes the domain to the range. This is particu-
larly valuable when composing functions. Another use
of this facility is in remembering proofs: people often
remember a proof as a process consisting of several
steps. In topology, the notion of a homotopy is most of-
ten thought of as a process taking time. Mathemati-
cally, time is no different from one more spatial dimen-
sion, but since humans interact with it in a quite differ-
ent way, it is psychologically very different. [75, p. 165]

4.3.4 Symmetry

Finally, I return to the running example and one of the prin-
cipal themes of the book. Our analysis of human’s perception
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of symmetry in Chapter 2 allows us to conjecture that sym-
metry, and especially bilateral (mirror) symmetry, is another
important elementary mathlet.

The discussion of symmetry, in its various disguises, and
its cognitive nature, is spread all over the book.

4.4 The line of sight and convexity

Do androids dream of electric sheep?
Philip K. Dick

Let us return for a minute to our discussion of the elec-
tromagnetic imaging in fish which we started in Section 2.1,
Page 26. Which immediately intuitive mathematical concepts
would become less intuitive if, instead of sight, humans used
electric sensing of the kind used by Nile elephant fish Gym-
narchus niloticus? The crucial difference is that we would
loose the concept of line of sight, the archetypal straight line
of our geometry. Indeed, electric sensing would allow us to
“see” around objects; closer objects would not obscure the
view of more distant ones.

Bill Lionheart
aged 6

It is worth to remember that Euclid (or a later editor of
Elements) defines a straight line as

a line that lies evenly with its points.

It makes sense to interpret this definition as meaning that a
line is straight if it collapses to a point when we hold one end
up to our eye. Therefore, a straight line is a line of sight!6

Chapter 10 contains a number of simple problems illus-
trating the relations between the concept of line of sight and
that of convexity. Recall that a subset X of the n-dimensional
Euclidean space Rn is convex if it contains, with any points
x, y ∈ X, the segment [x, y] (Figure 4.2).

Daina Taimina
aged 12

The class of convex bodies can be characterized in terms of
relation

“A (partially) obscures B”.

Indeed, the set of convex bodies7 in Rn can be characterized
as the maximal possible collection C of bodies in Rn such that

• C is closed under all rigid movements and similarity trans-
formations.
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Fig. 4.1. Schematic representation of the principles of active electrolocation in
fish. The electric organ (solid black bar) gives rise to a dipolar field pattern around
the fish. The electric current follows the local field lines (solid lines with arrows).
A nonconducting target object (circle) perturbs the flow of electric current, causing
a local decrease in current density near the object. This decrease in current den-
sity translates into a decrease in the transdermal voltage across the skin near the
object. The spatial pattern of the transdermal voltage across the sensory surface
represents the electric image of the object.
The body surface is covered with thousands of sensors that measure local changes
in voltage across the skin (transdermal potential). You can think of each sense
organ as an electrode pair that measures the potential difference across the highly
resistive fish skin.
One interesting thing is that the field pattern and receptor distribution allow the
fish to detect objects in all directions—an omnidirectional sensing capability.
Another observation is that the density of sense organs is rather high (several per
square millimeter), suggesting that the system may be good for spatial localiza-
tion of small prey targets that are just a few millimeters in diameter.
Also, the sensor density tends to be higher near the mouth, suggesting that this
is the region of the body where fine spatial localization might be most important.
(Redrawn and quoted from Nelson [165], with permission; the drawing originates
in Heiligenberg [149].)

• If you look at two non-intersecting bodies A and B, both
taken from the collection C and A partially obscures B
in your field of view, then B cannot (partially) obscure A
(therefore the relation “A obscures B” is antisymmetric in
the class of convex bodies).

I leave the proof to the reader as an exercise.
We have already discussed the prominent role of order

among basic “built-in” mathematical concepts of human mind.
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Fig. 4.2. Convex and non-convex sets.

A strict order < is an anti-symmetric relation (that is, state-
ments x < y and y < x cannot hold simultaneously). The
other part of the definition of strict order is that it is a tran-
sitive relation (that is, x < y and y < z implies x < z).

Now we have one more evidence of a special role of order
in mathematical cognition. Indeed it appears that human’s
visual processing system, when dealing with convex objects,
frequently assumes that the “A obscures B” relation is not
just antisymmetric, but is also transitive (and hence a strict
order): if a body A is in front of body B, and B is in front
of C, then A is in front of C. It is a systematic error of our
brains, and it can be seen in many visual paradoxes with non-
existing objects. For example, have a look at Figure 4.3 and
try to decide which parts of the contraption are closer to the
viewer and which are more distant.

David Henderson
aged 15

The chapters of geometry dealing with convex bodies con-
tain a number of results which are surprisingly intuitive and
self-evident. Here is one example:

A convex polytope (that is, a convex and bounded poly-
hedron) is the convex hull of its vertices (that is, the
smallest convex set containing the vertices).

R. T. Rockafellar in his fundamental treatise on convex ge-
ometry emphasized the paradoxical status of this statement
[330, p. 171]:

This classical result is an outstanding example of a fact
which is completely obvious to geometric intuition, but
which wields important algebraic content and is not
trivial to prove.
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Fig. 4.3. This impossible geometric object is a combination of three Penrose tri-
angles. I showed it to a few fellow mathematicians—all agreed that the picture
makes for uncomfortable viewing: one’s brain continues to seek three-dimensional
symmetries even when one knows that the object is not just highly asymmetrical—
it is non-existent! As an image in the plane, the object has rotational symmetry
of order 3 (if one ignores the difference in shades of color on its facets).

In relation to convex bodies and their properties, our in-
tuition about convex bodies is both very powerful and very
misleading—perhaps because we are excessively confident in
our judgement—and I refer the reader to Chapter 10 for more
examples of both feasts and failures of our intuition.

4.5 Convexity and the sensorimotor intuition

There is one more aspect of the human intuition of convex-
ity: it is immediate to us in our tactile and sensorimotor per-
ception. It could be illustrated by the mirror grinding prob-
lem, Section 2.3, page 32. It is immediately clear that when
we grind one piece of glass over the other, the surface of
one piece becomes concave, while the surface of the other
convex. Just make a small experiment: close your eyes and
move you hands as if you indeed grind the mirrors. When
we change pieces, the concavity and convexity alternate; with
three pieces, the concavity and convexity have to cancel each
other, the surfaces become both concave and convex, that is,
flat. This gives an answer to the first grinding problem, Prob-
lem A on page 32. However, a formal rigorous proof is proba-
bly very hard.
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Fig. 4.4. The Magpie on the Gallows, by Pieter Bruegel the Elder.

As this mesmerizing painting shows, M. C. Escher was not not the first one to use
impossible objects in art.

Problem B is trickier. Since we do not have in our language
many names for surfaces, it is easy to assume that the answer
is probably a sphere. Yes, indeed; but the reader would proba-
bly agree that, on that occasion, we should perhaps have less
confidence in our intuition.

To argue the case, I will use an extended version of Eu-
ler’s Theorem. I will try to formulate my proof in a language
of elementary mechanics which would not be out of place in
Euler’s time.

Euler’s Theorem (Section 2.3) describes possible motions of
a solid body around a fixed point: these are rotations around
appropriate axes. A free motion of a body can be viewed as
a composition of a rotation and a parallel translation. Rota-
tions have three degrees of freedom (two of them define the
axis and the third one the angle of rotation). Parallel trans-
lations have three degrees of freedom, corresponding to the
three coordinates in the space. Therefore movements of a
solid body have six degrees of freedom.

When moving one piece of glass over the other (we assume
that the latter is fixed to the workbench), we have three de-
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grees of freedom: movements forward–backward, left–right
and rotations. A “thorough” grinding means that all three
degrees of freedom are used. It will be convenient for us to
restrict ourselves to cautious and tiny “local” movements. A
composition of two small (one may wish to say “infinitesimal”)
grinding movements is a (perhaps slightly longer) grinding
movement, and the reverse movement is also a grinding
movement. We shall say that grinding movements form a (lo-
cal) subgroup in the group of motions of the solid body.

The key observation is the following theorem.

In the group of motions of a solid body, only three types
of subgroups have exactly three degrees of freedom:
• the group of all parallel translations of the 3-dimensional

space (which we cannot use since we have to keep
the two pieces of glass together);

• the group of all rotations around a fixed point—it
produces a spherical mirror; and

• the group of all movements which preserve a plane—
it consists of compositions of parallel translations in
the plane and rotations around an axis perpendicu-
lar to the plane. This group produces a flat mirror.

Most likely, the statement of the theorem is not immedi-
ately self-evident to most readers. And this was my intention:
I wished to demonstrate a threshold at which our sensorimo-
tor intuition starts to falter. The statement of the theorem
was not self-evident to me since, to say the truth, I cheated
and used some algebra to find the formulation and a proof
of the theorem—I could not trust my sensorimotor intuition.
I feel that while the concept of “degrees of freedom” is suffi-
ciently intuitive, the concept of a group of movements is much
harder. First of all, we struggle to predict the result of the
consecutive execution of two movements.

We can easily visualize a collection of objects if we have
seen them—one man or a crowd, one flower or the whole gar-
den in blossom. But it is very difficult for a human to form a
mental image of a multitude of movements of his or her hand
and treat this multitude a single entity.

But the theorem would perhaps be self-evident to math-
ematicians who were developing theoretical mechanics over
18th and 19th century—they frequently solved problems about
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Fig. 4.5. A spherical stone vase, Ancient Egypt. [ c© Petrie Museum of Egyptian
Archaeology, University College London; item UC 41616, reproduced with per-
mission.]
The vase was made by polishing a piece of stone. Its spherical shape is a con-
sequence of classification of subgroups in the Lie group of isometries of the 3-
dimensional Euclidean space.

real mechanisms made from axles, levers, etc. and therefore
were likely to have a good intuition about movements in the
space, since they have seen mechanisms working.

The theorem is based on a range of ideas which led to the
creation of the theory of Lie groups and Lie algebras (or in-
finitesimal groups, in terminology of 19th century). When one
reads old papers on Lie groups, it strikes how alien was the
concept of a set to their authors—they were quite happy to
use continua of various dimensions.

4.6 Mental arithmetic and the method of
Radzivilovsky

If your experiment needs statistics,
you ought to have done a better experiment

Ernest Rutherford

The emphasis on the importance of connections between
various neural systems responsible for mental arithmetic
leads a prominent neuropsychologist, Brian Butterworth [129],
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to propose not to teach arithmetic until the age of 11. In But-
terworth’s view, the traditional way of teaching over-exploits
verbal counting to the detriment of the development of the
“approximate” arithmetic of magnitude.

Butterworth is apparently inspired by the success of Louis
Benezet’s experiments (in the 1920s in USA); indeed, Benezet
did not formally teach children arithmetic [365, 95]. Instead,
Benezet’s method involved a great deal of estimation activi-
ties in a real life setting.

Vladimir
Radzivilovsky

aged 7

I do not see the reason why estimation activities and “ap-
proximate” arithmetic should be set up against “exact” arith-
metic. From my point of view, the key to the teaching of arith-
metic is the synthesis of all three.

I know a brilliant and idiosyncratic mathematics teacher,
Vladimir Radzivilovsky, whose methods include asking (very)
young children to guess the weight and then weigh (in grams)
every household item which they could fit on the scales.
Radzivilovsky also asks children to estimate temperature (by
touching water, say), and compare their feelings with a mea-
surement by a thermometer. On the other hand, exact sym-
bolic arithmetic is also drilled into the children with a per-
sistence and rigor unlikely to be found in any school in the
world: Radzivilovsky’s method involves forward and back-
ward speed counting by ones, twos, threes, etc., with the per-
formance being timed. These counting exercises lead to the
times tables and lists of prime numbers being composed by
each child and only afterwards memorized for subsequent re-
use.

It appears that Radzivilovsky systematically builds bridges
between various mental presentations of order and number
in his pupils’ heads. If these lines are read by a teacher or a
theorist of education, I have to disappoint (or comfort) him or
her by explaining that Radzivilovsky works privately outside
the school system and teaches only individuals or very small
groups. This allows him to rigorously stick to the key element
of his system: he never moves to the next stage until his pupil
has reached absolute, automatic perfection in handling sim-
pler mathematical objects and concepts.

Radzivilovsky’s success is measured by the fact that, among
his former students, he can name dozens of professional
mathematicians, physicists and computer scientists, or, if

MATHEMATICS UNDER THE MICROSCOPE VER. 0.919 5-SEP-2007/12:39 c© ALEXANDRE V. BOROVIK



4.7 Not-so-simple arithmetic: “named” numbers 93

they are still young, finalists of International Mathematical
Competitions. Radzivilovsky believes that teaching is an art,
not a science. Moreover, teaching, in his opinion, is a perfor-
mance art and therefore he, unfortunately, does not see the
point in putting his ideas in writing.

Alexander Zvonkin
aged 14

4.7 Not-so-simple arithmetic: “named” numbers

Toutes les grandes personnes ont d’abord été des enfants
(Mais peu d’entre elles s’en souviennent.)

Antoine de Saint-Exupéry, Le Petit Prince.

I pay so much attention to basic arithmetic for two rea-
sons. First, cognitive aspects of arithmetic have been inten-
sively studied (possibly, for good reason) by neurophysiolo-
gists who accumulated many interesting observations. The
other reason is that I myself, as a child, had serious psycho-
logical difficulties with arithmetic. I will go into this more in
Section 5.2; here, I discuss the issue that many readers would
consider trivial: “named” numbers, like two apples and three
people. (In Britain and USA, the term “numbers with ‘units”’
is sometimes used for “named numbers”.)

After I was told by my teacher that I had to be careful
with “named” numbers and not to add apples and people, I
remember asking her why in that case we can divide apples
by people:

10 apples : 5 people = 2 apples.
Even worse: when we distribute 10 apples giving 2 apples to
a person, we have

10 apples : 2 apples = 5 people

Where do “people” on the right hand side of the equation come
from? Why does “people” appear and not, say, “kids”? There
were no “people” on the left hand side of the operation! How
do numbers on the left hand side know the name of the num-
ber on the right hand side?

I did not get a satisfactory answer from my teacher and
lived for a couple of years with this torment until we started
to solve problems about speed and distance. Only then did I
realize that the correct naming of the numbers in these ex-
amples should possibly be
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10 apples : 5 people = 2
apples
people

and
10 apples : 2

apples
people

= 5 people.

But that discovery made me even more uncomfortable: I
knew that

speed =
distance

time
,

but what was the nature of the strange substance,

apples
people

?

Now, forty years later, I know the answer. It is a common-
place wisdom that the development of mathematical skills in
a student goes alongside the gradual expansion of the realm
of numbers with which he or she works, from natural num-
bers to integers, then to rational, real, complex numbers:8

N ⊂ Z ⊂ Q ⊂ R ⊂ C.

What is missing from this natural hierarchy is that already
at the level of elementary school arithmetic children are
working in a much more sophisticated structure, a graded
ring

Q[x1, x
−1
1 , . . . , xn, x−1

n ].

of Laurent polynomials in n variables over Q, where symbols
x1, . . . , xn stand for the names of objects involved in the cal-
culation: apples, persons, etc.

The ring Q[x1, x
−1
1 , . . . , xn, x−1

n ] is just the set of all polyno-
mials (called Laurent polynomials) with rational coefficients
in variables xi and x−1

i ; for example,

(3/4) + x1x2x
−2
3 + (1/2)x−1

1

is such a polynomial. The operations of addition and multi-
plication are defined as usual. Monomials can be inverted as
well:

(x1x
−1
2 )−1 = x−1

1 x2.

Usually, only monomials are interpreted as having physi-
cal (or real life) meaning. But the addition of heterogeneous
quantities still makes sense and is done componentwise: if
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you have a lunch bag with (2 apples +1 orange), and another
bag, with (1 apple + 1 orange), together they make

(2 apples +1 orange)+(1 apple +1 orange) = (3 apples +2 oranges).

Notice that this gives a very intuitive and straightforward
approach to vectors and vector algebra. In Section 12.6.4 I
mention that this “lunch bag” approach to vectors allows a
very natural introduction of duality and the vector / covec-
tor notation in tensor algebra: the total cost of a purchase of
amounts g1, g2, g3 of some goods at prices p1, p2, p3 is

∑
gip

i. In
particular, this allows us to see that the quantities gi and pi

could be of completely different nature.
Of course, there is no need to tell all that abstract non-

sense about Laurent polynomials to kids;9 but it would not
harm the teachers of mathematics to be prepared to answer
a child’s question about whether it is legitimate to work with
the named quantity

apples
people

?

The answer is yes, of course; the quantity is conveniently
called “apples per person”. However, people sometimes give
new names to new quantities, sometimes not. For example,

money
people× time

is often called wage.10

The extreme form of “named numbers” are numerals used
for counting specific types of objects (most likely, they histor-
ically precede the emergence of the universal number sys-
tem as we know it). In England, a popular slander about
Yorkshiremen is that they use special numerals for count-
ing sheep. Judging by the Lakeland Dialect Society website
[374], local people proudly admit to sticking to the old ways.
In Wensleydale, for example, the first ten sheep numerals are
said to be

yan, tean, tither, mither, pip, teaser, leaser, catra, horna,
dick.

We shall return to sheep numerals later, see Page 282.
If we turn to more modern times, it is entertaining to com-

pare sheep numerals with Richard Feynman’s joke [353]:
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You see, the chemists have a complicated way of count-
ing: instead of saying “one, two, three, four, five pro-
tons”, they say, “hydrogen, helium, lithium, beryllium,
boron.”

Physicists love to work in the Laurent polynomial ring

R[length±1, time±1, mass±1]

because they love to measure all physical quantities in com-
binations (called “dimensions”) of the three basic units: for
length, time and mass. But then even this ring becomes too
small since physicists have to use fractional powers of ba-
sic units. For example, velocity has dimensions length/time,
while electric charge can be meaningfully treated as having
dimensions11

mass1/2length3/2

time
.

Well, we should not be too hard on physicists for their ex-
cessive reductionism – we all know people who measure ev-
erything on just two basic scales: time and money. As we all
know, mass can be easily converted into money: when I ask,
at the deli counter in a local (British) supermarket, to slice
a pound of ham, the salesgirl usually asks me back: “Pound
in weight or pound in money?” And, of course, we also know
that “time is money”.

It pays to be attentive to the dimensions of quantities in-
volved in a physical formula: very frequently the balance of
dimensions of the left and right hand sides of the formula
suggests the shape of the formula. Physicists call such way of
reasoning dimensional analysis. In Section 8.4 I give an ex-
ample of application of dimensional analysis to the deduction
of a stunningly beautiful formula: Kolmogorov’s celebrated
“5/3” Law for the energy spectrum of turbulence.

Notes
1DIRICHLET PRINCIPLE. Possibly the name Dirichlet Principle can be traced

back to European, primarily German tradition; it is used by Freudenthal [92]. It
would be interesting to read a well-documented history of the Pigeon-Hole Prin-
ciple (who invented the name?). Meanwhile, the referee of the present book wrote
in his comments: “I’m pretty sure the name is because Dirichlet used a pigeon-
hole argument to solve Pell’s equation. He modestly omitted his argument from
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his Vorlesungen über Zahlentheorie, but Dedekind included it as an appendix in
the 1871 edition. See the English translation of Dirichlet, Lectures on Number
Theory (AMS 1999), p. 258.”

2SUBITIZING. One has to distinguished between subitizing and recognition of
a geometric pattern. David Pierce sent me a very nice example:

Old playing cards did not have their values printed in the corners; one
knew their values only by looking at the pips. But with experience, one
would not count the pips; one would just know that the card

♠ ♠
♠

♠ ♠

♠ ♠
♠

♠ ♠

had the value 10.

In this example, one can learn to recognize a specific pattern formed by pips and
correlate it with number 10; however, one cannot recognize 10 randomly posi-
tioned pips without counting. I would be most happy to have a look at the results
of experimental studies—if there were any—of how subitizing of a group of objects
is affected by symmetries in the position of objects.

Gregory Cherlin commented that perhaps the pigeon-hole principle plays a
role in Sudoku, but more in a counting form: e.g., if three numbers have to fit in
three spaces and only one per space then there are not any other numbers there.

3MUSICAL SCALE. Most likely, the seven notes of the musical scale have noth-
ing to do with subitizing. There is a classical mathematical explanation of the
structure of musical scales, see, for example, Benson [9]. John Stillwell com-
mented on this that Newton enumerated 7 colors of the rainbow because he be-
lieved they should correspond to the notes of the scale. See Newton’s Optics, Book
One, Part II, Exper. 7 (p. 128 in the Dover edition [58]).

4Notice the remarkable mathematical concept: a winning strategy. It is rela-
tively modern; it is not taught at schools; it somehow has crept into mass culture
and is known to most school-children. Whether they are prepared to deal with it
as a mathematical entity is a different issue, see more on this in Section 6.1.

5I owe this comment on ordinals and cardinals to David Pierce.
6The interpretation of Euclid’s definition of a straight line as a line of sight

was suggested to me by David Pierce and supported by Alexander Jones. See a
detailed discussion of “straightness” in a book by David Henderson and Daina
Taimina [210, Chapter 1].

7For the sake of rigor, a “body” is a compact subset X in Rn with the connected
complement Rn rX.

8THE HIERARCHY OF NUMBER SYSTEMS. Let us return for a minute to the
traditional hierarchy of number systems

N ⊂ Z ⊂ Q ⊂ R ⊂ C.

At the formal level, the step from Q to R is highly nontrivial; the steps from Z to Q
and from R to C are somewhat simpler, but require a considerable level of abstract
algebra. At the secondary school level, details are usually omitted, and rightly so.
As a result, many natural questions which an inquisitive child is very likely to
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ask remain unanswered. As a child, I asked my elementary school teacher why it
was forbidden to divide by zero—and was ridiculed for my question.

I believe that, at that time, I would be quite satisfied to hear an explanation
along the following lines:

“When we multiply 2 by 3, the number 2 is hidden inside of the result,
6, and we can get it back by dividing 6 by 3. Multiplication by 0 destroys
the number; whatever we multiply by 0, we get 0; no memory of the old
number is left, and it cannot be recovered. This is the reason why we do
not divide by 0—it would not help us anyway, even if we did so.”

Gregory Cherlin told me that, in his undergraduate class on Foundations of
Mathematics he had a third year undergraduate ask why division by zero was
impossible. What was interesting is her explanation that she had been wanting
to ask this question since 5th grade, but only now had found both a context and
a level where she thought it was likely that she could get an answer—that was
because the rationals were built as equivalence classes of pairs of integers.

9CARRIES AND GROUP COHOMOLOGY. The deceptive simplicity of the elemen-
tary school arithmetic is especially transparent when we take a closer look at
carries in the addition of decimals.

In Molièrs Le Bourgeois Gentilhomme, Monsieur Jourdain was surprised to
learn that he had been speaking prose all his life. I was recently reminded that,
starting from my elementary school and then all my life, I was calculating 2-
cocycles; I thank Mikael Johansson who brought my attention to this fact.

Indeed, a carry in elementary arithmetic, a digit that is transferred from
one column of digits to another column of more significant digits during
addition of two decimals, is defined by the rule

c(a, b) =

{
1 if a + b > 9
0 otherwise .

One can easily check that this is a 2-cocycle from Z/10Z to Z and is re-
sponsible for the extension of additive groups

0 −→ 10Z −→ Z −→ Z/10Z −→ 0.

Of course, what else could it be?
10When, as a child, I was nursing my doubts about the way “named” numbers

were taught at my school, I was unaware that I had an ally in François Viéte who
in 1591 clearly wrote in his Introduction to the Analytic Art that

If one magnitude is divided by another, [the quotient] is heterogeneous to
the former . . .

He added:

Much of the fogginess and obscurity of the old analysts is due to their not
paying attention to these [rules].[66, p. 16]

11THE DIMENSIONS OF ELECTRIC CHARGE. If we choose our units in such a
way that the permittivity ε0 of free space is dimensionless, then from Coulomb’s
law

F =
1

4πε0

q1q2

r2

applied to two equal charges q1 = q2 = q, we see that q2/r2 has the dimensions of
force.
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Infinity and Beyond

There is no progression into infinity; why not?
because the human intellect must have some foundation?

because it is accustomed to this belief?
because it cannot imagine anything beyond its own limits?

As if, indeed, it followed, that if I do not comprehend infinity,
therefore there is no infinity.

De Tribus Impostiribus [378]

In this chapter I discuss how we interiorize infinity; I do
not try to address the extremely hard philosophical issues
immediately arising as soon as we touch one of the thorniest
subjects in the methodology of mathematics. I talk only about
the intuition of infinity as it manifests itself in everyday (and
not very advanced) mathematical work. I try to avoid any
technicalities and stay strictly within naı̈ve set theory.

First, I try to show, using the material from the running
example of the book, namely, symmetry and Coxeter theory,
that we are quite inept at visualizing infinity. However, we
are surprisingly good at dealing with the potential infinity of
words and numbers.

I discuss potential infinity in Sections 5.3 and conclude the
chapter by revisiting the geometric intuition of infinity. I pre-
fer to postpone the discussion of actual infinity until later in
the book, Section 6.2.

5.1 Some visual images of infinity

All things [are] full of labour; man cannot utter [it]:
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The eye is not satisfied with seeing,
nor the ear filled with hearing.

Ecclesiastes 1:8

Fig. 5.1. A tessellation of the sphere by the mirrors of symmetry of an icosahedron
(or, what is equivalent, by mirrors of reflections belonging to the finite reflection
group H3.)

I return to the running example of the book, symmetry and
the theory of Coxeter groups. As Paul Moszkowski demon-
strated in his paper [320], it is perfectly possible to develop
the theory and classification of finite Coxeter groups entirely
in terms of words, without any recourse to geometry. Almost
all existing treatments of the theory rely on geometry to some
degree, and I personally prefer an entirely geometric treat-
ment. However, when you start thinking about infinite Cox-
eter groups, the use of word-based methods is much harder
to avoid.

Indeed, the system of all mirrors of symmetry belonging
to a finite reflection group can be visualized with the help
of pictures like Figure 5.1. A similar picture for hyperbolic
reflection groups has to be drawn on the hyperbolic plane and
results in images like Figure 5.2.

For a novice learner, the mess at the limiting circle of the
hyperbolic plane might be disturbing. This makes it much
more difficult to directly use hyperbolic tessellations in “pic-
torial” proofs: either you have to have a well developed intu-
ition about hyperbolic geometry, or supplant it by algebraic
manipulations. A page in a book is perceived by us as a frag-
ment of the Euclidean plane; mapping from the sphere or the
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Fig. 5.2. A tessellation of the hyperbolic plane by mirrors of symmetry belonging
to a hyperbolic reflection group

〈
a, b, c | a2 = b2 = c2 = (ab)6 = (bc)4 = (ac)2 = 1

〉
.

Using the “palindrome” terminology of Section 3.4, it is a Coxeter language with
the alphabet {a, b, c, } and basic equivalencies ababab = bababa, bcbc = cbcb and
ac = ca.

hyperbolic plane to the Euclidean plane necessarily distorts
the actual distances and sizes of the objects.

Coxeter understood the methodological difficulties arising
from the explanation of the geometry of hyperbolic reflection
groups. In the 1960s he made several films popularizing his
ideas (see their discussion in [27]). In one of them, he ad-
dressed the audience while holding in his hands a diagram on
a piece of paper, similar to Figure 5.2, and a big glass sphere,
painted like a Christmas tree decoration, with the pattern
of Figure 5.1. Coxeter explained that the perceived decrease
in the size of triangles on the hyperbolic plane closer to the
limiting circle is an illusion, similar to the perspective defor-
mation of the tessellation on the sphere. The limiting circle
could be usefully thought of as the “horizon” of the hyperbolic
plane. This interpretation was a pedagogical masterstroke,
because, as we shall see in Section 5.5, it referred to the built-
in mechanisms of “recalculation” of perspective deformation
in our brains.
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However, although we can easily believe that the actual
sizes of the triangles in Figure 5.2 are the same, it is much
harder to accept that the pattern of fitting triangles together
is the same at the blurred “horizon” as in the center of the di-
agram. Just compare Figure 5.2 with the mirror tessellations
of the Euclidean plane, shown flat on, without perspective:
here we have no doubt that exactly the same pattern goes all
through the entire plane (Figure 5.3).

When we deal with infinity, we want to be in control; as
mathematicians, we do not want just to stare at it in awe.
Losing control, as in a bad dream, can be a powerful aesthetic
experience, and is fully exploited as such in Escher’s famous
engravings from the Circle Limit series1—or in the famous
sequence in Space Odyssey 2001. But it is not what we want
from our mental images of infinity.

So far all of my examples of “bad” infinity were 2-dimensional,
and, perhaps, this was a possible source of confusion. As we
shall soon see, we are quite happy to deal with the one-
dimensional infinity of words and numerals.
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Ã1 ⊕ Ã1
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Fig. 5.3. Tessellations of the Euclidean plane by mirrors of symmetry belonging to
Euclidean reflection groups with their traditional notation: congruent equilateral
triangles – Ã2, isosceles right triangles – B̃C2, rectangles – Ã1 × Ã1, triangles
with the angles π/2, π/3, π/6 – G̃2, infinite half stripes – A1 × Ã1. Drawing by
Anna Borovik.
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Fig. 5.4. A pattern of angels and devils based on M. C. Escher’s Circle Limit IV
and the hyperbolic tessellation {4, 5}. Rendition by Douglas Dunham [26], repro-
duced with his kind permission.

5.2 From here to infinity

Straszne, ze wiecznosc sklada sie z okresow
sprawozdawczych.

What really scares me is that eternity is made of deadlines.
Stanislaw Jerzy Lec

I have seen the future and it is just like the present, only
longer.

Kehlog Albran

Mathematics, as we know it, is possible only because the
language processing system in our brain provides us with
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Fig. 5.5. The underlying tesselation of M. C. Escher’s Circle Limit IV is the hy-
perbolic tesselation of type {6, 4}: it is made of regular hexagons (6-gons), with
4 hexagons meeting at each vertex. In this picture, if one cuts every hexagon by
diagonals into 6 triangles (thus separating devils from angels), one gets a hy-
perbolic mirror system corresponding to the set of palindromes in the Coxeter
language with the alphabet {a, b, c} and basic equivalences

aba ≡ bab, acac ≡ caca, bcbc ≡ cbcb.
(Equivalence classes of synonymous) words of the Coxeter language can be used
to label the angels and devils, giving us control over the sprawling chaos.

The tessellation of type {4, 5} in Figure 5.4 consists of hyperbolic squares (or
regular 4-gons), with 5 squares meeting at each vertex.

Rendition by Douglas Dunham [26], reproduced with his kind permission.

powerful mental tools for dealing with potentially infinite se-
quences of mental objects. At the interface with mathematics,
we can identify two reasons for that.

The first one is that our natural language is potentially in-
finite. We discover infinity not when we look at the stars in
the night sky; not when we see railway tracks merging at the
horizon; mathematical infinity is usually first encountered
when a realization dawns on us that the purely linguistic
exercise of reciting numerals produced by certain fixed and
entirely linguistic rules, will apparently never end. I remem-
ber how excited and shocked was my son, then four years old,
when he found himself on this endless numerological tread-

MATHEMATICS UNDER THE MICROSCOPE VER. 0.919 5-SEP-2007/12:39 c© ALEXANDRE V. BOROVIK



106 5 Infinity and Beyond

mill. Recently, I relived these memories when I watched the
charming French documentary Etre et Avoir [352], where in a
similar scene, the teacher, Monsieur Lopez, nudged the puz-
zled and somewhat sceptical child, little Jojo, into counting
on and on.

The second reason is that the language processing mod-
ules of our brain are built to deal comfortably with potentially
endless language inputs:

. . . nor the ear filled with hearing. . .

Even more importantly, language processing is predictive, in
that we subconsciously try to guess the next word. This is
why all kinds of limits at infinity, completions and compacti-
fications are easier to comprehend when they are represented
by sequences or words. The examples are abundant; we have
all encountered infinite decimal expansions like

π = 3.1415926 . . . ,

and even trickier ones:

1 = 0.9999 . . .

If you compactify the integers in the 2-adic topology, you come
to 2-adic integers which can be conveniently represented by
sequences of binary digits infinite to the left:

−1

3
=

1

1− 4

= 1 + 4 + 42 + 43 + · · · (by the formula for a geometric progression)
= 1 + 100 + 10000 + · · · (in binary notation)
= . . . 1010101

Or you may wish to use continued fractions to represent the
golden section as the limit of an iterative algorithm:

1 +
√

5

2
= 1 +

1

1 +
1

1 +
1

1 +
1

1 + · · ·
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Mathematics is about the repro-
ducibility of our mental constructions,
hence about control.

My own first clash with
infinity happened at the
level of grouping objects in
counting, which is, I now
suspect, something very
similar to bracketing or
parsing. I remember my
extreme discomfort when, as a child, I was taught division. I
had no bad feelings about dividing 10 apples among 5 people,
but I somehow felt that the problem of deciding how many
people would get apples if each was given 2 apples from the
total of 10, was completely different. (My childhood experi-
ence is confirmed by experimental studies, see Bryant and
Squire [127].)

In the first problem you have a fixed data set: 10 apples
and 5 people, and you can easily visualize giving apples to
the people, in rounds, one apple to a person at a time, until
no apples were left. But an attempt to visualize the second
problem in a similar way, as an orderly distribution of apples
to a queue of people, two apples to each person, necessitated
dealing with a potentially unlimited number of recipients. In
horror I saw an endless line of poor wretches, each stretch-
ing out his hand, begging for his two apples. This was visu-
alization gone astray. I was not in control of the queue! But
reciting numbers, like chants, while counting pairs of apples,
had a soothing, comforting influence on me and restored my
shattered confidence in arithmetic.2

As soon as I started to consult the literature, I discovered
that some of my observations had been made before. In this
particular case, Frank Smith had already used the expres-
sion “mathematical chant” in his book The Glass Wall [108].

As I have said on many occasions in this book, mathemat-
ics is about the reproducibility of our mental constructions,
hence about control. We want to control the mathematical
objects we create, we want to be able to deal with them as
with real life things, we want to perform actions.

The mother of all iterative processes is
counting, and the potentially infinite
set of natural numbers is the mother
of all potential infinities.

I remember that, at the
age of three or four, I
(like many children of that
age) had a so-called eidetic
imagination: I could close
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my eyes and see things
at will, with all their de-
tails and colors, almost in-
distinguishable from real
things in real life. I could see a car and I could open the
door in this car—and it opened as a real door in a real car.
Later this disappeared: my brain learned to save resources
and compress the images (with loss of data, as always happen
in compression) into more manageable, compact and easy-to-
store formats.

Anna, my wife, told me that her last eidetic episode was a
age of 10: her parents sent her to bed and did not permit to
finish the book she was reading. Anna glanced over the last
two pages without having time to read a single word. In her
dream that night, she read the two pages. In the morning she
checked the book: her reading in sleep was correct, includ-
ing a word she had never encountered before, but guessed its
meaning.3

The nature of eidetism still remains a mystery. I was
alarmed to read in Lorna Selfe [179, p. 112] that

Eidetic imagery was once thought to be a normal stage
of development in all children and therefore to be re-
lated to other facts of early cognitive development,
such as sensory rather than verbal modes of encoding
experience, and concrete rather than abstract modes
of thought. However, recently the question has been
raised as whether eidetism is a normal phenomenon
with adaptive significance or whether it is essentially
maladaptive and a direct manifestation of brain pathol-
ogy.

It was written in 1977, and I would like to know whether the
medical assessment of eidetism has changed.

Anna Borovik
nee Vvedenskaya

aged 10

When learning or doing mathematics, we quite frequently
have to create mental images of mathematical objects with
eidetic qualities as close to that of the images of real things
as possible. (If we are duped, as a result, into the belief that
mathematical objects exist in some ideal or dream world, this
happens only because we want to be duped.) Sometimes such
images are easy to create (the concept of “triangle” has for me
the same eidetic intensity as that of “chair”, say), sometimes
it is more difficult; using a computer technology metaphor,
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we are frequently reduced to moving the icons for graphic
files around the screen instead of seeing the contents of the
files.

When it comes to the concept of infinity, how do we control
it?

5.3 The Sand Reckoner and potential infinity

There is no smallest among the small
and no largest among the large;

but always something still smaller
and something still larger.

Anaxagoras

We have to distinguish between the potential infinity of an
iterative process which could be continued on and on, and the
actual infinity of the output of this process being imagined as
completed, encapsulated and made into an object.4

The mother of all iterative processes is counting, and the
potentially infinite set of natural numbers is the mother of all
potential infinities. A word of warning is needed: we have to
distinguish between iteration and repetition. The sun rising
in the morning is, of course, the mother of all repetitive pro-
cesses; but the sun is the same, yesterday, today and tomor-
row, while numbers are all different. However, for the bulk
of its history, mathematics was a branch of astronomy; with-
out doubt, the extreme precision of repetition of many astro-
nomic phenomena very much influenced the development of
the culture of mathematical rigor. Let us do a small thought
experiment: imagine that atmospheric conditions on Earth
were, for the last 5000 years, slightly different: a light haze
obscured the stars in the night sky (without adversely affect-
ing the climate and conditions for the development of agricul-
ture, etc.). How would mathematics develop? Would it ever
reach the stage beyond basic arithmetic and purely procedu-
ral geometry, without proofs?

The crucial importance of the potential infinity of natural
numbers as a mathematical problem was realized early on,
and Archimedes wrote a fascinating book, The Sand Reck-
oner, bringing the potential infinity of natural numbers home
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to his contemporaries. To that end, he developed an elabo-
rate terminology to describe the number of grains of sand in
bigger and bigger spheres, with the radius reaching the Sun
and growing further. We have to take notice that the po-
tential infinity of natural numbers required demonstration;
the book was deemed, over centuries, important enough to be
saved and copied, so that the text survived. One of the happi-
est moments in my teaching life involved passing around the
audience, in a calculus class, a copy of The Sand Reckoner (in
translation). The Sand Reckoner was probably the first book
ever in the genre of “popular mathematics”—and remains a
masterpiece even if judged by modern standards.

The opening line of the book is wonderful:
Some people believe, King Gelon, that the number of
sand is infinite in multitude.
Archimedes needs just two more sentences to complete the

set-up of the problem:
I mean not only of the sand in Syracuse and the rest
of Sicily, but also of the sand in the whole inhabited
land as well as the uninhabited. There are some who
do not suppose that it is infinite, and yet that there is
no number that has been named which is so large as to
exceed its multitude.
Thus the first paragraph of the book already contains the

key idea of the solution: we need names. Regarding indefi-
nitely developing processes, as long as we can give names for
some of their intermediate instances, which are spread, like
milestones, all over the process, we feel comfortable, we are
not afraid that we may run out of names.

Archimedes describes an iterative process of building big-
ger and bigger masses of sand; however, he feels that he is
in firm control of the potentially infinite process because, in
modern terminology,
• The individual instances produced in the process are re-

lated by linear order (magnitude).
• Some instances (objects) are measured (or “counted”) by

natural numbers, and this measure is compatible with the
order: bigger objects have bigger measures;

• The linear order satisfies what is now known as Archimedes’
Axiom: for every object there is a bigger measured one.5
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Nowadays the acceptance of the
potential infinity of natural numbers is
just part of common, everyday cul-
ture.

These are the most ba-
sic, “atomic”, types of po-
tential infinity, and they
are the easiest to handle,
for reasons that we have
already discussed in Sec-
tion 4.2: the mental im-
ages of potential infinity
are built on the basis of pre-existing hardwired structures
of our mind: order and numerals. For example, we see the po-
tential infinity of time through the potential infinity of the
calendar.

Nowadays the acceptance of the potential infinity of nat-
ural numbers is just part of common, everyday culture, and
children (like little Jojo) absorb it at a very early age. In any
case I never encountered a student who would question the
existence of potential infinity; the issue is whether our stu-
dents are able to control its simplest manifestations; for ex-
ample, can they compute the 100-th term of the sequence

1, 3, 5, 7, 9, 11, . . .?

I suspect that, in a young child, a healthy scepticism about
the possibility of counting indefinitely might be more a sign
of potential mathematical abilities (because she may need to
check for herself that numerals, indeed, do not get out of con-
trol) than the readiness to accept, already at the 20th term,
that the dull routine will drag on forever.

In a young child, a healthy scepti-
cism about the possibility of counting
indefinitely might be more a sign of
potential mathematical abilities than
the readiness to accept, already at
the 20th term, that the dull routine will
drag on forever.

We frequently forget,
however, that the poten-
tial infinity of natural
numbers is already an ab-
straction, the result of en-
capsulating the necessar-
ily finite process of count-
ing as part of an idealized
infinite process. In com-
mon teaching practice, the
intermediate steps in the
abstraction are skipped or
taken for granted. To illustrate our carelessness, consider the
following thought experiment (taken from the book Mathe-
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matical Aquarium [229] by Victor Ufnarovski where it is for-
mulated as a “competition style” problem).

Assume that we are given an extremely reliable com-
puter with an eternal source of electric supply. The
computer is programmed to print, via an external printer
with a unlimited supply of paper and cartridges, con-
secutive natural numbers:

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 . . . .

(However, it cannot read its output.) Prove that the
computer will sooner or later fail.
Indeed, it will fail for reasons of its intrinsic limitations:

the computer has only a finite number of internal states
(since it has only finitely many memory cells, for example);
printing a new number requires a change in some of these
states. The computer working indefinitely, some of its states
reoccur, say, at moments of time T1 and T2; but then it will
print, from time T1 on and from time T2 on, the same sequence
of numbers, which means that it cannot do its job properly.
(Notice that this argument can be viewed as an application
of the Pigeon Hole Principle, Section 4.1.) In short, the com-
puter will fail because of the eventual overflow of memory. Of
course, the answer would be different if the computer could
read its own output and use the paper tape as an external
memory device.

Our brains are finite state machines, and we cannot count
forever not because we are mortal but because our brains are
finite.

Of course, you may wish to try to circumvent the prob-
lem by inventing ever more elaborate and compact abbrevia-
tions, but all successful ones will require recursion (reference
to abbreviated names for previous numbers); if recursion is
accepted, the counting becomes reduced to repeating, again
and again, “the previous number plus one, the previous num-
ber plus one, the previous number plus one”, which, we have
to admit, is the most compact form of description of natural
numbers. This is, by the way, why a famous programming
language is called C++: it was developed from the language
C, and in both languages the operation of incrementing, in re-
cursive procedures, of a value n by 1 was deemed to deserve
a special notation: n++.
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Still, we have an in-built facility for thinking about pro-
cesses and sequences of events, and as long as potential in-
finity appears as a linear process or a sequence of events (and
is interspersed by a “counted” subsequence labelled by nu-
merals), we usually have no trouble in interiorizing it. The
sprawling infinity of hyperbolic tessellations (Figures 5.2 and
5.4) is much less intuitive because we soon lose the control of
the intermediate steps: even if you know that the pattern of
adjacency is the same, it is somehow hard to believe.

5.4 Achilles and Tortoise

Quoth the raven, ‘Nevermore.’
Edgar Alan Poe

Of all paradoxes of infinity, Zeno’s “Achilles and Tortoise”
paradox is one of the oldest. I borrow its description from
WIKIPEDIA:

“In a race, the quickest runner can never overtake the
slowest, since the pursuer must first reach the point
whence the pursued started, so that the slower must
always hold a lead.” (Aristotle Physics VI:9, 239b15.)
In the paradox of Achilles and the Tortoise, we imag-
ine the Greek hero Achilles in a footrace with the plod-
ding reptile. Because he is so fast a runner, Achilles
graciously allows the tortoise a head start of a hun-
dred feet. If we suppose that each racer starts run-
ning at some constant speed (one very fast and one
very slow), then after some finite time, Achilles will
have run a hundred feet, bringing him to the tortoise’s
starting point; during this time, the tortoise has “run” a
(much shorter) distance, say one foot. It will then take
Achilles some further period of time to run that dis-
tance, during which the tortoise will advance farther;
and then another period of time to reach this third
point, while the tortoise moves ahead. Thus, when-
ever Achilles reaches somewhere the tortoise has been,
he still has farther to go. Therefore, Zeno says, swift
Achilles can never overtake the tortoise. Thus, while
common sense and common experience would hold that
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one runner can catch another, according to the above
argument, he cannot; this is the paradox.

In view of our discussion in the previous section, the most
natural approach to the paradox is complexity-theoretic. In-
deed, in the description of the race between Achilles and the
Tortoise, we have two different timescales: the one, in which
the motion of Achilles and the Tortoise takes place, and an-
other one, in which we discuss their motion, repeating again
and again the words

“it will then take Achilles some further period of time
to run that distance, during which the tortoise will ad-
vance farther”.

Clearly, each our utterance takes time bounded from below
by a non-zero constant; therefore the sum of the lengths of
our utterances diverges. However, our personal time flow has
no relevance to the physical time of the motion!

Since the Zeno’s paradox is not about mathematics as
such, but about its relations with the real world and about
our perception of time, a complexity-theoretic approach to its
solution is well justified. The validity of such approach is even
more evident in view of a mathematical fable which is dual,
in some vague sense, to the Achilles and Tortoise paradox
(but perhaps this duality could be made explicit). It is told
in Harvey M. Friedman’s lectures Philosophical Problems in
Logic. Friedman said:

I have seen some ultrafinitists go so far as to challenge
the existence of 2100 as a natural number, in the sense
of there being a series of “points” of that length. There
is the obvious “draw the line” objection, asking where
in

21, 22, 23, . . . , 2100

do we stop having “Platonistic reality”? Here this . . . is
totally innocent, in that it can be easily be replaced by
100 items (names) separated by commas. I raised just
this objection with the (extreme) ultrafinitist Yessenin-
Volpin during a lecture of his. He asked me to be more
specific. I then proceeded to start with 21 and asked
him whether this is “real” or something to that effect.
He virtually immediately said yes. Then I asked about
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22, and he again said yes, but with a perceptible delay.
Then 23, and yes, but with more delay. This continued
for a couple of more times, till it was obvious how he
was handling this objection. Sure, he was prepared to
always answer yes, but he was going to take 2100 times
as long to answer yes to 2100 then he would to answer-
ing 21. There is no way that I could get very far with
this.

Yessenin-Volpin’s response makes it clear that the Achilles
and the Tortoise paradox is not so much about the actual in-
finity as of a potential infinity (or just plain technical feasi-
bility) of producing the sequence

1

2
,

1

4
,

1

8
,

1

16
etc.

in real time.6
However, there is yet another layer in this story. It pro-

vides an opportunity to bring into the discussion a rarely
mentioned aspect of mathematical practice: the influence of
the personality of a mathematician on his or hers mathemat-
ical outlook.

The instantaneousness of Yessenin-Volpin’s response to
the line of questioning is more than a quick reflex. One should
remember that Alexander Yessenin-Volpin was one of the
founding fathers of the Soviet human rights movement and
spent many years in prisons and exile. He knows a thing or
two about interrogations; in 1968, he wrote and circulated
via Samizdat the famous Memo for those who expects to be
interrogated, much used by fellow dissidents.

One advice from the Memo is worth quoting:

During an interrogation, it is already too late to deter-
mine your position and develop a line of behavior. [...] If
you expect an interrogation, if there is just a possibility
of an interrogation—get prepared in advance.

Yessenin-Volpin was also a poet of note. One of his poems,
a very clever and bitterly ironic rendition of Edgar Alan Poe’s
The Raven, is quite revealing in the context of our discussion.
I give here only the first two and the last three lines of the
poem.
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Kak-to noq~�, v qas terrora, � qital vpervye Mora,
Qtob Utopii neznan~e mne ne stavili v ukor . . .

...
No zato kak prosto garknul qerny$i voron: “Nevermore!”
I kaqu, kaqu � taqku, povtor��: “Nevermore. . . ”
Ne podn�t~s� . . . “Nevermore!”

To make these lines more friendly to the English speak-
ing reader, I explain that the first two lines refer to Thomas
More’s Utopia: the protagonist reads Utopia to avoid an accu-
sation that he has not familiarized himself with the utopian
teachings promoted by the totalitarian system. The three ex-
clamations “Nevermore!” which end the poem do not need
translation.

The poem was written in 1948 (significantly, the year when
George Orwell wrote his 1984—the title of the novel is just
a permutation of digits; in 1949, when Orwell’s novel was
published, Yessenin-Volpin started his first spell in prisons).
As we can see, Yessenin-Volpin, who was 23 years old at the
time, developed an ultrafinitist approach to utopian theories
(and even more so to utopian practices) much earlier than to
problems of mathematical logic.

5.5 The vanishing point

Father Ted: Now concentrate this time, Dougal. These
(he points to some plastic cows on the table)

are very small; those
(pointing at some cows out of the window)

are far away. . . Small. Far away.
Father Ted [368]

In the discussion of the psychology of mathematics, the
problem of infinity is unavoidable; our visual perception of
infinity is particularly puzzling; I have mentioned it in Sec-
tion 5.1; here, I wish to return to the subject.

I have stated earlier in this chapter that our first en-
counter with infinity does not happen when we see railway
tracks merging at the horizon; the reason for this is that
our brain resolutely refuses to recognize that the parallel
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rails converge at the vanishing point. Instead, your brain re-
minds you, like Father Ted to Father Dougal in the famous
episode of the cult TV series, that, although the cow in the
field projects onto a tiny spot on the retina in your eye, while
a toy cow in your hands projects onto a much larger retina
image, it is the cow in the field that is actually bigger. Simi-
larly, your brain continues to remind you that the tracks are
actually parallel all the way to the horizon. The brain actively
fights geometry!

The ability to use and read linear perspective in simple
schematic drawings is the result of cultural conditioning. (It
is different with photographs where the perspective, with its
vanishing points, is present due to the physical laws of ge-
ometric optics.) In ancient Egypt, for example, the graphic
culture was quite different:

In seeking to represent three-dimensional objects on a
plane surface, whether a drawing board or an area of
the wall, the Egyptian avoided the perspectival solu-
tion of the problem which alone of the nations of an-
tiquity, the Greeks ultimately reached by the fifth cen-
tury B.C. Their vision of the world, seen from a certain
standpoint at a certain moment of time, would have
seemed to the ancient Egyptian as presumptuous, and
concerned only with illusion, a mere distortion of real-
ity. The Egyptian was concerned not with presenting
an evanescent personal impression, caught in an in-
stant, but with what he regarded as eternal verities.
[. . . ]

His non-perspectival vision placed the Egyptian artist
in harmony with the world that he knew to exist. His
perception of the forms of nature was derived from a
fusion of several aspects recollected in the tranquility
of his mind and not captured as an instant revelation
to the seeing eye. [350, p. 13–15]

In the Eastern Orthodox tradition of icon painting (which
originated in Byzantium), for example, an over-elaborate and
technically sophisticated system of reverse perspective is em-
ployed: the parallel lines intersect in the foreground of the
painting, creating a very soothing, comforting feeling of a fi-
nite world which embraces the viewer, Figure 5.6.
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This paradox is even more remarkable because the image
on your retina, in accordance with the simple laws of geomet-
ric optics, is similar to photographic images and is something
like the one in Figure 5.7, with tracks meeting at the van-
ishing point on the horizon. But, in the environment which
shaped the evolution of our ancestors, the vanishing point
was of no importance; for survival, it was much more impor-
tant to recognize that a tiny speck of grey on your retina was
the Big Bad Wolf.

Fig. 5.6. Trinity by Andrei Rublev, c. 1410, arguably Russia’s most famous icon.
The reverse perspective closes the composition around the viewer and creates a
powerful emotion of unity. For Rublev’s contemporaries, the message was not only
spiritual and dogmatic, but very much political: in the historical context, it was a
call for the political unity of Russian principalities. Source: Wikipedia Commons.
Public domain.

One way to make your brain accept the existence of the
vanishing point is to dramatically simplify its task of vi-
sual processing. The best feeling of geometric perspective is
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Fig. 5.7. The railway tracks converging at the vanishing point. c©2003 by Tomasz
Sienicki, licensed under Creative Commons Attribution 2.5 License. Source:
Wikipedia Commons.

achieved when you look into a long dark tunnel with a tiny
spot of daylight at the opposite end, or (as I did when I was
a child) stare into a deep, deep well, with a tiny reflection of
blue sky in the water. The brain is no longer forced to recal-
culate the actual sizes of objects, because there are no any
in the field of view; the vanishing point, which was of no im-
portance, becomes the only source of light and dominates the
field of view.

Inna Korchagina
aged 8

The same happens in the “tunnel of light” illusion (or hal-
lucination), caused by the shutting down of light receptors
in the retina, as a result of oxygen deprivation or the effects
of drugs. I experienced it as a boy when I broke my arm in
a skiing accident and was given rather barbaric ether nar-
cosis; the last thing I remembered about the real world was
the surgeon saying to the nurse: “Add a bit more”—and ether
dripping from the gauze mask on my face. Then the flight
started. In a rational reconstruction, the light sensors shut
down one by one from the periphery of the retina to its cen-
ter; this is perceived as if only the receptors at the center of
the retina receive light, and is deciphered by the brain as the
light at the end of the tunnel. Adding to that illusion, the
vestibular apparatus, knocked out by ether, reports to your
brain the sensation of free fall, while the feeling of time is
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Fig. 5.8. Paradisio (plate 35) by Gustave Doré.—Illustration to Paradiso by Dante
Alighieri, Canto 31, Verse 1–3. Source: Wikipedia Commons. Public domain.

also suppressed—and you have the astonishing, overwhelm-
ing out-of-body experience of a flight through the endless tun-
nel towards the Light—and into Nothingness.

Paradoxically, in order to recognize infinity in the form of
the vanishing point of perspective, your brain has to be so se-
riously impaired that the infinity is no longer mathematical.
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Not surprisingly, the “tunnel of light” could be a power-
ful religious and spiritual experience and as such, is well
documented—see Paradisio, Gustave Doré’s illustration to
Dante’s Divine Comedy, Figure 5.8. But religious and spiri-
tual experiences are strictly individual and not reproducible—
and this draws the line which separates infinity, and how it
is understood and perceived both formally and informally in
mathematics, from its religious and spiritual interpretation.

5.6 How humans manage to lose to insects in mind
games

To further discuss the surprising inadequacy of the human
perception of perspective, I turn to a fascinating study of
motion camouflage, based on papers by my colleague Paul
Glendinning [145, 146].

Fig. 5.9. Dragonfly. Source: Wikipedia Commons. Public domain.

Dragonflies, elegant creatures much beloved by poets and
children, are consummate predators. As so frequently hap-
pens with beautiful predators, their real sophistication is
reached not in delightful air acrobatics but in the ways they
hunt and fight.

In their fights for territory, dragonflies, when they pursue
the enemy with the aim of a sudden attack, use a remarkable
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and inventive concealment strategy. A dragonfly camouflages
its approach so that the foe believes it to be stationary. This
conclusion is the result of the reconstruction of stereo camera
images carried out by Mizutani, Chahl and Srinivasen [164].
There are already several studies suggesting possible guid-
ance mechanisms used by dragonflies [118, 182]; however, the
underlying mathematical problem is not that sophisticated.
Indeed, I quote Paul Glendinning:

Paul Glendinning
aged 12

This is not as hard as it sounds. Even when moving,
most animals have a good sense of the direction to a
given fixed object at any time, and expect to see it on
that line. If the aggressor moves so that at each mo-
ment it is on the line between the target and a given
fixed point, which could be its initial position, then its
relative motion in the eyes of the target is the same
as that of the stationary reference point. The only way
that the target can know that it is not stationary is
to notice the change in size of the aggressor as it ap-
proaches. Mizutani, Chahl and Srinivasen [164] ex-
trapolate the lines between the aggressor and the tar-
get at several different times and show that to a good
approximation these all meet at a point, the fixed ref-
erence point or initial condition of the aggressor.

In a development highly offensive to humans’ pride, it
seems that we too can be duped by dragonflies and hover-
flies: this is confirmed by experimental studies [119] and
resolves the mystery of dragonfly flight which puzzled me
when I was a child. When you see a dragonfly over a river
or meadow, it frequently appears to be hanging in the air
motionless, as if it were glued to the sky, and then suddenly
jumps at you, whizzing by a few inches from your face—you
feel on your skin the air stream from its wings. Only upon
reading Glendinning’s paper did I realize that the dragonfly
was not motionless—it was approaching me on a reconnais-
sance flight. If you consider for a second how such an aston-
ishing defeat in a mathematical game against insects could
ever happen, it becomes apparent that, although human vi-
sion is exceptionally good at detecting even the tiniest rela-
tive changes in the position of an object, we are not good at
detecting gradual increases in the relative size of an object.
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(David Broomhead suggests that this can be explained by the
structure of light receptors in our eyes’ retina.) You would
probably agree with me if you have ever looked at a distant
approaching train, seen as a spot of light at the vanishing
point of the rail tracks. It is very hard to judge whether the
train is stationary or is approaching the platform. It is even
harder in modern Britain, where it has become a non-trivial
proposition.

Humans use similar strategies, sometimes developed in-
dividually, using trial and error at a semi-conscious level, or
perhaps learned as part of professional training. For exam-
ple, baseball players apparently catch high balls by running
along such paths on the field—and with varying speed—that
the ball (which they keep permanently in view) is perceived
as hanging motionless in the sky.

Another example comes from seafaring practice, as a crite-
rion used in sailing to detect boats on a collision course. [?]
I again quote Glendinning:

As a side re-
mark, a classi-
cal problem on
collisions from
Littlewood’s
Miscellany
[55]:

4 ships A,
B, C, D are
sailing in fog
with constant
and differ-
ent speeds
and constant
and different
courses. The
five pairs A and
B, B and C, C
and A, B and
D, C and D
have each had
near collisions;
call them ‘col-
lisions’. Most
people find
unexpected the
mathematical
consequence
that A and
D necessarily
‘collide’.

Prove that! The
problem can
be classified
as belonging
to projective
geometry, a
mathematical
discipline (and
the class of
mathematical
structures)
with historic
origins in
the study of
geometric
perspective.

If a boat appears to be stationary with respect to some
distant reference point or has the same compass bear-
ing from your boat over a period of time then it is on a
collision course with you [366].

This is equivalent to active motion camouflage with the ref-
erence point at infinity.

Notice: geometric infinity has again appeared on the scene.
Of course, from a geometric perspective, the reference point
at infinity is the same as the vanishing point. Unlike the ver-
bal infinity of counting, it requires much longer and more ar-
duous training.
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5.7 The nightmare of infinitely many (or just many)
dimensions

The miserable wasteland of multidimensional
space was first brought home to me in one
gruesome solo lunch hour in one of MIT’s
sandwich shops. “Wholewheat, rye, multigrain,
sourdough or bagel? Toasted, one side or two?
Both halves toasted, one side or two? Butter,
polyunsaturated margarine, cream cheese or
hoummus? Pastrami, salami, lox, honey cured
ham or Canadian bacon? Aragula, iceberg,
romaine, cress or alfalfa? Swiss, American,
cheddar, mozzarella, or blue? Tomato, gherkin,
cucumber, onion? Wholegrain, French, English
or American mustard? Ketchup, piccalilli,
tabasco, soy sauce? Here or to go?”

Review by Myles Aston of Life without
Genes: the History and Future of Genomes
by Adrian Woolfson, in the Balliol College
Annual Record 2001. (Quoted from Peter
Cameron’s web page Quotes on mathematics.)

Peter Cameron
aged 13

Very frequently, when we deal with a mathematical object
and wish to modify it and make it “infinite” in some sense, we
have several different ways for doing so. For example, usual
decimal numbers can be extended to infinite decimal expan-
sions to the right:

π = 3.1415926 . . .

and to the left:
. . . 987654321

In the second case, the operations of multiplication and addi-
tion are defined in the usual way, with the excess carried to
the next position on the left (which, by the way, is more natu-
ral than the multiplication of infinite decimal fractions [?] ).

If you still be-
lieve that real
numbers are
the best of all
worlds, try to
find, without
a calculator,
the first three
digits of the
ratio
0.12345 · · · 484950

0.5152 · · · 99100
.

In principle,
the first few
digits of the
numerator and
the denomi-
nator should
suffice for the
computation.
But how many
of them do you
need?

With these operations we get the so-called ring of 10-adic in-
tegers. Properties of 10-adic integers are quite different from
that of real numbers: to give one example, you cannot order
10-adic integers in a way compatible with addition and mul-
tiplication (so that the usual rules of manipulating inequal-
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ities would hold). This can be seen already from one of the
simplest instances of addition:

. . . 99999 + 1 = . . . 00000 = 0.

Gábor Megyesi
aged 15

10-adics are not frequently used in mathematics, but p-
adic integers for prime values of the base p, defined in a
similar way by expanding integers written to base p to the
left, are quite useful and popular.7 I notice, in passing, that a
paradoxical summation of the infinite series

1 + 2 + 4 + · · · = −1,

due to Euler, makes sense and is completely correct in the do-
main of 2-adic integers, written by base 2 expansions. Indeed,
it becomes an easy-to-check arithmetic calculation:

. . . 11111 + 1 = . . . 00000 = 0.

Well, this example is still “tame” infinity, encapsulation of
the process indexed by the ordered set of natural numbers,
and is, in some vague sense, one-dimensional.

The really hard-to-comprehend infinity arises in situa-
tions when we try to increase indefinitely the number of di-
mensions in the problem. There are some pretty obvious rea-
sons why this could be difficult.

• Our intuition about the properties of individual objects
starts to fail us very soon; we lose the mental picture of
the “general” term.

• On top of that, the change of dimension is frequently too
dramatic a change in the object; we easily lose the mental
picture of the “general step” in the process.

• The resulting mathematical object frequently has proper-
ties dramatically different from that of any of its finite-
dimensional analogues.

The following example is taken from the book by Victor
Ufnarovski Mathematical Aquarium [229].

Inscribe four equal circles of maximal possible size into
a square with side 1, and a small circle in the center
touching all four:
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Similarly, you can consider 8 spheres inscribed into
the cube of side 1, with the small sphere in the center
touching all 8, then 24 = 16 small spheres inscribed into
the 4-dimensional cube, etc. What is the limit of the
radii rn of central spheres touching 2n equal spheres
inscribed into the n-cube of side 1 as n tends to infin-
ity?

The answer is paradoxical: infinity. The explanation is
very simple: the main diagonal of the n-cube (the one that
connects the opposite vertices) has length

√
n by the repeated

use of Pythagoras’ Theorem, and grows to infinity, which
is already disturbing on its own. Consider how the central
sphere of unknown radius rn and two spheres of (unchang-
ing) radius 1/4 sit on the very long diagonal for large n:

n

n"!

#Ã

¡
¡

¡
¡

¡¡

I hope that the conclusion is now obvious. In particular,
this means that, at some n, the radius of the central sphere
becomes bigger than 1/2 and the sphere starts to stick out of
the cube! I leave it to the reader as an exercise to find the
value of the dimension n when this first happens. And one
more question to train your multidimensional intuition: does
the central sphere ever intersect the (one-dimensional) edges
of the cube?8

This toy example is an elementary expression of a well
known basic fact of analysis. In n-dimensional Euclidean
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space, you can introduce a topology and concept of limits in
two different ways which happen to be equivalent. In one
case, you use small spheres to measure the closeness of points
to each other; this is equivalent of using the usual formula of
Euclidean geometry

√
x2

1 + · · ·+ x2
n

to measure the length of a vector with coordinates (x1, . . . , xn).
In the other approach, you take the so-called uniform norm

‖~x‖ = max{|x1|, . . . , |xn|},
so the “sphere”

{ ~x | ‖~x‖ 6 1 }
is actually a cube, and you use small cubes to measure the
closeness of points to each other. But, as I have already said,
the topologies are the same: inside of every sphere one can
place a smaller cube, and vice versa.

In the commonly used infinite dimensional limit, vectors
are infinite sequences

x1, x2, x3 . . .

such that the sum under the radical in the expression for
Euclidean distance converges,

∞∑
i=1

x2
i < ∞;

then its square root, √√√√
∞∑
i=1

x2
i ,

can be taken for the “length” of the vector. On the other hand,
we can take for the “length” of the vector its uniform conver-
gence norm

‖~x‖ = lim sup{|x1|, |x2|, |x3|, . . . }.
Unlike the case of finite dimensional spaces, the correspond-
ing “sphere” and “cube” topologies (known in mathematics as
the l2 topology and the uniform convergence topology) and
the corresponding theories of limits are quite different. 9
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Notes
1Escher has explicitly used regular tesselations of the hyperbolic plane as a

framework for his hypnotic patterns of interlocking motifs—a point made obvious
by Douglas Dunham [26] in his experiments with Escher’s patterns: it is possible
to take Escher’s motif and render it into a different tesselation, see Figure 5.4.

2DIVISION BY THREE. To scare the reader into acceptance of the intrinsic diffi-
culty of division, I refer to paper Division by three [277] by Peter Doyle and John
Conway. I quote their abstract:

We prove without appeal to the Axiom of Choice that for any sets A and
B, if there is a one-to-one correspondence between 3 × A and 3 × B then
there is a one-to-one correspondence between A and B. The first such
proof, due to Lindenbaum, was announced by Lindenbaum and Tarski
in 1926, and subsequently ‘lost’; Tarski published an alternative proof
in 1949. We argue that the proof presented here follows Lindenbaum’s
original.

Here, of course, 3 is a set of 3 elements, say, {0, 1, 2}.
Prove this in a naive set theory with the Axiom of Choice.

3EIDETIC IMAGINATION. My friend Owl told me that, in her adult life, she
continued to experience, occasionally, mental images of eidetic intensity, mostly
related to music or mathematics. For example, during her first year at the univer-
sity she had an eidetic experience concerned with the Dirichlet function. Dirichlet
function, by definition, takes value 1 at rational and 0 at irrational points—it is
not something which is easy to visualize.

4COMPLETED ACTIONS. One of the earlier readers and critics of this book, Gre-
gory Cherlin, commented that some human languages have grammatical markers
for completed actions as opposed to uncompleted, which perhaps might make it
easier for a learner to encapsulate the actual infinity—not unlike plurality mark-
ers help a learner to grasp the concept of number (Section 3.2).

5ARCHIMEDES’ AXIOM. The property known as Archimedes’ Axiom can be
traced to the Preface to Archimedes’ Quadrature of the Parabola where he says
that any area

“can, if it be continually added to itself, be made to exceed any assigned
finite area.”

6ACCELERATED TURING MACHINES. Time considerations of a Zeno’s Paradox
type are indeed closely intertwined with abstract concepts of computation. Let
us consider an idealized sci-fi Turing machine which makes every iteration twice
quicker than the previous one. Then even hardest functions become computable
in subexponential time, and uncomputable functions become computable. This
idea is developed in considerable technical detail by Jack Copeland in his paper
[267]. Copeland attributes the idea of ‘acceleration’ to Bertrand Russell:

Miss Ambrose says it is logically impossible [for a man] to run through
the whole expansion of π. I should have said it was medically impossible.
. . . The opinion that the phrase ‘after an infinite number of operations’ is
selfcontradictory, seems scarcely correct. Might not a man’s skill increase
so fast that he performed each operation in half the time required for its
predecessor? In that case, the whole infinite series would take only twice
as long as the first operation. [64, pp. 143–144]

and to Hermann Weyl who proposed to consider an imaginary machine capable of
carrying out
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an infinite sequence of distinct acts of decision within a finite time; say,
by supplying the first result after 1/2 minute, the second after another
1/4 minute, the third 1/8 minute later than the second, etc. In this way
it would be possible . . . to achieve a traversal of all natural numbers
and thereby a sure yes-or-no decision regarding any existential question
about natural numbers. ([79, p. 34] or p. 42 of the English translation.)

7n-ADIC INTEGERS AND INTEGER DIVISORS. 10-adic integers are not so good
as p-adic for prime p because they contain zero divisors, non-zero numbers x and
y such that xy = 0. The following elementary example was provided by Hovik
Khudaverdyan and Gábor Megyesi. If you look at the sequence of iterated squares

5, 52 = 25, 252 = 625, 6252 = 390625, 3906252 = 152587890625 . . .

you notice that consecutive numbers have in common an increasingly long se-
quences of the rightmost digits, that is,

52n+1 ≡ 52n

mod 10n,

the fact which could be easily proven by induction. Hence the sequence converges
to a 10-adic integer

x = . . . 92256259918212890625

which has the property that x2 = x and hence x(x− 1) = 0.
One can see that zero divisors appear in the ring of 10-adic integers because

10 is not a prime number. An exercise for the reader: prove that the ring of 2-adic
integers has no zero divisors.

8THE UNIT CUBE. Zong [348, 349] gives a comprehensive survey of known and
still conjectural properties of the n-dimensional unit cube.

9MORE ON THE GEOMETRY OF THE UNIT CUBE. I conclude my story with yet
another fable, an example of (incomplete) induction failing because of the para-
doxical geometry of the n-cube. See Borwein [258] for the explanation of the sud-
den jump in behavior of a series of integral identities—it is essentially the same
effect as in Ufnarovski’s inscribed spheres problem.

Define
sinc(x) = sin(x)/x, x 6= 0

and
sinc(0) = 1.

One can prove the following identities (details are in [258]):
∫ ∞

0

sinc(x) = π/2

∫ ∞

0

sinc(x)sinc(x/3) = π/2

∫ ∞

0

sinc(x)sinc(x/3)sinc(x/5) = π/2

∫ ∞

0

sinc(x)sinc(x/3)sinc(x/5)sinc(x/7) = π/2

∫ ∞

0

sinc(x)sinc(x/3)sinc(x/5)sinc(x/7)sinc(x/9) = π/2.

It appears that a certain pattern emerges. But let us continue:
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∫ ∞

0

sinc(x)sinc(x/3)sinc(x/5)sinc(x/7)sinc(x/9)sinc(x/11) = π/2

∫ ∞

0

sinc(x)sinc(x/3)sinc(x/5)sinc(x/7)sinc(x/9)sinc(x/11)sinc(x/13) = π/2.

Then, out of blue:
∫ ∞

0

sinc(x)sinc(x/3)sinc(x/5)sinc(x/7)sinc(x/9)sinc(x/11)sinc(x/13)sinc(x/15)

=
467807924713440738696537864469

935615849440640907310521750000
· π.

It is dangerous to believe in a formula after checking just a few first instances,
especially if the formula changes its shape, not just the parameter values!
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Encapsulation of Actual Infinity

6.1 Reification and encapsulation

Zatovarilas~ boqkotara, zatarilas~,
zat�rilas~ i s mesta stronulas~.

Vasilii Aksenov

Further development of the principal themes of my book is
impossible without moving closer to the established method-
ological framework of mathematics education theory. There-
fore, I turn to the discussion of reification. There is a signif-
icant body of literature, both theoretical and experimental
studies, which deals with reification mostly in the framework
of school mathematics teaching.

The term reification was introduced into mathematics ed-
ucation studies by Anna Sfard, who applied it to the process
of objectivization of mathematical activities. The concept is
pretty close to that of encapsulation [115]. One may wish to
find subtle differences in the meaning of the two concepts.
But, since in application to real case studies they become
blurred anyway, I refrain from taking the possible difference
into account.

The associated verb is to reify, with the meaning “to con-
vert mentally into a thing, to materialize”. In the marxist lit-
erature, the term “reification”, as well as its more specialized
version, commoditization, has rather negative connotations,
which are absent in Sfard’s use of the word.

Anna Sfard
aged 7

The concept of reification is exceptionally useful in under-
standing of mathematics teaching and learning. According to
Reuben Hersh’s succinct description, children first learn an
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activity, something they do; this activity is frequently for-
malized as an algorithm, but sometimes remains semifor-
mal. Later the activity becomes a “thing”, something they
can think about as an object. This “reification” step is difficult
for a student (see its discussion in the dialog between Anna
Sfard and Pat Thompson [106]) and is a main contributing
factor to the success or failure of mathematics teaching.

The term “encapsulation” is sometimes more convenient
because it allows us to define a natural opposite action, de-
encapsulation; “de-reification” sounds odd. Also, the term “en-
capsulation” is better suited for situations when the process
is intentional and deliberate, like in a work of a research
mathematician. But I would prefer to reserve “reification” for
description of an amorphous, undirected (but perhaps guided
by a teacher) process of emergence of a concept in mathemat-
ics learning, especially at the earlier stages of mathematical
education.

This is the description of encapsulation and de-encapsulation
in Weller et al. [115, p. 744]:

The encapsulation and de-encapsulation of process in
order to perform actions is a common experience in
mathematical thinking. For example, one might wish
to add two functions f and g to obtain a new function
f + g. Thinking about doing this requires that the two
original functions and the resulting function are con-
ceived as objects. The transformation is imagined by
de-encapsulating back to the two underlying processes
and coordinating them by thinking about all of the el-
ements x of the domain and all of the individual trans-
formations f(x) and g(x) at one time so as to obtain, by
adding, the new process, which consists of transform-
ing each x to f(x) + g(x). This new process is then en-
capsulated to obtain the new function f + g.

It is instructive to see how Anna Sfard assesses a mathe-
matician’s description of his work. In [106] she quotes a fa-
mous mathematician, Bill Thurston:

Mathematics is amazingly compressible: you may strug-
gle a long time, step by step, to work through some pro-
cess or idea from several approaches. But once you re-
ally understand it and have the mental perspective to
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see it as a whole, there is a tremendous mental com-
pression. You can file it away, recall it quickly and com-
pletely when you need it, and use it as just one step in
some other mental process. The insight that goes with
this compression is one of the real joys of mathematics.
[113, p. 847]

Sfard comments on this:

If the “compression” is construed as an act of reification—
as a transition from operational (process-oriented) to
structural vision of a concept . . . , this short passage
brings in full relief the most important aspects of such
transition. First, it confirms the developmental prece-
dence of the operational conception over the structural:
we get acquainted with the mathematical process first,
and we arrive at a structural conception only later. Sec-
ond, it shows how much good reification does to your
understanding of concepts and to your ability to deal
with them; or, to put it differently, it shows the sud-
den insight which comes with “putting the helmet and
glove on” [Sfard uses here her “virtual reality game”
metaphor, see Section 12.2.–AB] with the ability to see
objects that are manipulated in addition to the move-
ments that are performed. Third, it shows that reifica-
tion often arrives only after a long struggle. And strug-
gle it is!

I would not construe Thurston’s words in the same way.
What he describes is not reification. More precisely, reifica-
tion is present in the process, but makes only a tiny portion
of it. Even where reification is present, it is directed by math-
ematical structures, by metatheories, and is quite purpose-
ful and intentional. The process of compression, as described
by Thurston, also involves a systematic search for new lan-
guages, or translation of the problem into other known lan-
guages; meta-arguments and analysis of existing proofs, etc.
To call all these actions reification is to stretch the useful con-
cept to the point when it becomes all-embracing and vacuous.
Moreover, reification itself is frequently compressed, in the
same way as other mathematical activities tend to compress
themselves into reusable (and sometimes even reproducible)
units.

MATHEMATICS UNDER THE MICROSCOPE VER. 0.919 5-SEP-2007/12:39 c© ALEXANDRE V. BOROVIK



134 6 Encapsulation of Actual Infinity

6.2 From potential to actual infinity

It does not matter if a cat is black or white,
as long as it catches mice.

Deng Xiao-ping

We discussed potential infinity in Section 5.3. Actual infin-
ity is harder; to accept the actual infinity of the set of natural
numbers, as the final result of counting by ones, to think of
all natural numbers together as one infinite set, is a leap of
faith. Not everyone, even a professional mathematician, is
prepared to make it, or will admit to making it; the list of
sceptics includes great names, such as Henri Poincaré. But,
once established, it is passed from generation to generation of
mathematicians like a religious belief; general cultural influ-
ences can make certain mathematical concepts appear self-
evident.1 Indeed, it is much easier to create an eidetic image
of something when you are told that this something exists,
and are given a name for it. It is easy to imagine a unicorn
after someone has described it to you in detail. We have to
admit that some degree of coercing and cheating is normal
in teaching mathematics: there is something of the unicorn
in many mathematical concepts as we teach them to our stu-
dents.

I see nothing wrong with that; to conceive the concept of
actual infinity is a great discovery (or revelation); as teachers,
we would be naive if we expected every one of our students to
repeat one of the most dramatic feats of human intellect. We
simply have to offer actual infinity to them in ready-to-use
form—and convince them, at both the emotional and practi-
cal level, that it is a useful concept, that it brings reproducible
results.

As a child, I was told to learn by heart the times tables,
without any attempts to explain to me where they came
from. I can only regret that my teacher was not Vladimir
Radzivilovsky (see Section 4.6) who encouraged every child
compose times tables by adding numbers by twos, threes, etc.,
and only then memorize them. However, whatever was the
origin of times tables, I have been using them all my life—
and, you know, they worked!

But there are better ways to guide students than intimi-
dation and abuse of the teacher’s authority.

MATHEMATICS UNDER THE MICROSCOPE VER. 0.919 5-SEP-2007/12:39 c© ALEXANDRE V. BOROVIK



6.2 From potential to actual infinity 135

6.2.1 Balls, bins and the Axiom of Extensionality

Man is equally incapable of seeing
the nothingness from which he emerges

and the infinity in which he is engulfed.
Blaise Pascal

My case study of interiorization of actual infinity was sug-
gested by a recent paper by Weller et al. [115].2 The authors
analyze students’ approaches to the resolution of a classical
paradox:

Suppose you put two tennis balls numbered 1 and 2 in
Bin A and then move ball 1 to Bin B, then put balls
3 and 4 in Bin A and move 2 to Bin B, then put balls
5 and 6 into Bin A and move 3 to Bin B, and so on
without end. How many balls will be in Bin A when
you are done?

Instead of trying to resolve it on the spot—either as a
mathematical or pedagogical problem—I suggest to make
from it three new problems (with, possibly, quite different so-
lutions). Please notice that I do not care about solutions for
the new problems; their only purpose is to shed some light on
the old one.

The first problem deals with indistinguishable balls:

Suppose you put two tennis balls in Bin A and then
move, at random, one ball to Bin B, then put two new
balls in Bin A and move a random ball from Bin A to
Bin B, and so on without end. Will Bin A be empty
when you are done? [?]

Still, this is a
good problem:
try to solve it.

I love this form of the paradox because it can be shown
that every individual ball ends up in Bin B with probability
1. [?] But does that mean that Bin A is empty? Why?

The second formulation is a continuous version of the
indistinguishable balls problem (we first think of balls as
molecules of water, and then, as physicists do, ignore the
molecular structure of water and think of it as a continuous
matter).

Suppose you have two tanks A and B, you pour water in
tank A at constant rate; meanwhile, water leaks from
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A to B at smaller constant rate, and so on without end.
How much water is in tank A when you are done?

The third problem replaces the balls with quantum par-
ticles, say electrons. Then not only individual electrons are
indistinguishable, but their location cannot be specified, so
that we can talk only about the expected numbers of parti-
cles in Bin A and Bin B.

If these three problems still do not provide enough food
for thought, we may recall that we have a number of natural
questions which need to be addressed before we put the para-
dox to students. For example, the Bin Problem, in its original
formulation, amounts to computing the value of the expres-
sion

{1, 2}r {1} ∪ {3, 4}r {2} ∪ · · ·
Have not we told the students that infinite expressions, like
the sum

2− 1 + 2− 1 + 2− 1 + · · ·
are meaningless unless it is explicitly defined what they
mean?3

As frequently happens in mathematics, in order to make
a concept intuitive, we have to jump to the next level of ab-
straction; you cannot expect that from students, but a teacher
can and should do that for them. Instead of trying to help our
students to encapsulate one iterative process which produces
a potentially infinite stream of elements into the set of all el-
ements in the stream, we can start confidently talking about
arbitrary sets, ignoring as irrelevant the process which pro-
duced them.

It frequently happens in mathemat-
ics, that, in order to make a concept
intuitive, we have to jump to the next
level of abstraction.

The analysis of the ex-
amples above makes it
abundantly clear that what
really matters is that sets
are composed of distin-
guishable elements, with
every element having an
identity of its own. To un-
derstand sets as objects,
we need some tools for manipulating them; an object is not
an object if we just look at it and do nothing. To compare sets,
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we need to postulate the Axiom of Extensionality (sometimes
also called the Volume Principle):

Two sets A and B are equal if and only if each element
of either set is an element of the other.4

Notice that the word “infinity” is never mentioned in the defi-
nition of equality of sets; the actual process (quite possibly, in-
finite) of checking, element by element, that they belong to B,
is also not mentioned. The Volume Principle is a great exam-
ple of abstraction by irrelevance as discussed in Section 7.8.

This is an exceptionally deep principle: infinity creeps
into it through the back door. For example, (potentially) in-
finitely many possible definitions of the empty set lead to the
same set, THE unique empty set! As Brian Butterworth [128]
nicely put it in words,

Although the idea that we have no bananas is unlikely
to be a new one, or one that is hard to grasp, the idea
that no bananas, no sheep, no children, no prospects
are really all the same, in that they have the same nu-
merosity, is a very abstract one.

To which I add that “no bananas” and “no prospects” do
not just have the same numerosity, they ARE the same, the
equality of their numerosities is a mere corollary.

After that, the question

Is the final set of tennis balls in Bin A empty?

has a simple answer: YES!
Being brought up in a Hegelian philosophical tradition,

I see paradoxes of actual infinity as manifestations of the
Hegelian dialectical transition; as all dialectical contradic-
tions, the chasm between finite and infinite is relative and
could —and should—be sublated, removed by change of a
viewpoint, the same way as we remove the mould from the
cast or scaffoldings from the finished building.

As a teacher, I see my task not as encouraging students to
bang their heads against the wall but as providing alterna-
tive viewpoints which eliminate the paradox.

Finally, I wish to mention a remark by Gregory Cherlin:
it is likely that comprehension of actual infinity is easier
for people whose native tongue makes a clear distinction be-
tween verbs for complete and incomplete action.
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6.2.2 Following Cantor’s footsteps

One of the possible ways to give students a good intuitive
feeling of actual infinity is via a bit more detailed discussion
of equations and their solutions: for example, the solution set
of

sin
(
etan x

)
= 0 (6.1)

for positive real x is well ordered (that is, every subset con-
tains a smallest element) and, in terminology of set theory,
has ordinal type ω2. This expression means that it looks like
the set of natural numbers (which is said to have ordinal type
ω) repeated infinitely many times, more precisely, ω times,
once for every natural number.5 When solving Equation 6.1,
the standard process of listing the roots of sin x = 0,

0, π, 2π, 3π, · · ·
has to be repeated infinitely many times, for each branch of
tan x (see Figure 6.1). We have a process made of processes; to
handle it, most students (well, those of them who can handle
the equation in the first instance) will have no choice but to
start thinking of individual smaller processes as objects, that
is, to encapsulate them.

This example to some degree reproduces Georg Cantor’s
first steps in his creation of set theory: he was motivated
by his work on convergence of trigonometric series where he
had to somehow deal with ensembles or collections of points
where the series diverges, and, in particular, introduced the
concept of an ordinal number or type. Ordinals preceded car-
dinals!

6.2.3 The art of encapsulation

The example with encapsulation of actual infinity suggests
some basic principles of encapsulation:
• If possible, never encapsulate on the basis of a stand alone

example. Always work in a wider set-up, where individ-
ual processes (or raw pre-encapsulation concepts) interact
with each other and give you no choice but to start think-
ing of them as objects.

• Be attentive to the details of interaction: they will help you
to find the right mathematical formulation of the encapsu-
lated concept.
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Fig. 6.1. The graph of y = sin
(
etan x

)
as produced by MATLAB by plotting 300

points. The inevitably approximate nature of the plot causes numerous deviations
from the actual shape of the curve: all peaks should have value 1, of course.

• And my last advice is taken from the 999 TV series (BBC
accident and rescue reconstructions):

if you suffer an attack of vertigo—do not freeze: move.

We return to discussion of encapsulation in Section 6.3.

6.2.4 Can one live without actual infinity?

How should we approach the position of those mathemati-
cians who refused to accept actual infinity? Henri Poincaré is
a prominent example. Weller et al. [115] quote him on a par
with modern days undergraduate students:

“There is no actual infinity; and when we speak of an
infinite collection, we understand a collection to which
we can add new elements unceasingly.”

If I had in my class a student who made a similar state-
ment and if the student’s name happened to be Henri Poincaré,
I would not be in a hurry to correct him, but would try to
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check whether Henri had a consistent vision of mathemat-
ics which was compatible with his thesis. For example, in
his understanding, did an algebraic curve given by equation
f(x, y) = 0 consist of points or was it a locus, place holder for
points?

In modern terminology, the first point of view is set-theoretic,
the second one is scheme-theoretic (and is based on the con-
cept of a category, not a set). Modern geometry works mostly
with categories, not sets, and the archaic, pre-set-theoretic
concepts of geometric objects fit very smoothly into the mod-
ern framework.

Also, I have a gut feeling that Henri would still be able
to solve every problem in the advanced calculus / analysis
class (including the one from Section 6.2.2). Indeed, within
undergraduate calculus, every problem is solvable within the
framework of the potential infinity of processes and sequences—
you need only to be sufficiently attentive to detail. This is
not as difficult as it seems—in order to deal with sequences
and series, for example, you have, anyway, to de-encapsulate
them back to their finite initial sequences and partial sums.

6.2.5 Finite differences and asymptotic at zero

I hope I would be excused for turning to my own, highly un-
orthodox, learning experience. It so happened that I was a
guinea pig in a bold educational experiment: at my boarding
school, my lecturer in mathematics attempted to build the
entire calculus in terms of finite elements. It sounded like a
good idea at the time: physicists formulate their equations in
terms of finite differences—working with finite elements of
volume, mass, etc, then they take the limit

∆V → 0

and replace ∆V by the differential dV , etc., getting a dif-
ferential equation instead of the original finite difference
equation. After that, numerical analysts solve this equa-
tion by replacing it with an equation in finite differences.
The question: “Why bother with the differential equations?”
is quite natural. Hence my lecturer bravely started to re-
build, from scratch, calculus in terms of finite differences.
Even more brave was his decision to test it on schoolchil-
dren. Have you ever tried to prove, within the ε-δ language
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for limits, the continuity of the function y = xm/n at an arbi-
trary point x0 by a direct explicit computation of δ in terms
of ε? The scale of the disaster became apparent only when
my friends and I started, in revising for exams, to actually
read the mimeographed lecture notes. We realized very soon
that we had stronger feelings about mathematical rigor than
our lecturer possibly had (or was prepared to admit, being
a very good and practically minded numerical analyst); per-
haps my teacher could be excused because it was not possible
to squeeze the material into a short lecture course without
sacrificing rigor. So we started to recover missing links, and
research through books for proofs, etc. The ambitious project
deflated, like a pricked balloon, and started to converge to a
good traditional calculus course. The sheer excitement of the
hunt for another error in the lecture notes still stays with me.

And I learned to love actual infinity—it makes life so much
easier.

My story, however, has a deeper methodological aspect.
Vladimir Arnold [3] forcefully stated that it is wrong to think
about finite difference equations as approximations of differ-
ential equations. It is the differential equation which approx-
imates finite difference laws of physics; it is the result of tak-
ing an asymptotic limit at zero. Being an approximation, it is
easier to solve and study.

In support to his thesis, Arnold refers to a scene almost
everyone has seen: old tires hanging on sea piers to protect
boats from bumps. If you control a boat by measuring its
speed and distance from the pier and select the acceleration
of the boat as a continuous function of the speed and distance,
you can come to the complete stop precisely at the wall of the
pier, but only after infinite time: this is an immediate conse-
quence of the uniqueness theorem for solutions of differential
equations. To complete the task in sensible time, you have to
alow your boat to gently bump into the pier. The asymptotic
at zero is not always an ideal solution in the real world. But
it is easier to analyze!

6.3 Proofs by handwaving

After our discussion of encapsulation of actual infinity we can
return back to lower level cognitive activities.
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Mathematical folklore contains an ironic classification of
“proofs”: proof by blatant assertion, proof by intimidation, etc.
Coxeter’s proof of Euler’s Theorem (Section 2.3) is probably
one of the best examples of a proof by handwaving. It is fun
to tell it in a pub, using fingers as props.

Notice that Euler’s theorem describes actual movements of
a solid body in the space, and therefore there are good reasons
for handwaving to be relevant for its proof. But mathematics
is full of motion and action metaphors applied even in the
situations where there is no motion or action:

• we say that an asymptote of the hyperbola xy = 1 ap-
proaches the x-axis;

• that a variable t runs through the set of real numbers;
• that the sequence sn = 1/n converges to zero as n tends to

infinity,

and the list of examples can be easily expanded.
Rafael Núnez [168] and George Lakoff [157] put the mo-

tion metaphor at the center of cognitive understanding of
mathematics. Núnez’s paper [168] roots mathematical con-
cepts into unconscious mechanisms linking speech and ges-
ture: the internal mental image of the concept of “conver-
gence” is the shared component of the meaning of the spoken
phrase which describes convergence, and a semi-conscious or
unconscious gesture which accompanies the phrase.

At a first glance, the idea appears to be far-fetched, un-
til one checks the list of experimental evidence showing in-
timate relation of speech and gesture. I quote Núnez [168,
p. 174], where the list is supported by detailed bibliographic
references.

• Speech accompanying gesture is universal. This phe-
nomenon is manifested in all cultures around the
world.

• Gestures are less monitored than speech, and they
are, to a great extent, unconscious. Speakers are of-
ten unaware that they are gesturing at all.

• Gestures show an astonishing synchronicity with
speech. They are manifested in a millisecond-precise
synchronicity, in patterns which are specific to a
given language.
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• Gestures can be produced without presence of in-
terlocutors. Studies of people gesturing while talk-
ing on the telephone, or in monologues, and studies
of conversations among congenitally blind subjects
have shown that there is no need of visible inter-
locutors for people to gesture.

• Gestures are co-processed with speech. Studies show
that stutterers stutter in gesture too, and that im-
pending hand gestures interrupts speech produc-
tion. I have once witnessed how a (admittedly, highly
skilled) speech therapist made a severely stuttering
child to speak flawlessly from the first seconds of
the very first speech therapy session: she held the
boy’s hand to feel his spasms, and spoke to him, leav-
ing prompts and pauses for his responses at preci-
sion timed moments when the hand was relaxed. For
observers—including the boy’s mother—this looked
like a miracle.

• Hand signs are affected by the same neurological
damage as speech [. . . ]

• Gesture and speech develop closely linked. Studies
in language acquisition and and child development
show that speech and gesture develop in parallel.

• Gesture provides complimentary content to speech
content. Studies show that speakers synthesize and
subsequently cannot distinguish information taken
from the two channels.

• Gestures are co-produced with abstract metaphori-
cal thinking. Linguistic metaphorical mappings are
paralleled systematically in gesture.

At risk of committing a mortal sin of using introspection
as a source of empirical evidence, I have to say that I am
very sympathetic to Núnez’s ideas: they appear to reflect my
everyday experiences in mathematics and my observations of
other people thinking and talking about mathematics.

I would even suggest the next step. If we think about a
mathematical concept as a shared content of a phrase and
a gesture, then an encapsulation is a mental image of com-
pleted potential gesture, the one which we probably have not
made yet, but could and would, if we were to complete the
action inherent in the pre-encapsulation concept.
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I will illustrate this principle in a second, using the con-
cepts of convergence and limit. I quote Núnez [168, p. 179]:

Formal definitions and axioms in mathematics are them-
selves created by human ideas [. . . ] and they only cap-
ture very limited aspects of the richness of mathe-
matical ideas. Moreover, definitions and axioms often
neither formalize nor generalize human everyday con-
cepts. A clear example is provided by the modern defi-
nitions of limits and continuity, which were coined af-
ter the work by Cauchy, Weierstrass, Dedekind, and
others in the 19th century. These definitions are at
odds with the inferential organization of natural con-
tinuity provided by cognitive mechanisms such as fic-
tive and metaphorical motion. Anyone who has taught
calculus to new students can tell how counter-intuitive
and hard to understand the epsilon-delta definitions
of limits and continuity are (and this is an extremely
well-documented fact in the mathematics education
literature). The reason is (cognitively) simple. Static
epsilon-delta formalisms neither formalize nor gener-
alize the rich human dynamic concepts underlying con-
tinuity and the “approaching” the location.

I disagree with this statement: human dynamic concepts
are rich, but not that rich. If one analyzes them, the most in-
tuitive ones happen to be one-dimensional and closely linked
to the concept of order (see Section 4.3). The most intuitive
special class of continuous functions of real variable is made
of piecewise monotone functions which take all intermediate
values. Notice that the definition involves only order—and
nothing else.6

I am not afraid to make the next step and observe that
the “dynamics” is frequently present in intuitive mathemati-
cal concepts as dynamics of construction: for example, a se-
quence of numbers “converges” to something or “tends” to
something because we construct its terms one by one. As the
result, I believe that it is more a rule than an exception that
a developed mathematical language is static (at least at a
first glance); an intuition of motion or action (possibly ex-
pressed in an unconscious gesture) was useful when we were
constructing the new object; it becomes redundant when we
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are no longer interested, or do not know, or do not care how
the object was constructed. The elimination of handwaving is
a major paradigm of a development of a mathematical theory.

I have an impression that, in Núnez’s understanding, a po-
tentially infinite sequence is dynamic and intuitive, while the
actually infinite set of all its elements is static and therefore
counterintuitive. Why should it be? Why should an action or
a motion be viewed as intuitive, while its result should not?

To illustrate this point, I suggest to have a look at one of
the most general forms of the definition of a limit:

Let T be a topological space, x a point in T and Nx the
filter of neighborhoods of x. A filter F on T is said to
have x as a limit point if Nx ⊆ F .

I want to apply this definition to an intuitive example of a
sequence

1,
1

2
,
1

3
, . . . ,

1

n
, . . .

converging to 0. For readers who do not know what filters are,
it will suffice to know that we in effect deal with the following
sets and functions:

• the set N of natural numbers;
• the function σ : N→ R, σ : n 7→ 1/n;
• The set S = σ(N) of all elements in the sequence;
• the set A of all subsets in N which have a finite comple-

ment in N;
• the collection σ(A) of images of sets from A under σ;
• the filter F of subsets in R generated by σ(A) (so that σ(A)

forms a basis of the filter F);
• the set B of intervals (−1/n, 1/n) for all n ∈ N (they form a

basis of the filterN0 of neighborhoods of 0 in the topological
space T = R).

Admittedly, this is quite a formal and messy set-up; does
anything new and useful come out of it?

Let us have a closer look.
To say that our sequence converges to 0 is the same as

to say that N0 ⊆ F , or, what is the same, that for every set
B ∈ B there is some set A ∈ A such that σ(A) ⊆ B (one can
notice here the same logical form of expression as in Cauchy’s
classical ε-δ definition of limit). Please notice an important
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feature of this definition: we deal with the set N of natural
numbers without specifying a particular order on it. In effect,
the way how elements of S are listed in our sequence does not
matter any longer! For example, we could list elements of S
as

1,
1

10
,
1

2
,

1

100
,
1

3
,

1

1000
, . . . ,

at every step jumping arbitrary far ahead and returning to
the beginning of the original sequence; this will not affect
the definition of limit. Or you may wish to think about the
sequence as a process of calculating its terms, but in random
order, say,

σ(1) = 1, σ(3) =
1

3
, σ(7) =

1

7
, σ(2) =

1

2
, . . .

This is why the general definition of limit appears to be
static: we abstracted away any concrete method of construct-
ing our sequence. And this is why the general definition of
limit works in the situations where we have no sensible con-
cept of order or direction.

The discussion of differences between the “dynamic” intu-
ition of limit and its “static” definition that we had in this sec-
tion can be boiled down to a difference in the ways we feel and
think about two basic mathematical concepts. One of them is
the most intuitive concept of mathematics, the ordered set of
natural numbers,

1 < 2 < 3 < 4 < . . . ,

the other one is the so-called Fréchet filter on the set N of nat-
ural numbers, the set of all subsets with finite complements:

F = {X ⊆ N | NrX is finite }.

Humans have an ability to imag-
ine the result of a completed action
which have not been started yet—
and these jumps of imagination form
the cognitive basis of encapsulation.

The ordered set of natu-
ral numbers can be un-
derstood and dealt with
within the potential in-
finity framework; the Fréchet
filter really requires think-
ing about natural num-
bers as actual infinity. It is
not immediately intuitive
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until we apply to it the
great principle of abstraction by irrelevance and bravely ig-
nore the fact that natural numbers have to be somehow built
one by one. After we have made all natural numbers, it does
not matter any more where we started and in what particular
order we produced them.

I wholeheartedly agree that our intuition of mathematics
very much relies on motion and action metaphors. However,
what is even more important, is that humans have an ability
to imagine the result of a completed action which have not
been started yet—a simple observation expressed in famous
words:

But I say unto you, That whosoever looketh on a woman
to lust after her hath committed adultery with her al-
ready in his heart. (Matthew 5:28)

It is likely that similar jumps of imagination form the
cognitive basis of encapsulation of mathematical objects and
concepts.

Notes
1GENERAL CULTURAL INFLUENCES can make certain mathematical concepts

appear self-evident—we shall soon see it again using the example of “optimal
strategy”, Section 7.9.

2Weller et al. [115] is a very interesting paper, an example of application of
Ed Dubinsky’s APOS theory of learning mathematics. APOS theory describes
how Actions become interiorized into Processes and then encapsulated as men-
tal Objects, which take their place in more sophisticated cognitive Schemas. See
[90, 91] for a detailed discussion of APOS as applied to the concept of infinity, and
David Tall for a review of APOS.

3It is worth to remember that “sums” of infinite series and limits of sequences
can be meaningfully defined in many ways, depending on context. For example, I
recently wrote a paper on group theory where the sequence

1, 0, 1, 0, 1, 0 . . .

had limit 1
2

(the so-called Cesaro limit) and that made perfect sense in the context
of the paper. Also, see Section 5.7, Page 125, for a discussion of Euler’s summation

1 + 2 + 4 + · · · = −1.

4MULTISETS. Gian-Carlo Rota initiated the study of multisets or ensembles,
which allow repeated elements. The concept appears naturally in computer sci-
ence and in mathematics. For example, the multiset of multiple roots of equation
x2 − 2x + 1 = 0 is {1, 1} and is different from the multiset of roots of equation
(x − 1)3 = 0, which is, of course, {1, 1, 1}. But every element of the first multiset
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is an element of the second one, and vice versa, therefore the Volume Principle
is no longer applicable. We should always remember that mathematical concepts
can be developed in many wildly different ways. If we choose a particular way, we
have to have a clear idea why are we doing so.

5ORDINAL ω2. In more rigorous terms, you may think of the ordinal number
ω2 as the set N2 of pairs of natural numbers (m, n) ordered lexicographically:

(k, l) 6 (m, n) ⇔ k < m or k = m and l 6 n.

6There is a well established area of research on the boundary of real analysis
and mathematical logic—the theory of o-minimal structures—where all (defin-
able) functions of single variable are exactly piecewise monotone functions which
take all intermediate values. In naive terms, these are functions whose graphs
can be drawn with a pencil.
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Mathematical Reasoning





7

What Is It That Makes a Mathematician?

I have already spent considerable time discussing the work-
ing of the mathematical brain at the subconscious and semi-
conscious level. However, mathematics is done by quite con-
scious reasoning. It would be useful to look, maybe just briefly,
at the interaction between the two levels of the mind. This is
a classical topic, as may be seen from the famous book The
Psychology of Invention in the Mathematical Field by Jacques
Hadamard [36].

7.1 Flies and elephants

A tacit rite of passage for the mathematician
is the first sleepless night caused by an unsolved problem.

B. Reznick [105]; quoted from Tony Gardiner [93]

Detest it [a certain difficult mathematics problem]
just as much as lewd intercourse;

it can deprive you of all your leisure, your health,
your rest, and the whole happiness of your life.

Wolfgang Bolyai (in a letter to his son Janos)

To introduce our discussion of the difficulties involved in a
mathematician’s work, I start with a parable which might
look excessively clinical.

Tony Gardiner
aged 10

During World War II, Sub Lieutenant Zasetsky received a
severe head wound which resulted in persistent brain dam-
age. He was observed over 23 years by Professor Luria, who
wrote a famous book [161] based on Zasetsky’s diaries (the



152 7 What Is It That Makes a Mathematician?

latter comprise more than 3000 pages). Yuri Manin, when
discussing the nature of proofs in his book Provable and Un-
provable [315], quotes some really astonishing fragments of
Zasetsky’s diaries:

And more: “Is the elephant larger than the fly” or “Is
the fly larger than the elephant”. I understood only
that “the fly” is small and “the elephant” is big, but,
for some reason, could not find my way through the
words and answer the question, is the fly smaller than
the elephant, or is it larger. The main trouble was that
I could not understand what the words “is larger” refer
to—the fly or the elephant.
Discussing this fragment, Manin stresses the complexity

of the metalanguage text which describes the faults in the
understanding of the primary language. In that particular
instance, it could be possibly explained by the fact that Zaset-
sky is talking about the past. But here is an excerpt written
in the present tense:

. . . I again try to recall the meaning of the expressions
“the fly is smaller than the elephant” and “the fly is
larger than the elephant”. I try to think about them,
what is the correct way to understand them and what
is incorrect. If we permute the words in these expres-
sions, they change their meaning. But they look the
same to me, as if nothing changed after the words were
swapped. But if you think a bit longer, you notice that
permutation changes the meaning of these four words
(elephant, fly, smaller, larger). But my brain, my mem-
ory after I got my wound, and even now, cannot im-
mediately grasp, what the word “smaller” (or “larger”)
refers to—to the elephant or to the fly. Even in these
four words, there are too many permutations.
Manin uses Zasetsky’s tortured account to refute Russell’s

thesis that even a moron should be able to check the validity
of a formal proof presented as a sequence of mechanical in-
ferences. Manin comments that, on the contrary, humans are
useless at checking formal proofs.

There is a clear difference between higher level reason-
ing and lower level verification and acceptance of elementary
facts (“the fly is smaller than the elephant”).
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Our capacity for higher level reason-
ing is so precious a resource because
it is so scarce.

We are useless at check-
ing formal proofs because
we actively dislike us-
ing our higher level rea-
soning facilities for rou-
tine actions which should
normally be done subcon-
sciously. Our capacity for higher level reasoning is so pre-
cious a resource because it is so scarce: Zasetsky was try-
ing to resolve by conscious and controlled reasoning (infor-
mation processing rate: about 16 bits per second) a problem
which is normally handled by the visual processing modules
of our brain (information processing rate: 10,000,000 bits per
second). (See a discussion of “bandwidth of consciousness”,
with references to the original psychological research, in Tor
Nørretranders’ book [166]. The bit rate tables are on pp. 138
and 143.)

I draw two lessons from Zasetsky’s account.

My fellow mathematician, do you
recognize yourself in Zasetsky’s self-
portrait?

First, when teaching
mathematics, we have to
remember this miserable
number: 16 bits per sec-
ond for conscious informa-
tion processing (which is
further reduced to 12 bits
per second for multiplica-
tion of numbers or 3 bits per second for counting objects).
Our students will not master a mathematical technique or
concept unless much more powerful mechanisms of subcon-
sciousness are engaged. Just compare these two numbers: 16
and 10,000,000!

The second lesson is about the emotional side of mathe-
matics. My fellow mathematician, do you recognize yourself
in Zasetsky’s self-portrait?

I do.
It so happened that, a half an hour before I read Manin’s

book, I spent some time in a conversation with a colleague of
mine, Maria do Rosário Pinto, trying to figure out whether a
certain matrix corresponded to a linear map U → V or to the
map of dual spaces U∗ → V ∗ (in a context where we had al-
ready switched several times, back and forth, between spaces
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and their duals, the issue was not difficult—it definitely was
not—but it was highly confusing). We were in a typical “fly
and elephant” situation; this is why reading Zasetsky’s con-
fessions minutes later was like a shock to me. Only after my
colleague and I used, unsuccessfully, every trick to resolve
the issue at the conceptual or intuitive level did we resort to
a formal calculation on paper, which, of course, gave us the
answer. But what was remarkable was our very reluctance to
do the formal calculation; instead, we were seeking ways of
making the choice self-evident, because we felt this would be
more valuable to us. A calculation establishes the fact and its
result can be formally reused. On the other hand, making a
fact self-evident does not establish its formal validity; it still
requires a proof. However, self-evident things can be reused,
at the intuitive level, in further mental work (I avoid the term
“reasoning” here): they will jump up, at the right times, from
the subconscious levels of our mind into the areas controlled
by conscious reasoning.

Many—and some of the brightest—
mathematicians are “problem-
solving” analogues of gambling
addicts and adrenalin junkies.

I trust that my fel-
low mathematicians will
also agree that Zasetsky’s
accounts of his mental
torture can be used as
an explanation, to a non-
mathematician, of why math-
ematics, as a professional
occupation, is so uncom-
fortable. Mathematicians are sometimes described as living
in an ideal world of beauty and harmony. Instead, our world
is torn apart by inconsistencies, plagued by non sequiturs
and, worst of all, made desolate and empty by missing links
between words, and between symbols and their referents; we
spend our lives patching and repairing it. Only when the last
crack disappears are we rewarded by brief moments of har-
mony and joy.

And what do we do then? We start to work on a new prob-
lem, descending again into chaos and mental pain.

Maybe this truth is not for public consumption, but many
(and some of the brightest) mathematicians are “problem-
solving” analogues of gambling addicts and adrenalin junkies.
My PhD student once complained to me that she was ex-
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hausted, because for two weeks, she awoke every morning
with a clear realization that she had continued to think about
a problem in her sleep. She was a real mathematician. Where
can we find more students like her?

Maria do Rosário
Pinto
aged 7

7.2 The inner dog

I turn to the most controversial, perhaps, thesis of my book—
relations between a mathematician and his subconscious-
ness.

I start by reiterating that mathematics is a language—in
this book, we have already discussed this idea a lot.

I dare to add that the language of mathematics contains a
dialect or sub-language for communicating directly with sub-
and unconscious modules of our mind.

For example, if I say to you: “Imagine a triangle and rotate
it around the longest side”—it is very likely that you will be
able to report back to me: “Yes, the resulting volume of rev-
olution is convex and consists of two circular cones with the
common basis”, or something to that effect. That means that
you were able to pass the command to the visual processing
centers of your brain, which then managed to unambiguously
interpret it and return you the result in the form ready for
verbalization and communicating back to me.

For your subconscious, the language of mathematics is not
a natural language; the subconscious has to be trained to un-
derstand you.

It is like training a dog.
Dogs have many faculties which we, humans, are lacking—

for example, a fantastic sense of smell. To exploit these facul-
ties, we have to send our commands to the dog and interpret
its reactions.

Mathematician is a dog trainer; his subconscious is his “in-
ner dog”, a wordless creature with fantastic abilities, for ex-
ample, for image processing, or for parsing of symbolic input.
Mathematician has to train his “inner dog”.

But the art of dog training has to be learned. Learning
and teaching dog training are social activities; dog training
and handling is also a social activity that is rooted in so-
cial and economic practice (shepherd dogs, guard dogs, snif-
fer dogs. . . ). People passed to each other optimal recipes for
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dog handling; the language of dog commands was refined and
optimized over centuries and is now very much standard-
ized and canonized. Interestingly, the Russian for “Bite!” is
“Fas!”, which is in effect German “Fass!”. A German word
was adopted because Russian equivalents were too long—but
dogs needed short, clear, distinctive commands.

Perhaps, we have to talk not just about one inner dog, but
a whole pack—a visual processing dog, say, or a parser dog.

Dennis Lomas
aged 14

Writing specifically about visualization, Dennis Lomas left
the following comment in my blog:

Your stance seems to be systematically at odds with the
traditional picture of mathematics which grants visu-
alization no real significance.
Once visualization is granted such importance, a range
of philosophical issues seems to be posed. A philoso-
pher might consider these questions (among others):
Are concepts be involved in visualization or is visual-
ization non-conceptual. If it is the latter, how can it par-
ticipate in any justification of a proposition?

He then challenged me with the following quote from Paul
Bernays:

What is special about geometry is the phenomenologi-
cal character of its laws, and hence the significant rôle
played by intuition. Wittgenstein points to this aspect
only in passing: Imagination tells us. And this is where
the truth lies; one has only to understand it aright (p.
8). The term imagination is very general, and what is
said at the end of the second sentence is a qualifica-
tion which shows that the author feels the theme of
intuition to be a very ticklish one. In fact it is very
difficult to characterize the epistemological rôle of in-
tuition. The sharp separation of intuition and concept,
as it occurs in Kantian philosophy, does not appear on
closer examination to be justified. In considering geo-
metrical thinking in particular it is difficult to distin-
guish clearly the share of intuition from that of con-
ceptuality; since we find here a formation of concepts
guided so to speak by intuition, which in the sharp-
ness of its intentions goes beyond what is in the proper
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sense intuitively evident, but which separated from in-
tuition has not its proper content. It is strange is that
Wittgenstein assigns no specific epistemological rôle to
intuition although his thinking is dominated by the vi-
sual. A proof is for him always a picture. At one time
he gives a mere figure as an example of a geometrical
proof. It is also striking that he never talks about the
intuitive evidence of topological facts, such as for in-
stance the fact that the surface of a sphere divides the
(remaining) space into an inner and outer part in such
a way that the curve joining up an inside point with an
outside point always passes over a point on the surface
of the sphere. [10, p. 518]

It is clear that Bernays does not separate intuition and
concept, and I am in total agreement with him—at least in
the in the visual mode of thinking about mathematics, intu-
ition and concept are almost the same thing. Indeed, a con-
cept (like a “triangle” in my example) is just a command for
our “visual dog”, the true possessor of our visual intuition.

It is obvious to every working mathematician that, in
the professional research community, mathematicians are
ranked by size and strength of their inner dog. Some of them,
actually, have inner wolves rather than dogs.1

In this book, I am at least trying to write about the ”inner
dog” of a mathematician, about actual dog commands and my
experience of communicating with my own inner dog, about
differences in dog command languages for sniffer dogs and
guard dogs, etc. There is not much that I can say about the in-
ner working of the dog—I am not a neuroscientist. But I love
dogs and I believe I know how to communicate with them.

7.3 Reification on purpose

I wish to make a brief (and very incomplete) list of mental
traits necessary for a working mathematician. Of course, ob-
sessive persistence, Zasetsky-style, to retie the torn bonds be-
tween concepts should feature prominently on any such list.
Friendly relations with the “inner dogs” of subconsciousness
are also crucially important, but, at the present stage of de-
velopment of neuroscience, we cannot describe interactions
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between mathematicians and their “dogs” in any sensible de-
tails.

Here, I want to return to the discussion of the key element
of mathematical practice, reification, and all its ensuing dif-
ficulties (Section 6.1), and add another item to my roster:

A mathematician is someone who reifies ab-
stract concepts intentionally and purposely,
and who can reuse, in compressed form, the
psychological experience of previous reifica-
tions.

It is my conjecture that potential future mathematicians
are boys and girls who, at the age when their classmates
struggle to reify the concept of a linear equation, can already
reify on purpose (of course, within the limits of mathematics
they know).

A brief case study will possibly be useful. Here is a prob-
lem I liked to give at the selection interviews for the Novosi-
birsk Summer School (the penultimate step of the selection
procedure of Fizmatshkola, the preparatory Boarding School
of the Novosibirsk State University, of which I am a proud
alumnus):

Given 2006 distinct points on the plane, prove that
there exists a straight line which divides the points in
two groups of 1003 points each. (Well, it was 1978 when
I first used this problem, and the problem, correspond-
ingly, was about 1978 points . . . ) [?]

Solve the prob-
lem without
reading fur-
ther! I encouraged my interviewees (14–15 years old boys and

girls) to talk about any ideas they could propose towards the
solution; I watched attentively for any signs of understand-
ing, on their part, that

(a)the fact deserves a rigorous proof and can be proven; and
(b)the words “there exists” in the problem are likely to mean

an invitation to produce an explicit procedure for con-
structing such a line.

There is at least one simple solution: draw lines through
each pair of points; take a line far away from the points and
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such that it is not parallel to any of the lines through pairs
of points; move this new line towards the points, keeping it
parallel to its original position. In that way, the moving line
will meet the points one by one, thus allowing for counting.
All solutions actually produced by children involved similar
counting procedures, with lines rotating, circles expanding,
etc.

The reader would probably agree that what is required
here is the ability to think about the procedure as a single
entity, as an object, specifying first the list of requirements
for the procedure; and to do that in a one-off problem (most
likely, my interviewees never before in their lives encoun-
tered problems in any way similar to that one), without the
guiding hand of the teacher, without a long series of prepara-
tory exercises.

Reification is difficult; as Anna Sfard describes it [106],

The main source of this inherent difficulty is what I
once called the (vicious) circle of reification—an appar-
ent discrepancy between two conditions which seem
necessary for a new mathematical object to be born.
On one hand, reification should precede any mention
of higher-level manipulations on the concept in ques-
tion. Indeed, as long as a lower-level object (e.g. a
function) is not available, the higher-level process (e.g.
combining functions) cannot be performed for the lack
of an input. On the other hand, before a real need
arises for regarding the lower-level process (here: the
computational procedure underlying the function) as
legitimate objects, the student may lack the motiva-
tion for constructing the new intangible “thing.” Thus,
higher-level processes are a precondition for a lower-
level reification—and vice versa! It is definitely not
easy to get out of this tangle.

Anna Sfard
aged 7

Therefore I add to my list of mathematician’s traits:

A mathematician recognizes the vicious circle
described by Sfard and actively seeks ways to
break it.
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Surprisingly, the general population contains a number of
children who have somehow developed this ability. It is worth
mentioning that, in the selection to Fizmatshkola, the inter-
viewers were instructed never to ask questions about chil-
dren’s academic performance at school; the standard inter-
view form filled at each interview contained no fields for the
interviewee’s school grades. However, we dutifully collected
the names of mathematics teachers. As you might expect, a
small number of teachers produced a disproportionate num-
ber of able students. What always interested me was how
these teachers taught; what made their students so special?
How can the skill of reification on demand be taught?

7.4 Plato vs Sfard

I wish to briefly visit the realm of philosophy (see more of
that in Chapter 12). The concept of reification is (or would
be) quite alien to certain philosophical schools. Here is a quo-
tation from Plato:

[The] science [of geometry] is in direct contradiction
with the language employed by its adepts. . . Their lan-
guage is most ludicrous. . . for they speak as if they
were doing something and as if all their words were di-
rected toward action. . . [They talk] of squaring and ap-
plying and adding and the like. . . whereas in fact the
real object of the entire subject is . . . knowledge . . . of
what eternally exists, not of anything that comes to be
this or that at some time and ceases to be.
[Quoted from Shapiro [69, p. 7]; he refers to [60, 572a]]
The solutions to the 2006 points problem produced by chil-

dren during my interviews would be unacceptable to Plato,
but perhaps quite acceptable to many classical Greek geome-
ters (for example, Hippocrates c. 470 – 410 BC) who used the
method of “verging”—sliding of a marked ruler—in geomet-
ric constructions and successfully solved the problem of angle
trisection. Indeed, the solutions were entirely based on de-
scriptions of action, manipulation of geometric entities as if
they were real-life objects. Their proofs would not be viewed
as rigorous by Hilbert, who instead of using the word “draw-
ing”, famously said in his axioms for geometry (Grundlangen
der Geometrie, 1899)
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for any two points, there exists a line. . . [69, p. 8].

On the other hand, Euclid, and geometers for 2000 years
after him, did not mention explicitly the “betweenness” prop-
erties of points and lines on the plane, relying instead on the
intrinsic mathematical algorithms of their brains which han-
dled “betweenness” with remarkable efficiency. (See the dis-
cussion of “betweenness”, and its history, with extensive bib-
liographic references, in Coxeter [233, Section 12.2].) What
would Euclid do if challenged with the 2006 points problem?
Would he and his followers repair the gap in which they lost
the concept of “betweenness”?

7.5 Multiple representation and de-encapsulation

Cryptomorphism (see Section 4.1) and related concepts are
rarely discussed in the literature on mathematical educa-
tion; in conversation with teachers, one can feel that they
find the possibility of expressing the same mathematical con-
cept or fact in many different ways more of an obstacle than
an advantage. This point of view is reflected in a dialogue of
Thompson and Sfard on the nature of reification [106].

Thompson quotes his earlier paper [112, pp. 39]:

I believe that the idea of multiple representations, as
currently construed, has not been carefully thought
out, and the primary construct needing explication is
the very idea of representation. Tables, graphs, and ex-
pressions might be multiple representations of func-
tions for us, but I have seen no evidence that they
are multiple representations of anything to students.
In fact, I am now unconvinced that they are multiple
representations even to us. . .

Pat Thompson later adds that background motivation for this
statement “was largely pedagogical”. On the contrary, Sfard
sees the whole point in that

being able to make smooth transitions between dif-
ferent representations [. . . ] means there is something
that unifies these representations.

What she calls a “mathematical object” is such a unifying en-
tity. However, for Anna Sfard mathematical objects are rei-
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fied mathematical processes, the unifying entities of some-
thing the learner of mathematics has already done.

Similarly to what I said in Section 6.1, the crucial differ-
ence between a mathematician and a learner of mathematics
is that

The mathematician actively seeks new or
known, but previously ignored, representa-
tions and interpretations of his or her objects.

It is significant that the inventor of al-
gebraic symbolism, Viète, was a pro-
fessional cryptographer.

The “multiple repre-
sentation” of Sfard and
Thompson is a primitive
and passive pre-reification
form of cryptomorphism.
It is important to stress
that the concept of cryp-
tomorphism assumes the
proactive position of the researcher, a preparedness to recog-
nize the old object appearing, in disguise, in a completely new
setting, it includes an element of challenge. At the psycho-
logical level, the “crypto” part of “cryptomorphism” empha-
sizes active problem solving, breaking the code. It is highly
significant that the inventor of algebraic symbolism, Fran-
cois Viète, was a professional cryptographer—he served to
the king Henry IV of France.

And here is another problem which I used in my mathe-
matical interviews.

Some anglers caught some fish. It is known that no-
one caught more than 20 fish; that a1 anglers caught
at least 1 fish, a2 anglers caught at least 2 fish, and
so on, with a20 anglers catching 20 fish. How many
fish did the anglers catch between them? (Of course, in
more concrete versions of the problem {ai} can be re-
placed by any non-increasing sequence of non-negative
integers.) [?]Solve it!

I remember this problem circulating among my friends in
the Summer School. I also remember two principal types of
solutions.
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Solution 1

Notice that exactly a19 − a20 anglers caught 19 fish, a18 − a19

anglers caught 18 fish, and so on. Therefore the total number
of fish is

20a20 + 19(a19− a20) + 18(a18− a19) + · · ·+ 2(a2− a3) + (a1− a2),

which simplifies to

a1 + a2 + · · ·+ a19 + a20.

As you can see, some skills of formal manipulation with se-
quences would be quite handy.

Solution 2

This solution is more interesting in the context of “multiple
representation”, since it involves a clear understanding on
the part of the solver of the concept of functional dependence,
and the preparedness to look at one of the most primitive
form of representation of functional dependence: charts.

Fig. 7.1. Some anglers caught some fish, a chart made by MICROSOFT EXCEL.
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Fig. 7.2. Some anglers caught some fish, represented by cherry stones on graph
paper.

Visualization is too intimate a compo-
nent of mathematical thinking to be
entrusted to a computer.

The chart in Figure 7.1
is the best I could squeeze
from MICROSOFT EXCEL,
and is a good example of
why software-based learn-
ing of mathematics is in-
trinsically flawed: the soft-
ware forces on you a particular mode of visualization. How-
ever, visualization is too intimate a component of mathemat-
ical thinking to be entrusted to a computer. Instead, I drew
a simple diagram representing my own visualization of the
problem, the same way I visualized it when I was a schoolboy,
see Figure 7.2. I do not know why, but it so happened that I
thought about the fish as cherry stones placed on graph paper
(at that time, I did not draw actual picture, but I definitely
remember thinking about cherry stones). In this much more
primitive chart, ai is the number of stones in row i, which
immediately gives the total number of stones as a1 + a2 + · · · .
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Some lessons to be learned from this small case study:

• The second solution requires some reasonable level of han-
dling of a general concept of function (of nominal, not nu-
meric, variable: the arguments of the function are names,
not numbers!).

• However, the solver should be prepared to choose a very
low level concrete representation of the general concept, or
de-encapsulate it down to a rather primitive level. From
the teacher’s perspective, this means that earlier, lower
level material should be not only well understood by a
student, it should be absorbed, interiorized to the point
of totally automatic, subconscious use. De-encapsulation
is no less important than encapsulation; the student has
mastered the encapsulated concept only if she can de-
encapsulate it at will, and freely choose the most appro-
priate of many possible modes of de-encapsulation.

• The solver has to actively probe her mind for various rep-
resentations of the problem (or translations to various lan-
guages) until the most appropriate one is found.

• Finally, the problem itself is not that naive: its solution
with cherry stones is a miniature version of the Fubini
Theorem for the Lebesgue integral. I would bet that the
mathematician who originally set the problem knew this
connection, and in the most explicit terms. At the personal
level, I myself, as an undergraduate student, was over-
whelmed by emotion when I recognized my cherry stones
in theorems from the course in analysis.

• The first solution of the problem requires a higher level of
symbolic mathematical technique. I leave to the reader as
an exercise to find and prove the calculus version of the
formula

Fish total = 20a20 +19(a19−a20)+ · · ·+2(a2−a3)+(a1−a2).

If you wish to avoid the use of Lebesgue measure, assume
that anglers are points on [0, 1], and that the number f(x)
of fish caught by angler x is a continuous strictly decreas-
ing function. [?] Do it!

7.5.1 Rearrangement of brackets
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The vertical unity of mathematics is
not frequently discussed—although it
is highly relevant to the very essence
of mathematical education.

The story with anglers
and fish came to my mind
recently, when I overheard
the following exchange at
a meeting of a study group
on Kontsevich’s motivic
integration (in which we
attempted to read papers
like Hales [293] and Denef–Loeser [275, 276]:

– I cannot understand why motivic integration has
turned out to be so useful. It is nothing more than a
very complicated rearrangement of brackets!
To which my colleague Peter Symonds responded:
– Well, a lot of mathematics is just a rearrangement of
brackets.2

Many eloquent speeches have been made, and many beau-
tiful books written in explanation and praise of the incompre-
hensible unity of mathematics. In most cases, the unity was
described as a cross-disciplinary interaction, with the same
ideas being fruitful in seemingly different mathematical dis-
ciplines, and the techniques of one discipline being applied to
another. The vertical unity of mathematics, with many simple
ideas and tricks working both at the most elementary and at
rather sophisticated levels, is not so frequently discussed—
although it appears to be highly relevant to mathematical
education.

Peter Symonds
aged 5 7.6 The Economy Principle

The following informal concepts of
mathematical practice cry out to be explicated:

beautiful, natural, deep, trivial, “right”,
difficult, genuinely, explanatory . . .

Timothy Gowers

Quite a number of phenomena of mathematical practice
can be explained in terms of what I call, for the lack of better
name, the Economy Principle:
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A mathematician has an instinctive tendency
to favor objects, processes and rules with
the simplest possible descriptions or formula-
tions.

François Loeser
aged 4

To some extent it is a general tendency of the human mind;
it is taken for granted, for example, by composers of IQ tests,
where answers to various problems of the type

continue the following sequence: 1, 3, 6, 10, 15,

are expected to be based on the assumptions (which inciden-
tally are never stated) that

(a)the numbers or objects in the sequence are supposed to be
built consecutively one by one, and

(b)the rule for construction has to be as simple as possible.

In that particular case, one can easily observe that consec-
utive increments in the sequence are 2, 3, 4, 5 and therefore
a likely continuation of the sequence is

1, 3, 6, 10, 15, 21, 28 . . .

Number sequences in IQ tests provide some of the best
mathematical entertainment on the Internet: use GOOGLE
to find an IQ test, copy a sequence and paste it in the search
engine of N. J. A. Sloane’s On-Line Encyclopedia of Integer
Sequences [367]. Then look in awe at the astonishing num-
ber of mathematically meaningful descriptions and ways to
continue the sequence. Notice that each of the sequences has
actually appeared in some mathematical problem—the En-
cyclopedia provides comprehensive references! For example,
one of the ways to continue our sequence 1, 3, 6, 10, 15 is

1, 3, 6, 10, 15, 20, 27, 34, 42 . . .

(sequence A047800). It has the explanation that its n-th term
is the number of different values of i2 + j2 for i and j running
through the integers in the interval [1, n].

However, we instinctively know that the first answer is
“right” because its description is simpler. Our intuition is re-
flected in an important concept of modern computer science:
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Kolmogorov complexity. Kolmogorov complexity of a word (or
a sequence), as Kolmogorov himself has defined it, is the
length of the shortest program producing that word.

We can easily see that the “economy principle” is an impor-
tant part of many informal concepts of mathematical prac-
tice. For example, in his talk at the Mathematical Knowledge
conference in 2004 in Cambridge, Timothy Gowers observed
that, in his opinion, a “comprehensible” proof is not necessar-
ily the shortest one, but a proof of small width. Here, width
measures how much you must hold in your head at any one
time. Alternatively, imagine that you write a detailed proof
on a blackboard, carefully referring to all intermediate steps.
However, if you know that a certain formula or lemma will
never be used again, you erase it and re-use the space. A
“small width” proof is a proof which never expands beyond
one (small) blackboard.

In his classical study of psychology of mathematical abil-
ities in children [100], Vadim Krutetskii emphasizes that
striving for clarity, simplicity and economy in a solution is
one of the most important signs of mathematical ability in
children. I quote two examples from his work.

In the first example [100, p. 285], S. G., an eighth grader
(that is, 14 or 15 years old), solves the following problem:

(Problem XIX-A-11 of [100]) Find a four-digit number
with the following conditions: the product of the ex-
treme digits is equal to 40; the product of the middle
digits is 28; the thousands digit is as much less than
the units digit as the hundreds digit is less than the
tens digit; and if 3, 267 is added to the unknown num-
ber, the digits of the number are reversed.

It is interesting that S. G. made an explicit choice between
two strategies:

Initially she composed a complex system of equations
in four unknowns (the way almost all pupils began).
Without trying to solve the system she composed, S.G.
said: “This can be solved but it’s very awkward. There
ought to be a simpler solution here somewhere. But
equations aren’t needed here: 40 can be the product of
just two numbers: 5 · 8. But the thousands digit is less
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than the units digit, and then the number is like this:
5 ∗ ∗ 8. Well, this is clear. The number is 5,478.”

At this point it also becomes clear why mathematically
able children can sometimes be irritating to teachers. When
pressed for explanation, S. G. clarified:

“28 is the product of only two digits: 4 · 7. The hundreds
digit is less than the tens digit. These digits only have
to be arranged.”

An idea for handling an intermediate step, the uniqueness
of factorization of 40 into digits, 40 = 5·8, was immediately re-
used by S. G. as something obvious and not deserving further
mentioning.3

A mathematician has an instinctive tendency
to compress and re-use his/her mental work.

In the second example [100, p. 284], the interviewee is 9-
year-old Sonya L.

Problem. A father and his son are workers, and they
walk from home to the plant. The father covers the
distance in 40 minutes, the son in 30 minutes. In how
many minutes will the son overtake the father if the
latter leaves home 5 minutes earlier than the son?

Usual method of solution [by 12-13 year old children]:
In 1 minute the father covers 1/40 of the way, the son
1/30. The difference in their speed is 1/120. In 5 min-
utes the farther covers 1/8 of the distance. The son will
overtake him in

1

8
:

1

120
= 15 minutes.

Sonya’s solution: “The father left 5 minutes earlier
than the son; therefore he will arrive 5 minutes later.
Then the son will overtake him at exactly halfway, that
is, in 15 minutes.”
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7.7 Hidden symmetries

Krutetskii’s case studies, sharply observed and precisely recorded,
frequently contain more than he chooses to highlight and
comment on. Actually, in the previous example Sonya L. used
a trick which deserves to be specifically mentioned: she no-
ticed a hidden symmetry in the set up of the problem and
immediately exploited it.

A mathematician seeks and exploits hidden
symmetries in a problem.

The word “symmetry” here has to be understood in the
widest sense and applied not only to geometric symmetry as
we know it, but also to “semantic” or “logical” symmetry.

The famous Pons Asinorum theorem4 of Euclidean geome-
try provides a very poignant example. The theorem is that

the base angles of an isosceles triangle are equal.

My own teaching experience (back in Russia in the 1980s)
showed that surprisingly many students were able to see that
Pons Asinorum could be proven by a direct argument based
on the formal symmetry of the premises:

• AB = AC
• AC = AB
• ∠BAC = ∠CAB (since the angle is equal to itself).
• 4BAC = 4CAB (by the Side-Angle-Side criterion

of congruence).
• Therefore, ∠B = ∠C.

The proof in the school textbooks was, of course, different
because the “formal symmetry” proof was deemed to be too
difficult for schoolchildren (and it probably was for many of
them). Instead, the Pons Asinorum was proven outside the
axiomatic system, by a direct application of the bilateral sym-
metry of the triangle viewed as a cardboard cutout. This ap-
proach was promoted by Hadamard in his highly influential
Leçons de géométrie élementaire [36] and adopted by canoni-
cal Russian textbooks.
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Fig. 7.3. Pons Asinorum. Euclid proved the theorem by a sophisticated auxiliary
construction. First we extend the sides and make the exterior angles ∠DBC and
∠ECB to belong to two different but congruent triangles. Then we choose points
D and E so that BD = CE. Then we show that 4DAC = 4EAB and at the next
step that 4CBD = 4BCE. So ∠CBD = ∠BCE. After that ∠CBA = ∠BCA as
exterior angles to equal angles.

The dispute about the usability of the “formal symme-
try” proof in teaching apparently has a long and honorable
history—perhaps, starting with Euclid himself, who did not
use it in his Elements. With the advent of computers and Ar-
tificial Intelligence the story found a fascinating turn—proofs
based on “semantic symmetry” (the term is from [286]) had
happened to be natural for automated proof systems. The
first breakthrough was made by famous computer scientist
Marvin Minsky: in 1956, his (hand-simulated) program eas-
ily found the “formal symmetry” proof of Pons Asinorum. A
comment by Minsky is quite revealing:

What was interesting is that this was found after a
very short search—because, after all, there weren’t
many things to do. You might say the program was too
stupid to do what a person might do, that is, think, “Oh,
those are both the same triangle. Surely no good could
come from giving it two different names.” [372]

As a side comment, I wish to express my regret that proofs
are increasingly suppressed in mathematics teaching. I can
say from my teaching experience at Manchester that stu-
dents from Greece and Cyprus handle the concept of proof
much better than British students. Euclid happened to be
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Greek, and, as a matter of national pride, Euclidean geom-
etry is still being taught in Greek schools.

7.8 The game without rules

Perhaps one of the least discussed professional traits of a
mathematician is the ability to formalize and explicate still
vague ideas and constructions.

A mathematician can work in an incomplete
set-up and recover the formal assumptions
and context which makes the problem mean-
ingful.

Remarkably, this trait can be found in young children,
in the form of an instinctive ability to make up—and then
follow—the “rules of the game” in the course of a game.

In mathematical folklore, one can find numerous problems
where the set-up is intentionally left incomplete, in the ex-
pectation that the solver will be able to recover the rest. Here
is my favorite one; it belongs to the genre of interview prob-
lems, it is best told in a face-to-face chat with a child, with
the help of some scrawlings on scratch paper.

THE BEDBUG PROBLEM. A student lives in a dormi-
tory room infested with bedbugs (Cimex lectularius).
He has bought a new bed and wishes to protect it from
infestation. Since bedbugs can crawl over any surface,
but cannot swim, the usual solution is to put the legs
of the bed into tins with water. However, bedbugs also
have a devilish ability to crawl, upside down, over the
ceiling, position themselves above the desired target
and then fall onto it. Our student made a large tin
vessel and hung it over the bed (Figure 7.4). Unfortu-
nately, it does not help. Now we can formulate a prob-
lem: assume that the student has an unlimited supply
of tin and can make vessels of any size and shape. How
can he protect himself from the bedbugs?

It is interesting to see how children handle many unstated
assumptions of the problem. For example, the student needs
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Fig. 7.4. Combining crawling and falling, a bedbug can easily find its way even to
a very well protected target.

to breathe and therefore cannot seal himself hermetically in
a tin capsule. Can a bug fall precisely at a very thin edge
of the vessel? What happens if tin is very thin? Can a bug
crawl over the thin wires from which the vessel is hung? How-
ever, the problem has an indisputable solution which imme-
diately removes all these questions (Figure 7.5). Remarkably,
I have met many children who, although they have never be-
fore seen problems like this, were ready to accept and trust
that I, as a problem poser, and they, as problem solvers, follow
some undisclosed set of rules which will become immediately
clear when the solution is found.

The reader will find more loosely formulated problems in
Chapter 10. The cycle of Post Office Problems discussed there
presents an even harder challenge: prior to figuring out the
rules of the game the solver has to understand first in what
mathematical language he or she has to formulate the rules.

These problems appeal to one of the most natural ways of
encapsulating complex processes: treat them as a game, or,
more precisely, as make-believe play. (For otherwise, why do
children, in all cultures, play games?) Crucially, we have to

MATHEMATICS UNDER THE MICROSCOPE VER. 0.919 5-SEP-2007/12:39 c© ALEXANDRE V. BOROVIK



174 7 What Is It That Makes a Mathematician?

Fig. 7.5. A solution to the Bedbug Problem. As you can see, the thickness of tin
does not really matter.

figure out the rules of the game as we play and make the
play a consistent and believable whole. When the rules be-
come clear, the psychologically easiest way to accept and fol-
low them is to treat them as the proverbial rules of the game!

The game context makes natural abstraction by irrele-
vance perhaps the simplest and the most powerful form of
mathematical abstraction. Lines have no width not because
we want them so, but because we do not care about the
width: we are using them in situations where width does not
matter—just as we do not care about the thickness of tin in
the Bedbug Problem.

7.9 Winning ways

The umbrella term “game” covers a continuous spectrum
from “make-believe play,” where rules are made on the fly,
to established games like chess, where the player has to ac-
cept rules as they are, no matter how strange or bizarre they
may be. As mental activities, formally described games come
closest to mathematics. It is an observation by G. H. Hardy
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Fig. 7.6. A typical chess problem: mate in 2 moves, White to move. (E. Bog-
danov, 1st Prize, Ukrainian Sport Committee Competition, 1984.) Source:
http://chessproblem.my-free-games.com, c© Bruno Berenguer, reproduced with
his kind permission.

In A Mathematician’s Apology, G. H. Hardy again and again returns to compar-
ison between mathematics and chess, and, of course, his findings are in favor of
mathematics:
“A chess problem also has unexpectedness, and a certain economy; it is essential
that the moves should be surprising, and that every piece on the board should
play its part. But the aesthetic effect is cumulative. It is essential also (unless the
problem is too simple to be really amusing) that the key-move should be followed
by a good many variations, each requiring its own individual answer. [. . . ] All this
is quite genuine mathematics, and has its merits; but it is just that ‘proof by enu-
meration of cases’ (and of cases which, at bottom, do not differ at all profoundly)
which a real mathematician tends to despise.”

[38] that chess problems (of the kind shown on Figure 7.6)
are exercises in combinatorics and that their solutions are in-
stances of mathematical proof in one of its most basic forms:
proof by listing all possibilities.

And here we come to one of the strangest episodes in the
history of mathematics. Unlike games of chance, which at-
tracted the attention of mathematicians from the 17th cen-
tury onwards and led to the creation of probability theory,
deterministic games were ignored by mathematicians for two
or three more centuries. The first theorem of game theory—
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remarkably, about chess—belongs to the famous set theorist
Ernst Zermelo and was published in 1913 in his paper An ap-
plication of set theory to the theory of chess [346]. I state the
result in its modern formulation; will the reader be surprised
by the theorem?

In the game of chess, at least one of the players has a
strategy which assures that he either wins or, at least,
never loses the game.

Of course, nowadays it is self-evident; but it was not so
in the beginning of the 20th century, when, in the mass cul-
ture, chess was assumed to be a psychological game, some-
thing like poker—although Steinitz had already initiated a
scientific approach to the game, building on earlier work by
Philidor. Interestingly, Lasker, a prominent mathematician
and one of the leading chess players of the beginning of 20th
century, was much criticised for his “psychological” style of
play.

A clear formulation of results in game theory requires use
of sets. A modern commentator [300] writes:

It is a measure of how far set-theoretic thinking has
become embedded in mathematics that today we would
regard the “application of set theory” in Zermelo’s pa-
per as merely set-theoretic formulation in set-theoretic
notation. However, it must be remembered that such
formulations for mathematization of problems were
quite novel at the time.

Actually, Zermelo was interested in more than that: he de-
fined the concept of a “winning” position and asked the ques-
tion: in a winning position for White, how many moves will
it take to reach a checkmate? Using the fact that the game
of chess has only finitely many possible positions, he argued
that, starting from any winning position, a player can force
a win in at most N moves—no matter how the other party
plays—for some fixed natural number N .

The concept of “winning strategy” was not explicitly for-
mulated by Zermelo, but, as Dénes König [309] later showed,
it was implicitly present in Zermelo’s arguments. A winning
strategy for a player is a function from the set of positions
to the set of moves such that if one plays according to this
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function, she always wins, no matter what the moves of the
other player are. Also, embedded in Zermelo’s paper was the
concept of determinacy: the notion that one of the players has
a strategy that ensures win or draw.5

As soon as the concept of winning strategy was explicitly
formulated, it became clear that it was remarkably intuitive.
In mathematics, its power of encapsulation should not be un-
derestimated.

As an example, let us consider the following problem.
In the game of “double chess” both players are allowed
to make two moves in a row. Prove that White has a
strategy which ensures a draw or a win.

“Winning strategy” is an example
of a mathematical concept which
slipped into mass culture without its
escape being ever noticed by math-
ematicians.

A solution is decep-
tively simple: assume that
White has no such strat-
egy. Then Black has a win-
ning strategy, and White,
moving a knight forth and
back, returns the chess-
board into the pre-game
state and yields the first
moves to Black, in effect,
changing his own color to Black. But Black has a winning
strategy—a contradiction.

This is a pure proof of existence: it says nothing whatso-
ever about the actual strategy! At this point, it worth recall-
ing the famous words by G. H. Hardy [38]:

Reductio ad absurdum, which Euclid loved so much,
is one of a mathematician’s finest weapons. It is a far
finer gambit than any chess play: a chess player may
offer the sacrifice of a pawn or even a piece, but a math-
ematician offers the game.
It is interesting to compare the solution of the “double

chess” game with other “yield the first move in a symmetric
situation” strategies, as in the following game:

Two players take turns to place equal round coins on a
rectangular table. Coins should not touch each other;
the player who places the last coin wins (and takes
the money). Describe the winning strategy for the first
player.
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It is a simple game, and the solution is simple: the first
player has to place his first coin exactly at the center of the
table, and then mirror the moves of the second player (under
180◦ rotation with respect to the center of the table). This is a
good example of a strategy as a simple rule which prescribes
how one has to react to the moves of another player. In the
double chess game, the level of compression and encapsula-
tion is much higher: we have forced White into the ridiculous
situation that he must to react to the whole optimal strat-
egy of Black—without even knowing whether Black’ strategy
brings victory or just a draw.

“Winning strategy” is an example of a mathematical con-
cept which has slipped into mass culture without its escape
ever being noticed by mathematicians. I can safely use the
“double chess” problem in my class as an example of Reductio
ad Absurdum argument without being afraid that the stu-
dents notice a subtle flaw in the argument: in our solution,
we assume without proof that at least one of the players has
a strategy which assures him at least a draw—that is, Zer-
melo’s Theorem for “double chess”. Zermelo’s Theorem is self-
evident to my students!

However, the determinacy of a game, that is, the existence of a winning
strategy for one of the players (without even specifying which one) can
be an extremely powerful statement and has to be handled with care.
Let us allow ourselves to soar for a second to the rarified altitudes of set
theory. The Axiom of Determinacy can be added to the Zermelo-Fraenkel
axioms of set theory instead of the Axiom of Choice, and it produces a
very cosy world where, for example, every set of real numbers is Lebesgue
measurable. The Axiom of Determinacy can be formulated in terms of a
simple game:

Identify the real segment [0, 1] with the set of all infinite decimal
fractions

0.a1a2a3 · · ·
where all ai are digits from 0 to 9. Let X be a subset of [0, 1].
Two players write, in turns, digits b1, b2, etc; if the resulting real
number 0.b1b2b3 · · · belongs to X, the first player wins, if not, the
second one wins.

The Axiom of Determinacy claims that, for every X, one of the players
has a winning strategy.

It is not a coincidence that the first
ever theorem of game theory was
proven by a set-theorist.

Of course it is not a
coincidence that the first-
ever theorem of game the-
ory was proven by a set-
theorist: its rigorous for-
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mulation requires the use
of set-theoretic concepts.
A strategy is a function
from the set of all possible positions (in the case of chess, a
finite, but huge set) to the set of all possible moves. An opti-
mal strategy is a particular function: it should have the prop-
erty that, being mechanically applied to every position in the
game, it ensures the best outcome of the game, no matter
what the moves of the second player are. (If the position is al-
ready lost, an optimal strategy should delay the defeat for as
long as possible; if it is winning, it should ensure the quickest
victory.)

Although the Axiom of Determinacy deals with very sophisticated sets,
a strategy is an innocent looking function from the set of finite decimal
fractions {0.a1 · · · an} into the set of digits {0, 1, 2, . . . , 9}, or, in simpler
terms, a rule for continuing the decimal fraction. [?]

If X is the
set of rational
numbers in the
segment [0, 1],
which of the
two players
has a winning
strategy? This
question can
be answered
within the sec-
ondary school
curriculum.

We already have in our possession a non-trivial chunk of
the optimal strategy for chess. (Of course, solutions to chess
problems like in Figure 7.6 are also tiny fragments of an op-
timal strategy.) Indeed, chess endgames with a small num-
ber of pieces have been exhaustively analyzed with the help
of computers. The first breakthrough was made in the early
eighties by Ken Thompson—I remember how astonishing his
work was at that time. Thompson generated the list of all
legal positions with King and Queen versus King and Rook
(quite a long list, about two million positions). Then he pro-
grammed a computer to work backwards from mates and
compose a table of optimal moves for every position. His table
also included the distance to mate—61 moves in the longest
game. Before Thompson, this endgame, although believed
to be a win for the King and Queen, was known to be ex-
tremely difficult if played against a well trained opponent.6
Similar “endgame databases” for most six-piece endings are
now commercially available.7 Thompson famously said that
his database plays “like God”: in every position it knows the
outcome of the game. If it is a win, the database knows a
move leading to quickest victory; if a loss, a move leading to
a longest defence. When it first appeared, Thompson’s Table
had the most demoralizing impact on human players: many
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Fig. 7.7. This endgame is likely to be beyond human comprehension: White mates
in 262 moves (Ken Thompson, Peter Karrer, 2000)

of its moves were completely counterintuitive for a human. A
chess diagram in Figure 7.7 is even more intimidating.8

Gregory Cherlin,
after winning an egg

rolling contest.

Endgame databases provide an example of good computer
science, but, in opinion of many, poor mathematics: just recall
the words of G. H. Hardy [38] that non precisely, the solution
of a chess problem is

just that ‘proof by enumeration of cases’ . . . which a
real mathematician tends to despise.

It would be interesting to trace how the concept of “win-
ning strategy” was absorbed by mass culture. One would
also like to know which had the greater impact on pub-
lic awareness—computer games or the gradual spread of
ideas of mathematical economics in the form of “portfolio
management” and things like that. (Consider the manage-
rial newspeak of “competitiveness” and “optimal solutions”.)
Game theory poses an awkward question for mathematical
education: many of its concepts (say, Nash equilibrium and
Pareto efficiency) are simple and can be effectively taught at
the secondary school level, with a variety of lively and chal-
lenging problems and a host of real-life applications; they
may even lead to a discussion of moral issues (“Nash punish-
ment” is a convenient pretext). Whether it provides a fledg-
ing mathematical mind with the same level of stimulation
as, say, Euclidean geometry, is a non-trivial proposition. It
would be interesting to explore it—avoiding, of course, non-
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reversible experiments on children. When I read descriptions
of some of the experiments in mathematical education, I
wanted to call the hotline of NSPCC (National Society for the
Prevention of Cruelty to Children) and report child abuse.

7.10 A dozen problems

This section contains a sample of archetypal mathematical problems, very ele-
mentary, but at the same time reflecting the principal paradigms of mathematical
thinking. I wish to give a flavor of what we would expect from high school grad-
uates who might be interested and able to pursue a professional career involving
serious mathematics—not necessarily within the narrow domain of mathematics
itself.

In that sense, my list is dual to Arnold’s famous list of 100 mathematical
problems which every mathematics or physics graduate should be able to solve
[83].

Of course, the list could be made much longer. A few problems mentioned
elsewhere in the text could be added to it, but I prefer to avoid duplication.

7.10.1 Caveats

However, I feel that I have to make some important caveats.

• These problems are not tests of mathematical abilities. If a boy or girl can
solve any of them, he or she deserves some attention from the mathemat-
ics teacher. Nonetheless a child without previous experience of non-standard
problems might still have distinctive mathematical abilities but fail to solve
these particular problems.

• If a child is systematically exposed to non-standard problems, he or she
quickly expands the range of problems accessible to him/her. Anyone who runs
mathematical competitions probably knows children who can solve most of the
problems on the list.

• To see how a child copes with a problem, his/her answer or even a detailed
solution is not enough. You have to talk to the child while he/she works on a
problem, and, without giving him/her any hints, trace his/her line of thought.

• The whole spirit of such a list is that it should be as “curriculum independent”
as possible. However, in the absence of a well-designed school mathematics
curriculum, most potentially able students never develop the skills or atti-
tudes which bring non-standard problems within range. Thus these problems
should not be treated as diagnostic.

• The problems in this selection have different levels of “difficulty”, and the
sample is not as representative as one might wish.

7.10.2 Problems

Problem 1 It takes two hours for Tom and Dick to do a job. Tom and Harry take
three hours to do the same job. Dick and Harry take six hours for the job. Prove
that Harry is a freeloader.
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Problem 2 It takes five days for a steamboat to get from St Louis to New Or-
leans, and seven days to return from New Orleans to St Louis. How long will it
take for a raft to drift from St Louis to New Orleans?

Problem 3 Write all integers from 1 to 60 in a single row:

12345678910111213141516171819 . . . 5960.

From this number, cross out 100 digits so that the remaining number is

(a) the smallest possible;
(b) the largest possible.

Problem 4 The number

1 00000 00000 30000 00000 00070 00000 00021

is the product of two smaller natural numbers. Find them.

Problem 5

“Our teacher Mr. Jones has more than 1000 books”, said Tom.
“Oh no, he has less than 1000 books”, said Gareth.
“Well, Mr. Jones definitely has at least one book”, said Helen.

If only one of these statements is true, how many books does Mr. Jones have?

Problem 6 One hundred statements are written in a notebook:

This notebook contains 1 false statement.
This notebook contains 2 false statements.
This notebook contains 3 false statements.
. . .
This notebook contains 100 false statements.

Which of these statements is true?

Problem 7 Here are several dates in Swahili:

tarehe tatu Disemba jumamosi; tarehe pili Aprili jumanne; tarehe nne
Aprili jumanne; tarehe tano Octoba jumapili; tarehe tano Octoba ju-
matatu; tarehe tano Octoba jumatano.

The translations in English are given in random order:

Monday 5 October; Tuesday 2 April; Wednesday 5 October; Sunday 5 Oc-
tober; Saturday 3 December; Tuesday 4 April.

Write in Swahili: Wednesday 3 April; Sunday 2 December; Monday 1 November.

Problem 8 Two sheets of paper (of the same size) are placed one onto another as
shown on Figure 7.8, so that corners A and B of the upper sheet lie on the sides of
the bottom sheet, and one corner of the bottom sheet is covered. Which part of the
bottom sheet is bigger: that covered by the upper sheet or the part uncovered?

Problem 9 The shaded region in Figure 7.9 is bounded by three semi-circles. Cut
this region into four identical parts, i.e. parts of equal size and shape (but possibly
of various orientation). [369]
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Fig. 7.8. For Problem 8(b).

Fig. 7.9. For Problem 9.

Problem 10 A bar of chocolate is subdivided by grooves into 40 segments, ar-
ranged in 5 rows and 8 columns. How many times does one have to break the bar
to get all 40 segments?

Problem 11 Estimate, approximately, how many solutions the following equa-
tion has:

x = 100 sin x

Problem 12 A rectangle of dimensions 19× 91 is cut by straight lines parallel to
its sides into 19 × 91 = 1729 equal squares of side 1. How many of these squares
does a diagonal of the rectangle cross?

7.10.3 Comments

Problem 1.
This is a non-standard modification of problems about “rates” which were a sta-
ple of arithmetic textbooks of yesteryear (well, of the early 20th century). Usually
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they were formulated in terms of pipes filling water tanks. This amusing formu-
lation belongs to Hovik Khudaverdyan.

Problem 2.

A non-standard repackaging of the same kind of ideas as in Problem 1. I have
met children who can immediately see the similarity: “Ah yes, it is about one over
something and taking the sum, or difference, or whatever. . . ”

Problem 3.

A successful solver must first explicate the concepts “bigger” and “smaller” as ap-
plied to decimal numbers—only after that do logical manipulations become possi-
ble.

Problem 4.

The problem engages a logically subtle and elusive connection between “factorisa-
tion” in algebra and in integer arithmetic. The issue is not so much the algebraic
content as the child’s ability to seek and see connections between different areas
of mathematics.

The problem is taken from a first year university course on number theory and
cryptography. When building their own toy implementations of the RSA crypto-
graphic system, students have to produce, with the help of the MATLAB software
package, products n = pq of two large prime numbers p and q, sufficiently big so
that n cannot be factorized by the standard routines of MATLAB or MATHEMAT-
ICA. A surprising number of students end up with numbers like the one in the
problem. Even when explicitly prompted, not every student can immediately see
the source of potential trouble.

Problem 5.

This is one of the examples which show how difficult it is to draw the line be-
tween natural mathematical abilities and the “mathematical culture” absorbed
at school. Besides an inclination to do combinatorial logic, the successful solver
must have a very clear understanding of the meaning of the expressions “less”
and “more”. Also, the solution is not unique: it is interesting to see how children
react to the problem being just a little bit undetermined.

Problem 6.

A trickier case of the logic of self-referential systems of statements; here, they
refer to the number of other statements being valid. Notice also ambiguity of the
formulation: the answer depends on whether the statement

This notebook contains 1 false statement

is understood as

the notebook contains exactly 1 false statement

or

the notebook contains at least 1 false statement.
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Problem 7.

Please notice that number 1 does not appear in the sample English translations.
If you think that this makes it impossible to translate the last date, Monday 1
November, try to figure out where the numeral “one” sits in Swahili sentences?

Celia Hoyles
aged 7

Problem 8.

It is interesting to compare this problem with one of the problems used in Celia
Hoyles’ and Dietmar Küchemann’s study of development of the concept of proof
in schoolchildren [101]; see Figure 7.10.

Fig. 7.10. Squares C and D are identical. One corner of D is at the centre of C.
What fraction of C is overlapped by D? Explain your answer.

As you can see from the comparison, Problem 8 is also about finding hidden
symmetries, but in a less symmetrical set-up.

Problem 9.

One’s first thought is likely to be that this must be impossible. So the problem
tests flexibility of thinking (since one has been challenged to succeed, so it is clear
that one is missing something), and powers of visualisation. Actually, the shaded
region can be divided into any number of identical parts.

Problem 10.

The simple counting nature of the problem is intentionally obscured by excessive
details.

Problem 11.

The only problem on the list which goes beyond the English curriculum up to age
14. Of course, GCSE and A-level mathematics provides much more material for
exciting problems of any level of difficulty.
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Problem 12.

This problem moves slightly beyond what the English schoolchildren are cur-
rently taught. The solver needs to use that fact that 19 and 91 are relatively
prime—yet “common factors” and “relative primeness” are treated only in the
context of fractions.

The problem is interesting for the dynamics of encapsulation / de-encapsulation:
to solve the problem, you have to remember that numbers are results of counting
processes (this also applies to Problem 10), and you have to understand how a
dynamic process fits into a static geometric picture.

Notes
1I would mention in passing that one of my colleagues mentioned in my book

grew up in Siberia in a kind of a home where his folks kept, in place of a guard
dog, a wolf on a chain. The little boy and his wolf were best friends—the boy
hugged the wolf, feeded him from his hands, etc. And, as a mathematician, my
friend could be best described as a mature alpha wolf.

2EVEN MORE ABOUT REARRANGEMENT OF BRACKETS. I wish to add a few
more words about “rearrangement of brackets”, this time in the context of social
studies. Mathematical economics frequently uses exceptionally simple mathemat-
ical ideas. When a study is done with a political effect in mind, the intentional
simplicity of the mathematics used is a bonus. Mathematics is still viewed as em-
bodiment of truth, and its potential moral impact should not be underestimated.

One of my favorite examples is the Blinder-Oaxaca decomposition intro-
duced by Blinder and Oaxaca in 1970s in the context of Equal Rights Movement
[252, 322]. The so-called linear regression analysis of statistical data allows one
to derive the wage equation

W = CE

where W is wage, E is the vector of parameters describing the person’s experience
(its components usually include years in education, years in employment, etc.)
and C is the vector of coefficients derived from the statistical data. Now look at
the wage data for men and women and derive the wage equations for men and
women separately:

Wm = CmEm, Wf = CfEf .

It is a well-known property of linear regression that if Wm, Wf , Em, Ef are sample
means, then these equations hold exactly.

Now recombine the two equations expressing the wage gap Wm −Wf :

Wm −Wf = CmEm − CfEf

= Cm(Em − EF ) + (Cm − Cf )Ef

In this expression, the first term Cm(Em − EF ) is the part of the wage gap due
to differences in average characteristics between men and women (explained or
non-discriminatory part). In particular, if men and women had the same levels of
education, experience, etc. these terms would be 0. If education, experience, etc.
all raise wages (that is, all components of Cm and Cf are positive), and if men
better educated, have more experience etc. then a positive share of the gap is
explained.
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Much more interesting is the second term, (Cm − Cf )Ef , the discriminatory
part of the age gap: it is due to differences in treatment of men and women in the
labor market.

In his PhD thesis in 1970s, Oaxaca used this decomposition in his classical
study of labor discrimination of black people in USA, and his findings were strik-
ing. The simplicity of the underlying algebra very much helped to bring his results
into the mainstream political discourse.

But as it frequently happens in statistics, as soon as one starts estimating the
statistical errors inherent in the estimated values of coefficients, and their sub-
sequent impact on the precision of the gap decompositions, things become much
more complicated. A survey of a considerable body of work can be found in [323].

3Re-use of mental work is recognized, in the mathematical folklore, as one of
the easy-to-ridicule aspects of mathematics. E.g. how to boil a pot of water sitting
one foot north of a fire—displace it one foot south, and wait; how to boil a pot of
water sitting one foot south of a fire—displace it two feet to the north, arriving at
a known case. This joke is contributed by Gregory Cherlin.

4PONS ASINORUM Coxeter writes in [233]: “The name Pons Asinorum for this
famous theorem probably arose from the bridgelike appearance of Euclid’s figure
(with the construction lines required in his rather complicated proof) and from
the notion that anyone unable to cross this bridge must be an ass. Fortunately,
a far simpler proof was supplied by Pappus of Alexandria about 340 A.D.” [And
that was exactly the “formal symmetry” proof which I discuss in the book.– AB]

5The reader interested in the history of game theory may wish to consult [67]
for a discussion of Zermelo’s paper and related early papers on game theory, in-
cluding an expansion of Zermelo’s Theorem by Lázló Kalmár [301].

6In tournament play, after reaching Queen vs. Rook the weaker side normally
resigns. But there are cases at the grand master level in which the Rook player
has insisted on continuing and held off his opponent long enough to draw.

7See Ken Thompson’s paper [341] about the analysis of 5-piece endgames in
chess and the book More Games of No Chance [321] for the later results in analysis
of endgames in various other games.

8CHESS. Gregory Cherlin made an interesting comment on the difference be-
tween mathematicians’ and chess players’ approaches to the analysis of endgames:

However, the analysis is given only for the 8 × 8 board and I have
never understood whether the general problem is a win or a draw. One
tends to use very precisely the narrowness of the board when forcing the
king back in the early stages.

Doron Zeilberger has a student who has been investigating optimal
strategies for simple endgames on an n×n board, looking for the minimal
length of a forced win as a function of n. I mentioned the Queen-Rook
endgame but I don’t know if it was pursued.

It seems to me that there is a good deal of concept formation possible
in this kind of simple endgame and that it is not understood mainly be-
cause the experts, who know a great deal and have some useful concepts,
are not interested in formulating concepts for problems with known so-
lutions on the standard board. They speak of rook pawns, knight pawns,
bishop pawns, and center pawns, each with different properties. But I
think on a larger board one has the same four categories, namely three
exceptional wing pawns and then the generic case. On the 8×8 board the
general notions occur less often than the exceptions . . . but they do occur.
Most of endgame theory would be clarified by doing it on an m× n board.
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In particular the Russians have a number of diagrams showing the pre-
cise location of a key piece needed to force a win (the King, or possibly a
Rook). These regions consist mostly of irregularities on a small board but
on a larger one presumably have the same number of exceptional points
on top of a very simple geometry. Of course, to make this worth looking
at one has to begin by making it useless.

This is an astonishingly undeveloped field, in spite of the man-years
expended and encyclopedias written, and which does not require a com-
puter for research.
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“Kolmogorov’s Logic” and Heuristic
Reasoning

This chapter is dominated by the “vertical integration” thread
of my narrative: I look at two examples of the application of
some basic heuristic principles of invention in mathematics.
They yield remarkable and unexpected results, but, at the
same time, are based on very simple mathematics.

I start by looking at a parallel example (and a paradigm)
from the general area of technical invention and briefly re-
count one of the most fascinating stories from the history of
technology in the 20th century: Hedy Lamarr and her con-
tribution to spread-spectrum communication. Then I look at
mathematical structures for sonar signals and continue my
discussion of the problem of dividing 10 apples among 5 peo-
ple (Section 4.7), this time on somewhat different material:
turbulence in the motion of a fluid.

8.1 Hedy Lamarr: a legend from the golden era of
moving pictures

Any girl can be glamorous.
All you have to do is stand still and look stupid.

Hedy Lamarr

Films have a certain place in a certain time period.
Technology is forever.

Hedy Lamarr

Unusually for a book on mathematics, I have to start this
chapter by briefly recapping the life story of a Hollywood star
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of yesteryear, Hedy Lamarr. Everything that I know about
her I picked on the Internet, and I have to warn the reader
that telling myth from reality was not my priority. Therefore
I feel that I have to be as brief as possible.

Hedy Lamarr, née Hedwig Eva Maria Kiesler, was born
in Vienna in 1914 in a cultured bourgeois family. Her father
was a bank director, her mother a pianist. Family connections
in the artistic world led to Hedy’s acting talents being discov-
ered early. She achieved international fame and cult status in
1933 for her role in the Czech film Ecstasy. By the standards
of her time, the role was risqué for an 18-year-old girl from
a good family. The film caused a considerable controversy—
which, of course, only added to Hedy’s fame.

In the same year, Hedy Kiesler married the Austrian in-
dustrialist Fritz Mandl, Director of the Hirtenberger Patro-
nenfabrik, then one of the world’s leading arms producers.
Her life as a trophy wife was very unhappy. As Frau Mandl,
Hedy was at the center of Viennese high society (at a time
when the word “high” really meant it); but the trade-off was
that her husband forbade her to pursue her acting career.

Allegedly Herr Mandl was an obsessive control freak, and
jealous to the point of paranoia. He forced his young wife to be
at his side, wherever he was, any time of day and night. Thus
Hedy had to sit long hours through her husband’s business
meetings. As the reader will soon see, she learned a lot.

She also became increasingly disturbed by the realiza-
tion that the name of her husband’s game was the illegal
re-armament of Nazi Germany. The rest reads like a script
for a bad Hollywood movie: Hedy drugs her maid and, in the
maid’s dress, escapes through a window. She goes to Holly-
wood, where she resumes her stardom, being at one point
voted by the film critics the most beautiful woman in the
world.

In 1940 (at the peak of America’s isolationist stand in
World War II), at a dinner party in Hollywood, Hedy met film-
score composer George Antheil, and that was the point where
the story dramatically deviated from the Hollywood stereo-
type: Hedy realized that George Antheil had crucial techni-
cal expertise: he wrote music for the player piano (electrome-
chanical piano).1
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You would not expect such behavior from a Hollywood star,
but Hedy was thinking about an important technical prob-
lem: how can one control a torpedo by radio safely, with-
out being jammed by the enemy? Her answer was frequency
hopping: both the transmitter on the torpedo boat and the
receiver in the torpedo should synchronously hop from fre-
quency to frequency, so that the enemy is lost and does not
know which frequency to jam.

George Antheil knew how to record music for an elec-
tromechanical piano using the arrangements of punched holes
in a paper roll; instead of the piano, the punch roll readers
could control a radio transmitter and receiver.

It took some time for Hedy and George to work out the
details, but, by the height of the War, in 1942, they received
their patent (Figure 8.1).

Fig. 8.1. Patent given to Lamarr; and Antheil Markey is Hedy’s married name in
her second (of six altogether) marriage.

What happened next? In short, nothing. The invention was
ignored (what else would you expect from Navy folks dealing
with an actress and a piano player?) and reinvented in 1950s
for missile guidance systems. However, nowadays Hedy is
feted as the creator of modern communications technology.
Mobile phones, indeed, use a much advanced version of her
brilliant idea: rather than hopping, the signal is spread over
several frequencies simultaneously.
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8.2 Mathematics of frequency hopping

Frequency hopping immediately poses very serious mathe-
matical questions.

• How can one make the sequence of hops unpredictable?
• What is the optimal jam-proof sequence of hops?
• How can one put as many phone calls in the given band-

width as possible?

Thorough answers to these questions require highly so-
phisticated mathematical machinery. Meanwhile, some of the
solutions (especially those developed at the very dawn of
the new technology) are surprisingly simple and stunningly
beautiful.

While Lamarr’s patent was slowly expiring without use,
frequency hopping technology was being independently de-
veloped by the Navy, for use in sonar systems. Rather than
avoiding jamming, the purpose of frequency hopping in sonar
location is to distinguish between reflected signals. Indeed,
the time delay of the echo reflected from an underwater object
allows us to measure the distance to the object. Due to the
Doppler effect, sound waves reflected from a moving object
change their frequency. Therefore sonar should, in principle,
be able to tell both the distance to the target and its speed. It
does so by sending a series of sounds of varying frequencies
(to distinguish between echoes reflected from targets at dif-
ferent distances). The same sequence may be repeated many
times.2

Figures 8.2–8.5 demonstrate possible difficulties in read-
ing echoes. It is not always possible to distinguish between
a reflection from, say, a distant stationary object (Figure 8.3,
shift in time, that is, along the horizontal axis) or a closer
moving one (Figure 8.4, shift in frequency, that is, along the
vertical axis). Look at Figure 8.5, where the two reflected sig-
nals are shown side by side.

However, if you use for your sonar the frequency-time pat-
tern of Figure 8.6, you can easily see that it has the property
that any two distinct shifts (vertical, or horizontal, or a com-
bination of both) have at most one “ping” in common. This
property allows one to distinguish between various kinds
of reflection and to read echoes with ease. The frequency-
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Fig. 8.2. A primitive frequency-time pattern for hydroacoustic applications: at
different time periods, the sonar emits signals of various frequencies. This makes
it possible to distinguish between echoes reflected from targets at different dis-
tances.

time patterns with these properties are called Costas arrays
[268, 288, 289, 290, 329].

Fig. 8.3. Echoing from an object, the sequence returns shifted in time. The length
of the time delay depends on the distance to the object.
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Fig. 8.4. Echoing from a moving object, the sequence returns shifted in frequency
which depends on the speed of the object.

Fig. 8.5. Two echoes: a distant stationary object or a closer moving one?

8.3 “Kolmogorov’s Logic” and heuristic reasoning

I wish to use the derivation of a special class of Costas ar-
rays, Welch-Costas arrays (like the one in Figure 8.6), as an
illustration of some useful principles of heuristic argument.

Formal proofs in mathematics are based on the modus po-
nens rule (the Latin name goes back to medieval scholastic
logic):

If statement A implies statement B, and A is true, then
B is also true,

or, in now-standard notation of mathematical logic,

A → B,A ` B.
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Fig. 8.6. A Welch-Costas array: After any vertical (frequency) and/or horizontal
(time) shift the new pattern and the old one have no more than 1 ping in common.

The famous mathematician Andrei Kolmogorov made an
unfortunate joke assigning the name The “Woman’s Logic”
Principle to the following widely used way of arguing:

If statement A implies statement B and B is nice then
A is true.

I leave it to the reader to decide whether women are more
prone to committing this fallacy than men. Nevertheless,
since the principle is of extreme importance for mathematical
heuristic, it would be fair to call it Kolmogorov’s Principle.

Indeed, if you are not looking for universal truth, but are
concerned only with finding one solution of a concrete prob-
lem (and if it does not matter for you which particular solu-
tion you find—anything goes), the following version of Kol-
mogorov’s Principle is quite useful:

If you want to achieve B and you know that A yields B
then try to achieve A first.

Returning to Hedy Lamarr, we see that in the area of in-
vention the principle becomes

If you want to make B and you know that the thing A,
if it existed, would produce B, then try to make A first.

It is hard to avoid the conclusion that this was Hedy
Lamarr’s way of thinking:
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• B: frequency hopping masks the communication between
the torpedo boat and torpedo, which is nice.

• A: the music of a player piano is nothing but hops from
frequency to frequency.

• Hence try to squeeze the mechanism of a player piano into
the torpedo.

This way of thinking is very efficient in solving mathemat-
ical problems, and I will try to illustrate it by looking at the
way the pattern in Figure 8.6 was constructed. You will soon
see that our preparedness to accept, for the sake of the de-
sired conclusion B, an atrociously preposterous premise A,
may lead to very beautiful and unexpected solutions. How-
ever, this approach does not guarantee that you find all solu-
tions. It does not ensure that you find any solution at all. But
it works—more frequently than not.

The preparedness to accept, for
the sake of the desired conclusion,
an atrociously preposterous premise,
may lead to very beautiful and unex-
pected solutions.

Being mathematicians
and knowing nothing else,
we start by removing the
real world content from
the problem and treat-
ing it as an abstract
mathematical problem. To
that end, we interpret the
frequency-time pattern as
the graph of a function,
say,

y = f(x),

defined on a short initial segment of natural numbers, say,

X = { 1, 2, . . . , n},
and taking only natural number values. In Figure 8.6, n = 6.
As usual, the graph shifted b units to the right and a units in
the vertical direction, represents the function

y = a + f(x− b).

We want our pattern to have at most one “ping” in common
with every non-trivial shift; to achieve that, it will suffice to
have the property that every equation

f(x) = a + f(x− b) (8.1)
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where at least one of the parameters a, b is different from 0,
has at most one solution.

What kind of equations definitely have at most one solu-
tion? Of course, linear equations,

Ax + B = 0.

Therefore the idea is to make our equation (8.1) to be equiva-
lent to a linear one after some rearrangement.

How can we make the desired rearrangement? Notice that
we still know nothing about the function y = f(x), but we are
prepared to make a list of the features which we would like it
to have. Since we want to solve equations involving our (still
unknown) function f , it will definitely be nice if y = f(x) has
an inverse function, that is, if there is a function x = g(y)
such that, for all x ∈ X,

x ≡ g(f(x)).

Then we can apply g to the both sides of Equation 8.1 and
rewrite it as

x = g(a + f(x− b)). (8.2)
Well, it would be nice if this equation could be simplified and
turned into a linear equation, something like

x = c(x + d).

Can we turn our equation into this form if we assume some
nice properties of the functions g and f? We need an identity
of the form

g(a + f(x− b)) ≡ c(x + d)

for some constant c and d computed from a and b. For that, we
have to be able to place the function symbols g and f together:

g(· · ·+ f(· · · )) ≡ · · · g(f(· · · )).
We will be able to do that, if g(s + t) = g(s) · g(t), because

in that case

g(a + f(x− b)) = g(a) · g(f(x− b))

= g(a) · (x− b),

and Equation 8.2 is reduced to the linear equation

x = g(a) · (x− b) (8.3)

MATHEMATICS UNDER THE MICROSCOPE VER. 0.919 5-SEP-2007/12:39 c© ALEXANDRE V. BOROVIK



198 8 “Kolmogorov’s Logic” and Heuristic Reasoning

as desired. Hence we want the function g to satisfy the iden-
tity

g(s + t) ≡ g(s) · g(t) (8.4)
that is, to be an exponential function: for if we denote g(1) =
d, then (8.4) implies

g(x) = dx (8.5)
for all x ∈ X. The problem is that the image of X = {1, . . . , n}
under any ordinary exponential function almost definitely
does not belong to X.

Can we still save the day? Yes, since we need only the iden-
tity

g(s + t) = g(s) · g(t),

and we need only the values of g at small integers, let us
make calculations in modular arithmetic, reducing every re-
sult modulo some fixed integer m:

g(x) = dx mod m.

For example, if we take m = 7 and d = 3 (in that case n = 6),
we start with the equalities which define the function g(x) =
dx:

31 = 3 mod 7

32 = 9 = 2 mod 7

33 = 27 = 6 mod 7

34 = 81 = 4 mod 7

35 = 5 mod 7

36 = 1 mod 7.

The function f(x), being the opposite of exponentiation, is
the discrete logarithm modulo 7. Using the usual definition
of the logarithm as the operation opposite to exponentiation,
we have, for f(x) = log3 x mod 7,

log3 3 = 1

log3 2 = 2

log3 6 = 3

log3 4 = 4

log3 5 = 5

log3 1 = 6
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The frequency-time pattern in Figure 8.6 is exactly the
graph of the discrete logarithm function y = log3 x mod 7. [?] The following

appears to be
a hard open
problem: does
there exist a
Costas array of
size

32× 32?

See [289, 329]
for more open
questions.

In the notes, I re-run our heuristic argument in reverse
order, making it into a rigorous proof.3

What we just did is a classical construction, known as a
Welch-Costas array [268]. It works for every prime number p
in place of the number 7 used in our example.

Indeed, it is a standard fact of elementary number theory
that there exists a positive integer d < p such that the mod-
ular exponential function dk mod p takes every value in the
range 1, 2, . . . , p− 1:

{ d1, d2, . . . , dp−1 mod p } = { 1, 2, . . . , p− 1 }
and which therefore can be used as the basis of the discrete
logarithm modulo p. Therefore a Welch-Costas array for p is
the graph of the function

{1, 2, . . . , p− 1} → {1, 2, . . . , p− 1}
x 7→ logd(x) mod p.

Notice that, at every step of our argument, we were squeez-
ing the player piano into the torpedo: we knew something
from a completely different area of mathematics which ap-
peared to resolve the immediate technical difficulty, and were
trying to emulate this something in our construction. And it
worked, and produced a non-trivial solution! [?]

Construct
Welch-Costas
arrays mod 5,
mod 11.

8.4 The triumph of the heuristic approach:
Kolmogorov’s “5/3” Law

I wish to dispel the impression which I possibly created in-
advertently, that Andrei Kolmogorov was a die-hard formal-
ist who did not value heuristic arguments. Quite the con-
trary; he was the author of what remains the most striking
and beautiful example of a heuristic argument in mathemat-
ics. The deduction of his seminal “5/3” law for the energy
distribution in the turbulent fluid [308] is so simple that it
can be done in a few lines. Moreover, since it involves di-
mensional analysis, it is directly related to the arithmetic
of named numbers, see Section 4.7. I was lucky to study at
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a good secondary school where my physics teacher (Anatoly
Mikhailovich Trubachov, to whom I express my eternal grat-
itude) derived the “5/3” law in one of his improvised lectures.
In my exposition, I borrow some details from Arnold [3] and
Ball [197] (where I have also picked the idea of using a wood-
cut by Katsushika Hokusai, Figure 8.7, as an illustration).

Sergey Utyuzhnikov
aged 12

Fig. 8.7. Multiple scales in the motion of a fluid, from a woodcut by Katsushika
Hokusai The Great Wave off Kanagawa (from the series Thirty-six Views of Mount
Fuji, 1823–29). This image is much beloved by chaos scientists. Source: Wikipedia
Commons. Public domain.

The turbulent flow of a liquid consists of vortices; the flow
in every vortex is made of smaller vortices, all the way down
the scale to the point when the viscosity of the fluid turns the
kinetic energy of motion into heat (Figure 8.7). If there is no
influx of energy (like the wind whipping up a storm in Hoku-
sai’s woodcut), the energy of the motion will eventually dissi-
pate and the water will stand still. So, assume that we have
a balanced energy flow, the storm is already at full strength
and stays that way. The motion of a liquid is made of waves
of different lengths; Kolmogorov asked the question, what is
the share of energy carried by waves of a particular length?
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Here it is a somewhat simplified description of his analy-
sis. We start by making a list of the quantities involved and
their dimensions. First, we have the energy flow (let me re-
call, in our setup it is the same as the dissipation of energy).
The dimension of energy is

mass · length2

time2

(remember the formula K = mv2/2 for the kinetic energy of
a moving material point). It will be convenient to make all
calculations per unit of mass. Then the energy flow ε has di-
mension

energy
mass · time

=
length2

time3

For counting waves, it is convenient to use the wave number,
that is, the number of waves fitting into the unit of length.
Therefore the wave number k has dimension

1

length
.

Finally, the energy spectrum E(k) is the quantity such that,
given the interval ∆k = k1 − k2 between the two wave num-
bers, the energy (per unit of mass) carried by waves in this in-
terval should be approximately equal to E(k1)∆k. Hence the
dimension of E is

energy
mass ·wavenumber

=
length3

time2 .

To make the next crucial calculations, Kolmogorov made the
major assumption that amounted to saying that4

The way bigger vortices are made from smaller ones
is the same throughout the range of wave numbers,
from the biggest vortices (say, like a cyclone covering
the whole continent) to a smaller one (like a whirl of
dust on a street corner).

Then we can assume that the energy spectrum E, the en-
ergy flow ε and the wave number k are linked by an equation
which does not involve anything else. Since the three quan-
tities involved have completely different dimensions, we can
combine them only by means of an equation of the form
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E(k) ≈ Cεx · ky.

Here C is a constant; since the equation should remain the
same for small scale and for global scale events, the shape
of the equation should not depend on the choice of units of
measurements, hence C should be dimensionless.

Let us now check how the equation looks in terms of di-
mensions:

length3

time2 =

(
length2

time3

)x

·
(

1

length

)y

.

After equating lengths with lengths and times with times, we
have

length3 = length2x · length−y

time2 = time3x,

which leads to a system of two simultaneous linear equations
in x and y,

3 = 2x− y

2 = 3x

This can be solved with ease and gives us

x =
2

3
and y = −5

3
.

Therefore we come to Kolmogorov’s “5/3” Law:

E(k) ≈ Cε2/3k−5/3.

The dimensionless constant C can be determined from exper-
iments and happens to be pretty close to 1.5

The status of this celebrated result is quite remarkable.
In the words of an expert on turbulence, Alexander Chorin
[266],

Alexander Chorin
(the youngest child)

aged 3

Nothing illustrates better the way in which turbu-
lence is suspended between ignorance and light than
the Kolmogorov theory of turbulence, which is both the
cornerstone of what we know and a mystery that has
not been fathomed.

The same spectrum [. . . ] appears in the sun, in the
oceans, and in manmade machinery. The 5/3 law is well
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verified experimentally and, by suggesting that not all
scales must be computed anew in each problem, opens
the door to practical modelling.

Arnold [3] reminds us that the main premises of Kol-
mogorov’s argument remain unproven—after more than 60
years! Even worse, Chorin points to the rather disturbing fact
that

Kolmogorov’s spectrum often appears in problems where
his assumptions clearly fail. [. . . ] The 5/3 law can now
be derived in many ways, often under assumptions
that are antithetical to Kolmogorov’s. Turbulence the-
ory finds itself in the odd situation of having to build
on its main result while still struggling to understand
it.

8.5 Morals drawn from the three stories

Shall we draw some conclusions from the three stories told in
this chapter?

In the case of Welch-Costas arrays, our assumptions were
rather timid, and afterwards we had no difficulty in convert-
ing the heuristic argument into a rigorous proof that the pro-
posed solution was, indeed, a solution. There is nothing sur-
prising in this since we were dealing with a problem which
was at the opposite end of the mathematical spectrum from
the great enigma of turbulence.

In Kolmogorov’s case, the boldness and the dramatic scale
of his heuristic assumptions led to equally dramatic and
paradoxical results, and mathematicians still struggle to com-
prehend why his argument works.

The Hedy Lamarr story tells us that an outrageous idea,
even if it does not lead to a practically workable solution, may
show the direction for future developments.

In all three cases we see that in mathematics (and in the
general area of invention) it pays to be bold.

8.6 Women in mathematics

Since I have quoted Kolmogorov’s disparaging remark on
women’s reasoning, I feel that I have to clarify my position
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on the thorny issue of the role and place of women in mathe-
matics.

It is a sad statistical fact that the number of women doing
mathematical research is disappointingly small. I am confi-
dent that this cannot be explained by the psychophysiologi-
cal gender differences—even if neurophysiologists find sub-
tle variance in language and visual processing in male and
female brains [122, 156].6

The problem, I believe, is sociopsychological rather than
psychophysiological. I’ll try to outline, briefly, my vision of it.

Mathematics is a weapon of personal
empowerment.

A rarely discussed side
effect of doing mathemat-
ics is that mathematics is
a weapon of personal em-
powerment. To be success-
ful in mathematics, you
have to be bold, you have
to be absolutely independent in your thinking. When you
prove something new, you are in the unique position of be-
ing the only person on the Earth who knows the Truth—and
is prepared to defend it. On the other hand, the principles of
mathematical rigor give you the right to question whatever
other mathematicians say. If this still does not sound to you
as a recipe for trouble, you can also take into consideration
that research mathematics is fiercely competitive. An explo-
sive brew.

Mathematicians who grew up in this chivalrous environ-
ment tend to forget (or ignore) how psychologically tense and
charged mathematical discourse is. This becomes apparent
only in comparison with other walks of life.

Mathematicians tend to forget how
psychologically tense and charged
mathematical discourse is.

The example I want to
give is probably extreme.
Once I stayed with a col-
league at Princeton over a
long and lazy Labor Day
weekend. My hosts and
I were invited to their
neighbor’s garden party,
where I found myself in a company of twelve professional
astrologists, exquisitely groomed ladies with loads of heavy
silver jewelry, mostly Zodiac signs. Besides usual party talk,

MATHEMATICS UNDER THE MICROSCOPE VER. 0.919 5-SEP-2007/12:39 c© ALEXANDRE V. BOROVIK



8.6 Women in mathematics 205

the astrologists actively discussed, between them, matters of
their professional interest. It was fun to watch; their chat,
saturated by astrological jargon, sounded, to a lay observer
like me, almost like a chat between mathematicians, but with
a surreal feel in it. With some effort, I finally realized what
made it surreal to me: they immediately believed and accepted
everything that their colleagues were saying to them; on their
faces, there were none of mathematicians’ usual expression of
tightly focused mistrust. I realized why my daughter had told
me that she was scared to be present during my professional
conversations with mathematician friends: in her words, we
were looking as if we were ready to fight each other.

To recognize someone as a fel-
low mathematician means to accept
that she is intellectually equal (or
even superior) to you. Too many men
will still feel uncomfortable with that.

Mathematics is highly
psychologically charged and
competitive, but fights re-
main invisible for the on-
looker and are strictly rit-
ualized by a very strong
research ethics and the
principles of mathemati-
cal rigor. Arguments are
rarely linked to money
and, therefore, do not lead to serious bloodletting. Mathe-
maticians usually look in disgust at the morals in many
other, more practical disciplines, where the high cost of re-
search (and the scarcity of funding) and the lack of clear
criteria of rigor naturally instill a dog-eat-dog mentality.
When money gets involved, everything becomes depersonal-
ized: what matters is not who you are but what is your place
in the pecking order. We are all accustomed to seeing fools in
high places, and although the spectacle is rarely pleasant, it
does not get deep under the skin. A male chauvinist can tol-
erate a woman in a position of superiority by treating her as
yet another case of undeserved promotion.

The crucial difference of mathematics from many other
walks of life is that its power games are deeply personal
in the purest possible sense. To recognize someone as a fel-
low mathematician means to accept that she is intellectually
equal (or even superior) to you and that she has the right to
wear, like knight’s armor, her aura of intellectual confidence
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and independence. Too many men will still feel uncomfort-
able with that.

Unfortunately, even gender studies researchers are some-
times uncomfortable with the principle of intellectual inde-
pendence when mathematics is concerned. I was surprised to
read, for example, that

Maria Leonor
Moreira
aged 11

The classroom structure, designed to foster indepen-
dent non-collaborative thinking, is most supportive of
white male, middle-class socialization models, and it
continues through university (Pearson & West, 1991).
It encourages sex-role stereotyped forms of communication—
independence, dominance, assumption of leadership—
in which males have been trained to excel. Women, con-
versely, feel uncomfortable and excluded in situations
requiring such behavior; yet, their participation—as
questioners as well as newly-minted authorities—may
be critical to knowledge acquisition and school success.
The importance that women place on mutual support,
building collaborative knowledge, and applying it prac-
tically is devalued in comparison with the importance
of individual expertise to males and their inclination to
debate abstract concepts. [377]

Inna Korchagina
aged 6

Yes, mathematics is about “independent non-collaborative
thinking”. But why should we assume that women are less
capable of independent thinking? Why should women surren-
der the game without a fight?

In British schools, many teachers of
mathematics routinely suppress math-
ematically able students because
the students’ intellectual superiority
makes the teachers feel insecure.

Women remain a dis-
advantaged group of our
society; but when you
look at even more dis-
advantaged and vulnera-
ble group, children, you
find something even more
striking. I was shocked to
hear from several leading
British experts on mathe-
matical education that, in British schools, many (if not most)
teachers of mathematics routinely suppress mathematically
able students because the students’ intellectual superiority
makes the teachers feel insecure.7 I would bet this almost
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never happens in most other school subjects; but mathemat-
ics sets up the scene where it could be obvious for both the
teacher and the student that the student is superior; British
teachers are not trained to handle such conflicts with dig-
nity and respect to the child. I shall be forever grateful to my
mathematics teacher in my village school in Siberia, Aleksan-
dra Fedotovna Lazutkina, who frankly told me (in front of the
class!) that she could not teach me anything, and asked me to
somehow teach myself. After that, I was quietly sitting in her
classes, minding my own business; she had never asked me a
single question, or otherwise interfered with my work. I can-
not imagine a British or American teacher of today behaving
the same way.

We still live in a culture where women
are disapproved and penalized if
they show real intellectual indepen-
dence.

Unfortunately, we still
live in a culture where
women are allowed to
play, on an equal footing
with men, the conformity
games in the office or even
in politics, but are dis-
approved and penalized if
they show real intellectual
independence. It was even more true in Hedy Lamarr’s times.
The fact that she was not a mathematician only supports my
main point: indeed, what mattered is that she exhibited an
outrageous intellectual independence. For a woman in Amer-
ica, in 1940, to go against the political mainstream and seri-
ously think about preparation for the looming war with Ger-
many was strange, to put it mildly; to think seriously about
radio controlled torpedoes—that was just insane. By 1942, at
the height of the war, the military, political and domestic eco-
nomic situation changed. American munition factories des-
perately needed female workers to replace conscripted men,
and Hedy was glorified by the official propaganda machine.
Being propaganda fodder though did not help her invention
to be taken seriously by the Navy.

Ayşe Berkman
aged 6

I do not know an easy way to change the position of women
in mathematics. I would suggest, tentatively, that when pro-
moting mathematics, we should put more stress on its per-
sonal empowerment aspect; we should encourage competi-
tiveness and independent thinking; we should openly talk to
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our students about the power games of mathematics. It does
not easily fit into the existing policy of mathematical educa-
tion, but it is worth trying.

Notes
1PLAYER PIANOS AND OTHER ELECTRICAL DEVICES. As a side remark, it is

worth mentioning that electrical devices like player pianos allow musicians to
design and use more flexible scales; in this context, the subtle mathematical na-
ture of musical scales becomes really essential. See a charming paper by Wilfrid
Hodges [44] for more detail. Apparently, George Antheil was seriously intrigued
by the aesthetics of the new age of machines; in his earlier years, he composed
the score for the famous cubist film Ballet Mecanique (the film was directed by
Fernand Léger, one of the leaders of the cubist movement).

2HYDROACOUSTIC AND WHALES BEACHING. It is now widely accepted that
unfortunately the main reason of whales’ beaching (when whales throw them-
selves on the shore) is that the poor whales are driven to mass suicide by the
intolerable level of noise created by the sonar and hydroacoustic communication
systems of submarines. Submarines use the same bandwidths as whales have
used for millennia for their own communication.

3CONSTRUCTION OF WELCH-COSTAS ARRAYS.
First of all, we have to clarify the nature of the our logarithm. We use the

Fermat Theorem:
xp−1 ≡ 1 (mod p).

Hence (x, y) 7→ xy is well-defined as a function from

(Z/pZ r {0})× (Z/(p− 1)Z)

into
Z/pZ r {0}.

But Z/pZ r {0} is the multiplicative group of the field Fp = Z/pZ, and if a is in
this group, then

y 7→ ay

is a homomorphism from Z/(p − 1)Z into Fp
×. We can pick a as a generator, and

then the homomorphism is an isomorphism, so it has an inverse, loga.
This means that, in our example, the logarithm takes values in the additive

group of residues modulo 6; it will be prudent to use a different symbol, “⊕,” for
addition modulo 6, to distinguish it from the addition “+” modulo 7. Notice that,
in our graphs, the horizontal and the vertical axes represent different algebraic
structures! This happens because the logarithm is an isomorphism of the multi-
plicative group of residues modulo 7 onto the additive group of residues modulo
7− 1 = 6.

However, for our toy logarithm, we still have the usual identities

3log3 x = x mod 6, log3(ab) = log3 a⊕ log3 b mod 6.

Moving further, how many points do the graph of the function

y = log3(x)

MATHEMATICS UNDER THE MICROSCOPE VER. 0.919 5-SEP-2007/12:39 c© ALEXANDRE V. BOROVIK



NOTES 209

(our pattern) and the pattern formed by reflection from a moving target have in
common? We already know that the reflection corresponds to the graph of the
function

y = a⊕ log3(x + b).

The common points of the two graphs correspond to the solution of the equation

log3 x = a⊕ log3(x + b) mod 6.

If we now do what we do with ordinary logarithmic equations of precalculus and
exponentiate both parts of the equation,

3log3 x = 3a⊕log3(x+b) mod 7,

we come to
x = 3a(x + b) mod 7,

a linear equation in x, which has a unique solution unless 3a = 1 and b = 0, which
means that a = 0 mod 6 and b = 0 mod 7 hence there was no shift in the first
place.

4This formulation is a bit cruder than most experts would accept; I borrow it
from Arnold [3].

5HISTORY OF DIMENSIONAL ANALYSIS. It would be interesting to have an ac-
count of the history of dimensional analysis. It can be traced back at least to
Froude’s Law of Steamship Comparisons used to great effect in D’Arcy Thomp-
son’s book On Growth and Form [74, p. 24] for the analysis of speeds of animals:
the maximal speed of similarly designed steamships is proportional to the square
root of their length. William Froude (1810–1879) was the first to formulate re-
liable laws for the resistance that water offers to ships and for predicting their
stability.

6GENDER DIFFERENCES. See a transcript of an illuminating debate between
Steven Pinker and Elizabeth Spelke,
http://www.edge.org/3rd culture/debate05/debate05 index.html.

7MATHEMATICAL INSECURITY. The complex of “mathematical insecurity” in
secondary school teachers of mathematics is lamentable, but not unexpected. But
I was quite surprised to hear from my mathematician colleagues that mathemati-
cal insecurity is a factor of academic politics at the university and national levels:
it explains—my colleagues claimed to me—a surprising level of hostility to pure
mathematics found in some senior representatives of the engineering mathemat-
ics community.
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Recovery vs. Discovery

For in much wisdom [is] much grief:
and he that increaseth knowledge

increaseth sorrow.
Ecclesiastes 1:18

This chapter contains some technical parts that can be
skipped in the first reading.

9.1 Memorize or re-derive?

Mathematics provides very efficient methods of recovering
mathematical facts, much more efficient than straightfor-
ward memorization. I remember the result of hardly any
arithmetic calculation that I have done in my life, but if I
have to do one of them again, I shall get the same result.
Many of my colleagues are prepared to admit that they do
not remember any trigonometric formulae beyond the most
basic ones, but, if necessary, they can recover and prove most
formulae of elementary trigonometry, with relative ease.

This aspect of mathematical practice is sometimes com-
pletely lost on our students and is not so frequently dis-
cussed in the professional literature. The following quotation
is taken from a real student examination script (UMIST, Jan-
uary 2004). Asked to prove that

√
2 is irrational, the student

responded:

The only proof I can offer is that I remember that
√

2 is
irrational, according to 1984, human memory is more
important than proof as proof can be altered, memory
cannot.
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Compare this with another extreme opinion, this time of a
professional mathematician (Kevin Coombes [13]):

Never memorize a formula if you can find a way to red-
erive it.1

I argue that there is a difference between the discovery of
new mathematical facts and recovery of forgotten ones.

Reuben Hersh, in his talk at the Philosophy of Mathemat-
ical Practice conference in Brussels in September 2002 [43],
showed a nice example of what I call recovery technique: the
(re-)derivation of Heron’s formula for the area of the trian-
gle2. Writing the present book more than two years later, I
decided to use Hersh’s method to recover the formula while
honestly recording my stream of consciousness. The exper-
iment, I hope, was sufficiently clean: I had known Heron’s
formula when I was at school, but had not used it for ages
and remembered it only in the vaguest terms.

I believe that recovery is a highly spe-
cialized activity; the discovery of new
mathematics is done differently. You
know, the feel is very different.

Reuben Hersh’s talk was
aimed at philosophers of
mathematics and purported
to give an example of
a creative process and
discovery in mathematics.
Since I was not a philoso-
pher and had heard about
Heron’s formula before, I
saw in the procedure something different, not discovery but
recovery. Indeed, I believe that recovery is a highly special-
ized activity; the discovery of new mathematics is done differ-
ently. You know, the feel is very different.

There are, however, deeper reasons to expect recovery to
be different from discovery. In the case of recovery, we, as
a rule, already know which mathematical language we used
for the formulation of the result; in the case of discovery of
non-trivial mathematical facts, the search for an appropriate
language frequently happens to be the most challenging part
of the job. See Section 4.2 for a discussion of cryptomorphism
and multiplicity of languages, and Chapter 10 for more ex-
amples of problems whose solutions involve “search for lan-
guage”.

It is time to fix some terminology. A recovery procedure is
a set of heuristic rules which we vaguely remember to ap-
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ply when we want to recover a mathematical fact. It is like a
poster on the control panel of some serious machine, a sub-
marine or a plane, which says what the crew should do when
things have gone haywire. A rederivation is a semiheuristic
argument made in accordance with the recovery procedure.

For example, when teaching calculus, I insist that my stu-
dents help me to recall standard trigonometric formulae; I
honestly admit that I remember hardly any beyond the most
fundamental one,

sin2 α + cos2 α = 1.

However, I (like most professional mathematics teachers) can
derive more or less every standard formula. Also, I can al-
most immediately tell when the formula given to me by a
student is wrong. It is quite safe to play a game with stu-
dents: ask them to give wrong formulae and then explain to
them immediately, on the spot, why the formula is wrong.
Indeed, students are hopeless at the production of plausible
formulae; if a student’s formula is wrong, it is demonstrably,
spectacularly wrong. I have several recovery procedures for
use in trigonometry: nothing special, really; the one for the
formulae of the type sin(α+β) consists of multiplying two ro-
tation matrices—or complex multiplication. The formula for
the matrix product is more fundamental than any trigono-
metric formula—with the possible exception of

sin2 x + cos2 x = 1,

see the note Simplest possible examples on Page 21.

9.2 Heron’s Formula

Now I am ready to outline a recovery procedure for Heron’s
formula. Suppose you want to reproduce the formula for the
area S of a triangle in terms of the lengths x, y, z of its sides.
You vaguely remember that the formula is something like

S =
√

(a kind of a polynomial in x, y, z)

Your recovery procedure consists of two general principles:

• use the symmetry properties of the polynomial resulting
from the symmetries of the problem; and
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• look at the degenerate cases when the triangle collapses
into a segment and its area vanishes.
I can now describe the rederivation based on these rules.

Denoting the polynomial under the root by F (x, y, z) and
squaring the both sides, you come to

S2 = F (x, y, z)

and need to find the polynomial F (x, y, z). You know, of course,
that the triangle degenerates into a segment when one of the
sides x, y, z equals to the sum of other two, say, if z = x + y,
hence F (x, y, z) = 0 if x + y − z = 0; you conclude that it is
likely that F (x, y, z) is divisible by x + y − z, etc., and that
therefore

F (x, y, z) = (x + y − z)(x− y + z)(−x + y + z)G(x, y, z)

for some other polynomial G(x, y, z). Also, the dimensional
considerations tell that S2 should be of degree 4, hence G(x, y, z)
is a linear function in x, y, z. Since x, y, z should appear in a
completely symmetrical fashion, this means that

G(x, y, z) = a(x + y + z)

for some coefficient a and

F (x, y, z) = a(x + y − z)(x− y + z)(−x + y + z)(x + y + z)

For the equilateral triangle with sides x = y = z, the area is

S =

√
3

4
x2,

hence a = 1/16 and

S =
1

4

√
(x + y − z)(x− y + z)(−x + y + z)(x + y + z)

=
√

p(p− x)(p− y)(p− z)

(at that point you are likely to recall the traditional form of
Heron’s formula, with

p =
x + y + z

2

denoting the half perimeter of the triangle).
The choice of every step in this re-derivation is made eas-

ier by vague memories of what the formula should look like.
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To make it into a rigorous proof, however, one needs a mod-
icum of classical polynomial algebra; see Daniel Klain [222]
for details. Actually, we are entering the realm of real alge-
braic geometry, since we have to judge the degree of “degen-
eration” of various special cases of the problem. Indeed, we
need some reasons to conclude that the argument along the
lines of

Since S2 = F (x, y, z) vanishes when one of the sides
x, y, z equals 0, we conclude that F (x, y, z) is divisible by
x, y, z and hence has the form F (x, y, z) = xyz ·G(x, y, z)
. . . ,

—very similar to the one we have just made—is invalid be-
cause the case x = 0 is excessively degenerate. We return to
that point soon, in Section 9.4.

9.3 Limitations of recovery procedures

Unlike the discovery and proof of a seriously new result, a
recovery procedure or a rederivation usually exists in an es-
tablished conceptual framework. The validity of the result
is known, and the issues of rigor, etc., are not that essential.
Notice, in passing, that the aesthetic status of recovery proce-
dures is different from that of proofs; we can tolerate an awk-
ward and tortuous proof, while recovery procedures, by their
very nature, should be slick. Not surprisingly, many of them,
once discovered, have been converted into proper proofs. On
the other hand, in many cases the recovery procedure is noth-
ing but a specialization of a much more general but better
remembered result: it is a deduction rather than induction.

I quote a letter from Reuben Hersh, who uses my previ-
ously mentioned example of recovery of the formula cos(α+β)
to comment on the difference between the recovery and dis-
covery:

I am working with a young friend, a high-school stu-
dent here.
Last week we needed the addition formulas for sin and
cos, in order to prove that angles add when you multi-
ply complex numbers.
Here’s what I did.
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First, show geometrically, visually, that rotation is ad-
ditive (rotating the sum of two vectors is the same as
adding the rotated vectors, it’s just moving a rectangle
as a rigid body.) And, stretching or reflecting before or
after rotating gives the same result. (No need to intro-
duce the general concept of “linearity”.) Then visually
show that rotating the horizontal unit vector through
α degrees produces the vector (cos α, sin α). Then the
same for the vertical unit vector, producing the vector
(− sin α, cos α). (For re-deriving, it’s sufficient to choose
α as an acute angle.)
Finally, to rotate through α+β, write an arbitrary unit
vector as cos β times the unit horizontal vector plus
sin β times the unit vertical vector. Then separately ro-
tate the horizontal and vertical components, and add.
The result is a vector whose component in the horizon-
tal direction is cos(α+β), and component in the vertical
is sin(α + β).
This does not require knowing in advance a repre-
sentation of the rotation operator. Of course, from a
“higher” (operator-theoretical) point of view, it is just
deriving such a representation. But as a way of deriv-
ing two trigonometric formulas, it has no prerequisites
except the definition of the sine and cosine functions,
the use of Cartesian coordinates, and adding vectors in
the plane.

Ask any mathematician, what is he
more likely to forget: the addition for-
mula for cosine or the definition of a
linear operator?

Of course, Hersh is ab-
solutely right, but the
whole point of my recov-
ery procedure is that I al-
ready know that the group
of rotations can be repre-
sented by matrices, I al-
ready know the principles
of linearity; ask any math-
ematician, what is he more likely to forget: the addition for-
mula for cosine or the definition of a linear operator? The
recovery procedures, like the memory itself, are something
very personal, and I would not always recommend to my stu-
dents the same procedures that I use myself. The hierarchy
of mathematical principles and concepts as used by someone
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who has learned some mathematics is quite different from
the one used by a novice learner of the same mathematical
theory or discipline.

And a final comment on memory: motor skills, once ac-
quired, are forever. It is virtually impossible to unlearn to
swim or ride a bicycle. I just wonder to what extent the same
is true with respect to mathematical facts and concepts in-
teriorized by engaging several different cognitive systems; do
we remember them better? The attentive reader certainly no-
ticed that Reuben Hersh’s proof of the addition formula is
a verbal description of a classical diagrammatic proof. It is
an example of what I call, without assigning any derogative
meaning, proof by handwaving: a proof which can be given
orally, with the assistance of a few gestures, to help the vi-
sualization. For the listener, the proof might be still hard to
comprehend; for the expositor, it will be welded, hardwired
into his or her brain.

See more on handwaving and its elimination in Section 6.3.

9.4 Metatheory

Very often we have in our possession a metatheory which sug-
gests and explains the structure of the desired fact. In the
case of Heron’s formula this metatheory is classical invari-
ant theory: the problem has a natural symmetry, the sides
x, y, z can be permuted in an arbitrary way under the action
of the symmetric group Sym3. The polynomial F (x, y, z) is in-
variant under this action (that is, it does not change when
we permute x, y, z), and so belongs to the ring of polynomial
invariants of Sym3 in its natural action on the ring R [x, y, z]
of polynomials in variables x, y, z. It is a classical result of al-
gebra that the ring of polynomial invariants of this action is
freely generated by the symmetric polynomials

1, u = x + y + z, v = xy + xz + yz, w = xyz

(that is, u, v, w are not bound by any algebraic relation). This
explains the ease with which we manipulated and factored
the polynomials. Indeed, write

F (x, y, z) = G(u, v, w).
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The key step of the recovery argument is the observation that
if G(u, v, w) takes values 0 at points (u, v, w) where

(−x + y + z)(x− y + z)(x + y − z) = −u3 + 4uv − 8w = 0,

then G(u, v, w) should be expected to be divisible by −u3 +
4uv− 8w. (But we have to remember that this is still a guess-
work, not a proof, since u, v, w cannot take arbitrary values:
recall, for example, that x, y, z are non-negative and hence
w > 0. We will return to this point soon.)

There is a 3-dimensional analogue of Heron’s formula,
the Tetrahedron Formula. Piero della Francesca was appar-
ently the first mathematician to express the volume of the
tetrahedron in terms of the edges [59]. Euler published the
Tetrahedron Formula in 1758. 3 It expresses the volume

John Stillwell
aged 11

of a tetrahedron (simplex) in terms of the lengths of its
six edges x, y, z, X, Y, Z (arranged in pairs of opposite edges
(x,X), (y, Y ), (z, Z)). In modern notation [242] it looks like

V =

∣∣∣∣∣∣∣∣∣∣

0 x2 y2 z2 1
x2 0 Z2 Y 2 1
y2 Z2 0 X2 1
z2 Y 2 X2 0 1
1 1 1 1 0

∣∣∣∣∣∣∣∣∣∣

.

Unfortunately, the polynomial on the right hand side has
no non-trivial polynomial factorizations, so the recovery pro-
cedure as described for Heron’s formula would not work
here. Well, actually we do not need one—we hardly ever use
Heron’s formula, but who needs the Tetrahedron Formula in
everyday mathematical life?

Invariant theory to some degree explains why we should
not expect Piero della Francesca’s formula to be easily re-
coverable: here, the group of symmetries of the problem is
the symmetric group Sym4, which acts by arbitrary permu-
tations of the four vertices of the tetrahedron and causes
the re-labelling of the edges. However, the ring of invari-
ants of the resulting action of Sym4 on the polynomial ring
R [x, y, z, X, Y, Z] is no longer free. Moreover, it is not a unique
factorization domain—this immediately follows from [247,
Theorem 3.9.2]. Another contributing factor to the failure of
the recovery procedure in the 3-dimensional case is the much
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more complicated geometry of the set of all possible tetra-
hedra, whereas in the 2-dimensional case it is as simple as
possible: just a simplicial cone C given by inequalities

0 6 x 6 y + z, 0 6 y 6 x + z, 0 6 z 6 x + y.

The geometry of the cone C finally explains why our re-
covery procedure works but the argument at the end of Sec-
tion 9.2 fails. Indeed, the intersection of the surface

−u3 + 4uv − 8w = 0

with the cone C is the union of its faces

x = y + z, y = z + x, z = x + y.

On the other hand, the intersection of the surface xyz = 0
with the cone C consists only of the edges

0 = x 6 y + z, 0 = y 6 z + x, 0 = z 6 x + y

and does not allow us to conclude that G(u, v, w) is divisible
by w = xyz.

But this is not yet the end of the story: invariant theory
also suggests that when we are dealing with isosceles tetra-
hedra, that is, tetrahedra with equal opposite edges x = X,
y = Y , z = Z, we are back to the comfortable setting of Sym3

acting on R [x, y, z]. We can conclude therefore that the corre-
sponding formula should be easily recoverable by essentially
the same method as Heron’s formula. This is done by Klain in
[222, Theorem 2]; I do not quote the formula here and leave
its recovery to the reader—as an exercise. [?] I can however

Recover the
formula for
the volume of
an isosceles
tetrahedron.

give a hint: when considering degenerate tetrahedra, go for
the least dramatic: do not collapse the tetrahedron into a seg-
ment, just flatten it into a planar quadrangle (compare with
the 2-dimensional case, where degeneration x = 0 was “less
general” than x + y = z).

Finally, you may wish to use exactly the same method to
try to guess the classical formula for the area of a quadrangle
with sides a, b, c, d if it is known, in addition, that it can be in-
scribed into a circle (Brahmagupta’s formula). [?] Hint: the

Recover Brah-
magupta’s for-
mula.formula should be symmetric in terms of a, b, c, d—but why?

Another useful observation: every triangle can be inscribed
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into a circle, therefore one should expect that Heron’s formula
is a special case (d = 0) of Brahmagupta’s formula.

As we see, our recovery procedure looks more and more
like a little theory. Well, this is what we expect to happen
with good recovery procedures—they eventually grow up into
proofs and theories.

Notes
1Incidently, O’Connor and Hermelin [169] analyzed the response time of idiot

savant calendrical calculators on a variety of dates in the past and the future;
their interpretation of results is that memory alone is inadequate to explain the
calendrical calculating performance of the idiot savant subjects. It appears that a
version of Coombes’ principle works even at that level.

2Reuben Hersh’s exposition [43] was fairly close to Alperin [192] and Klain
[222]; it is worth noticing that the same argument has been independently dis-
covered and documented at least three times.

3John Stillwell pointed out that [202, p. 285] wrongly states the date of publica-
tion as 1753, see paper E231 at http://www.math.dartmouth.edu/∼euler/.
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The Line of Sight

In this chapter, I present a case study of the life cycle of
a mathematical problem—from its incidental birth through
various reformulations coming from completely independent
sources to absolutely unexpected applications. I have chosen
this particular story simply because I can produce a first-
hand account. The events described were driven by sheer hu-
man curiosity and appreciation of the problem’s beauty. The
problem is very elementary and belongs to the (mostly) un-
written tradition of “mathematical folklore” that lives outside
the institutionalized framework of academic journals, confer-
ences, etc. Indeed, it is precisely the elementary nature of the
problem that allows us to see more clearly the mechanisms
which drive the development of much more serious mathe-
matical theories.

The key mathematical concept involved in my story is that
of convexity. We shall see how prominent the semi-informal
notion of the line of sight is in our thinking about convex
bodies. In that sense, the chapter continues the discussion
of lines of sight and convexity started in Section 4.4.

An interesting observation (perhaps relevant to sociology
of mathematics) is that the problem and solutions was in-
dependently discovered by many people; as I learned many
years after my first exploration, I was not the first one. There
were much earlier contributors, for example Fejes Toth and
Heppes [282], Danzer and Dawson [201]. But I describe the
story as it happened to me.
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10.1 The Post Office Conjecture

Fig. 10.1. Valenki.

The problem that I want to discuss in this chapter origi-
nates in 1977. At that time I was a student at Novosibirsk
State University. My valenki (traditional Russian felt boots1,
a bit old-fashioned but still indispensable in the Siberian
winter; see Figure 10.1) developed a hole; the only way of
repairing them was to send them by parcel post back to my
home village where the old cobbler still practiced the ancient
art of felt boot patching. I packed the boots and took the par-
cel to the post office, where it was promptly rejected for rea-
sons which can be formulated mathematically: the parcel was
not convex. I struggled through the blizzard back to my dor-
mitory and thought about the possible rationale behind the
refusal to accept my parcel. This is how I came to my first
conjecture.

The Post Office Conjecture. A heap of (finitely many) con-
vex parcels can be taken apart by removing a parcel at a time,
without disturbing the rest of the heap. [?]

Try to prove
or disprove it
without read-
ing the further
text.

Serguei Karakozov
aged 8

In any case, it is fairly obvious that a heap of non-convex
bodies cannot be always taken apart; if, in addition, we are
allowed to pull only one body at a time, success is even less
likely (Figure 10.3).

On my return to the dormitory, I shared my grief with my
roommates, Eugene Khukhro and Serguei Karakozov. While
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Fig. 10.2. Autoportrait by Ali Nesin. He kindly provided illustrations for this
chapter.

Fig. 10.3. For the Post Office Conjecture. This heap of non-convex letters F can be
taken apart by slightly moving one letter, then another, then the first one again,
etc., but touching only one letter at a time. However, the heap cannot be taken
apart by pulling one letter at a time and in a single uninterrupted movement.
Moreover, if the letters were a bit fatter and fit one into another perfectly, the
first (“shake and take”) method would not work, either, see Figure 10.4.

I was repacking my parcel, they, helpful as always, tried
to prove or refute the Post Office Conjecture—and failed.
However, Karakozov, who was studying functional analysis,
quickly proved the 2-dimensional case. Next day he sought
help from his senior colleagues at the Institute of Mathemat-
ics. After some discussion, the experts came to the conclusion
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Fig. 10.4. For the Post Office Conjecture.

that the conjecture was highly unlikely to be true in dimen-
sions higher than 2, but failed to produce a counterexample.

Eugene Khukhro
aged 14

However, the proof in the two dimensional case is very sim-
ple; we discuss it a bit later.

Eugene Khukhro could not allow the problem to be wasted
and made it into olimpiadnu� zadaqu, a mathematics competi-
tion problem. Here it goes:

Fig. 10.5. For the Coins Problem.

The Coins Problem. There are a finite number of round
coins on the table, possibly of different sizes. The coins do not
touch each other. Prove that it is possible to slide the coins
along the surface of the table to its edge, one by one, without
clicking a coin against another. (Figure 10.5)
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Ali Nesin (left)
aged 6

with his brother
Ahmet

What strikes me today is how obviously our way of life was
imprinted onto this formulation. Round the clock, someone
was sleeping in our room. Khukhro was a man of firm cus-
toms, and slept from midnight to noon. I was moonlighting a
bit as a night warden at the preparatory boarding school of
our University (Fizmatxkola, a remarkable establishment, I
mention it in this book on a few occasions). I returned from
my duties at 9 in the morning and took a power nap until
about two in the afternoon. However, Karakozov had a pecu-
liar habit of going to bed 15 minutes later than on the pre-
vious day, and lived in a continuous phase shift; eventually
he reached the point when he went to bed when I got up. We
behaved in a very considerate way: we never switched on the
light in our room and even plugged an electric kettle in the
corridor, to minimize the impact of its hissing and puffing on
our sleeping friends.

Eugene Khukhro
aged 7

But let us return to the problem. It was used in a math-
ematics olympiad in Siberia in about 1979–80, and some
pupils solved it. The reader, probably, expects an elementary
solution. What follows is one of many possible. Hammer a
nail into the center of each coin, so that it sticks out but holds
the coin in its place. Now imagine an elastic band stretched
to form a large circle enclosing all the coins. As the band is
allowed to contract it will eventually come to rest in con-
tact with some “extreme” nails (Figure 10.6. The “extreme”
coins are exactly those which can be removed without click-
ing (prove it!). Then, of course, we can repeat the procedure
until no coin is left on the table. As you can see, everything is
quite straightforward. However, three remarks are due:

(a)The noose is just the boundary of the convex hull of the
centers of coins.

(b)When using the hammer, try to minimize the noise.
(c) Remove the nail before you attempt to move the coin.

I will return later to the discussion of the crucial method-
ological question: why should we debase mathematics and
formulate the problem in terms of coins and its solution in
terms of cords and nails, instead of formulating it in proper
mathematical language:
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Fig. 10.6. The Coins Problem: a solution.

Given a finite collection of non-intersecting convex com-
pact sets in R2 . . . [?]Yes, indeed, re-

word the prob-
lem in a formal
language.

Meanwhile I continue the story about the further adven-
tures of the problem.

The success of his problem moved Eugene to rework the
problem for a higher level competition, the All-Union Mathe-
matical Olympiad.

Fig. 10.7. British Coins.

The Convex Coins Problem. There is a finite number of
coins on the table, each shaped as a convex polygon (as in
Britain, see Figure 10.7). The coins do not touch each other.
Prove that it is possible to slide the coins along the surface
of the table to its edge, one by one, without clicking a coin
against another. [?]

Solve it with-
out reading fur-
ther.

And here events took quite an unexpected turn. When
Khukhro offered the problem to the meeting of the organi-
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zation committee of the All-Union Olympiad, Sergei Konya-
gin (who was a trainer of the national team) looked into his
briefcase and took out a sheet of paper with the following for-
mulation.

The City of N -sk Problem. In the city of N -sk, all buildings
are direct prisms over convex N -gons (of course, we assume
that there are only finitely many buildings). Prove that, no
matter from what direction a traveller approaches the city,
at least one of the building is not eclipsed (even partially) by
others. [?]

Solve it with-
out reading fur-
ther.

Unfortunately, I cannot give a reference, but I vaguely re-
member that the problem was published in Kvant magazine
25 or 30 years ago.

The reader understands, of course, that the problem im-
mediately lost its sporting value (serious mathematics com-
petitions use only new problems).

But the story continued. At a mathematical conference my
colleagues celebrated the publication of the book Mathemat-
ical Aquarium [229] written by one of the conference speak-
ers, Victor Ufnarovski. I leafed through a copy of the book
and, in astonishment, discovered one more version of the Post
Office Conjecture.

Fig. 10.8. A solution of the Soap Bubbles Problem.

The Soap Bubbles Problem (Victor Ufnarovski). Some-
one makes soap bubbles (each of a spherical shape). The bub-
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bles float around the room. Prove that at least one bubble is
not eclipsed by others in the vision of a given observer. [?]Solve it with-

out reading fur-
ther.

Sergei Konyagin
aged 15

Ufnarovski was extremely surprised to hear my story about
the parcels. He came to his problem actually making soap
bubbles, with his child, and had never seen similar problems
before.

There is one more similar problem, from the fascinating
book Lines and Curves by Gutenmacher and Vasilyev [206]. I
was reminded about its existence only in 1989, eleven years
after I formulated my Post Office Conjecture.

The Holes in the Cheese Problem. A big cubic piece of
cheese has some spherical holes inside (like Swiss Emmental
cheese, say). Prove that you can cut it into convex polytopes in
such way that every polytope contains exactly one hole. [?]

Solve it with-
out reading fur-
ther.

10.2 Solutions

I will give some very brief solutions, starting with the Soap
Bubbles Problem. The answer can be given in just two lines:

Not eclipsed is the sphere with the shortest tangent
line connecting it to the point of view. (Figure 10.8)

Fig. 10.9. Another solution of the Round Coins Problems.

The 2-dimensional version of the Soap Bubble Problem
gives, of course, a new solution to the Round Coins Problems
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(Figure 10.9). The City of N -sk Problem is also not that dif-
ficult after you have analyzed the solution of the Soap Bub-
bles Problem. Indeed, it is quite clear that the crucial role
should be played by the supporting (or “tangent”) lines from
the point T which marks the position of the traveller, to the
buildings. Recall that everything is taking place on the plane,
therefore you can draw two supporting lines from T to any
building: the left and the right one, which determine the left
and the right corner of the building, as seen by the traveller.
Therefore the solution can again be formulated in one sen-
tence:

Ali Nesin
aged 15

Fig. 10.10. The City of N -sk Problem: a solution.

Of all right corners visible choose the leftmost; it be-
longs to a building which is not eclipsed by others (Fig-
ure 10.10).

Finally, observe that the statement of the Holes in the
Cheese Problem, if true, gives us a solution of the Soap Bub-
bles Problem. Indeed, imagine that the soap bubbles are
holes in the huge transparent piece of cheese. Let us cut
the cheese into convex polytopes, each containing exactly one
hole. Then the bubble which happens to be in the same poly-
tope as the observer is, of course, not eclipsed by any other
bubble.

Another useful observation is that if the holes are not
spherical, but just convex, then the conclusion of the Cheese
Problem is no longer true: it is fairly easy to produce a coun-
terexample even in the planar case (Figure 10.11). Therefore
we come to a very important conclusion that the metric prop-
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Fig. 10.11. For the Holes in the Cheese Problem.

erties of the sphere—they distinguish the sphere from arbi-
trary convex bodies—are relevant. This leads to the idea to
reuse the trick with the shortest tangent line and yields the
following working conjecture:

The set of points P such that the tangent line from P to
the given sphere is not longer than tangent lines from
P to other spheres, is a convex polytope. [?]Prove it!

And what happens when we have only two holes? Then
polytopes become half-spaces (because their union is the en-
tire space) and our working conjecture transforms itself into
a rather plausible statement:

The set of points P such that the tangent lines from
P to two (non-intersecting) spheres are equal, is a hy-
perplane (which, obviously, separates the spheres). [?]

Prove it!

The last statement can be easily proven; all you need is
Pythagoras’ Theorem and some simple properties of a tan-
gent line to a circle. The resulting plane is known in geometry
as a radical plane of two spheres.

The proof, of course, can be easily reduced to the planar case. The notion
of the radical axis makes sense for intersecting circles as well. Moreover,
it is easier in that case, since the radical axis is just the straight line
through the two intersection points. The software package CINDERELLA
[239] provides a very nice illustration of this fact: you start with inter-
secting circles and the line defined by their points of intersection and
gradually decrease the radii of the circle. Eventually, the circles disen-
gage but the line does not disappear! And it is exactly the radical axis,
this time of non-intersecting circles. Actually, the Euclidean plane as it is
implemented in CINDERELLA is the real affine part of the complex projec-
tive plane; the radical axis of two non-intersecting circles is the real part
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of the line through two complex points of intersection; since the intersec-
tion points of two real circles are complex conjugates, the line is invariant
under complex conjugation and therefore shows up on the real Euclidean
plane. This brings to mind Hadamard’s quip:
The shortest route between two truths in the real domain passes through
the complex domain.

After our short excursion into circle geometry the Cheese
Problem can be handled without any further trouble:

For every pair of holes in the cheese we construct its
radical plane and take the intersection of all halfspaces
determined by the radical planes and containing the
given hole. The resulting convex polytopes form the de-
sired partition of the piece of cheese.

When the holes are just points (that is, our spheres have
radius 0), the resulting partition of the space into convex
polytopes is a well-known mathematical construction, it is
called the Voronoi diagram of the set of points, and the poly-
topes are known as Voronoi cells. In the Cheese Problem we
had a generalization of a Voronoi diagram: here, Voronoi cells
are defined by comparing distances to a closest hole. Voronoi
diagrams have a surprising range of applications, from opti-
cal character recognition to materials science, where they are
used to approximate polycrystalline microstructures in solid
media [324].

10.3 Some philosophy

Reformulation, translation of prob-
lems from one mathematical lan-
guage to another, is virtually unknown
not only in high school mathematics,
but at the college and undergradu-
ate level as well.

We handled the problems
with flair and ease, but
this feeling is mislead-
ing. Taken individually,
the problems are much
more difficult. We make
our task easier by using
the key ideas of the so-
lution of one problem as
heuristic tools for attack-
ing other problems.

Some of my readers, I hope, are professional mathemati-
cians, and they, know how useful it can be to work not with
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one problem in isolation, but with a variety of related ver-
sions, or reformulations. Alas, reformulation, translation of
problems from one mathematical language to another is vir-
tually unknown not only in high school mathematics, but at
the undergraduate level as well.

The search for an adequate lan-
guage for the distillation of the
essence of a problem is one of the
key components of mathematical
work.

Also, it greatly helped
us that we understood the
shared mathematical con-
tent of all problems. The
mathematician reader will
easily formulate it in terms
of convex geometry. But do
the problems become eas-
ier in the abstract formu-
lation?

My story has approached the point which shows its pur-
pose. The Post Office Problem is a very good model of one
of the key components of mathematical work—the search for
an adequate language for the distillation of the essence of a
problem. In fact, it is irrelevant whether the words of this
language are mathematical terms or ordinary words of com-
mon, everyday language. What matters is whether they cap-
ture the intuitively felt relations between objects involved in
the problem.

I recalled the valenki story when, almost 15 years after
formulating the Post Office Conjecture, I got involved in a
project in combinatorics and started to think about a gener-
alization of the concept of convexity suitable for use in purely
algebraic situations. I suddenly realized that my struggle
was not much different from a schoolboy’s attempts to find
words for the description of the notion “the coin is outside
of the rest of the coins”. The notions “outside”, “outmost”,
“outsider” were so simple but became so difficult as soon as
the schoolboy tried to consider various cases of mutual posi-
tioning of coins. It was a typical Zasetsky’s torture, see Sec-
tion 7.1.

In mathematics teaching, we need to
demonstrate the “linguistic” aspect
of mathematics to our students—and
as early as possible.

The analogy extends
much further—in our toy
problems we have two
examples of the use of
already well-known lan-
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guages, namely, of order
and ordered sets (“the
rightmost of all left cor-
ners”) and metric geome-
try (“the shortest tangent”). Of course, the language of or-
dered sets appeared in disguise, but only because our every-
day language is very efficient in manipulating concepts such
as “left—right”. But it does not change the nature of our dis-
coveries; in “real”, “research” mathematics we use the ma-
chinery of already existing theories in essentially the same
way. Again, in “big” mathematics everything starts with the
search for an adequate language.

Neil White
aged 6

Also, let us recall why we decided to use metric proper-
ties of the sphere. We generalized the problem from spherical
holes to convex ones, compared with another generalization
(round coins—convex coins) and realized that, since the gen-
eralization does not work, we have to use specific (that is,
metric) properties of the sphere. By the way, this is a typical
example of a meta-argument, when we look at a mathemati-
cal theory from outside and use mathematics or mathemati-
cal logic to understand its essential features.2

I think that, in mathematics teaching, we need to demon-
strate this “linguistic” aspect of mathematics to our students—
and as early as possible. One should not think, however, that
reformulation of mathematical theories in “everyday” lan-
guage can replace systematic study. Our little problems about
coins are not convex analysis!

The problems considered in this chapter can be traced to
four absolutely independent sources. But their authors be-
long more or less to the same mathematical school and share
some common understanding of the basic structures of math-
ematics.

A mathematician, in his work, uses,
first of all, informal interpretations of
his theory, and uses formal language
to record his informal findings.

It is a very interesting
question to what extent
the authors were guided
by the well known and
documented structures and
concepts of mathematics
(in this particular case, by
the formal definition of a
convex set), and to what
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degree by informal knowledge which is not documented in
books or journal papers and is passed mostly from teacher to
student by direct contact.

It might be a sweeping generalization on my part, but I
think that a mathematician, in his work, uses, first of all,
informal interpretations of his theory, and uses formal lan-
guage to record his informal findings. The story of the Post
Office Problem shows that each mathematical school has its
shared systems of informal interpretations of the key con-
cepts used by the school. The main secret of learning math-
ematics at “research” (say, MSc or PhD) level is to master
these informal aspects. How this is done remains a mystery
to me.

10.4 But is the Post Office Conjecture true?

So, it is time to return to the Post Office Conjecture. Alas, it is
not true. The first counterexample was offered by Kuzminykh
a few years after the conjecture was formulated. In this chap-
ter, I have been trying to avoid the use of pictures (to empha-
size the point that usual everyday language turns into math-
ematics when it allows us to express, clearly and precisely,
everything which we want to say, and without recourse to
gestures and pictures). But this is the point where we possi-
bly need a picture.

Fig. 10.12. The Post Office Conjecture: a counterexample.
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Take a convex polytope with obtuse angles between adja-
cent faces (for example, an icosahedron). Place, next to each
face, a thin right prism with a base of the same shape as the
face, and insert, in a criss-cross pattern, thin wedges, each
wedge being a right prism over a triangle with an obtuse an-
gle (Figure 10.12). It is now obvious that we cannot remove
any polytope from this heap.

This solution is nice, of course, but, unfortunately, it ap-
peals to the same kind of geometric intuition which tells us
that Rubik’s Cube is impossible. The problem is much subtler
than one may think after being prompted by Kuzminykh’s
counterexample. If your intuition tells you that the coun-
terexample is, indeed, correct and refutes the Post Office Con-
jecture, I will now kill your confidence.
Theorem (Guennady Noskov), circa 1988. A heap of con-
vex bodies can be disassembled if we are allowed to move all
bodies simultaneously. [?]

Prove it with-
out reading fur-
ther!

Can you see why this is true in Kuzminykh’s example?
Noskov’s proof is strikingly elegant.
Apply to the heap a homothetic transformation with
coefficient 1+λ, starting with λ = 0 (the identity trans-
formation), with λ growing to infinity. Then the bodies
will expand, and the heap also expand, retaining its
configuration and relative position of all bodies. Inside
every body we can move, by means of a parallel trans-
lation, the original copy of the body. [?]

Of course,
Noskov’s The-
orem can be
immediately
generalized
from convex
to star-shaped
bodies—check!

In more popular terms, the solution can be described as
follows. Imagine that each body is covered by a thin elastic
membrane, a kind of a balloon. Let us pump air in all bal-
loons. The balloons will start to expand, pushing each other,
and inside each balloon we can move its body. Simple?

Alas, we reached the point where, it appears, the expres-
sive power of everyday language is exhausted. Why do the
balloons push each other apart? Will the result be differ-
ent if we inflate different balloons at different rates? When
you start thinking about that question, the “balloon” solu-
tion ceases to be self-evident. The homothetic transformation
used by Noskov in his solution ensures the equal rate of in-
flation of each balloon.
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Well, we should not be disappointed that everyday lan-
guage does not work any longer at the apex of our little the-
ory. It is natural; like poetry, the very reason for the existence
of mathematics is that it expresses thoughts and feelings
which we cannot express in mundane everyday language.

Igor Pak
aged 4

And the final comment: as Alexander Kuzminykh has re-
cently explained to me, he also was not the first one who
found a counterexample to the Post Office Conjecture. He dis-
covered in [272, pp. 141–143] a reference to a paper by Fejes
Toth and Heppes [282] which exhibited an arrangement of
14 convex bodies in R3 none of which can be moved indepen-
dently of the rest. Moreover, Danzer and also Dawson gave
examples with twelve congruent convex bodies. See Dawson’s
paper [201]. Apparently, Noskov’s Theorem is also not new,
it appeared in [201, Theorem 3]. There is nothing surpris-
ing in this: the circle of problems on convexity related to the
Post Office Conjecture is natural and beautiful, and it is only
natural that many different people set them up and found
solutions. Finally, the Post Office Conjecture is about disas-
sembling heaps of convex bodies using one hand. If the use of
two hands is permitted, we get a wonderful (and practically
important, in view of applications to robotics) problem, solved
by J. Snoeyink and J. Stolfi in [335].

10.5 Keystones, arches and cupola

Did ye never read in the scriptures,
The stone which the builders rejected

the same is become the head of the corner.
Matthew 21:42

The whole story is not that new: the ability of convex bod-
ies to interlock has been exploited, for many centuries, in
architecture and building practice in design of arches and
cupola. The stone at the top of the arch, the one that locks the
whole construction, has been given special, frequently mysti-
cal treatment—hence the proverbial the head of the corner or
keystone of the Bible.

As with all human inventions, this was not always the
case: the technology was unknown in Ancient Egypt, and
Egyptian temples were forests of columns (Figure 10.13).
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Fig. 10.13. From Wikipedia: Columns of Ramses III at Medinat Habu. Public
Domain.

Even at later times, architects appear to have been hesitant
to use keystones and voussoirs, other wedge-shaped stones
of the arch, and preferred more clumsy false archers (Fig-
ure 10.14).

Fig. 10.14. From Wikipedia: Comparison of (left) a generic “true” stone arch and
(right) a corbel (or false) arch. Source: http://en.wikipedia.org/wiki/Image:Arc
truefalserp.jpg, distributed under Creative Commons Attribution ShareAlike 2.5
License.

Şükrü Yalçınkaya
aged 4.5

Even more fascinating examples of arches can be seen in
two of my pictures from Turkey. In the first one, Figure 10.15,
voussoirs at the entrance to a mescit (small mosque, chapel)
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of Agžıkarahan, a Seljuk caravansaray on the Silk Road,
Cappadocia, are traditional convex wedges.

Fig. 10.15. Mescit (a small mosque) in Agžıkarahan, a Seljuk caravansaray on
the Silk Road, Cappadocia. Photograph: A. V. Borovik

In another photograph, Figure 10.16, of the Main Gate of
Agžıkarahan, voussoir are elaborately jaded, as if the builder
did not trust the plain wedge shape to support the weight of
the magnificent construction.

Alexey Kanel-Belov proposed an interesting version of the
Post Office Problem:

Design an arch bent downwards and composed of con-
vex stones. [?]Indeed, try it!

[A solution is suggested in the next section.]
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Fig. 10.16. Agžıkarahan, Main Gate. Photograph: A. V. Borovik

10.6 Military applications

Bron� krepka i tanki naxi bystry . . .

Remarkably, one can place congruent Platonic solids in an
interlocked regular pattern [278, 279, 280]; see Figure 10.17. [?]
Since some of the hardest materials in nature come in the

An interlocked
pattern in Fig-
ure 10.17 is
made of octa-
hedra; sketch a
similar pattern
made (a) of
cubes; (b) of
tetrahedra.

form of, say, octahedral crystals, and, moreover, can be man-
ufactured only as relatively small crystals, the possibility of
an interlocked regular pattern leads to the idea of making
composite materials from separate, but interlocked, crystals.
There is another benefit in this approach: failure of materials
is in many cases associated with propagation of macroscopic
fractures. But a material made of very hard interlocked crys-
tals is pre-fractured and therefore developing faults will be
trapped in the existing gaps between crystals and their fur-
ther propagation arrested by the mutual interlocking of crys-
tals [303]. Hence the Post Office Conjecture could potentially
lead to the development of a promising type of composite ma-
terials.
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Fig. 10.17. Interlocked octahedra in a regular pattern. Since many hard crystals
have octahedral shape, this pattern is of serious practical interest. After Dyskin
et al. [280]

Spatial configurations of interlocked octahedra are para-
doxical and beautiful. But it is Noskov’s expansion proce-
dure (see Page 235) which is the true marvel: you can re-
verse it and make it into a manufacturing process for the
mass production of new composite materials: place crystals
in appropriately positioned nests in a low density foamy ma-
terial (something like styrofoam), at comfortable distances
one from another, like glass Christmas tree decorations in
their protective packaging. Then pour in some solvent and
compress the foam, until the crystals reach their interlocked
positions.

Meanwhile, Alexey Kanel-Belov tried to promote the idea
for use in tank armor (I do not know whether he succeeded
or not). It is a rather unexpected turn of events for my prob-
lem about valenki. Kanel-Belov asked the crazy question: can
the interlocked heap be made from regular solids—and, in-
deed, found appropriate patterns. However, he was not the
first one to come up with the idea—a couple of years before
him, some Dutch road builders described a design of a very
sturdy foundation layer for road surfacing made from inter-
locked concrete tetrahedra [287].
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Notes
1Actually, valenki are not boots but very thick felt socks; they have no seams.

Also, valenki are not socks because the felt is so thick that they are rigid and
stand up like, say, wellingtons. Unlike wellies which are to some degree foldable,
you cannot fold a valenok.

To a Briton, felt footwear without a rubberized sole might seem to be an inane
idea; however, you have to take into consideration that, in a Siberian winter, both
air and snow are exceptionally dry.

2MATROIDS. I mentioned my work in combinatorics. To be precise, I recalled
the valenki story when I was trying to reformulate an important combinatorial
concept—matroid—in terms of convexity (in some very general understanding of
this word); here, I avoid precise definitions. I wish only to note that the convexity
of matroids happened to be related to the following property: wherever you look at
the matroid from, it always has a right and a left corner (after you have defined
what is meant by “look”, “left-right” and “corner”). The idea of this approach to
matroids is fully developed in my book with Israel Gelfand and Neil White [256].

MATHEMATICS UNDER THE MICROSCOPE VER. 0.919 5-SEP-2007/12:39 c© ALEXANDRE V. BOROVIK





Part III

History and Philosophy
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The Ultimate Replicating Machines

Be fruitful, and multiply . . .
Genesis 1:28

Returning to the Davis-Hersh definition of mathematics as
“the study of mental objects with reproducible properties”
(Section 2.4), I have been so far concerned mostly with vari-
ous interpretations of the word “mental”. Let us now look at
“reproducible”, which appears to be another key word.

In this chapter, I intend to venture into memetics.
Memetics is an emerging interdisciplinary area of research

concerned with the mechanisms of evolution of human cul-
ture. The term meme was made popular1 by Richard Dawkins
[134] and introduced into mainstream philosophy and cul-
tural studies by Daniel Dennett [23]. It refers to elemen-
tary units of cultural transmission and invokes the concept of
gene. The word “meme” is a recombination of the Greek word
mimēma which means “that which is imitated” and “gene”.
Memes play the same role in the explanation of the evolu-
tion of culture (and the reproduction of individual objects
of culture) as genes do in the evolution of life (correspond-
ingly, the reproduction of individual organisms). Although
Susan Blackmore’s book The Meme Machine [123] has been
translated into twelve (maybe even more by now) languages
and made memetics a recognizable discipline, memetics still
fights for its place among other sciences and slowly morphs
from a great metaphor into a theory. Indeed, this is what sci-
entific theories do in the course of their development: they
start as brilliantly colored butterflies of metaphors and para-
doxes, then turn themselves into dull caterpillars and spend
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the rest of their lives munching, day and night, their statisti-
cal tables. So far, I have not seen serious statistical tables in
papers on memetics.

Indeed, the concepts of “meme” and “meme complex” still
look more like beautiful metaphors rather than rigorously
defined scientific terms. They are too general and require
further specification when applied to particular cultural sys-
tems. There is nothing wrong with this state of affairs; the
same observation can be made about the theory and prac-
tice of genetic or evolutionary algorithms in computer science
[298, 316, 319]. Here, specific case studies and applications
(like the one described in [310]) are much more interesting
than a rather vacuous general theory.2

I am probably not the first person to apply Dawkins’ con-
cept of memes to mathematics.3 Indeed, this appears to be a
natural and obvious line of discourse. But obvious things are
not always interesting; in my discussion of memes as units of
the transmission of mathematics, I will try to concentrate on
non-trivial aspects of the meme metaphor.

However, GOOGLE searches and perusal of the Journal of
Memetics suggest that no-one has so far looked seriously at
the memetics of mathematics. Filling this gap is the primary
aim of this chapter.

As I attempt to argue, mathematical memes play a cru-
cial role in many meme complexes of human culture: they in-
crease the precision of reproduction of the complex, thus giv-
ing an evolutionary advantage to the complex, and, of course,
to the memes themselves. Remarkably, the memes may re-
main invisible, unnoticed for centuries and not recognized
as rightly belonging to mathematics. I argue that this is the
characteristic property of “mathematical” memes:

If a meme has the intrinsic property that it increases
the precision of reproduction and error correction of the
meme complexes it belongs to, and if it does that with-
out resorting to external social or cultural restraints,
then it is likely to be an object or construction of math-
ematics.

This chapter is addressed to two disjoint groups of read-
ers: mathematicians and memeticists. This makes it difficult
to set the right level of mathematical detail. Memetics is in
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state of flux, and it is very difficult to assess the composition
of the memetics research community. Still, I have a feeling
that the area is dominated by researchers with a background
in humanities. I will be happy if my book is read by some fel-
low mathematicians. But I also thought that it would be pru-
dent to adjust the technical level of discussion and explain
some facts of mathematical practice in more detail.

11.1 Mathematics: reproduction, transmission, error
correction

If you concentrate too closely
on too limited an application of a mathematical idea,

you rob the mathematician of his most important tools:
analogy, generality, and simplicity.

Mathematics is the ultimate in technology transfer.
Ian Stewart [227]

At this point I hope that the reader comes prepared to
agree that the rigor of mathematics depends on the repro-
ducibility of its concepts and results. The very fact that we
can talk about mathematical constructs as objects, stems
from this reproducibility. Let us look at a simple example of
“objectification” of mathematical constructs as discussed by
Davis and Hersh [19, p. 407] (see also the discussion of “reifi-
cation” in Section 6.1):

I do not know whether 375803627 is a prime number
or not, but I do know that it is not up to me to choose
which it is.

Here, a prime number is a natural number that is not the
product of two numbers different from 1 and itself. For ex-
ample, 6 is not a prime number because 6 = 2 × 3, while 5 is
a prime number. The question about whether 375803627 is
a prime number is harder, but it still has a definite answer
“yes” or “no”. I can choose which numbers I “like” and which
I don’t, which numbers are “lucky” and which are not, but
it is not up to me to choose whether 375803627 is prime or
not, because if I carry out the necessary arithmetic compu-
tations, or run standard software and find it out, my conclu-
sion would be exactly the same as that of any other person
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who made similar computations and avoided arithmetic er-
rors. Moreover, if someone applies to the number 375803627
some clever mathematical theorem—and does not make er-
rors in his or her arguments—the conclusion will again be
exactly the same. Notice that all these caveats: “correctly”,
“avoided errors”, etc., refer to the same reproducibility, to the
fundamental fact that across the mathematical community,
there is a common understanding of what kind of argument
or computation is “correct” and what is not.

Therefore mathematics studies mental objects with repro-
ducible properties which happen to be built according to re-
producible rules, with the precision of reproduction being
checked by specific mechanisms, which, in their turn, can also
be reproduced and shared. I hate to complicate the picture
further but must mention that these rules can themselves
be treated as mathematical objects (this is done in a branch
of mathematics called mathematical logic) and are governed
by metarules, etc. We come to an even more interesting ob-
servation: mathematical objects can reproduce themselves
only because they are built hierarchically. Simple or atomic
objects (definitions, formulae, elementary arguments, etc.),
form more complicated entities (theorems and their proofs)
which, in their turn, are arranged into theories.

11.2 The Babel of mathematics

And the whole earth was of
one language, and of one speech.

Genesis 11:1

In the previous section, we came to conclusion that math-
ematical truths do not exist on their own but only in their in-
teraction with an extremely elaborate and sophisticated web
of mathematical concepts, constructions and results. This
web of mathematics is probably one of the most complex con-
structions ever built by humans.

People outside the mathematical community cannot imag-
ine how big mathematics is. Davis and Hersh point out that
between 100 000 and 200 000 new theorems are published ev-
ery year in mathematical journals around the world. A poem
can exist on its own; although it requires readers who know
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Fig. 11.1. The Tower of Babel, by Pieter Bruegel the Elder.

Why did not mathematics share the fate of the builders of the Tower of Babel?

And the Lord came down to see the city and the tower, which the children of
men builded.

And the Lord said, Behold, the people is one, and they have all one language;
and this they begin to do: and now nothing will be restrained from them, which
they have imagined to do.

Go to, let us go down, and there confound their language, that they may not
understand one another’s speech. (Genesis 11:4–7)

its language and can understand its allusions, it does not nec-
essarily refer to or quote other poems. A mathematical the-
orem, as a rule, explicitly refers to other theorems and def-
initions and, from the instant of its conception in a mathe-
matician’s mind, is integrated into the huge system of math-
ematical knowledge. In my analysis, I stop here and do not
consider how mathematics is submerged in the wider social
and cultural environment. The interested reader can find a
very interesting discussion of the social nature of mathemat-
ics in Davis and Hersh [19] with further development in the
book by Hersh [41].

We notice next that mathematics is a product of an evo-
lutionary development in the work of many generations of
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mathematicians. Moreover, it continues to evolve (for a non-
mathematician, a good snapshot of an evolving mathemat-
ical theory is the famous book by Lakatos [54]). The wide
spread of the phylogenic tree of mathematics is reflected in
the extreme variety of mathematical disciplines and areas
of specialization. The universally accepted Mathematics Sub-
ject Classification contains about 5000 entries. For a mathe-
matician, it is perfectly possible to build a successful career
working strictly within the boundaries of a single one of these
5000 mathematical disciplines—from his or her PhD thesis
via papers and books to the supervision of the PhD theses
of his/her students. If you take two papers at random, say,
one on mathematical logic and one on probability theory, you
may easily conclude that they have nothing in common. How-
ever, a closer look at the Mathematics Subject Classification
reveals discipline 03F45: probability logic.

We see that, despite all this diversity, there is an almost
incomprehensible unity of mathematics. It can be compared
only with the diversity and the unity of life. Indeed, all life
forms on Earth, in all their mind-boggling variety, are based
on the same mechanisms of replication of DNA and RNA.

Can this analogy be explained by mathematics being based
on highly specific and precise mechanisms of reproduction of
mathematical memes?

Like genes in a biological population, memes replicate
within an evolving cultural system and “propagate them-
selves in the meme pool” [134, p. 192]. In that respect, what
makes mathematics special is that it possesses powerful mech-
anisms which ensure the precision of replication. When com-
paring mathematics with other cultural systems, we see that
a high precision of replication can usually be found in sys-
tems which are relatively simple (like fashion, say). In other
cases the precision of reproduction is linked to a certain
rigidity of the system and an institutionalized resistance to
change, as in the case of religion. We do not offer hecatombs
to Zeus, but, after 2000 and something years, we still use Eu-
clidean geometry—and this has happened without anything
resembling the endless religious wars of human history.

Mathematics is so stable as a cultural complex because it
has extremely powerful intrinsic capability for error detec-
tion and error correction. As Jody Azzouni puts it [6],
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What makes mathematics difficult is (1) that it’s so
easy to blunder in; and (2) that it’s so easy for others (or
oneself) to see—when they’re pointed out—that blun-
ders have been made.

I recommend Azzouni’s paper to the reader; it analyzes, in
considerable detail, the difficulty of explaining the astonish-
ing power of self-correction of mathematics by external fac-
tors, social or cultural. I claim that the only possible explana-
tion lies in the nature of mathematical memes themselves.

Susan Blackmore [123] stresses the role of imitation in
propagation of memes. Most mathematicians would be un-
comfortable about the emphasis on imitation as a mecha-
nism for propagation of mathematical memes. As we shall
see, the mechanisms of reproduction of mathematical memes
are much more precise and specific.

11.3 The nature and role of mathematical memes

I was looking for a simple case study—and could not be-
lieve my luck when I found the following example in Richard
Dawkins’ Foreword [135] to the book by Susan Blackmore
[123].

Memes travel longitudinally down generations, but they
travel horizontally too, like viruses in an epidemic.
[. . . ] Crazes among schoolchildren provide particularly
tidy examples. When I was about nine, my father taught
me to fold a square of paper to make an origami Chi-
nese junk. [. . . ] The point of the story is that I went
back to school and infected my friends with the skill,
and it then spread around the school with the speed of
the measles and pretty much the same epidemiological
time-course. [. . . ] My father himself originally picked
up the Chinese Junk meme during an almost identical
epidemic at the same school 25 years earlier. The ear-
lier virus was launched by the school matron. Long af-
ter the old matron’s departure, I had reintroduced her
meme to a new cohort of small boys.4

Then Dawkins goes on analyzing the case of the Chinese
Junk meme.
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A favourite objection to the meme/gene analogy is that
memes, if they exist at all, are transmitted with too low
fidelity to perform a gene-like role in any realistically
Darwinian selection process.

He draws a distinction between low-fidelity and high fi-
delity memes by describing a thought experiment where a
child is given a picture of a junk and asked to copy it in his
own drawing, then the next child is asked to copy the draw-
ing of the first child, an so on. Of course, we expect that the
pictures will very soon deteriorate beyond recognition. How-
ever, the skill of making a junk is passed from a child to child
with high fidelity, if, in a different experiment, we ask a child
to teach another child how to fold the junk. As Dawkins put
it,

. . . inheritance in the drawing experiment is Lamarck-
ian (Blackmore calls it ‘copying-the-product’). In the
origami experiment it is Weismannian (Blackmore’s
‘copying-the-instructions’). In the drawing experiment,
the phenotype in every experiment is also the genotype—
it is what is passed on to the next generation. In the
origami experiment, what is passed to the next gener-
ation is not the paper phenotype but a set of instruc-
tions for making it. Imperfections in the execution of
the instructions result in imperfect junks (phenotype)
but they are not passed on to future generations: they
are non-memetic.

So, we are already in the close vicinity of the Davis-Hersh
“mental objects with reproducible properties”. But have we
arrived at mathematics? Look for yourself at Dawkins’ de-
scription of

. . . the Weismannian meme line of instructions for mak-
ing a Chinese junk:
1. Take a square sheet of paper and fold all four cor-

ners exactly into the middle. (This makes a blintz,
in the terminology of English origamists.)

2. Take the reduced square so formed, and fold one side
into the middle . . .

[The interested reader may find the rest of the instructions,
in a diagrammatic form, in Figures 11.6 and 11.7—AB.]
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Yes, it is mathematics. It is exactly the mathematical na-
ture of the procedure which ensures its high resistance to
errors. Moreover, it generates a remarkable ability to self-
repair errors within the elementary steps of the procedure.
Let us look at Step 1. In effect, it requires to find the center
of the square. This can be done in surprisingly many ways,
always leading to exactly the same result. For example, this
is one way to fold:

D

A B

C

AD BC ABCD

O

A B

D C

and this is another:

D

A B

C

@
@

@@

A BD

C

@
@¡

¡
AC BD

O

A B

D C

After the center is found, there is only one way to fold the
given corner into the center; it is a mathematical fact (and a
theorem of geometry: in the Euclidean plane, for any two dis-
tinct points A and O, there exists exactly one line l such that
the axial, or mirror, symmetry in l brings A to O). Therefore
there is simply no way to introduce an instructional error at
that step.

Please notice that, in this simple example, we have a prim-
itive version of cryptomorphism: the center of the square,
treated as a mathematical object on its own, can be defined
(or constructed) in many different ways, but remains exactly
the same object, and, in the subsequent use in further con-
structions, it becomes irrelevant how we got it in the first in-
stance. As we shall soon see, the concept of cryptomorphism
is of crucial importance for understanding the evolution of
mathematics.

This example neatly explains the nature and the role of
mathematical objects: in the evolution of human culture, they
are memes which happened to be successful and spread be-
cause of their following properties:
• They have extreme resilience and precision of reproduc-

tion.
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• When included in meme complexes (collections of memes
which have better chances for reproduction when present
in the genotype as a group), they increase the precision of
reproduction of the complex as a whole. This property is
so important that it deserves a special name; I suggest the
term intrinsic error correction facility, and will call memes
with this property correctors.

• I stress that the error correcting property of mathematical
memes is intrinsic, they do so without resorting to exter-
nal social or cultural restraints. (It is tempting to add here:
“without resorting to the reproducible and stable features
of the natural (physical) world”. This is a delicate point
of bifurcation of mathematics and physics; I discuss it in
more detail in Section 11.6.) Therefore I exclude from the
consideration such remarkably reproducible entities as re-
ligion and law.

• Cryptomorphism is a bonus: as we have seen in a simple
example, it helps to correct possible errors in reproduction.

Remarkably, memes may remain invisible, unnoticed for
centuries and not recognized as rightly belonging to mathe-
matics. But I argue that intrinsic error correction is the char-
acteristic property of “mathematical” memes, and wish to for-
mulate the following thesis as a challenge to memeticists:

THE CORRECTOR MEME THESIS.
Whenever you encounter an efficient corrector
meme, a closer look at it should reveal a hidden
object, procedure or construction of mathematics—
even if the mathematical nature of the meme has
gone unnoticed for centuries.

Refute my thesis—I would be most happy to have a go at
the analysis of your counterexample. But before you try to
beat me in that game, have a look at the analysis of another
example, of truly historic dimension, the square grid method
invented in Ancient Egypt for copying drawings to murals
(Section 11.5).

To conclude our discussion of corrector memes, I wish to
suggest that it is natural to expect that if corrector memes
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form meme complexes, the latter should be very stable and
reproducible. And these, in effect, were coacervate drops in
the primeval soup of human culture which started the evolu-
tion of mathematics.

However, if you feel really uncomfortable about my Cor-
rector Meme Thesis, you may wish to skip the further discus-
sion and go directly to Section 11.6 where I discuss various
caveats and possible complications.

11.4 Mathematics and Origami

I have to warn the reader that, unlike the previous ma-
terial in this chapter, this section will build up a steep
mathematical learning curve.
The mathematics of paper folding as discussed in Sec-

tion 11.3 is not that naive: actually, the simple foldings which
allow one to find the center of the square already contain
in themselves the seeds of a complete axiomatic develop-
ment of Euclidean geometry. One should not underestimate
the astonishing power even of the simplest mathematical
memes. [?]

When we fold a
sheet of paper,
why is the fold
line straight?As Figure 11.2 shows, folding is the same as “flipping” of

images which our brain does, according to Pinker and Tarr
(Section 2.2), in the process of recognition of flat mirror im-
ages. It is something which is very easy to visualize, it is one
of the most self-evident concepts of geometry. But, as we shall
soon see, foldings give much more than a convenient intuitive
interpretation of symmetry.

One way to demonstrate the expressive power of paper
foldings in the formal axiomatic development of geometry
is to observe that every construction of Euclidean geometry
done with the compasses and the straightedge, can be done
just by folding paper.

Roger Alperin
aged 13

The proof of this fact is given by Roger Alperin [193, 194].5
His treatment of the problem is algebraic: he uses the inter-
pretation of points in the plane with Cartesian coordinates
(x, y) as complex numbers x + yi. As Figure 11.3 illustrates,
all usual geometric constructions can be interpreted as con-
struction of points (complex numbers), starting with the fixed
distinguished points 0 and 1. [?] Fold a regular

hexagon.
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As a geometric concept,
folding is exactly what its
name suggests: the plane
R2 is being folded on itself
like a sheet of paper. The
unit vector α normal to the
fold line l gives the direc-
tion of folding. Notice that
this introduces the clear
distinction in the roles of
the two halfplanes H+ and
H−. Fig. 11.2. Folding.
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Alperin gives the following iterative procedure which leads
to the class of constructible complex numbers. The basic ob-
jects are points and fold lines or creases.

(1)The line connecting two constructible points is a fold line
(therefore, if we start with two points 0 and 1, the very first
fold is the line through 0 and 1, the real line of the complex
plane).

(2)The point of intersection of two fold lines is constructible.
(3)The perpendicular bisector of the segment connecting two

constructible points can be folded.
(4)The line bisecting any given constructible angle can be

folded.
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(5)Given a fold line l and constructed points A,B, then when-
ever possible, the line through B that reflects A onto l can
be folded.

I omit one more axiom since the first five already allow
us to carry out every compasses-and-ruler construction [193,
Theorem 4.1].

These five axioms allow construction of any complex num-
ber which belongs to the Euclidean field, that is, the number
field which can be characterized as the smallest field contain-
ing the rational numbers and closed under taking all square
roots. All numbers which can be constructed by compasses
and ruler, belong to the Euclidean field (this result, in its
modern form, is due to David Hilbert, although its history
can be traced back to Francois Viète [76, p. 371]). Hence every
ruler-and-compasses construction can also be done by paper
folding!

Observe that Axiom 5 contains the words “whenever pos-
sible” which does not allow us to treat Alperin’s axioms as
self-contained; an exact description of the scope of applica-
bility of Axiom 5 is easy to find: the set of all points which
can be obtained from the given point A by reflecting in fold
lines passing through B, is, obviously, the circle centered at
B of radius |AB| (indeed, if A′ is the reflection of A in a line
through B, then, obviously, points A and A′ are equidistant
from B: |AB| = |A′B|). This description, however simple, still
refers to properties of Euclidean geometry not contained in
Alperin’s axioms.

It is not very difficult to modify Axiom 5 and make it self-
contained. Why not try the following axiom?

(5◦) Given a fold line l and constructible points A, B out-
side of l, if there is a fold in a line through B which brings
A onto the other side of l from B, then the line through B
that reflects A onto l can be folded.

Notice, however, that the new version of Axiom 5◦ refers to
the fact that a fold line divides the plane in two halves. This
property is most natural in the context of Origami geometry:
indeed, there are two foldings in the given line, determined
by which half of the sheet of paper remains on the table and
which one is turned over.
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This obvious distinction between the points which are
moved by folding and which “stay on the desk” allows us to
define the relation “to be between”: we say that a point C lies
between the points A and B if C stays on the desk whenever A
and B stay. Can you see how Alperin’s axioms imply that the
point C in that case actually lies on the fold line connecting
A and B? In conventional terms of Euclidean geometry this
means that C belongs to the segment with the endpoints A
and B.

The only catch here is that Euclid famously missed, in
his axiomatization of geometry, the betweenness relation,
which was added to the axioms of Euclidean geometry in the
19th century.6 As we see, betweenness and order appear in
Origami geometry in a most natural way; it is much harder
to miss it.

Alperin’s axioms were designed as a description of the
construction process, not for proving theorems within a for-
mal axiomatic framework. For example, to check that vari-
ous ways of finding the center of the square discussed in Sec-
tion 11.3 all yield the same point, we have no choice but to in-
voke facts from Euclidean geometry, which therefore retains
its status as the ambient structure for all Origami construc-
tions.

In order to make these Origami axioms of Euclidean geom-
etry absolutely self-contained one needs to add to Alperin’s
axioms a few more. This will bringing them closer to Bach-
mann’s axiomatization of Euclidean geometry in terms of
symmetry [245] and to Gustave Choquet’s axiomatic of Eu-
clidean geometry which prominently uses axial symmetries
[232]. Choquet even uses, in one of the versions of axioms,
foldings as a primary concept [232, Axiom IV′, Appendix 1].
For more details, see Section 11.8.

11.5 Copying by squares

The mathematics in this section is once again elemen-
tary. Rather grand mathematical terminology is mentioned—
but it is not actually used.
So, I repeat my claim that the role of mathematical memes

in the meme complexes of human culture is to ensure high
fidelity reproduction.
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Fig. 11.4. Fragments of an unfinished mural with the square grid of red guide-
lines, Ancient Egypt, Old Kingdom. [ c© Petrie Museum of Egyptian Archaeology,
University College London; item UC 27934, reproduced with permission.] The
grid spanned not just the drawing but the entire world:

The mathematical framework that underlines the structure of his artwork is
but one aspect of the Egyptian concept of space. The Egyptian was highly con-
scious of the box-like structure of his world, traversed by two co-ordinates at
right angles: the generally south-north flow of the Nile, and the east-west pas-
sage of the sun across the ceiling of the heavens, which was supported by the
third axis. The contiguous planes of this environment are carefully defined as
separate entities and are to be found in the fully developed Egyptian temple,
which is strictly cubic and is a model of the universe at its creation. [350, p. 13]
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The role of mathematical memes in
the meme complexes of human cul-
ture is to ensure high fidelity reproduc-
tion.

Things become a bit
confused when we start to
think about reproduction
being done by a machine.
For example, every time
you listen to a CD player, a
sophisticated mathemati-
cal algorithm checks for
possible errors and corrects every packet of digits the player
reads from the CD; other algorithms then convert the digits
into music. The error correction part is crucial for ensuring
the stable quality of reproduction of a record. So-called error
correction codes are developed and analyzed in the branch
of mathematics called coding theory. Error-correcting algo-
rithms are hardwired into millions (possibly billions, if you
take account of mobile phones) of microchips, and are now
one of the most ubiquitous uses of mathematics. But these
codes are too deeply immersed in the machine technology and
so too invisible in everyday human-to-human interactions to
fall within the scope of this chapter.

Ray Hill
aged 6

However, there are examples of codes specifically designed
for correcting human errors. Perhaps the most ubiquitous is
the ISBN, International Standard Book Number, found on
the cover or at least on the copyright page of every book. The
ten symbols7 of the ISBN bear in themselves a small mathe-
matical device which allows one to detect (single occurrences
of) the two most common errors people make in typing: sub-
stitution of one digit for another and transposition of two dig-
its. See the discussion of the ISBN in Ray Hill [237] or in
David Poole [240] and the discussion of the use of a similar
code in a Norway census [225].8 Alternatively, if you would
like to be a cryptanalyst, collect ISBN codes from every book
you have and try to figure out how they work. [?]

Do it! The
presence of an
extra symbol X
which occasion-
ally appears
in ISBN codes,
but only in
the rightmost
position, is a
particularly
strong hint.

So, if the example of Chinese Junk Origami has not con-
vinced you that “corrector” memes are mathematical objects
and procedures in disguise, then have a look at a photograph
of an unfinished Ancient Egypt tomb mural (Figure 11.4),
with the square grid of guidelines still visible. The transfer,
square by square, of the image from a sketch to the wall, is a
mathematical procedure. This is possibly the earliest exam-
ple of the use of mathematics in copying. I cannot imagine
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a better illustration of the principle that the role of math-
ematical memes in the meme complexes of human culture
is that mathematics (even if it remains invisible) ensures
high fidelity reproduction. Even more remarkable, it is more
copying-the-product in the sense of Blackmore than copying-
the-instructions.

The copying square by square reappeared thousands of
years later, in mathematical crystallography and in the the-
ory of Lie groups, and nowadays goes by the grand name of
action of a discrete subgroup of a Lie group on the set of trans-
lates of its Dirichlet region (or fundamental domain, which is
the same). In the copying-by-squares example, the discrete
subgroup is the set of all translations of the plane which pre-
serve the grid; the Lie group is the set of all translations of
the Euclidean plane); the Dirichlet regions are the squares of
the grid.

One of the more elementary examples of this set-up can be
found in Minkowski’s treatment of the Dirichlet Units The-
orem from algebraic number theory. It may be useful first
to put Minkowski’s work into a wider mathematical context
and then explain how it is related to copying by squares.
The so-called Minkowski Lemma is a classical mathemat-
ics competition problem, but also (in a slightly more general
n-dimensional version) appears, for example, as Lemma 1
in Section II.4.2 of the respected treatise on number theory
[255]. The fact that it bears its creator’s name is a reflec-
tion of its importance. The Minkowski Lemma is used in the
theory of integer solutions of certain classes of underdeter-
mined polynomial equations with integer coefficients. One of
the simplest examples is, say,

x2 − 3y2 = 6.

This particular equation has infinitely many solutions, and
the Dirichlet-Minkowski method allows one to find all of
them. (Try to find a couple of solutions. Can you describe a
rule which lists them all in a systematic way, without trying
every pair (x, y)?) The Minkowski Lemma, which I will soon
state, was used by Minkowski to justify that a certain method
of solving equations indeed gives all solutions.

It is also worth mentioning that the historic roots of Dio-
phantine equations—the umbrella name for the class of poly-
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nomial equations with integer coefficients —can be traced
back to Ancient Egypt and Babylon; another and possibly
independent origin of the concept was in Ancient India. It
was then and there that the remarkable discovery about the
triangle with sides 3, 4 and 5 (the famous Pythagorean tri-
angle, 32 + 42 = 52) was made: namely, that it had a right
angle. There are suggestions that a rope with 3 + 4 + 5 = 12
knots tied on it at equal measures (assuming that the rope is
a closed loop!) could be conveniently used for dividing fields
into rectangular plots.9

And here is the statement of the Minkowski Lemma:

Assume that a slip of colored paper of unknown shape
but with area smaller than 1 is placed on a sheet of
graph paper with squares of area 1. Then it is possible
to slide the colored slip without rotating it and in such
way that in its new position it does not cover any of the
nodes of the graph paper. [?]

Prove the
Minkowski
Lemma with-
out reading
further! As you will see in a second, the proof of the Minkowski

Lemma uses the Pigeon-Hole Principle (also known as the
Dirichlet Principle, see Section 4.1), with the important mod-
ification that it is applied not to numbers of elements of finite
sets, but to areas of geometric figures.

We start the proof of the Minkowski Lemma by observing
that, instead of moving the colored slip, we may as well try
to find a way of moving the grid of the graph paper (without
rotating it) in such a way that, in its final position, no node of
the grid is covered by the slip.

How will we find this movement of the grid? Let us pause
for a second and not touch the grid. Instead, cut the slip along
the grid lines and move each bit into the same square S, pre-
serving the relative position of the colored bit in its square.
Now all bits and pieces of the original colored slip are in the
same square; since their total area is less than 1, they can-
not cover the whole square. Now we can describe the desired
movement of the grid: slide one of the nodes of the grid into a
“free” point of the square S, keeping the grid lines parallel to
themselves.

As we see, this remarkable proof uses “copying by squares”
in its original form, going back in time all the way to Ancient
Egypt. It would be timely to return to the Corrector Meme
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Thesis: are any doubts left that copying by squares is mathe-
matics?

11.6 Some stumbling blocks

Jeff Burdgess
aged 3

To be on the cautious side, I have to warn the reader about
possible stumbling blocks. The first two are fairly obvious and
do not threaten my thesis in any serious way.

11.6.1 Natural language and music

I exclude natural human languages (and alphabets!) from the
scope of my thesis—they have to be treated as the ambient
medium of human culture.

Music appears to be extremely resilient in reproduction,
too; but a closer look at it shows that it is saturated by math-
ematical structures (we cannot even say “hidden” since the
link was very obvious to Pythagoras, more than two millen-
nia ago). See the excellent book Music and Mathematics [30]
for more detail on the intertwining of music and mathemat-
ics, or David Benson’s treatise [9].

However, other aspects of the concept of mathematical
memes require some attention.

11.6.2 Mathematics and natural sciences

One may reasonably ask the question of whether there are
memes which maintain fidelity merely through reproducibil-
ity of experiments, and not through mathematics. Some el-
ementary steps in culinary recipes, for example, like “bring
to boil”, are there simply because boiling is a very conve-
nient and easy to reproduce reference point. Cooking slowly
at 85◦C quite frequently produces much juicier and tastier
results, but the right conditions are much harder to control.
To demarcate mathematics from physics10 means to treat re-
producibility of human culture differently from the way we
use and study the stability and reproducibility of the laws of
the physical world. I accept that the line between physics and
mathematics is hard to draw; however I have no choice but
to refrain from further discussion if we are not to get stuck in
the classical philosophical conundrums of relations between
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(ideal) mathematical objects and the real (physical) world.11

Even in Dawkins’ Chinese Junk study, these philosophical
questions are already present: the folding of a piece of paper
could be viewed as an entirely physical process, and the re-
producibility of the properties of the center of the square as
an entirely physical phenomenon.12 On the other hand, the
words “square” and “center of the square” apparently refer
to ideal concepts, creations of the human mind. I hope that
the reader is prepared to accept that such stable and repro-
ducible entities as “the boiling point” and “the centre of the
square” have quite different mechanisms of reproducibility.

Our brief discussion, however, was not a waste of time;
indeed, it prompts us to formulate an important warning:
the memetics approach to mathematics does not eliminate
or resolve the classical philosophical problems of mathemat-
ics. We may only hope that memetics can perhaps usefully
reformulate some of the old conundrums.

11.6.3 Genotype and phenotype

Another difficulty which we have to address was already
present in the Chinese Junk, but became much more promi-
nent in another case study, of copying by squares (Section 11.5).
When a much bigger meme complex benefits from the error-
correcting properties of a particular mathematical meme,
these properties could be viewed as expressed in the pheno-
type. The ISBN error-correcting code has the self-correcting
“memotype” of being mathematically provable, which is very
similar to the self-correcting “memotype” of the Chinese Junk,
but the ISBN also has the “phenotype” of correcting book or-
ders. It is worth noting that mathematicians are concerned
more with the intrinsic properties of mathematical memes
rather than their expression in phenotype. I may anticipate
some very interesting technical discussions of the subtle dis-
tinction between “internal” and “external” error-correcting
facilities, but I am not prepared to go into any detail in this
book.

A much more interesting question is the difference be-
tween memes already recognized as part of mathematics and
memes which have not yet been recognized as such. Are high
fidelity memes reborn as objects of mathematics only when
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they are discovered by mathematicians and described in an
acceptable mathematical language? It is difficult to avoid the
impression that, in the discussion of the genotype/phenotype
distinction, we revisit the classical dispute between the Pla-
tonists and formalists on the nature of mathematics: are
mathematical objects discovered or created?

11.6.4 Algorithms of the brain

The concept of mathematical memes bears the seeds of yet
another complication: it is quite possible that reproducibil-
ity of certain basic mathematical concepts and algorithms is
determined more by biology than culture.

The reader certainly noticed that the “flipping” and “swoop-
ing” described by Pinker (Section 2.2) are essentially the
same as “folding”, which was used, in the previous sections,
as a basic mathematical concept to generate Euclidean ge-
ometry. Therefore “folding” provides an example of a mathe-
matical concept which is directly rooted in subconscious neu-
rophysiological mechanisms of the human mind. This makes
the analysis of the nature of “atomic” objects and concepts of
mathematics even more exiting.

11.6.5 Evolution of mathematics

The mathematical core of the theory
does not evolve: it emerges gradually
from the fog.

The evolution of math-
ematics is an interest-
ing topic, since, by their
very nature, mathemati-
cal memes have virtually
zero mutation rate. We
can talk only about evo-
lution of meme complexes
and about change in relative frequency of particular memes
in comparison with their cryptomorphic analogues (that is,
differently expressed memes with essentially the same math-
ematical content).

For example, there is no intrinsic mathematical reason
why Euclidean geometry was not developed in the language
of Origami; the traditional language of Euclidean geometry
and the language of Origami are cryptomorphic, that is, they
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are mathematically equivalent and only superficially differ-
ent. The Origami language for geometry stood no chance be-
cause the ancient Greeks had no paper. Evolution and the
resulting shape of the language of a mathematical theory is
influenced by external social and cultural factors. At the risk
of sounding like a Platonist, I tend to think that a mathemati-
cal theory should be understood as the totality of all its poten-
tial cryptomorphic reformulations, including those in current
use, as well as those used in the past and now forgotten, or
even those which have not yet been invented. Therefore the
mathematical core of the theory does not evolve: it emerges
gradually from the fog.

Further discussion of these exciting topics, however, goes
well beyond the scope of the present book.

One obvious conclusion, however, can be recorded. When
you compare Origami geometry (pretty obscure) with tradi-
tional Euclidean geometry (quite glorious) you realize that
memetics should treat value judgements (so prominent and
prevalent in mathematics) as one of many factors of social
selection; but memes, as such, bear no intrinsic value.

Richard Booth
aged15 11.7 Mathematics as a proselytizing cult

Many features of mathematics as a cultural (and even so-
cial) system can be explained by the nature of mathematical
memes. I would compare mathematics with beekeeping: the
stereotypical beekeeper is a very mild-mannered gentleman,
and this is predetermined by biological, not social, factors:
bees would not tolerate, for example, a jumpy hyperactive
boy messing around their beehive—as I know from my own
childhood encounters with my uncle’s bees.

Owl (Otus
Persapiens)

as a fledging chick
Photographer: Tom

Maack

In a similar way, mathematics shapes mathematicians—
we are meme-keepers of mathematical memes, and they be-
have rather differently from other memes of human culture.
Since my book is about mathematical practice and not math-
ematicians, I will mention only two specific traits, relevant to
the subject of cultural transmission.

First of all, one should not underestimate the proselytizing
zeal of mathematicians (which should not be found surpris-
ing since mathematicians are selected by their urge to dis-
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seminate mathematical memes). But this is a separate story
which I may write about elsewhere.

Another trait which I cannot leave without a brief discus-
sion is the mathematicians’ obsession with standards of ty-
pography. Many mathematicians are paranoid about keeping
tight control over their texts; one has to accept that they are
driven by the urge to minimize the errors of transmission.

Fig. 11.5. Bernard Venet, ”A homomorphism of exact lower sequences”. 2000, wall
painting. Centre d’Art Contemporain Georges Pompidou. Cajac, France. Repro-
duced with permission, c© Bernard Venet. The image file is kindly provided by
the American Mathematical Society.

Mathematics set the aesthetic standards of printed text at
a level unheard of before. Is it really surprising that TEX, the
best, most powerful and flexible typesetting system [50], was
designed by a mathematician? The mathematician reader
will immediately recognize that the present book is set with
LATEX, a version of TEX and the de-facto standard of typeset-
ting in mathematics. A French artist Bernard Venet has even
used formulae from mathematical books typeset with Donald
Knuth’s TEX system as objects of art, projecting them onto
walls and incorporating them into murals, Figure 11.5. Two
quotations from Hofmann [46] who drew the attention of the
mathematical community to Venet’s art:
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Donald Knuth first empowered us—and by now forced
us—to typeset our own texts and create the typogra-
phy of our formulae with our own hands. While it is
true that we are doing this with our fingers on the
keyboards rather than by assembling lead cast letters,
Knuth has shaped his programming language TEX so
that it faithfully emulates the original craft.

Having created a fine typographical product thus adds
extra satisfaction to the pleasure of having found a
mathematically aesthetic result, having proved it, and
having presented it in a stylistically elegant fashion.

A reviewer of this book reminded me that one has to re-
member the period before Knuth. The ugliest books since
the invention of printing were those typewritten mathemat-
ics books of the 1970s with handwritten symbols. Mathemati-
cians gladly embraced photocopying of badly typed manuscripts
because the previous technology, manual typesetting of math-
ematical formulae, was expensive, slow and exceptionally
prone to errors. It is enough to quote one of the many dia-
tribes from Littlewood’s A Mathematician’s Miscellany [55,
p. 38]:

A minute I wrote (about 1917) for the Ballistic Office
ended with the sentence: ‘Thus σ should be made as
small as possible’. This did not appear in the printed
minute. But P. J. Grigg said, ‘what is that?’ A speck in
a blank space at the end proved to be the tiniest σ I have
ever seen (the printers must have scoured London for
it).

Should we be surprised then that, despite the tiny print
runs, mathematical publishing remains a profitable line of
business because the publishers benefit from mathemati-
cians’ masochistic self-exploitation—driven by our memes,
we are prepared to take on ourselves the toil and cost of type-
setting our books and papers.

11.8 Fancy being Euclid?

This section is more technical and can be skipped.
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What amendments are needed for turning Alperin’s axioms for Origami
Geometry (Section 11.4) into a self-contained Origami axiomatics of Eu-
clidean geometry?
• We need a formal description of properties of folds which would allow

us to distinguish between two “opposite” folds.
• We must postulate some combination of two opposite folds as, in ef-

fect, a reflection.
• Reflections preserve all the properties of our geometry, they are auto-

morphisms.
• Fold lines and their points of intersection satisfy the axioms of an

affine plane.
• We need some kind of “betweenness” axiom.
• Finally, we have to formalize the fact that we have plenty of folds

(Alperin’s Axioms 3–5 do exactly that).
The resulting axiomatic system will have considerable redundancy; I

believe that by excluding or modifying the axioms one by one and analyz-
ing the resulting theories it is possible to make a compact and beautiful
axiom system.

I offer this problem to the reader as an exercise. Actually, it is a good
team project in a course on foundations of geometry—if such courses, once
a compulsory part of training of mathematics teachers (at least in Ger-
many and Russia) are still taught somewhere in the world.

Here is my attempt at a possible set of axioms for Euclidean geometry
in terms of Origami.

An Origami geometry is a set E of elements (called points) and a family
F of maps from E to E (called folds) which satisfy the following axioms:

Origamy I. Axioms for folds:

I(i) Folds are idempotent maps, f · f = f .
I(ii) For every fold f there exists a unique opposite fold −f such that

the set-theoretic union of functions

σf = f |−f(E) ∪ − f |f(E)

is an involutory (that is, σ2
f = Id, the identity transformation)

one-to-one map from E onto E; we call it the reflection or the flip
associated with the fold f .

(Flips turn the sheet of paper over, in such way that the correspond-
ing fold line remains at the precisely the same position on the desk.)
I(iii) If f is a fold, then the set of fixed points of σf is called the fold

line of f and denoted line(f). We demand that the unordered pair
of folds {f,−f} is uniquely determined by the fold line line(f).

I(iv) Flips send fold lines to fold lines and folds to folds: if σf is a flip
and g is a fold then σf · g · σf is a fold, whose line is σf (line(g).
(This axiom says that flips are automorphisms of our geometry.
In a more elementary language, this means that a fold sends an-
other fold line to a fold line or a union of two half-lines.)

As you can see, this first group of axioms is exceptionally dull—as fre-
quently happens when you formalize self-evident properties of intuitively
clear mathematical objects.
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Origami II. The second group if axioms is essentially Alperin’s, slightly
strengthened by inserting the uniqueness requirements for foldings.

II(i) For any two distinct points there is a unique fold line containing
these points.

II(ii) Two fold lines intersect in at most one point.
II(iii) For any two distinct points A and B there is a unique fold

which sends A to B.
II(iv) If l and n are two fold lines then there is a flip which sends l to

m.
II(v) For this axiom we need to introduce the concept “being on the

same side of the fold line l”. Let f and −f be two folds associated
with the fold line l. We say that points A and B lie of the same
side of l if either f(A) = A and f(B) = B or −f(A) = A and
−f(B) = B; otherwise we say that A and B lie on the opposite
sides of l.
With this definition at our hands, we demand that, given a fold
line l and points A, B outside l, if there is a fold in a fold line
through B which brings A onto the other side of l from B, then
there is a fold line through B, such that one of its two folds maps
A onto l.

Origami III. Parallel Lines. We say that fold lines l and m are parallel if
they either coincide or have no points in common. We demand that
“being parallel” is an equivalence relation.
(Without this axiom, we have no way to distinguish between Eu-
clidean and hyperbolic geometries, the latter also having an Origami
version. Still, it may make sense to uniformly develop the common
part of Euclidean and hyperbolic geometries by omitting the Parallel
Lines Axiom.)

Origami IV. Betweenness. We say that a point C lies between the points
A and B if every fold which does not move points A and B also does
not move C. The segment [A, B] is the set of points which lie between
A and B.
We demand that if points A and B lie on the opposite sides of a fold
line l then the segment [A, B] through A and B intersects l.

Notice that Axioms II(i), II(ii) and III mean that points and fold lines
form an affine plane. To tie everything together in one rigid structure,
I invoke the least intuitive and the most powerful of all the axioms on
my list, Bachmann’s Axiom. It is an affine version of the key axiom in
Bachmann’s axiomatization of Euclidean geometry in terms of symme-
tries [245]. It would be nice to replace Bachmann’s Axiom with something
more elementary and self-evident. On the other hand, folds are mappings;
why should we shy away from the abstract framework of sets and map-
pings?

Origami V. Bachmann’s Axiom. Let σl, σm, σn be the flips corresponding
to fold lines l, m, n. The identity

(σlσmσn)2 = Id

holds if and only if all three lines l, m, n have a point in common or
are parallel to each other.
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Origami VI. Non-degeneracy. There are at least two distinct points.
To start an interesting geometry, we usually need four points in “gen-

eral position”, that is, any three of them not belonging to the same line.
But, given just two distinct points, we can use folds to breed more.) [?]

How do you
get points not
collinear with
the first two?It is very likely that this axiom system is highly redundant and can be

replaced by a much more compact group of axioms. For example, I believe
that Bachmann’s Axiom can be replaced by the following Unstretchability
Axiom.In its formulation, a motion is a composition of several flips; a half-
line is the set of points on a line fixed by a fold which moves some points
on the line non-trivially.
Origami V◦. Paper is unstretchable. Consider an angle, a figure consist-

ing of a point A and two distinct half-lines l and k emanating from A.
A motion which fixes A and maps l into l and k into k is the identity
map.

I have not checked all the details but I have reason to believe that
these axioms (perhaps with some technical adjustments) suffice to prove
that points and lines form an affine plane over some ordered commuta-
tive field K where you can extract square roots of positive elements, and
that the flips are orthogonal symmetries with respect to some anisotropic
symmetric bilinear form on the underlying vector space. As I have already
mentioned, I leave this problem as an exercise for the reader.

Of course, it is possible to treat the theory in an entirely synthetic way
(that is, without introducing numbers and coordinates). The interested
reader may wish to develop axiomatic Origami geometry up to the theo-
rem: the three altitudes of the triangle intersect in a common point.13.

For obvious reasons, perpendiculars (hence altitudes in triangles) are
likely to play a larger role in Origami geometry than in the traditional
treatment of Euclidean geometry. Vladimir Arnold once mentioned, in
passing [84], that the three-altitudes theorem follows from the Jacobi
identity in Lie algebra. It is likely that Arnold meant the cross product
algebra of vectors in three dimensional Euclidean space, or, in algebraic
terms, the Lie algebra of the orthogonal group SO3(R).14 In vector (cross
product) notation the Jacobi identity looks like this:

(~a×~b)× ~c + (~b× ~c)× ~a + (~c× ~a)×~b = ~0.

Moreover, one can see that the three altitudes theorem is more or less
equivalent to the Jacobi identity for the cross product.15 Therefore the
three altitudes theorem is truly fundamental; it makes a sensible focus
point for the theory.

What is the basis of my confidence that a purely axiomatic develop-
ment of Origami geometry is feasible? A more abstract group-theoretic
approach to Euclidean geometry, centered on symmetry rather than on
folds (which is, essentially, the same) is well known: the relevant theory
was developed by Bachmann [245]. I state the key result of Bachmann’s
book in the form due to Schröder [332].

Assume that a group G is generated by involutions (that is, ele-
ments of order 2). Assume further that the set I of all involutions
of a group G possesses the structure of a projective plane in such
a way that three involutions i, j and k are collinear if and only
if their product ijk is an involution. Then G is isomorphic to the
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special orthogonal group SO3(K, f) for some field K of character-
istic 6= 2 and a nonisotropic quadratic form f on K3.

I once unknowingly re-discovered Bachmann’s axiomatization of Eu-
clidean geometry, working from scratch: I needed an abstract description
of the group of rotations of three-dimensional Euclidean space in terms of
half-turns (rotations through 180◦ about an axis). The Euclidean rotation
group keeps appearing as a phantom “minimal” configuration in my work
in model-theoretic algebra. Some details can be found in [257, Chapter 8].

Of course, we know that a half turn in three dimensions is just an
axial symmetry in a plane containing the axis. Moreover, this axial sym-
metry has, in this context, a most natural mechanical interpretation, as
turning the plane over, as a sheet of paper—which is the combination of
two opposite foldings with the same fold line.

Therefore the axiomatics of Euclidean geometry via Origami should
be feasible, and this is why it can be safely assigned to the playground
of fledgling young mathematicians. But it really helps to know a bit of
group theory and work at a higher level of abstraction—even if the final
streamlined version of the axiom system and the corresponding theory is
formulated in very, very elementary terms: just paper and foldings.

11.9 And finally. . .

I include diagrammatic instructions for making a Chinese
Junk, reproduced here with the kind permission from David
Petty (Figures 11.6, 11.7). Try it for yourself, if you wish. For
more on Origami, see [358, 359]. Good luck!

Notes
1THE ORIGINS OF THE TERM “MEMETICS”. I wrote in the earlier versions of the

text that the word “memetics” was coined by Richard Dawkins, but Jonathan Vos
Post corrected me: “Meme was not coined by Dawkins. When I took Psycholinguis-
tics at Caltech in 1972 or 1973, I was already able to quote the word MEMEME
from existing specialized literature.

2My own interest in memetics and in the evolution of mathematical objects is
motivated by my work on genetic algorithms [253, 254]. The work done by my
co-authors and myself was a case study, and a very peculiar one: we traced the
co-evolution of a population of (non-deterministic) evolutionary algorithms for a
particular mathematical problem to a deterministic mathematical algorithm.

3GOOGLE searches for “meme” and “mathematics” lead to very disappointing
results, mostly texts which use the word “meme” in a derogatory fashion, with the
meaning “a silly belief spread by contagion”. Keith Devlin in his MAA online col-
umn, http://www.maa.org/features/invisible.html, gives, as an example of a “fully
developed and well established mathematical meme,” the jingle all mathemati-
cians have no sense of humor.

4David Lister, an authority on history of Origami, claims that Chinese Junk
was known in Europe since early 19th century: in 1806 a clear drawing of this
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paper folding was made in Holland. See Figures 11.6 and 11.7 for diagrammatic
instructions for making a Chinese Junk.

5AXIOMS FOR ORIGAMI. Discussion of axioms for Origami can be found in
Hartshorne [235, Exercises 28.12–28.15] and Holme [238, Section 16.8]. Thomas
Hull kindly informed me that the development of axioms for Origami geometry
has a long history which can be traced back to a paper of 1936 by Margherita
Piazzolla Beloch [198]. In 1992, a comprehensive list of axioms for Origami was
given by Humiaki Huzita [218].

6A detailed discussion of “betweennes”, and its history, with extensive biblio-
graphic references, can be found in Coxeter [233, Section 12.2].

7The old version of ISBN used the alphabet consisting of digits 0, 1, . . . , 9 and
extra symbol X; each ISBN contained 10 symbols. New version has 13 digits.

8In [240], pp. 52 and 55, you will also find description of two other ubiquitous
error correcting codes: the Universal Product Code associated with bar codes on
merchandise and Codabar system for credit card numbers.

9ROPES WITH KNOTS are mentioned in Stillwell [72, p. 2]; also, see discussion
of the cuneiform text Plimpton 322 in [77] and [62, 63]. Some authors, however,
fiercely dispute the actual use of the rope with knots.

10MATHEMATICS AND PHYSICS. Many prominent mathematicians will view
yet another attempt to separate mathematics from physics with utter contempt.
Probably the most extreme and colorful expression of this position belongs to
Vladimir Arnold [84]:

Mathematics is part of Physics.
Physics is an experimental discipline, one of the natural sciences.
Mathematics is the part of Physics where experiments are cheap.

11MATHEMATICS AND THE “REAL WORLD”. The philosophical conundrums of
relations between (ideal) mathematical objects and the real (physical) world be-
come even more mind-boggling when you observe that mathematical logic studies
something real: reason. This comment is due to Boris Zilber.

12ORIGAMI AND TOPOLOGY. The (mathematical!) study of topological properties
of origami by Eric Demaine et al. [273, 274] sheds some light on relations between
the physical environment and mathematical abstraction of Origami. It addresses
in Origami problems the subtle

distinction between specifying the geometry of the final folded state (a sin-
gle folding, e.g. an origami crane) and specifying a continuous folding mo-
tion from the unfolded sheet to the final folded state (an entire animation
of foldings),

and proves that every “good” folded state can be actually reached.
13THE THREE ALTITUDES THEOREM is not part of Euclid’s Elements. A drawing

of three altitudes is found in one of the works by Archimedes, Book of Lemmas [1];
see Hartshorne [235, p. 52] for a discussion. It is likely that the three altitudes
theorem can be proven by an appropriate adaptation of Hjelmslev’s “calculus of
reflections” (see [235, Theorem 43.15]; originating in Hjelmslev’s paper of 1907
[295], the calculus of reflections was developed into an impressive theory by Bach-
mann [245])

14CROSS PRODUCT. The cross product algebra of vectors in three dimensions is
the Lie algebra of the Lie group SO3(R), a fact of fundamental importance, say, for
mechanics. It still surprises me that this is not found in standard undergraduate
textbooks.

15HOVIK KHUDAVERDYAN wrote to me about the three altitudes theorem:
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It is many years that I know the expression which belongs to Arnold and
which sound something like that:

Altitudes of a triangle intersect in one point because of the Jacobi
identity,

or maybe even more aggressive:
The geometrical meaning of Jacobi identity is contained in the
fact that altitudes of a triangle intersect in one point.

Today, while preparing exercises for students I suddenly understood a
meaning of this sentence. Here it is.
Let ABC be a triangle. Denote by ~a vector BC, by ~b vector CA and by ~c
vector AB:

~a +~b + ~c = 0.

Consider vectors ~N~a = [~a, [~b,~c]], ~N~b = [~b, [~c,~a]] and ~N~c = [~c, [~a,~b]]. Vector
~N~a applied at the point A of the triangle ABC belongs to the plane of
triangle, it is perpendicular to the side BC of this triangle. Hence the
altitude (height) hA of the triangle which goes via the vertex A is the line
hA : A + t ~N~a. The same is for vectors ~N~b,

~N~c: Altitude (height) hB is
a line which goes via the vertex B along the vector ~Nb and altitude hC

(height) is a line which goes via the vertex C along the vector ~Nc.
Due to Jacobi identity sum of vectors ~N~a, ~N~b,

~N~c is equal to zero:

~N~a + ~N~b + ~N~c = [~a, [~b,~c]] + [~b, [~c,~a]] + [~a, [~b,~c]] = 0 (1)

To see that the altitudes

hA : A + t ~N~a, hB : B + t ~N~b and hC : C + t ~N~c

intersect in one point it is enough to show that the sum of torques (angu-
lar momenta) of vectors ~N~a at the line hA, ~N~b at the line hB and ~N~c at the
line hC vanishes with respect to at least one point M :

[MA, ~N~a] + [MB, ~N~b] + [MC, ~N~c] = 0, (2)

because sum of these vectors is equal to zero.
Indeed note that if relation (2) obeys for any given point M then it obeys
for an arbitrary point M ′ because of relation (1). Suppose lines lA, lB in-
tersect at the point O. Take a point O instead a point M in the relation (2).
Then [OA, ~N~a] = [OB, ~N~b] = 0. Hence [OC, ~N~c] = 0, i.e. point O belongs
to the line lC too.
Hence it suffices to show that relation (2) is satisfied. We again will use
the Jacobi identity.
Take an arbitrary point M . Denote MA = ~x then for the left hand side of
the equation (2) we have

[MA, ~N~a] + [MB, ~N~b] + [MC, ~N~c] = [~x, ~N~a] + [~x + ~c, ~N~b] + [~x + ~c + ~a, ~N~c]

= [~c, ~N~b] + [~c + ~a, ~N~c]

because ~c = AB, −~b = AC and [~x, ~N~a + ~N~b + ~N~c] = 0 (due to (1)).
Now recall that

~NB = [~b, [~c,~a]] = [~b, [~c,−~b− ~c]] = [~b, [~b,~c]]

~NC = [~c, [~a,~b]] = [~c, [−~b− ~c,~b]] = [~c, [~b,~c]]

MATHEMATICS UNDER THE MICROSCOPE VER. 0.919 5-SEP-2007/12:39 c© ALEXANDRE V. BOROVIK



NOTES 275

since ~a +~b + ~c = 0. Hence (and here we again use Jacobi identity!)

[~c, ~NB ]− [~b, ~NC ] = [~c, [~b, [~b,~c]]]− [~b, [~c, [~b,~c]]]

=
[[

~b,~c
]
,
[
~b,~c

]]

= 0.

This prove relation (2). Hence the altitudes of a triangle intersect in one
point!
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12

The Vivisection of the Cheshire Cat

Why has not man a microscopic eye?
For this plain reason, man is not a fly

Say what the use, were finer optics giv’n,
T’ inspect a mite, not comprehend the heav’n?

Alexander Pope, Essay on Man

12.1 A few words on philosophy

I wish to conclude my book by explaining my position with
respect to the principal issues of the philosophy of mathe-
matics. In brief, my standpoint can be formulated in three
bullet points:
• First and most of all, I do what most practicing mathe-

maticians do—I try my best to avoid awkward questions.
This is why I make a distinction between mathematics and
mathematical practice; I do that in the hope that this sim-
ple verbal trick allows me to escape uncomfortable discus-
sions of the philosophical problems of mathematics at least
temporarily.

• Secondly, whenever possible, I try to supplant philosophi-
cal questions with metamathematical problems. Of course,
this is what philosophers have done for the past century.
My position differs on two counts: I look at much more “lo-
cal” problems, and, in search of answers, I go beyond set
theory and mathematical logic into more “concrete” areas
of mathematics.

• Finally, I try to further narrow the field of philosophical
problems of mathematics by moving some of them into the
rapidly expanding realm of cognitive science.
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In this chapter, you will find examples of all three types of
arguments. The second and third are of special interest to me;
I would like to see how much is left of philosophy in mathe-
matics after a systematic separation from metamathematics
and cognitive science.

Still, I have to address some basic questions arising from
my understanding of mathematics as the “study of mental
objects with reproducible properties”. (I am grateful to David
Corfield who brought my attention to potential complica-
tions.) The reader has probably noticed that I also freely talk
about “reproduction of mental objects”.

It is natural to ask what is being reproduced, object or
property. Is a mathematical object nothing but its properties?

I have to admit that I, like many (if not most) mathemati-
cians, do not care about the precision of metalanguage used
in discussing mathematics—because our primary language
is already sufficiently precise. Mathematicians working in
the same field frequently talk to each other about their ex-
tremely technical work using very loose language—yet un-
derstand each other perfectly. This is possible only because
their loose talk refers to a shared formal framework. On the
other hand, few things irritate a mathematician more than a
seminar talk on an unfamiliar subject if the speaker avoids
giving explicit definitions or statements of results, indulging
instead in an “ideological” discussion.

The previous chapters should already have made it clear
that, for me, an object is an encapsulated sum of its prop-
erties and functions; when using the object, we have to de-
encapsulate and re-encapsulate them. This is done routinely,
dozens of times in a work session, and very frequently at an
almost subconscious level; no wonder most of my colleagues
would ignore the distinction between an object and the collec-
tion of its properties as meaningless from the point of view of
a working mathematician.

One of the more remarkable things about the mental ob-
jects of mathematics is that their high reliability is possible
only because they can be de-assembled and assembled back
in seconds, like a Kalashnikov automatic rifle, and retain
their full functionality.

I came to this Kalashnikov simile when I was a student,
and soon discovered that it was useful as a basis for aes-
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thetic judgement on films, poetry, etc. A film or a poem can be
treated as a work of art only if it survives the analysis by de-
assembly and re-assembly. (And it is usually a sign of a mas-
terpiece if you have no idea whatsoever how to de-assemble
it.) Conceptual art, as a rule, fares badly in the process.

Of course, survival after a re-assembly is a proof that the
work of art has a meaning that is larger than the sum of
its parts. In mathematics, some objects have a much greater
meaning, whilst others are no more than convenient and dis-
posable shorthands for the untidy sum of parts. New and
larger meaning appears when we discover that the encap-
sulation leads to a wider range of interactions with other en-
capsulated objects. As a rule, an interaction between two cap-
sules requires, initially, de-encapsulating them and running
the interaction at a lower level. But very soon a higher level
interaction can be encapsulated on its own, which allows us
to forget about the lower level interactions. We resort to de-
assembly when we lose our confidence that our higher level
work is correct.

This explains an important difference between mathemat-
ics and many other human activities: in order to secure a cer-
tain level of mathematical skills, the learner has to learn the
next, higher level. Indeed, mathematical objects, concepts,
procedures are interiorized in good working condition only
if they can be assembled into a higher level mathematical
constructs. Ability to solve routine, rote learned problems at
certain level L is not a proof that one understands mathe-
matics at level L; but ability to apply L level mathematics
within routine problems at the next level L+1 is a proof that
one has mastered level L. To drive a car, one does not have
to be trained as a Formula 1 racer; but to teach mathemat-
ics at a high school level, a teacher has to have a knowledge
of university level mathematics. The same principle applies
throughout the entire range of application of mathematics.
Investment banks hire people with a PhD in mathematics
or physics for jobs which require just a good knowledge of
university level mathematics and statistics. This also means
that the work of a mathematics teacher should be assessed
not by the exam results of his students, but by their success
at the next level of education. In terms of English education
system, the success of a GCSE level mathematics teacher
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should be measured by the number of his/her students who
take mathematics at A level, and by their performance there.
Similarly, the best measure of a work of an A level teacher is
the number of his/her students who chose to pursue a mathe-
matically intensive degree at an university, and by their per-
formance at the university.

In everyday mathematical practice, the chain of encapsu-
lations is so long and is done so routinely, that, for a mathe-
matician, the question about the difference between an object
and the sum of its properties and functions is more or less
vacuous.

The second natural question is about the identity criteria
for mental objects. Is my “2” the same as your “2”?

My answer is that identity, equality, equivalence are math-
ematical, not metaphysical, concepts. Objects of mathematics
do not exist on their own, therefore the answer depends on
the conceptual framework (and the question is meaningless
outside of the shared conceptual framework).

I once taught to my students Peano arithmetic (as a part of
a proof of Gödel’s Incompleteness Theorem) and greatly en-
joyed explaining to them that s(s(0)) (the result of two consec-
utive applications of the successor symbol s to the symbol 0) is
not number 2; it is not a number at all and should be treated
as a numeral, moreover, as a specific kind of numerals, like
the ones for counting sheep (see page 95). This is why sheep
numerals appeared in this book: I actually used them as an
example in my class. There are instances when we have to
carefully treat isomorphic (or equivalent, or similar, or con-
gruent) objects as not necessarily identical. But under dif-
ferent circumstances, we may flick the isomorphism/identity
switch with the rapidity comparable only with the “remark-
able rapidity of the motion of the wing of the hummingbird”;
this happens, for example, almost every time we use the lan-
guage of categories.

My knowledge of the philosophy of mathematics is lim-
ited; in what I read, one of the most disturbing findings
is that philosophers tend to think mostly about monumen-
tal, seminal conceptual transformations, like, for example,
the emergence of the concept of isomorphism. In the his-
tory of mathematics, some of these transformations took cen-
turies to develop. But once established, they were eventually
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compressed, in everyday mathematical work, into instanta-
neous automatic operations, frequently performed at a semi-
conscious level. I have never seen a discussion of whether this
truly dramatic compression changes the logical and philo-
sophical status of the transformation.

For example, the axiomatic method, first used by Euclid in
his Elements, for centuries remained confined to Euclidean
geometry and was seen as something exceptional, axioms
of geometry being entities of absolute value in themselves.
Nowadays, the axiomatic method is a routine tool. Indeed, to
keep your work tidy, you make the list of assumptions, call
them axioms and try to stick to them in all your deductions
and calculations; when you have to consider the same prob-
lem in a different context, you have to check that the axioms
remain valid; if so, you can automatically apply all your pre-
vious results. (This is the reason why axiomatization is in-
cluded in the list of methods of reproduction.) Nowadays, ax-
iomatic systems are cheap and disposable; more of them die
in a waste basket than find their way into final versions of
published texts.

We cannot understand how math-
ematics works unless we have a
close look at its disposable elements,
ephemera, mundane and minute ac-
tivities.

I argue that we cannot
understand how mathe-
matics works unless we
have a close look at its
disposable elements, ephemera,
mundane and minute ac-
tivities. In doing so, it
would be interesting to
trace the difference be-
tween the atomic, unsim-
plifiable objects of mathematics and more complex con-
structs, which, at first glance, also behave as elementary par-
ticles, but contain, in a compressed and encapsulated form,
whole mathematical universes.

12.2 The little green men from Mars

It depends upon what the meaning of the word “is” is.
Bill Clinton
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I love the dangerous imprecision of the Davis-Hersh defi-
nition of mathematics as a study of mental objects with re-
producible properties: it does not specify who is carrying out
the study. As an apocryphal saying (allegedly taken from an
undergraduate student’s history essay) goes,

all history is bias because humans are observed by
other humans and not by independent observers of
other species.

Therefore the old chestnut,

would mathematics be different if it was created by lit-
tle green men from Mars?

is made redundant by the Davis-Hersh definition; the real
question is

what would the study of human mental objects with
reproducible properties look like if it were carried out
by little green men from Mars?

Jokes aside, the Davis-Hersh definition allows us to take a
detached, calm look at mathematics. For want of little green
men, a mathematical model is probably the most detached
way of looking at the object of study. This raises the tanta-
lizing question about the possibility of the development of
mathematical models of mathematical cognition in humans. I
would like to believe that such models will soon become possi-
ble. On several occasions in this book we have seen that con-
cepts and constructions of computer science provide useful
metaphors for understanding mathematical thinking. Why
not pursue this line further and turn computational cogni-
tive science, an emerging and lively discipline, towards un-
derstanding of mathematical cognition?

Indeed, metamathematics, the mathematical study of the
structure and properties of mathematical theories, is a well
established area of mathematical research. The emergence of
cognitive metamathematics would be a natural next step; it
would change the landscape of the philosophy of mathemat-
ics. For me, it would make the philosophy of mathematics real
fun. I am prepared to wait.

Meanwhile, I wish to paraphrase President Clinton and ig-
nore the internal contradictions and difficulties which might
exist in the word “exist” as applied to mathematical objects.
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But, since my book touches on issues of mathematical edu-
cation, I feel that I also have to demarcate the boundary be-
tween my approach to the issues of mathematical practice
and the methodology of theoreticians of mathematical educa-
tion.

12.3 Better Than Life

It is a mistake to identify reality with the external world only.
Nothing is more real than a hallucination.

Leslie A. White [191, p. 306]

I like Anna Sfard’s metaphor of mathematics as a virtual
reality game: you don [?] a helmet with visors, a glove with

Which verb
is given by
Shorter Oxford
Dictionary as
opposite to “to
don”?

motor sensors and suddenly see a world where you can move
objects [107]; the movements of your hand (which appear
to a real life observer as erratic spasms or meaningless fid-
geting) are, in your virtual world, purposeful actions. Anna
Sfard calls the process of the “virtual reality” objectivization
of mathematical activities reification, see its discussion in
Section 6.1.

I have to mention, as a brief side remark, that we have
to remember that, in the expression “virtual reality” the key
word is “reality”. A virtual reality is interesting or useful
mostly because it represents a real world (or, as frequently
happens in computer games, some enhanced and twisted ver-
sion of a real world). In one of the schools in my neighborhood,
teachers turned a blind eye to schoolchildren who installed on
the school’s computer network a multiplayer shooting game
(in return, the kids administered the network, and with reas-
suring competence). The teachers would probably have been
less complacent if they had known that their students spent
long hours importing into the game the detailed layout of the
school building—for use as the game space.

Mathematics is an interactive multiplayer game. Its vir-
tual reality is constantly affected by your actions and by the
actions of other players.

Why is it one single game for the entire world and thou-
sands, if not millions, of players?

What makes the game stable?
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Why does not it crash?
What is the nature of the shared game space for all play-

ers?
To anyone who wishes to discuss the psychology of virtual

reality games, I strongly recommend that they should start
by watching the cult British TV sci-fi series Red Dwarf and
by reading the linked books by the author of the script, Grant
Naylor (the title of this section is borrowed from [357]—one
of the best books in the series). In one episode the heroes
wake up from what they perceived was their life, but was in
fact, total immersion in a virtual reality game—only to be
asked, patronisingly, by an attendant of the games parlour:
“So, you say that you have never even made it to the Planet of
Nymphomaniacs?”. I think that almost every working math-
ematician had such moments of acute embarrassment in con-
versations with his colleagues who were aware of his missed
opportunities in his virtual reality of mathematics.

Developing the “virtual reality” metaphor, we come to the
conclusion that mathematics can be compared to Massively-
Multiplayer Online Role-Playing Games (MMORPG), a grow-
ing phenomenon of modern culture, and—which is perhaps
more surprising—of modern economy. (See the book by Ed-
ward Castronova [200] who was one of the first to study vir-
tual worlds and their economies.)

A question to all philosophers of mathematics: what is the
nature of intrinsic and unintended laws of MMORPGs? Why
do virtual world economies of MMORPGs obey the same laws
as the real world economies? In particular, why do many vir-
tual worlds suffer from inflation?1

My fellow mathematicians, have you
ever had a feeling that your magic
sword got blunted? Or even stolen?

Virtual worlds of MMORPGs
are an exciting and in-
creasingly important topic;
however, the scope of the
book does not allow me to
venture into their macroe-
conomic analysis. To keep
the discussion on a lighter
note, I quote from a BBC online article about real-world crim-
inals targeting the virtual economies:

The police are really good at understanding someone
stole my credit card and ran up a lot of money. It’s a lot

MATHEMATICS UNDER THE MICROSCOPE VER. 0.919 5-SEP-2007/12:39 c© ALEXANDRE V. BOROVIK



12.4 The vivisection of the Cheshire Cat 287

harder to get them to buy into someone stole my magic
sword.

My fellow mathematicians, have you ever had a feeling
that your magic sword got blunted? Or even stolen?

Mathematical educators and theorists of mathematical ed-
ucation can ignore questions about the nature of the virtual
reality of mathematics. In our compartmentalized world, the
maintenance of mathematics as a functioning system is not
their responsibility. But I am at least aware of these thorny
issues; I simply try to touch on them in my book with caution.

12.4 The vivisection of the Cheshire Cat

In this book, I ignored global vistas, and, instead, looked at
mathematics at the level of the individual’s cognition, at the
level of the individual’s brain. My approach was strictly local;
I looked at one proof or one example at a time, or even at one
elementary step in a proof at a time. I understand, of course,
that mathematical practice can be fruitfully studied from the
“global” point of view (an example of such an approach can
be found in Corfield [15]), but I have not attempted anything
like that in this book.

As the reader has had a chance to see, the principle thesis
of my book is that

we cannot understand the nature of mathematics with-
out understanding first the interaction between learned
and/or invented mathematical processes and underly-
ing powerful built-in, inborn algorithms of our brain.

Philosophers of mathematics love to
concentrate on its most abstract fea-
tures, elusive like the grin on the
Cheshire Cat. I propose that we vivi-
sect the Cat.

Mathematics is already
quite an abstract disci-
pline. Not satisfied with
that, philosophers of math-
ematics love to concen-
trate on its most gen-
eral and therefore ab-
stract features, elusive like
the grin on the Cheshire
Cat.2 My approach is dif-
ferent: I propose that we vivisect the Cat. I do not claim, how-
ever, that the vivisection will instantly resolve the mystery of
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the famous grin; I believe only that it will usefully reformu-
late the problem.

Fig. 12.1. Cheshire Cat, drawing by John Tenniel for Alice in the Wonderland.
Source: Wikipedia Commons. Public domain.

The main reason why I am attracted to my thesis is that it
invites a serious investigation by both mathematicians and
neuroscientists.

• It appears that some modules of our cognitive system be-
have as if they were implementations of mathematical al-
gorithms. For example, I have suggested, in Section 4.3,
that order appears to be in-built into the mechanisms for
processing of information coming from every our sensory
system—from smell to vision, and our brains easily build
“conversion scales”, monotone maps from one ordered sys-
tem into another.
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In a foreseeable future, will it become possible to detect
the underlying neural activity by direct measurements—
say, by PET (proton emission tomography) scans, or by fu-
ture more sophisticated techniques?

• Will it be possible to detect experimentally a response in
the innate structures of the brain (say, in the visual pro-
cessing centers) to conscious mathematical thinking of the
brain’s owner?

• Will it be possible to differentiate between “less intuitive”
and “more intuitive” mathematical concepts and processes
by directly measuring the responses of the brain?

• Will it be possible to identify mathematical characteris-
tics of those structures and processes which have natural
affinity to the intrinsic mechanisms of the brain?

• Will it be possible to classify, mathematically, “atomic”
mathematical structures and processes—that is, those that
share characteristics of “in-built” mathematical structures
and processes of our brains?

If experimental findings will happen to lend support to
this programme of “neurological reductionism”, they will trig-
ger the need for some very serious metamathematical analy-
sis. Indeed, it will become a serious task for mathematicians
to explain the surprising unity of mathematics by showing
mathematically how the working of “atomic” mathematical
processes in individual brains leads to the reproduction of
mathematical objects, structures, algorithms shared, as a re-
sult, by almost all of the human race.

In the context of mathematical cog-
nition, at least some of the philosoph-
ical problems of mathematics should
be supplanted by explicit metamath-
ematical questions.

Therefore I propose that,
in the context of mathe-
matical cognition, at least
some of the philosophical
problems of mathematics
should be supplanted by
explicit metamathemati-
cal questions. My pro-
posal, of course, will re-
main unsubstantiated un-
less I demonstrate at least one example.

A first approximation to such a question can be found in
Section 12.5. My discussion there starts from a sci-fi premise
of the proverbial little green men from Mars stealing a satel-
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lite from its orbit around Earth and attempting to analyze
the dedicated microchip responsible for the encryption of
communication channels. This sci-fi scenario is not as super-
ficial as it seems. The standard method of experimental cog-
nitive psychology is response time analysis: a series of tasks
is given to the subject and the response time is recorded.
One of the topics touched on in the book, the difference be-
tween subitizing (immediate recognition of small numbers—
two, tree, or four,—of objects without counting), and proper
counting of objects, one by one, was studied by response time
analysis.

But the response time analysis of experimental psychology
is strikingly similar to the so-called timing attacks on em-
bedded cryptographic devices, say, microchips in credit cards,
when information about the secret keys on the card is de-
duced by analyzing its response time [306]. Moreover, brain
scan techniques where the activities of various parts of the
brain are studied by measuring the blood flow (which corre-
lates with the energy consumption) also have an analog in
cryptanalysis—namely power trace analysis: the secret key
on a credit card is deduced from the pattern of its energy con-
sumption when it is plugged into the card reader [264, 307].

So, suppose little green men from Mars were to study
one of the mathematical devices produced by humans. Would
they be surprised to discover that humans were using par-
ticular mathematical structures? I discuss that in the next
Section 12.5, and argue that this not a philosophical but a
mathematical question.

12.5 A million dollar question

Zadaje pytania wymijajace,
by przeciac droge wymijajacym odpowiedziom.

I ask circumspect questions
to avoid circumspect answers.

Stanislaw Jerzy Lec

Whenever you discuss the realities of mathematical life,
words of wisdom from Vladimir Arnold, an outspoken critic
of the status quo of modern mathematics, often help to clarify
the issues:
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All mathematics is divided in three parts: cryptogra-
phy (paid for by the CIA, the KGB and the like), hydro-
dynamics (supported by manufacturers of atomic sub-
marines) and celestial mechanics (financed by the mil-
itary and by other institutions dealing with missiles,
such as NASA).

Cryptography has generated number theory, alge-
braic geometry over finite fields, algebra, combinatorics
and computers. [2]

Let us pause here and, ignoring the bitter irony of Arnold’s
words, take them at face value. Indeed, why there is so
much fuss around finite fields? Why is modern, computer-
implemented cryptography based on finite fields?

Why does mathematics reuse, again
and again, the same objects?

This question is rel-
evant to our discussion
since computers can be
viewed as very crude mod-
els of a mathematical brain.
One of the major problems
of human mathematics is
why mathematics chooses to operate within a surprisingly
limited range of basic structures. Why does it reuse, again
and again, the same objects? It is this aspect of mathemati-
cal practice that turns many mathematicians into instinctive
(although not very committed) Platonists.

But why not ask the same question about computers? Let
us make it more specific: why is the range of structures us-
able in computer-based cryptography so narrow? Unlike the
philosophical questions of mathematics, this last question
has the extra bonus of having very obvious practical impli-
cations.

Imagine that the proverbial little green men from Mars
stole a satellite from its orbit around Earth and attempted
to analyze the dedicated microchip responsible, say, for the
Diffie-Hellman key exchange. Would they be surprised to
discover that humans were using finite fields and elliptic
curves?

For further discussion, we need some details of the Diffie-
Hellman key exchange. I repeat its basic setup in a slightly
more abstract way than is usually done.
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Alice and Bob want to make a shared secret key for the
encryption of their communications. Until they have done so,
they can use only an open line communication, with Clare
eavesdropping on their every word. How could they exchange
the key in open communication so that Clare would not also
get it?

The famous Diffie-Hellman key exchange protocol is a pro-
cedure which resolves this problem. Historically, it is one of
the starting points of modern cryptography. In an abstract
setting, it looks like this:

• Alice and Bob choose a big finite abelian group G (for our
convenience, we assume that the operation in G is written
multiplicatively). They also specify an element g ∈ G. (As
the result of her eavesdropping, Clare also knows G and
g.)

• Alice selects her secret integer a, computes ga and sends
the value to Bob. (Clare knows ga, too.)

• Similarly, Bob selects his secret integer b and sends to Alice
gb. (Needless to say, Clare duly intercepts gb as well.)

• In the privacy of her computer (a major and delicate as-
sumption) Alice raises the element gb received from Bob to
her secret exponent a and computes (gb)a. (Clare does not
know the result unless she has managed to determine Al-
ice’s secret exponent a from the intercepted values of g and
ga.)

• Similarly, Bob computes (ga)b.
• Since (gb)a = gab = (ga)b, the element gab is the secret

shared element known only to Alice and Bob, but not to
Clare. The string of symbols representing gab can be used
by Alice and Bob as their shared secret key for encryption
of all subsequent exchanges.3

So, what do we need for the realization of this protocol? I
will outline the technical specifications only in a very crude
form; they can be refined in many ways, but there is no need
to do that here, a crude model will suffice.

Since we can always replace G by the subgroup generated
by g, we can assume that G is cyclic. We will also assume that
G has prime order p.

Therefore, to implement the Diffie-Hellman key exchange,
we need:
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• A cyclic group G of very large prime order p such that
its elements can be presented by short (that is, of length
O(log p)) strings of 0s and 1s.

• The group operation has to be quick, in any case, better
than in O(log2 p) basic operations of the computer.

• The discrete logarithm problem of finding the secret expo-
nent a from g and ga has to be very difficult for all elements
g 6= 1 in G; in any case, it should not allow a solution by a
polynomial time algorithm.4

• This should preferably (but not necessarily) be done for an
arbitrary prime p, or for sufficiently many primes; to make
the problem easier, let “sufficiently many” mean “infinitely
many”.

• The implementation of the particular instances of the al-
gorithm, compilation of the actual executable file for the
computer (or realization of the algorithm at the hardware
level in a microchip, say, in a mobile phone) should be easy
and done in polynomial time of small degree in log p.

There are two classical ways of making cyclic groups Cp of
prime order p : one of them is the additive group of the field of
residues modulo p, Z/pZ. In another, we select a prime q such
that p divides q−1 and generate G by an element g of the mul-
tiplicative order p in the multiplicative group (Z/qZ)∗. In the
additive group Z/pZ, the exponentiation g 7→ gn is just multi-
plication by n, g 7→ n·g, and the Euclidean algorithm instantly
solves the discrete logarithm problem. In the multiplicative
group (Z/qZ)∗, the discrete logarithm problem is apparently
hard. It is also conjectured to be hard in the group of points of
an elliptic curve over a finite field, thus giving rise to elliptic
curve cryptography. Notice that, in all cases, the group, as an
abstract algebraic object, is exactly the same, the cyclic group
of order p; it is the underlying computational structure that
matters.

How can we compare different computational structures
for Cp? Look again at the examples Cp ' Z/pZ and Cp ↪→
(Z/qZ)∗. Elements of Z/pZ can be naturally represented as
integers 0, 1, 2, . . . , p−1. Given an element g ∈ (Z/qZ)∗ of mul-
tiplicative order p, we can use square-and-multiply5 to raise
g to the power of n in O(log n) time. Hence the map
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Z/pZ→ (Z/qZ)∗

n 7→ gn

gives us an isomorphism of the two computational implemen-
tations of Cp, (an isomorphism which can be computed in time
linear in log p).6 We shall say that the implementation of Cp

as Z/pZ is reducible to its implementation as Cp ↪→ (Z/qZ)∗.
To compute the inverse isomorphism means to solve the dis-
crete logarithm problem, which, it is universally believed,
cannot be done in time which is polynomial in log p. Therefore
morphisms of computational structures for Cp are homomor-
phisms computable in polynomial time.

As Blake, Seroussi and Smart comment in the introduc-
tion to their book on elliptic curve cryptography [248, pp. 6–
8], the three types of groups we just mentioned represent the
three principal classes of commutative algebraic groups over
finite fields: unipotent—Z/pZ, tori—(Z/qZ)∗, and abelian varieties—
elliptic curves. They can all be built from finite fields, by sim-
ple constructions with fast computer implementations. So far
I am aware of only one another class of computational struc-
tures for finite abelian groups proposed for use in cryptogra-
phy, “ideal class groups” in number fields [260] (but it is not
clear to me whether they allow a cheap mass set-up).

My million dollar question is
Are there polynomial time computational structures for
cyclic groups of prime order (which therefore have a
chance to meet memory and speed requirements of computer-
based cryptography) and which cannot be reduced, within
polynomial space/time constraints, to one of the known
types?
Notice that non-reducibility to Z/pZ would mean that the

discrete logarithm problem cannot be solved in polynomial
time, giving such structures a chance to meet security re-
quirements as well.

I accept that this question is likely to be out of reach
of modern mathematics. The answer will definitely involve
some serious advances in complexity theory. If the answer is
“yes”, especially if you can invent something which is quicker
than elliptic curve systems, you can patent your invention7

and make your million dollars. If the answer is “no”—and this
is what I expect—it will provide some hint as to how similar
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questions can be asked about mathematical algorithms and
structures acceptable for the human brain and about algo-
rithms implemented in the brain at the innate, phylogenic
level.

Meanwhile, mathematics already has a number of deep
results which show the very special role of finite fields in the
universe of all finite structures; we shall discuss one such
theorem in Section 12.6.3.

12.6 The boring, boring theory of snooks

There are billions of gods in the world.
They swarm as thick as herring roe. Most
of them are too small to see and never get
worshipped, at least by anything bigger
than bacteria, who never say their prayers
and don’t demand much in the way of mir-
acles.

They are the small gods—the spirits of
places where two ant trails cross, the gods
of microclimates down between the grass
roots. And most of them stay that way.

Because what they lack is belief.

Terry Pratchett, Small Gods [360, p. 11]

12.6.1 Why are some mathematical objects more
important than others?

In Section 12.5, I tried to sketch a metamathematical ques-
tion which supplants some parts of philosophical arguments
about the nature of mathematical objects. Here is another
case study in metamathematics, this time concerned not with
the practical usability of particular mathematical objects, but
with their relative importance. I take the challenge offered by
David Corfield in his beautiful book [15].

Should we not consider it a little strange that what-
ever our ‘ontological commitments’—a notion so cen-
tral to contemporary English-language philosophy—
vis-à-vis mathematics, they can play no role in distin-
guishing between entries that receive large amounts
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of attention, Hopf algebras, say [. . . ], and some arbi-
trary cooked up algebraic entities. If I define a snook
to be a set with three binary, one ternary and a cou-
ple of quartenary operations, satisfying this, that and
the other equation, I may be able to demonstrate with
unobjectionable logic that all finite snooks possess a
certain property, and then proceed to develop snook
theory right up to noetherian centralizing snook ex-
tensions. But, unless I am extraordinarily fortunate
and find powerful links to other areas of mathemat-
ics, mathematicians will not think my work worth a
jot. By contrast, my articles may well be in demand
if I contribute to the understanding of Hopf algebras,
perhaps via noetherian centralizing Hopf algebra ex-
tensions. [15, p. 11]

Even if mathematical objects exist in
the strictest Platonic sense, almost all
of them live out their miserable exis-
tence in complete obscurity.

Why are some math-
ematical objects worshipped
while others are ignored? I
am in complete agreement
with David Corfield that
the “ontological commit-
ment,” acceptance of some
form of existence of math-
ematical objects in some
form of “ideal” reality, does not help to explain the striking
disparity in importance among possible mathematical theo-
ries. Do I need to remind the reader that the potential mul-
titude of mathematical objects is infinite? Even if mathemat-
ical objects exist in the strictest Platonic sense, almost all of
them, like the “small gods” of Terry Pratchett, live out their
miserable existence in complete obscurity.

When you talk to mathematicians you easily discover that,
according to widely held opinion, there are basic reasons why
particular mathematical objects, structures or theories de-
serve to be studied:

A. They have applications, or claim to have applications, out-
side mathematics, say, in physics or communications tech-
nology;

B. They are intrinsically beautiful and allow for a nice theory
with elegant proofs;
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C. They have strong internal connections to other interesting
objects of mathematics;

D. They appear as examples or can be applied to the solution
of problems arising in theories which are interesting for
reasons A, B or C; or

E. They serve as a metatheory explaining the nature and
structure of other interesting theories.

In a classical textbook on abstract algebra, I. N. Herstein
[236] emphasizes the special role of reasons D and E:

In abstract algebra we have certain basic systems which,
in the history and development of mathematics, have
achieved positions of paramount importance. These are
usually sets on whose elements we can operate algebraically—
by this we mean that we can combine two elements
of the set, perhaps in several ways, to obtain a third
element of the set—and, in addition, we assume that
these algebraic operations are subject to certain rules,
which are explicitly spelled out in what we call the ax-
ioms or postulates defining the system. In this abstract
setting we then attempt to prove theorems about these
very general structures, always hoping that when these
results are applied to a particular, concrete realization
of the abstract system there will flow out facts and in-
sights into the example at hand which would have been
obscured from us by the mass of inessential informa-
tion available to us in the particular, special case.

We should like to stress that these algebraic systems
and the axioms which define them must have a certain
naturality about them. They must come from the expe-
rience of looking at many examples; they should be rich
in meaningful results. One does not just sit down, list
a few axioms, and then proceed to study the system so
described. This, admittedly, is done by some, but most
mathematicians would dismiss these attempts as poor
mathematics. The systems chosen for study are chosen
because particular cases of these structures have ap-
peared time and time again, because someone finally
noted that these special cases were indeed special in-
stances of a general phenomenon, because one notices
analogies between the highly disparate mathematical
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objects and so is led to a search for the root of these
analogies.8

Almost all randomly defined alge-
braic structures do not allow for any
kind of theory of any structural inter-
est.

Of course, an interest-
ing theory might belong to
several types simultane-
ously. Reason B for being
interesting presents most
of the difficulties when
you try to understand the
prominence of particular
objects of theories. If a
theory or an object is selected for development or study solely
for reasons of its elegance and beauty, why cannot we pick
instead some other theory, with equally beautiful statements
and elegant proofs?

My answer is: because they are exceptionally rare.

12.6.2 Are there many finite snooks around?

To be more concrete, I wish to turn to David Corfield’s exam-
ple of

“snooks . . . satisfying this, that and the other equa-
tion”,

and formulate the following metamathematical thesis:

Almost all randomly defined snooks, and, more gener-
ally, almost all randomly defined algebraic structures,
do not allow for any kind of theory of any structural
interest.

In this form, my thesis is still excessively general; with re-
spect to snooks, proposed by David Corfield, it can be special-
ized and turned into an explicit and provable (or refutable)
metamathematical conjecture.

Indeed, let us denote the five operations on snooks by func-
tional symbols

A(·, ·), B(·, ·), C(·, ·), T (·, ·, ·), Q(·, ·, ·, ·).
We define, as is done in universal algebra, a variety of snooks
as the set of all snooks which satisfy some fixed identities,
that is, equalities of the kind, say,
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Q(T (x, y, z), A(x, y), B(y, z), C(z, T (x, y, u))) = A(B(x, y), C(x, y))

which hold for all values of variables involved. Here I wrote
a random identity, caring only about the number of variables
involved in every function being in agreement with the as-
sumption that A is a binary operation, etc. Different varieties
of snooks are defined by different sets of identities, while the
same variety can be defined by many different (but equiva-
lent) sets of identities. We shall look only at those varieties
which are defined by finitely many identities. Then, with ev-
ery variety S of snooks, we can associate its definition length
dl(S), the minimal possible total length of identities which
defines S.

A snook is called constant, if every function A,B,C, T, Q
on it is constant, that is, takes just one value. Obviously, a
snook with just one element (we call it trivial) is constant,
and every variety of snooks contains the trivial snook.

THE RANDOM SNOOK CONJECTURE, I. There is a constant
c > 0 such that, given a variety S of snooks chosen at random
from all varieties of snooks of definition length at most n,
the probability that S contains a non-constant finite snook is
smaller than e−cn.

In less formal terms, it means that the probability for a
random variety of snooks to contain a non-constant finite
snook decreases exponentially fast when the definition length
grows.

In a similar vein, it is possible to formulate other conjec-
tures, this time turning our attention to individual snooks.
For example, within each variety S one can consider finitely
presented snooks, that is, snooks given by a finite number of
generators, say, a, b, c, . . . , and finitely many relations, equal-
ities of the kind A(a, b) = T (a, a, b), etc.

THE RANDOM SNOOK CONJECTURE, II. With probability
which tends to 1 exponentially fast with the growth of the
total length of defining identities and relations, a random
finitely presented snook is infinite and does not allow non-
trivial automorphisms.

Formulating conjectures about random snooks very soon
becomes no less boring than studying them. The common
point of all my conjectures is simply that: random snooks are
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boring, there is nothing of substance to study in them, they
do not allow a sufficiently rich structured theory of any kind;
even the formulation of a readable result is virtually impos-
sible.

I stress that all my conjectures are mathematical state-
ments which are likely to be provable or refutable (I will be
extremely surprised if the Random Snook Conjectures are in-
dependent of the Zermelo-Fraenkel axioms of set theory).

My confidence stems from the first results on “random
groups” in group theory, theorems like Olshanski’s [325],
which claims that a random finitely presented group is hyper-
bolic and hence allows a uniform approach to proving every-
thing which can be said about it, by industrial strength meth-
ods from the theory of hyperbolic groups. Even more telling is
a theorem by Kapovich and Schupp [302] which says that, for
random one-relator groups, every classical problem of group
theory has a more or less trivial solution. Random objects
bear no distinctive features; within the class of groups (one of
the nicer objects of mathematics) this means that their prop-
erties are nice and easy. In a random class of snooks, or other
random variety, there is no reason to expect random snooks to
behave nicely. Moreover, random snooks are far from unique
in their boringness, and for that reason we are unlikely to be
able to prove anything interesting about random snooks.

12.6.3 Finite snooks, snowflakes, Kepler and Pálfy
By varying the defining identities for snooks, we can get an
infinite multitude of algebraic structures, each different from
the others and each having the same right to exist. This is
a classical example of a “bad”, unstructured, uncontrolled in-
finity. When encountering such situations, mathematicians
professionally try to introduce some structure into the disor-
der, and to find general principles governing the universe of
snooks.

The paradigm for such approach is set in Kepler’s classical
work on snowflakes [48]. Of the myriads of snowflakes, there
are no two of the same shape; however, almost all of them ex-
hibit the strikingly precise sixfold symmetry. Kepler’s expla-
nation is breathtakingly bold: the symmetry of snowflakes
reflects the sixfold symmetry of the packing of tiny parti-
cles of ice (what we would now call atoms or molecules) from

MATHEMATICS UNDER THE MICROSCOPE VER. 0.919 5-SEP-2007/12:39 c© ALEXANDRE V. BOROVIK



12.6 The boring, boring theory of snooks 301

Fig. 12.2. Classical photographs of snowflakes by Wilson Bentley, c. 1902. Source:
Wkipedia Commons. Public Domain.

which the snowflake is composed. In 1611, when the book
was written, it was more than a scientific conjecture—it was
a prophecy.

Of infinitely many possible algebraic laws defining gener-
alized snooks, some may allow for the existence of a finite
structure. I will now outline a “snowflake” theory of arbi-
trary finite algebras,9 which will of course cover the case of
finite snooks. The theory belongs to David Hobby and Ralph
McKenzie [297]; to avoid excessive detail, I will concentrate
on its key ingredient, a theorem by Péter Pál Pálfy [326] on
the structure of “minimal” algebras ([297, Theorem 4.7]).

Péter Pál Pálfy
aged 13

The key idea is that we study finite algebras up to poly-
nomial equivalence: we associate with every algebra A with
ground set A the set of all polynomial functions on A; that is,
all functions from A to A expressible by combination of ba-
sic algebraic operations of A, with arbitrary elements from A
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being allowed to be used as constant “coefficients”. For exam-
ple, if S is a finite snook with the set S of elements, and s is a
fixed element of S, then

A(s, x)

is a polynomial function of a single variable x, while

T (x,A(s, y), x)

is a polynomial function of two variables x and y. Two alge-
bras are said to be polynomially equivalent if they have the
same ground set and the same sets of polynomial functions.
In particular, this means that every basic algebraic operation
of the first algebra is expressed in terms of the operations of
the second algebra, and vice versa. If we ignore the compu-
tational complexity of these expressions (which is not always
possible in problems of practical nature, see Section 12.5), the
two algebras are in a sense mutually interchangeable.

Given a finite algebra A, a polynomial function f(x) in a
single variable induces a map from A to A. Since A is finite,
either f(x) is a permutation of A, or it maps A to a strictly
smaller subset B ⊂ A. In the second case, some iteration

g(x) = f(f(· · · f(x) · · · ))
is an idempotent map:

g(g(x)) = g(x)

for all x. The idempotency of g allows us to “deform” and
squeeze the basic operations of A to the set C = g[A]. If, for
example, T (·, ·, ·) was an operation of A, T ′ = g(T (·, ·, ·)) be-
comes an operation on C. Adding all polynomial operations
of A which preserve C, we get a new algebra C (we shall call
it a retract of A) which carries in itself a considerable amount
of information about A. For example, every homomorphic im-
age of C is a retract of a homomorphic image of A [327].

But what happens if a finite algebra A has no proper re-
tracts (that is, with C being a proper subset of A) and is there-
fore unsimplifiable? Pálfy calls such algebras permutational.
Assuming that the algebra has at least three elements10, we
have a further division:
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1. Every polynomial function defined in terms of A effectively
depends on just one variable. Then all polynomial func-
tions on A are permutations, and A is polynomially equiv-
alent to a set A with an action of a finite group G, where
action of each element g ∈ G is being treated as an unary
operation. This case is not at all surprising.

2. In the remaining case, when A is sufficiently rich for the
presence of polynomial functions which really depend on
at least two variables, the result is astonishing: A is poly-
nomially equivalent to a vector space over a finite field!

So finite fields appear to be more important, or more basic,
than finite snooks. Pálfy’s theorem is a partial explanation of
the mystery which we have already discussed in this chap-
ter: why are finite fields so special? Mathematics needs more
results of this nature, which help to clarify and explain the
hierarchy of mathematical objects. Without a rigorous meta-
mathematical study of relations between various classes of
mathematical objects and without understanding of reasons
why some mathematical structures have richer theories than
other structures have, it is too easy to exaggerate the role of
history and fashion in shaping mathematics as we know it
now. I do not believe that ideas of social constructivism can
be really fruitful in the philosophy of mathematics. However,
I have no time to get into a detailed discussion.

12.6.4 Hopf algebras

All animals are equal,
but some animals are more equal than others.

George Orwell

Interesting objects in mathematics are rare; even the briefest
look at mathematics reveals that the same objects and struc-
tures are recycled again and again. Remarkably, most of
these ubiquitous structures come from physics (interpreted
broadly). It is possible to suggest an explanation as to why
most rich structures come from physics; they are structures
that were selected, from the immense variety of possible
mathematical structures, as models for some aspects of the
physical universe. We know, from experience, that the uni-
verse is rich, diverse—but ruled by unified laws. The mathe-
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matics which models these laws must provide for a rich the-
ory.

The case of Hopf algebras is really illuminating. It is hard
to invent a mathematical object which is more closely linked
to the objective reality of physics, or, more precisely, to the
way in which physics describes the real world. The very fact
that physics exists and is successful in its description of the
world provides a strong hint that the theory of Hopf algebras
can be developed in some rich detail.

Basically, physicists measure things and their states, as-
signing to them numeric values. Hopf algebras (and their
glamorous descendants, quantum groups) come from the mea-
surement of processes which have a group structure. This is
not an excessive requirement; it simply means that the pro-
cesses are invertible and their composition satisfies the asso-
ciative law, the latter frequently being a consequence of the
most natural assumption of the homogeneity of time.

Look, for example, at the motion of a solid body about a
fixed point. This is a physical process; but rotations can be
composed with other rotations, thus giving to the set of rota-
tions the structure of a group.

Meanwhile, measurements are expensive and physicists
measure one function at a time. In the case of rotations of the
solid body, we can associate with the initial position of the
body some (Cartesian) coordinate vectors ~e1, ~e2, ~e3, and make
another set of coordinate vectors, ~f1, ~f2, ~f3, to mark the new
position of the body. Measurements, especially in quantum
mechanics, are frequently formalized as projections of a vec-
tor onto a a one-dimensional subspace spanned by a given
vector ~e.11 In our particular case, the most natural quantity
to measure is the length of the projection of ~fi onto the direc-
tion of ~ej, which, of course, gives us the matrix element of the
rotation matrix

rij = (~fi, ~ej).

Therefore what we measure, when we measure rotations,
are matrix elements of the rotation matrix, or, if we run a re-
ally technically intricate experiment, some more complicated
functions of matrix elements.

Now our rotation R can be decomposed as a product of a
pair of rotations

R = S · T
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in infinitely many ways. Again, these new rotations are given
to us as assemblies of measurements, sij and tij. If G is the
group of rotations, then matrix elements rij, sij, tij are func-
tions on G. The composition of rotations is the map

G×G −→ G,

hence rij can be lifted from G to G × G and interpreted as a
function on G×G. The problem of describing the group law on
G in terms of measurements becomes the task of expressing
the function rij as a function of two variables (S, T ). But all
we know about S and T is given to us as our measurements
sij and tij. Luckily, we can complete the task and assign to rij

its expression in terms of sij and tij:

rik 7→
∑

sijtjk.

Let me emphasize that the arrow goes in the direction oppo-
site to multiplication (or composition) of rotations: we take a
function on G and assign to it a function on G×G.

The result is what they call a Hopf algebra. The formal
definition is just a technical refinement of this simple idea.
The map of the function spaces that we just constructed is
called comultiplication; if H is the space of functions on G
then it becomes an embedding

H −→ H ⊗H

where ⊗ denotes the tensor product of vector spaces. I shall
skip further detail but note only that we also need the map
H −→ H obtained, in a similar way, from the inversion, R 7→
R−1, as well as the usual multiplication of functions.

It may be a gross oversimplification, but a Hopf algebra in
a sense is nothing more than glorified matrix multiplication.

Why are Hopf algebras so important in quantum physics
(and why is a further specialization of the concept, quantum
groups, so fashionable in modern mathematics)? My answer
is, again, a gross oversimplification, but allows us to explain,
in a few words, their exceptional role.

In classical physics, we can pretend that we have made
every possible measurement and work with the collection of
measurements as a single object (in our example—a rota-
tion matrix). The characteristic feature of quantum physics

MATHEMATICS UNDER THE MICROSCOPE VER. 0.919 5-SEP-2007/12:39 c© ALEXANDRE V. BOROVIK



306 12 The Vivisection of the Cheshire Cat

is that the Indeterminacy Principle forbids measuring ev-
erything at once. At a more basic level, the set-up of quan-
tum physics forces us to be attentive to individual functions.
David Corfield rightly stresses [15, p. 24] that this leads to an
emphasis on the duality between the observables and states;
we not only use observables (measurements, in the jargon of
the previous paragraphs) to study states, but also use states
to distinguished between observables. The resulting mathe-
matical abstraction is something which can be explained at
the level of notational conventions of elementary high school
calculus: instead of writing the value of the function f at the
point x as f(x), we can use a slightly stranger notation 〈f, x〉
(or even 〈f‖x〉 as physicists do), to emphasize that this is also
the evaluation (or testing) of the function by the argument
x.12

Hopf algebras are really basic objects of theoretical physics.
But do they deserve to be one of the “simple things” of the
present book? Probably not because they are deeply counter-
intuitive: in our perception of the world, our sensor system
measures the intensity of individual stimuli, but the process-
ing of this information is hidden deep into the subconscious-
ness; the image of the world as given to us by our senses is
an integral and highly distilled construct. The cognitive ana-
logue of a physical measurements is something which is hap-
pening at the level of a single receptor and a single neuron—
it is beyond our conscience and our control.

12.6.5 Back to ontological commitment

We have to do mathematics using the brain
which evolved 30 000 years ago

for survival in the African savanna.
Stanislav Dehaene

Mathematics is built on the presump-
tion that its objects are boring unless
proven interesting.

Poor snooks cannot com-
pete with Hopf algebras
for the attention of math-
ematicians. The explana-
tion for this disparity, as
we have seen, is twofold.
Most snooks are deeply
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irrelevant—and this fact
could be, and should be explained metamathematically.
Mathematics, as a cultural entity, is built on the presump-
tion that its objects are boring unless proven interesting (I
am not well read in philosophy of mathematics and, perhaps,
for that reason I have never seen this general methodological
principle clearly stated in writing ). Even if some snooks give
rise to a degree of reasonable theory, mathematicians, for the
sake of the health and sanity of their discipline, have every
right to demand an advance justification of snooks’ purpose.
The strongest possible justification of the purposefulness of a
mathematical object comes, as in the case of Hopf algebras,
from the needs of physics.

Therefore I am not in complete agreement with David Cor-
field when he says

We may have been led to use specific Hopf algebras
to allow us to perform calculations with Feynman di-
agrams [. . . ], but it cannot be right to say that they
are structures instantiated in the world. Still we can-
not distinguish between snooks and Hopf algebras. [15,
p. 12]
I claim that we can distinguish between snooks and Hopf

algebras. I do not know whether I agree or disagree with Cor-
field that Hopf algebras are not instantiated in the world; I
have no firm opinion on that issue. What really matters for
me is that Hopf algebras are instantiated (or at least deeply
rooted) in the human practice of measuring this world.

Corfield’s book made me realize that I cannot easily change
my spots and get over my Vygotskian upbringing. However,
David Corfield immediately deflated the triumph of my naive
Vygotskianism by pointing out that Hopf algebras were in-
vented in algebraic topology before they came into use in
physics. It appears that it does not matter what we measure—
physical or ideal objects! So we return to the same disturbing
question about the nature of ideal objects in mathematics. I
do not see an obvious way to resolve this issue.

Instead, I wish to offer to philosophers a different problem.
As I am trying to demonstrate in this book, some of the sim-
plest mathematical structures and processes have a special
ontological status: those already hardwired into our brains—
such as order, symmetry, parsing rules. I believe that these
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atomic particles of mathematics deserve some special atten-
tion from philosophers, and I am happy to leave to them the
discussion of finer details.

My own approach to the philosophy of mathematics is
purely pragmatic: for me, philosophy is a useful tool for mak-
ing and assessing value judgements, on the scale interesting–
uninteresting, important–unimportant. This places the “sim-
ple things” of the book in a very special position. Indeed, if we
accept the special status of hardwired mathematical struc-
tures and their immediate recombinations (like palindrome,
a simplest recombination of order, symmetry and parsing)—
then we have to accept that these “simple things” of mathe-
matics are outside of the area of applicability of value judge-
ments because they are just part of us as human beings.

Regarding palindromes, for example, no matter what you
think about their importance or irrelevance, they have ex-
isted for centuries. The fact that they can be treated as math-
ematical objects went more or less unnoticed. But they can;
as I show in Section 3.4, palindromes can be used, for exam-
ple, as the basis of the theory of Coxeter groups. This does
not make them more important or interesting; as I said, they
are outside of the area of value judgements.

Of course, it still gives us the right to ask technical ques-
tions about the exact nature of the optimality of brain algo-
rithms. Given our “hardware limitations”, does the saccadic
movements algorithm indeed provide an optimal sampling
method (see page 30)? In the literature, you can find a heated
debate of whether the human eye, as a hardware device, has
an optimal design, and whether octopi have better eyes (see,
for example, [148]). So what? We can study our eyes, but,
for the foreseeable future, we have to live with the eyes we
have. And we still have to do mathematics with our imper-
fect brains which evolved for completely different purposes.

12.7 Explication of inexpliciteness

I have already quoted Timothy Gowers saying that
The following informal concepts of mathematical practice cry out
to be explicated: beautiful, natural, deep, trivial, ”right”, difficult,
genuinely, explanatory . . .
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These words deserve to be called Gowers’ programme. He formulated
it in his talk at the conference Mathematical Knowledge in Cambridge in
June 2004.

This section will demonstrate an extreme case among many possible
approaches to the explication of informal mathematical concepts: a hard-
core mathematical treatment of the very concept of “explicitness”.

It can be formulated as a remarkably compact thesis:

EXPLICIT = BOREL.

This thesis is promoted—perhaps in less explicit form—by Alexander
Kechris and Greg Hjorth (see his survey [296]). A wonderful illustration
and a template for the use of the thesis can be found in a recent work by
Simon Thomas.

Simon Thomas
aged 2

Simon Thomas looked at the following problem:
Does there exist an explicit choice of generators for each finitely
generated group such that isomorphic groups are assigned iso-
morphic Cayley graphs?
Recall that if G is a finitely generated group and S is some its finite

generating set not containing the identity element, then the Cayley graph
of G with respect to S is the graph with vertex set G and edge set

E = {(x, y) | y = xs for some s ∈ S or S−1}.
For example, when G = Z is the additive group of integers and S =

{ 1 } consists of the most canonical generator of integers, number 1, then
the corresponding Cayley graph is:

However, when G = Z and S = { 2, 3 }, then the corresponding Cayley
graph is:

Simon Thomas’ problem is very natural: is their an explicitly given
canonical Cayley graph for each finitely generated group? The problem is
about relation between two basic concepts of algebra: that of a group and
its Cayley graph; it is formulated in very elementary terms.

Simon Thomas gave a negative answer to the problem [340]. More
precisely, he proved that this assignment cannot be done by a map with
the Borel graph.

The underlying concepts of his proof are not that difficult; I give here
only a crude description, all details can be found in Thomas’ paper.

First we note that a structure of a group on the set N of natural
numbers is given by its graph of multiplication, that is, a subset of the
countable set N3 . This subset is encoded as a (countable) sequence of 0’s
and 1’s, hence can be viewed as a point in 2N

3
, the latter being equipped

with the product topology. It can be shown that the space G of finitely
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generated subgroups becomes a Borel subset of 2N
3
, hence a standard

Borel space, that is, a complete separable metric space equipped with its
σ-algebra of Borel subsets (recall that a Borel algebra of a topological
space is the σ-algebra generated by its open subsets; elements of a Borel
algebra are called Borel sets).

At this point one needs to recall Kuratowski’s Theorem:
Any standard Borel space is isomorphic to one of
(1) R,
(2) N, or
(3) a finite space.

In particular, the set Fin(N) of finite subsets of N is also a standard Borel
space. Further, if X and Y are standard Borel spaces, the map f : X → Y
is Borel if its graph is a Borel subset of the direct product X × Y .

Now I can state Simon Thomas’ Theorem:
There does not exist a Borel map f : G → Fin(N) such that for
each group G ∈ G:
• f(G) generates G.
• If G is isomorphic to H then the Cayley graph of G with re-

spect to f(G) is isomorphic to the Cayley graph of H with
respect to f(H).

Is the EXPLICIT = BOREL thesis reasonable?
Indeed, a Borel subset of R is any set which can be obtained from

open intervals (a, b) by operations of taking countable unions, countable
intersections and complements. Well, this is a fairly wide class of sets;
perhaps not everyone would agree that “Borel” is “explicit”; but it is easier
to accept that every “explicit” construction in the real domain produces a
Borel set. Being very wide and encompassing, this explication of “explic-
itness” is useful for proving negative results, when we want to show that
some construction cannot be made explicit.

Notice also that it is Kuratowski’s Theorem that brings the feeling of
precision and universality into the EXPLICIT = BOREL thesis; without it,
the thesis would be much more vague.

The EXPLICIT = BOREL thesis for real domain is an example of an
“under the microscope” approach to mathematics; it is like cytology, which
treats living tissue as an ensemble of cells. Representing everything by
0’s and 1’ gives a very low level look at mathematics; it is fascinating that
this approach leads to explicit “global” results.

The concept of a Borel set belongs to the area of mathematics called
descriptive set theory. I have special feelings towards the descriptive set
theory and is happy to see its remarkable revival. It so happened that, in
my personal mathematical education, the first ever serious course (during
the penultimate year at Fizmatshkola, the preparatory boarding school of
Novosibirsk University) happened to be on descriptive set theory. Our lec-
turer based the course on the classical (and pretty archaic in its language)
memoir by René-Louis Baire on pointwise limits of continuous functions
[246]. I always thought that the descriptive set theory was fun, but it
was Thomas’ Theorem that opened my eyes to its impressive explanatory
power which extends well beyond analysis.
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12.8 Testing times

Mathematics is part of Physics.
Physics is an experimental discipline, one of natural sciences.

Mathematics is the part of Physics where experiments are
cheap.

V. I. Arnold [84]

While writing this book, I gradually found myself busy in-
venting schemes of psychological experiments (preferably ac-
companied by brain scans) which would, I believe, shed some
light on what is happening in the basic processes of interior-
ization of mathematics.

I always thought that mathematics was difficult. But when
I started to think about the practical side—and cost—of set-
ting up experiments, say, concerned with the perception of
symmetry by blind people, I got pretty scared. And this is
only one of many experiments which might perhaps be rel-
evant to understanding mathematical cognition. I realized
that I have great respect for experimental psychologists and
neurophysiologists, and I would really like to hear from them
their opinion on the issues raised in this text.

Despite all the differences in research cultures, we math-
ematicians have to start a dialogue with cognitive scientists
and neurophysiologists. There is too much at stake here for
the future of mathematics as a discipline.

I wrote this book in a hope that some of its ideas can be
converted into a feasibility study for a more systematic re-
search programme into the cognitive mechanisms of mathe-
matical practice. The programme, of course, should start with
a comprehensive literature search. It is likely to be an unusu-
ally difficult exercise because the questions we (mathemati-
cians) tend to ask are likely to be subtly different from the
ones which were asked by psychologists and neurophysiolo-
gists.

I wish to offer an example of such a question; I raised it at
a Mathematical Knowledge conference in Cambridge in June
2004. Judging from experts’ responses, the question appar-
ently has not been asked before and has not been checked
experimentally.
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If we want to understand the re-
lations between the numerosity of
collections of discrete objects, and
magnitude of continuous parameters
(length, for example), it is worth set-
ting up some experiments where re-
sponse to numerosity is analogue and
continuous.

In experimental stud-
ies of differences between
exact and approximate arith-
metic, subjects are usu-
ally asked to estimate
the number of items in
a group, or compare two
groups by size. It is easy to
notice that responses are
usually verbal (numeral)
or discrete (pointing to a
bigger group). If we want
to understand the relations between the numerosity of collec-
tions of discrete objects, and magnitude of continuous param-
eters (length, for example), it is worth setting up some exper-
iments where response to numerosity is analogue and con-
tinuous. For example, subjects could be instructed to pull the
lever with different force according to the number of items
shown. Will the subitizing / counting threshold manifest it-
self with the same prominence as in the case of verbal or
symbolic responses?

Any serious research programme in mathematical cogni-
tion should start with scanning the huge body of psychologi-
cal and neurological literature for properly documented case
studies of various neurological and psychological conditions,
including those not having, at the first glance, any relation
to mathematics. At the personal level, I would like to read
more about psychological peculiarities which I occasionally
observed in my students and colleagues. I give here one ex-
ample: I knew a schoolboy who was able to solve very tricky
non-standard plane geometry problems but whose mind went
blank on problems in 3-dimensional geometry. He also suf-
fered from an extreme form of vertigo: even an attempt to
stand up on tiptoes inevitably led him to a panic attack. Was
that all in emotions? Are there deeper links between the de-
fects of spatial perception and vertigo? Were there studies
which confirmed and analyzed—or disproved—such links?

Of course, the history of mathematics, especially of the
early stages of its emergence and development, is also highly
relevant for any serious look at mathematical cognition. Also,
it is hard to overestimate the importance of the huge body
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of knowledge accumulated by anthropologists, ethnographers
and scholars of “ethnomathematics”. The study of mathemat-
ical cognition is a vast, challenging and timely task. I have
written this book in the hope that some of the readers will
contribute (or are already contributing) to the development
of the new discipline.

Notes
1VIRTUAL ECONOMIES. I am not in a position to make judgments on MMORPGs

and follow advice from an expert, Grax. He wrote to me:

My economist friend and occasional virtual world buddy recommends
looking at EVE Online’s inflationary economy and comparing it to the
non-inflationary economies of Second Life and Project Entropia, whose
currencies are tied to the dollar. [. . . ] I can add that each expansion in a
virtual world causes a spike in inflation, since new lands are populated
with significantly superior items etc. to give the players an (extra) incen-
tive to purchase new content.

2Recall the classical passage from Alice in Wonderland:

“I wish you wouldn’t keep appearing and vanishing so suddenly; you
make one quite giddy!”
“All right,” said the Cat; and this time it vanished quite slowly, beginning
with the end of the tail, and ending with the grin, which remained some
time after the rest of it had gone.
“Well! I’ve often seen a cat without a grin,” thought Alice; “but a grin
without a cat! It’s the most curious thing I ever saw in all my life!”

3Gregory Cherlin commented that the following is likely to be a general prin-
ciple: shared knowledge is a form of commutativity.

4Even if a polynomial time algorithm is practically unfeasible, its very ex-
istence will undermine the commercial confidence in the cryptographic product
since it potentially opens up a venue for possible improvements which will even-
tually destroy the cryptosystem. Commercial and military users of cryptographic
products are not willing to take such risks.

5The following example shows how we can compute 3100 mod 101 using only 8
multiplications, and not 100 as one might think.

First write 100 as the sum of powers of 2:

100 = 64 + 32 + 4 = 26 + 25 + 22.

Then we have
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3
100

= 3
26+25+22

= 3
26 · 325 · 322

=
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· (32
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[
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= 81 ≡ −20 mod 101

and
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2
))2 ≡ 400 ≡ −4 mod 101

]

=

((
(−4)

2
)2

)2

·
(
(−4)

2
)2 · 81 mod 101

= 256
2 · 256 · 81 mod 101

= 54
2 · 54 · 81 mod 101

= 1 mod 101.

6An impressive body of mathematics has been developed over the last half cen-
tury for efficient implementation of exponentiation, with the likes of Paul Erdös
and Donald Knuth involved, see [304, Section 4.6.3].

7I have seen a patent application for the use of the formula xa+b = xa · xb in
cryptography.

8“TOPICS IN ALGEBRA” BY I. N. HERSTEIN. I love Topics in Algebra [236] be-
cause it was my first textbook of abstract algebra. I red it when a was a student at
Fizmatshkola, Preparatory Boarding School at Novosibisrsk University. The book
(in English) was borrowed from the library of the Sobolev Institute of Mathemat-
ics. In the boarding school, Thursdays were free from classes, we were supposed
to spend the day in independent studies. I spent the day lying in bed and reading,
in arbitrary order, Topics in Algebra, Finite Groups by Daniel Gorenstein [291],
and Robert Louis Stevenson’s stories. A novice in English, I loved R L Stevenson
for the exceptional clarity of language.

9The word “algebra” is understood here in terms of the “universal algebra”, as
a set with some operations of arbitrary nature; our snooks are algebras.

10One-element algebras are of no interest, while every two element algebra can
be polynomially expressed in terms of the Boolean algebra 〈{0,1};∨,∧,¬〉, by a
theorem about the disjunctive normal form for a Boolean function. Up to poly-
nomial equivalence there are six (or—if we ignore permutation of the base set—
seven) two element algebras: no operation; negation ¬; “plus” + (the cyclic group
of order 2); “and” ∧; “or” ∨; “and” ∧ and “or” ∨ (lattice); and the Boolean algebra.

11Why are measurements treated as projections? That way, we have the ad-
vantage of linearity: the projection of the vector ~x onto the fixed subspace 〈~e〉
with distinguished vector ~e is a linear function of ~x, while the angle between the
vectors is not.

12DUALITY. The absence of the function/point duality from the undergraduate
mathematics is hard to explain. It is sometimes missing even from courses in lin-
ear programming, where it has the most concrete practical meaning! From my
own teaching experience (interestingly, in the physics department) I can confi-
dently say that it is not that difficult to “dualize” the standard course of linear
algebra by putting, from day one, row vectors and column vectors in two different
stables: vector space V of row vectors and its dual space V ∗ of column vectors.
Tellingly, the most convincing way to motivate the vector / covector notation is
an example of a purchase of amounts g1, g2, g3 of some goods at prices p1, p2, p3,
with the total cost being

∑
gip

i. This allows us to see that the quantities gi and
pi could be of completely different nature.
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formes quadratiques. J. fr die Reine und Angewandte Mathematik, 133
(1907) 97–178.

346. E. Zermelo, Uber eine Anwendung der Mengenlehre auf die Theorie des
Schachspiels, Proc. Fifth Congress Mathematicians, (Cambridge 1912),
Cambridge University Press 1913, pp. 501–504. English translation can be
found in U. Schwalbe and P. Walker, Zermelo and the early history of game
theory, Games and Economic Behavior 34 no. 1 (2001) 123–137.

347. B. M. Zlotnik (B. M. Zlotnik), Pomehousto$iqivye Kody v Sis-
temah sv�zi. Radio i Sv�z~, Moskva, 1989.

348. C. Zong, What is known about unit cubes, Bull. Amer. Math. Soc. 42 no. 2
(2005) 181–211.

349. C. Zong, The Cube: A Window to Convex and Discrete Geometry.
Cambridge University Press, 2006. ISBN 0-521-85535-7.

Miscellaneous
350. C. Aldred, Egyptian Art. Thames and Hudson, 1980.
351. R. Arnheim, A comment on Rauschenbach’s paper, Leonardo 16 no. 4 (Au-

tumn, 1983) 334–335.
352. Etre et Avoir, dir. Nicholas Philibert, France, 2002.
353. R. Feynman, QED: The Strange Theory of Light and Matter. Princeton

University Press, 1985.
354. R. Gregory, Mirrors in Mind. W. H. Freeman, 1997, 302 pp.
355. L. Lehmann-Norquist, S. R. Jimerson and A. Gaasch, Teens Together

Grief Support Group Curriculum. Adolescence Edition; Grades 7–
12, Psychology Press (UK) 2001, 165 pp. ISBN 1583913025.

356. The Independent, 5 May 2005.
357. G. Naylor, Better Than Life, New American Library, 1996 (ISBN

0451452313).
358. D. Petty, Origami, Paper Projects to Delight and Amaze. D & S Books,

ISBN 1-903327-08-3.
359. D. Petty, Origami Wreaths and Rings. Zenagraf, ISBN 0-9627254-1-2.

MATHEMATICS UNDER THE MICROSCOPE VER. 0.919 5-SEP-2007/12:39 c© ALEXANDRE V. BOROVIK



332 References

360. T. Pratchett, Small Gods. Transworld Publishers, London, 1993. ISBN 0-
552-13890-8.

361. T. Pratchett and S. Briggs, The Discworld Companion. Vista, 1997. ISBN
0-575-60030-6.

362. B. V. Rauschenbach, On my concept of perceptual perspective that accounts
for parallel and inverted perspective in pictorial art, Leonardo 16 no. 1
(1983) 28–30.

363. A. V. Voloshinov, “The Old Testament Trinity” of Andrey Rublyov: Geometry
and philosophy, Leonardo 32 no. 2 (1999) 103–112.

364. A. F. �olobov, Bylo li v Drevne$i Rusi dev�teriqnoe sqisle-
nie?

Miscelaneous Internet resources

365. Benezet Centre, http://www.inference.phy.cam.ac.uk/sanjoy/benezet/
366. Cal Sailing Club, Introductory Handbook for Sailing Boats.

http://www.cal-sailing.org/library/bluebook/dinghy3.html
367. On-Line Encyclopedia of Integer Sequences,

http://www.research.att.com/∼njas/sequences/Seis.html.
368. Father Ted, a cult TV sitcom (UK, Channel 4, Hat Trick Productions; writ-

ten by Graham Linehan and Arthur Matthews). Official network homepage:
http://www.channel4.com/entertainment/comedy/microsites/F/fatherted/

369. Introductory Assignment, Gelfand Correspondence Program in Mathemat-
ics, http://gcpm.rutgers.edu/problems.html.

370. Houston Zoo Conservation Program,
http://www.houstonzoo.org/getFile.asp?File Content ID=1100.

371. MathSciNet, http://www.ams.org/mathscinet, is the Internet portal to Math-
ematical Reviews, a huge body of concise information about world’s mathe-
matical research since 1940.

372. http://www.math.niu.edu/∼rusin/known-math/99/minsky.
373. National Institutes for Health, http://www.ncbi.nlm.nih.gov/.
374. T. Relph, Counting sheep, http://www.lakelanddialectsociety.org/sheep.htm.
375. Royal National Institute for the Blind, Curriculum Close-Up 1: Maths,

http://www.rnib.org.uk/xpedio/groups/public/documents/publicwebsite/public cu1t.txt.
376. Royal National Institute for the Blind, Curriculum Close-Up 13: Primary

Maths,
http://www.rnib.org.uk/xpedio/groups/public/documents/publicwebsite/public cu13w.doc

377. W. Schwartz and K. Hanson, Equal mathematics education
for female students, ERIC/CUE Digest, No. 78, Feb 1992.
http://ericae.net/db/digs/ed344977.htm.

378. De Tribus Impostiribus
http://www.infidels.org/library/historical/unknown/three impostors.html.

379. Trichotillomania Learning Center, http://www.trich.org/.
380. V. Uspensky,

http://www.kolmogorov.pms.ru/uspensky-predvarenie.html.
381. V. A. Uspensky,

http://www.kolmogorov.pms.ru/uspensky-lermontov kolmogorov.html.
382. World Federation of National Mathematics Competitions,

http://www.wpr3.co.uk/wfnmc/info.html.
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(max, +)-algebra, 15
2-cocycle, 98
C++, 112
SU4-symmetry formalism, 43
LATEX, 267
Elements, 171, 273, 283
Gymnarchus niloticus, 26, 85
Pons Asinorum, 170, 171
The Sand Reckoner, 109, 110
modus ponens, 194
CINDERELLA, 230
MATLAB, 139
SYMLOG, 58
TARSKI’S WORLD, 58

aardvark, 55
absolute value, 4
abstraction

by irrelevance, 147, 174
Akins, Kathleen, 26
Aksenov, Vasilii, 131
Albran, Kehlog, 104
Aleichem, Sholom, XII
algebra, 7

σ-algebra, 310
Boolean, 314
Borel, 310
finite, 301
Hopf, 296, 304–307
Lie, 91, 271, 273
linear, 41
permutational, 302
polynomial equivalence of, 301
polynomially equivalent, 302
retract of, 302
tensor, 95
universal, 298, 314

vector, 95
algorithm, 29, 33, 295

choiceless, 9, 22
choiceless polynomial time, 22
error-correcting, 260
Euclid’s, 17
Euclidean, 293
iterative, 106
polynomial time, 8, 9, 293
recursive, 17, 20
saccadic movements, 308

Alperin, Roger, 220, 255, 256
altitude, 274, 275
analysis

dimensional, 199
power trace, 290
real, 148
response time, 290

Anaxagoras, 109
Anonymous, XV
Antheil, George, 190, 191, 208
arch

corbel, 237
true, 237

Archimedes, 109, 128, 273
Aristotle, 113
arithmetic, 94, 107

approximate, 81, 92
base-60, 65
of named numbers, 199
Peano, 282
symbolic, 81

Arnold, Vladimir Igorevich, 12, 13,
141, 200, 209, 271, 273, 274, 290,
291, 311

Asperger’s syndrome, 50
assignment problem, 14
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associahedron, 63, 67
attractor, 73, 74
automated proof system, 171
automorphism, 44

graph, 43
Axiom

of Choice, 128, 178
of Determinacy, 178
of Extensionality, 137

Axiom, Bachmann’s, 270
axiomatization, 33
axioms

Zermelo-Fraenkel, 178
axis

radical, 230
Azzouni, Jody, XV, 45, 250, 251

Bachmann’s Axiom, 271
Bachmann, Friedrich, 258, 270, 271,

273
Baez, John, XV, 26
Baire, René-Louis, 310
Barenboim, Daniel, 54
Beloch, Margherita Piazzolla, 273
Benezet, Louis, 92
Benson, David, 97, 263
Bentley, Wilson, 301
Berenguer, Bruno, XV, 175
Berkman, Ayşe, XVI, 207
Bernays, Paul, 156, 157
betweenness, 161, 258, 273
Birtwistle, Harrison, 53
Blackmore, Susan, XV, 245, 251, 252,

261
Blake, Ian F., 294
Blass, Andreas, 10
Blinder, Alan, 186
Bolyai, Janos, 151
Bolyai, Wolfgang, 151
Booth, Richard, 266
Booth, Richard F., XV
Borovik, Anna, XIV, 24, 25, 108
Bourbaki, Nicolas, 24
Bower, James M., 45
bracket, V, 48, 57, 61
bracketing, 107
Broomhead, David, XV, 29, 123
Bruegel, Pieter the Elder, 89, 249
bubble wrap, 17–19
Bulgakov, Michael, 16
Burdges, Jeff, XIV, 263
Butterworth, Brian, 49, 91, 137

calculation
calendrical, 48

calculus, 4, 7
calculus of reflections, 273
Cameron, Peter, 124
Cantor, Georg, 82, 138
Cardano, Gerolamo, 11
Carey, Susan, 51, 52, 79, 80
carry, 98
Cartier, Pierre, 45
Casselman, Bill, 36
Castronova, Edward, 286
Cauchy, Augustin-Louis, 144, 145
Cesaro limit, 147
chant, 7, 107
Cherlin, Gregory, XIV, 18, 97, 98, 128,

137, 187, 313
Chinese Junk, 276, 277
chirality, 27, 28
choiceless polynomial time, 10
Choquet, Gustave, 258
Chorin, Alexander, 202, 203
Chrysippus, 64
circuit, 29

neuron, 71
Clinton, William Jefferson, 283
Codabar, 273
cognition, 72

mathematical, 74
cognitive psychology, X, 47
cognitive science, VII
cohomology, 76, 98
combinatorics, 76, 291
command line interface, 58
compactification, 106
completion, 106
complexity, 58

Kolmogorov, 168
polynomial time, 8
space-complexity, 58
time, 8
time-complexity, 58

complexity theory, 10, 72, 294
composition, 5
compression, 132, 133
computation

choiceless polynomial time, 8
computer science, 8, 10, 57, 72
comultiplication, 305
concatenation, 55
cone

simplicial, 219
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continuity, 141, 144
convexity, 85, 221, 241
Conway, John, 128
Coombes, Kevin, 212
Copeland, Jack, 128
copying by squares, 263
Corfield, David, XIV, XV, 20, 21, 69,

280, 287, 295, 296, 298, 306, 307
Costas array, 193, 194
counterexample

minimal, 17
counting, 71, 72, 92, 107

sheep, 95, 282
verbal, 92

covector, 95, 314
Coxeter language, 55
Coxeter, H. S. M., 24, 30, 56, 101, 161,

273
cryptography, 291, 294, 314

algebraic, 9
elliptic curve, 294

cryptomorphism, 67, 75, 78, 161, 162,
212, 265

curve
elliptic, 293, 294

Dalbello, Marija, 37
Davis, Chandler, XIV
Davis, Philip, IX, X, 33, 245, 248, 249,

252
Dawkins, Richard, IX, 245, 251, 252,

264, 272
de Saint-Exupéry, Antoine, XI, 93
de-encapsulation, 34, 132, 165
decimal, 98
Dedekind, Richard, 97, 144
degree of freedom, 89
Dehaene, Stanislas, X, 20, 81
Deletion Property, 55
della Francesca, Piero, 42, 218
Demaine, Eric, 273
Denef, Jan, 166
Dennett, Daniel, IX, 245
determinacy, 177
determinant, 10, 14
Devadoss, Satyan, XV, 36
Devlin, Keith, 272
diagram

Feynman, 307
self-explanatory, 26, 42
Voronoi, 231

Dick, Philip K., 85

Dieudonné, Jean, 60
Diffie-Hellman key exchange, 291, 292
digit

binary, 106
dimension, 96
dimensional analysis, 96
Dirichlet Principle, 70, 262
Dirichlet region, 261
Dirichlet, Johann Peter Gustav

Lejeune, 96, 97, 128
discovery

mathematical, 72
discriminant, 7
distance, 93
division, 107

long, 17
domain

unique factorization, 218
Doré, Gustave, 120, 121
Dostoevsky, Fedor Mikhailovich, 82
Doyle, Peter, 128
drawing, 36
duality, 314
Dubinsky, Ed, XIV, 147
Dunham, Douglas, XV, 104, 105, 128
Dyck path, 62

Ecclesiastes, 100
education

mathematical, 17
eidetism, 107
eigenvalue, 45
eigenvector, 45
Einstein, Albert, 79
electric charge, 96
elimination

Gauss-Jordan, 16
Ellers, Eric, XIV, 26, 30
embryogenesis, 75
encapsulated, 143
encapsulation, VI, 34, 131, 132, 165,

281
equality, 282
equation

Boolean, 16
cubic, 11, 13
differential, 140
finite difference, 140
linear, 16
quadratic, 7
quadric, 13
wage, 186
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equivalence, 282
Erdös, Paul, 314
Ernest, Paul, XV
error correction code, 260
Escher, M. C., XV, 89, 102, 104
Euclid, 66, 85, 161, 171, 258, 273
Euclidean geometry, 30, 265, 266
Euclidean space, 36, 56
Euler’s Theorem, 27, 30, 72
Euler, Leonhard, 29, 125
evolution, 28
exponentiation

square-and-multiply, 293

Feynman, Richard, 95
field

finite, 291, 293, 294, 303
number, 294
of residues, 293

filter
Fréchet, 146
of neighborhoods, 145

Fizmatshkola, 158, 160, 225, 310, 314
folding, 258
Fomin, Sergey, 63
form

disjunctive normal, 314
quadratic, 44
real, 44

Formula
Newton’s Binomial, 21
Tetrahedron, 218

formula
Brahmagupta’s, 219
Cardano, 11, 12
choiceless multivalued, 12
Heron’s, 213, 220
logical, 59
trigonometric, 21, 213, 216
validity of, 59

fraction
continued, 106

frequency hopping, 191
frequency-time pattern, 192
Freudenthal, Hans, 70, 96
Friedman, Harvey M., 114
Froude, William, 209
function, 4, 132

absolue value, 20
analytic, 6, 12
Boolean, 314
branch of, 12

compound, 6
continuous, 141
cubic root, 11
Dirichlet, 128
hypergeometric, 76
iteration of, 6
linear, 4
multivalued, 12
multivalued analytic, 11
non-analytic, 6, 11
non-linear, 4
not differentiable, 6
polynomial, 301, 303
square root, 21
two-valued, 11
uncomputable, 128

game
Massively-Multiplayer Online

Role-Playing, 286
Gardiner, Tony, XIV, 151
Gaussian elimination, 10
Gelfand, Israel, XIII, XIV, 4, 21, 76, 77,

241
gene HOXB8, 18, 19
generator, 299
genomics, 15
geometric intuition, 31
geometric progression, 106
geometry

3-dimensional, 312
algebraic, 22, 291
integral, 76
plane, 312
projective, 123

Glendinning, Paul, XV, 73, 121–123
Gogol, Nikolai Vasilevich, 83, 84
golden section, 106
Gorenstein, Daniel, 314
Goryunov, Victor, XV
Gowers, Timothy, 168, 308
Grünbaum, Branko, 45
grammar, 48, 51, 52
graph

Cayley, 309, 310
shifting, 5

graph paper, 62
Grax, 313
Gray, Jeremy, XV
grooming, 18–20
group, 309

finite reflection, 24
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abelian, 292, 294
additive, 21
algebraic, 294
Coxeter, XIV, 4, 24, 25, 36, 47, 55,

57, 63, 100, 308
cyclic, 293, 294
Euclidean reflection, 103
finiely presented, 300
finite reflection, 100
finitely generated, 309
hyperbolic, 300
hyperbolic reflection, 100, 101
ideal class, 294
infinitesimal, 91
Lie, 21, 43, 91, 261, 273
local, 90
Minkowski, 43–45
multiplicative, 21, 293
of fixed points, 44
of isometries, 21
of translations, 90
orthogonal, 43, 271
quantum, 305
reflection, 23, 36, 41, 43, 47
special linear, 43
spinor, 43
symmetric, 217, 218
unipotent, 294

Gurevich, Yuri, 10

Høyrup, Jens, 13
Habsieger, Laurent, 64
Hadamard, Jacques, 151, 170, 231
Hales, Thomas, 166
Hardy, G. H., XII, 174, 175, 177, 180
Hartshorne, Robin, 273
Haydn, Franz Joseph, 78
Henderson, David, 31, 87, 97
Hersh, Reuben, IX, X, XIV, 32, 33, 131,

212, 215–217, 245, 248, 249, 252
Herstein, I. N., 297, 314
Hilbert, David, 160, 257
Hill, Ray, XIV, XV, 260
Hipparchus, 64, 65
Hippocrates, 160
Hjelmslev, Johannes, 273
Hjorth

Greg, 309
Hobbs, Chris, XV, 11, 12, 14, 22
Hobby, David, 301
Hodges, Wilfrid, 78, 208
Hofmann, Karl Heinrich, 267

Hokusai, Katsushika, 200
Hough, David, 64
Hoyles, Celia, 185
Hull, Thomas, XV, 273
Humiaki Huzita, 273
Humphrey, Nicholas, 38, 39
hydroacoustic, 193
hydrodynamics, 291
hyperplane, 23

icosahedron, 40–42, 100, 235
identity, 282, 298

Jacobi, 271
idiot savant, 220
image processing, 27
infinity, 99, 105, 107, 123

actual, 99
potential, 99, 111

integer
p-adic, 129

integral
Lebesgue, 165

interiorization, XI, 33, 35, 36, 48, 58,
59, 72, 311

interpolation, 5
interpretation, 59
intuition, 72

geometric, 26, 87
sensorimotor, 90

inversion, 305
IQ, 48
ISBN, 260, 264, 273
Ishihara, Shuji, 73, 74

Jacobi identity, 271, 274, 275
Johansson, Mikael, 98
Johnson, Boris, 6
Jones, Alexander, XV, 97

König, Dénes, 176
Küchemann, Dietmar, 185
Kakuro, 16
Kalmár, Lázló, 187
Kaneko, Kunihiko, 73, 74
Kanel-Belov, Alexey, 238, 240
Kapovich, Ilia, 300
Karakozov, Serguei Dmitrievich, 222,

225
Kazarian, Maxim, 64
Kechris

Alexander, 309
Kepler, Johannes, 43–45, 300
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keystone, 236
Khudaverdyan, Hovik, XIV, 69, 129,

184, 273
Khukhro, Eugene, 222, 224, 225
Klain, Daniel, 215, 219, 220
Knuth, Donald, 8, 267, 268, 314
Koblitz, Neal, 9
Kolmogorov’s “5/3” Law, 96
Kolmogorov’s Principle, 195
Kolmogorov, Andrei Nikolaevich, 168,

195, 199–203
Konyagin, Sergei, 227, 228
Korchagina, Inna, XV, 119, 206
Krieger, Martin, VI
Krutetskii, Vadim Andreevich, 168,

170
Kuzminykh, Alexander Veni-

aminovich, XV, 234, 236

Léger, Fernand, 208
Lakatos, Imre, 250
Lakoff, George, 142
Lamarr, Hedy, 189–191, 195, 203, 207
Lando, Sergei, 64
language, 105

ε-δ, 140
Coxeter, 55–57, 101, 105
Indo-European, 74
mathematical, 75, 76
Russian, 74
Slovenian, 66

language processing, 106
Las Vergnas, Janette, XVI
Las Vergnas, Michel, XVI, 55
Lasker, Emanuel, 176
law

associative, 304
Coulomb’s, 98
distributive, 14
Shelah’s zero-one, 10

Lazutkina, Aleksandra Fedotovna, 207
Lec, Stanislaw Jerzy, 104, 290
Leeuwenhoek van, Antonij, IV, VIII,

IX
Leontiev, Alexei Nikolaevich, 81
limit, 106, 141, 144
Lindenbaum, Adolf, 128
line

of sight, 85, 221
straith, 85

linear programming, 314

linearity, 216
Lionheart, Bill, XV, 85
Lister, David, 272
Littlewood, John Edensor, 123, 268
Loday, Jean-Louis, 67
Loeser, François, 166, 167
logarithm, 8

discrete, 198
logic

mathematical, 148, 273
Lomas, Dennis, XV
Lomas, Dennis R., 156

magnitude, 4, 312
Manin, Yuri, 35, 152
Mann, Thomas, 53
map

Borel, 310
idempotent, 302

Maslov dequantization, 15
mathematical folklore, 69, 142, 221
mathematics

“competition”, 75
computer-assisted learning of, 58
continuous, 7
discrete, 7
finite, 21
infinite, 21
of time, 15
recreational, XI, 17
tropical, 13
unity of, XI, 13

matrix
λ-matrix, 17
orthogonal, 45

matroid, 241
maximum, 13
Mazurov

Victor Danilovich, 17
Vladimir Danilovich, 17

McKenzie, Ralph, 301
measure

Lebesgue, 165
mechanics

celestial, 291
quantum, 304

Megyesi, Gábor, 125, 129
meme, IX, X, 250, 255, 261
memetics, IX, 245
memory, 57

short term, 75
short-term, 52
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mental object, IX, 33, 72
meta-argument, 233
metamathematics, XI, 295

cognitive, 74
metatheory, 133, 217
Mikhalkin, Grigory, 15
Miller, George, 70
Milnor attractor, 73
Milnor, John, 73
Minkowski Lemma, 261, 262
Minkowski, Hermann, 43, 261
Minsky, Marvin, 171
mirror, 23, 56

of symmetry, 100, 101, 103
mirror image, 27
mirror system, 4

hyperbolic, 105
Mitchell, John, 38, 48
MMORPG, 286
Molièr, Jean-Baptiste, 98
momentum

angular, 274
monomial, 94
More, Thomas, 116
Moreira, Maria Leonor, XVI
Moszkowski, Paul, XIV, 100
motion, 271
motion camouflage, 121, 123
movement

infinitesimal, 90
Muldoon, Mark, XV
multiplication

matrix, 14, 21
multiset, 147
Mumford, David, 33
Muscharello, Pierpaolo, 13

Núnez, Rafael, 142–145
Nadia, 38, 39
Naylor, Grant, 286
Nelson, Mark E., 45, 86
Nesin, Ali, XV, XVII, 223, 229
neurophysiology, X
Nietzsche, Friedrich, XII
norm

l2, 127
uniform, 127
uniform convergence, 127

Noskov, Guennady Andreevich, 235
notation

infix, 65
reverse polish, 66

number
2-adic, 106
“named”, 93, 95
cardinal, 82
Catalan, 60, 62
complex, 94
decimal, 106
Hipparchus, 64
integer, 94
natural, 94
ordinal, 82, 148
prime, 92
rational, 94
real, 11, 94
Schröder, 64
with units, 93

number theory, 291
numeral, 51, 74, 105

sheep, 95, 282
numerosity, X, 137, 312

Oaxaca, Ronald, 186, 187
observable, 306
obsessive-compulsive spectrum

disorder, 19
Olshanski, Alexander Yurievich, 300
one-knower, 51
operation

binary, 60, 65
ternary, 66

optimization
discrete, 14

order, VI, 80, 86, 288, 308
lexicographic, 148
strict, 87

Orwell, George, 116, 303
Owl, XIV, 54, 66, 128, 266

Pálfy, Péter Pál, XV, 301, 303
Pak, Igor, XV, 236
palindrome, VI, 56–58, 78, 308
parenthesizing, 63

binary, 60
non-binary, 64, 65

paring, 47
parsing, VI, 34, 47, 107, 308
Pascal, Blaise, 135
Pasternak, Boris, 66
Penrose triangle, 88
perception, 71
permittivity, 98
Peter the Great, 66
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265
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pitch, 80
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complex projective, 230
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hyperbolic, 67, 100, 101
projective tropical, 15
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Plato, 160
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Plutarch, 64
Poe, Edgar Alan, 113, 115
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Laurent, 94, 95
quadratic, 4
symmetric, 217

polynomial equivalence, 302
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Poole, David, 260
Pope, Alexander, 279
Pratchett, Terry, XIV, 33, 295, 296
Principle

Indeterminacy, 306
problem

discrete logarithm, 293
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tensor, 44
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Gowers’, 309
projection, 304, 314
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accepted, 35
by “formal symmetry”, 170, 171
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diagrammatic, 217
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pictorial, 26, 45
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Pythagoras, 263
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134
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recovery procedure, 212
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reflexivity, 55
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anti-symmetric, 87
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multiple, 75
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Rockafellar, R. T., 87
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multiple, 147
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root system, 43
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representation, 21, 41, 76
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