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1 Introduction

1 Introduction

Classification is known as the assignment of a class y ∈ Y to an observation x ∈ X . This
task can be approached with probability theory by specifying a probability distribution
to select the most likely class y for a given observation x.

A well-known example (Russell and Norvig, 2003) is the classification of weather
observations into categories, such as good or bad, Y = {good , bad}. For instance, let x
be the weather observation on a special day, X = {Monday ,Tuesday , . . .}. Now, x can
be described by a set of features such as fcloudy(x) = 1, if and only if it is cloudy on day
x, fcloudy(x) = 0 otherwise. Other features might be fsunny or frainy. In general, features
do not necessarily have to be binary.

Modeling all dependencies in a probability distribution is typically very complex due
to interdependencies between features. The Näıve Bayes assumption of all features
being conditionally independent is an approach to address this problem (see Section 2.1).
In nearly all probabilistic models such independence assumptions are made for some
variables to make necessary computations manageable.

In the structured learning scenario, multiple and typically interdependent class and
observation variables are considered which implicates an even higher complexity in the
probability distribution. This is the case for image or music data as well as for natural
language text. As for images, pixels near to each other are very likely to have a similar
color or hue. In music, different succeeding notes follow special laws, they are not
independent, especially when they sound simultaneously. Otherwise, music would not
be pleasant to the ear. In text, words are not an arbitrary accumulation, the order is
important and grammatical constraints hold.

A typical task in natural language processing is known as text segmentation which
means the classification of units of a textual sequence. Such units are words or other
symbols. For each unit a category y ∈ Y has to be assigned. Categories might be
linguistically motivated, such as part-of-speech tags, or person names or cities, as in the
following text snippet:

[...] Mister George W. Bush arrived in Rome together with [...]

Here, the task is to assign a fitting label (also called output) sequence such as

[...] O name name name O O city O O [...]

where each label represents an entity class.1

One approach for modeling linear sequence structures, as can be found in natural
language text, are Hidden Markov Models (Rabiner, 1989). For the sake of complexity
reduction, strong independence assumptions between the observation variables are made.
This impairs the accuracy of the model. Conditional Random Fields (CRFs, Lafferty et al.
(2001)) are developed exactly to fill that gap: While CRFs make similar assumptions on
the dependencies among the class variables, no assumptions on the dependencies among
observation variables need to be made (see Section 4).

1 In this example the classes are name, city, and O where the latter is defined as not being an entity of
interest.
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2 Probabilistic Models

CRFs have found application in many domains which deal with structured data.
Despite the frequent application of linear-chain CRFs, also other underlying structures
have been used to model the respective dependencies among the class variables. Especially
in natural language processing, CRFs are currently a state-of-the-art technique for many
of its subtasks including basic text segmentation (Tomanek et al., 2007), part-of-speech
tagging (Lafferty et al., 2001), shallow parsing (Sha and Pereira, 2003), the resolution
of elliptical noun phrases (Buyko et al., 2007). CRFs have been proven to be very
useful in named entity recognition, especially on documents from the biomedical domain
(Settles, 2004; McDonald and Pereira, 2005; Klinger et al., 2007a,b; McDonald et al.,
2004). Furthermore, CRFs have been applied to gene prediction (DeCaprio et al., 2007),
image labeling (He et al., 2004) and object recognition (Quattoni et al., 2005), and also
in telematics for intrusion detection (Gupta et al., 2007) and sensor data management
(Zhang et al., 2007).

This paper aims at giving an overview of the basic theory behind Conditional Random
Fields and illustrates how these are related to other probabilistic models. In Section 2, a
brief overview of three classical and well-established probabilistic models is given: Näıve
Bayes, Hidden Markov, and Maximum Entropy. The relations between and graphical
representations of these different approaches are discussed in Section 3. In Section 4, the
basic concepts of CRFs (4.1) are explained. This section is mainly focused on the special
case of linear-chain CRFs (4.2) and methods for training (4.2.1) and inference (4.2.2).
Moreover, building upon these explanations, a generalization to arbitrarily structured
CRFs is given in Section 4.3.

For further reading we recommend the tutorials of Wallach (2004) and Sutton and
McCallum (2007). They approach the theory behind CRFs from a different perspective.

2 Probabilistic Models

In this section, some well-known probabilistic models are discussed. Conditional Random
Fields are founded on the underlying ideas and concepts of these approaches.

The Näıve Bayes Model is an approach to classify single class variables in dependence
of several feature values. In that model, the input values are assumed to be conditionally
independent. It is a so called generative approach, modeling the joint probability
p(y, ~x) of the input values ~x and the class variable y. The Hidden Markov Model is an
extension to the Näıve Bayes Model for sequentially structured data also representing
the dependencies of the variables ~x and ~y as a joint probability distribution.

Modeling joint probabilities has disadvantages due to computational complexity. The
Maximum Entropy Model, in contrast, is based on modeling the conditional probability
p(y|x). Like the Näıve Bayes Model, it is an approach to classify a single class variable
in dependence of several feature values. The difference is the consideration of conditional
probability p(y|x) instead of the joint probability.

While a Hidden Markov Model is a sequential extension to the Näıve Bayes Model,
Conditional Random Fields can be understood as a sequential extension to the Maximum
Entropy Model. Both Maximum Entropy Models and Conditional Random Fields are
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2 Probabilistic Models

NB ME

HMM CRF

single class single class

sequence sequence

joint conditional

joint conditional

Figure 1: Overview of probabilistic models: Näıve Bayes Model (NB), Hidden Markov
Model (HMM), Maximum Entropy Model (ME), and Conditional Random
Field (CRF). Depicted aspects are joint versus conditional probability, single
class prediction versus prediction on sequential data.

known as discriminative approaches.
A graphical comparison of these models is given in Figure 1. In the following, a

detailed explanation of these models is given based on Bishop (2006) and Russell and
Norvig (2003).

2.1 Näıve Bayes

A conditional probability model is a probability distribution p(y|~x) with an input vector
~x = (x1, . . . , xm), where xi (1 ≤ i ≤ m) are features and y is the class variable to be
predicted. That probability can be formulated with Bayes’ law:

p(y|~x) =
p(y)p(~x|y)

p(~x)
. (1)

The denominator p(~x) is not important for classification as it can be understood as a
normalization constant which can be computed by considering all possible values for y.
The numerator can also be written as a joint probability

p(y)p(~x|y) = p(y, ~x) , (2)

which can be too complex to be computed directly (especially when the number of
components in ~x is high). A general decomposition of that probability can be formulated
applying the chain rule p(x1, . . . , xm) =

∏m
i=2 p(xi|xi−1, . . . , x1):

p(y, ~x) = p(y)
m∏
i=2

p(xi|xi−1, . . . , x1, y) . (3)

In practice, it is often assumed, that all input variables xi are conditionally independent
of each other which is known as the Näıve Bayes assumption (Hand and Yu, 2001). That
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2 Probabilistic Models

means that p(xi|y, xj) = p(xi|y) holds for all i 6= j. Based on this simplification, a model
known as the Näıve Bayes classifier is formulated as2

p(y|~x) ∝ p(y, ~x) = p(y)
m∏
i=1

p(xi|y) . (4)

This probability distribution is less complex than the one formulated in equation 3.
Dependencies between the input variables ~x are not modeled, probably leading to
an imperfect representation of the real world. Nevertheless, the Näıve Bayes Model
performs surprisingly well in many real world applications, such as email classification
(Androutsopoulos et al., 2000a,b; Kiritchenko and Matwin, 2001).

2.2 Hidden Markov Models

In the Näıve Bayes Model, only single output variables have been considered. To predict
a sequence of class variables ~y = (y1, . . . , yn) for an observation sequence ~x = (x1, . . . , xn),
a simple sequence model can be formulated as a product over single Näıve Bayes Models.
Dependencies between single sequence positions are not taken into account. Note, that
in contrast to the Näıve Bayes Model there is only one feature at each sequence position,
namely the identity of the respective observation:

p(~y, ~x) =
n∏
i=1

p(yi) · p(xi|yi) . (5)

Each observation xi depends only on the class variable yi at the respective sequence
position3. Due to this independence assumption, transition probabilities from one step
to another are not included in this model. In fact, this assumption is hardly ever met
in practice resulting in limited performance of such models. Thus, it is reasonable to
assume that there are dependencies between the observations at consecutive sequence
positions. To model this, state transition probabilities are added:4

p(~y, ~x) =
n∏
i=0

p(yi|yi−1)p(xi|yi) . (6)

This leads to the well-known Hidden Markov model (HMM, Rabiner (1989))

P (~x) =
∑
y∈Y

n∏
i=0

p(yi|yi−1)p(xi|yi) , (7)

2A ∝ B indicates that A is proportional to B. Here, proportionality is given because of omission the
denominator.

3Recall that xi are different observations at different sequence positions. In equation 4, in contrast, xi
specifies different observations at the same position.

4The initial probability distribution is assumed to be included as p(y0|y−1) = p(y0)
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2 Probabilistic Models

where Y is the set of all possible label sequences ~y.
Dependencies between output variables ~y are modeled. A shortcoming is the assump-

tion of conditional independence (see equation 6) between the input variables ~x due to
complexity issues. As we will see later, CRFs address exactly this problem.

2.3 Maximum Entropy Model

The two models introduced in Section 2.1 and 2.2 are trained to maximize the joint
likelihood. In the following, the Maximum Entropy Model5 is discussed in more detail
as it is fundamentally related to CRFs. The Maximum Entropy Model is a conditional
probability model. It is based on the Principle of Maximum Entropy (Jaynes, 1957)
which states that if incomplete information about a probability distribution is available,
the only unbiased assumption that can be made is a distribution which is as uniform as
possible given the available information. Under this assumption, the proper probability
distribution is the one which maximizes the entropy given the constraints from the
training material. For the conditional model p(y|x) the conditional entropy H(y|x)
(Korn and Korn, 2000; Bishop, 2006) is applied, which is defined as

H(y|x) = −
∑

(x,y)∈Z

p(y, x) log p(y|x) . (8)

The set Z = X × Y consists of X , the set of all possible input variables x, and Y, the
set of all possible output variables y. Note that Z contains not only the combinations of
x and y occurring in the training data, but all possible combinations.

The basic idea behind Maximum Entropy Models is to find the model p∗(y|x) which
on the one hand has the largest possible conditional entropy but is on the other hand
still consistent with the information from the training material. The objective function,
later referred to as primal problem, is thus

p∗(y|x) = argmax
p(y|x)∈P

H(y|x) , (9)

where P is the set of all models consistent with the training material. What is meant
with “consistent” will be explained in detail later on page 8.

The training material is represented by features. Here, these are defined as binary-
valued functions6 fi(x, y) ∈ {0, 1} (1 ≤ i ≤ m) which depend on both the input variable
x and the class variable y. An example for such a function is:

fi(x, y) =

{
1 if y = name and x = Mister

0 otherwise
(10)

5These explanations of Maximum Entropy Models are based on the Maximum Entropy tutorial by
Berger et al. (1996).

6Such indicator functions are referred to as features instead of feature functions throughout the rest of
the paper.
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2 Probabilistic Models

The expected value of each feature fi is estimated from the empirical distribution p̃(x, y).
The empirical distribution is obtained by simply counting how often the different values
of the variables occur in the training data:

Ẽ(fi) =
∑

(x,y)∈Z

p̃(x, y)fi(x, y) . (11)

All possible pairs (x, y) are taken into account here. As the empirical probability for a
pair (x, y) which is not contained in the training material is 0, Ẽ(fi) can be rewritten as

Ẽ(fi) =
1
N

∑
(x,y)∈T

fi(x, y) . (12)

The size of the training set is N = |T |. Thus, Ẽ(fi) can be calculated by counting how
often a feature fi is found with value 1 in the training data T ⊆ Z7 and dividing that
number by the size N of the training set.

Analogously to equation 11, the expected value of a feature on the model distribution
is defined as

E(fi) =
∑

(x,y)∈Z

p(x, y)fi(x, y) . (13)

In contrast to equation 11 (the expected value on the empirical distribution), the model
distribution is taken into account here. Of course, p(x, y) cannot be calculated in general
because the number of all possible x ∈ X can be enormous. This can be addressed by
rewriting E(fi) by

E(fi) =
∑

(x,y)∈Z

p(x)p(y|x)fi(x, y) (14)

and substituting p(x) with the empirical distribution p̃(x). This is an approximation
to make the calculation of E(fi) possible (see Lau et al. (1993) for a more detailed
discussion). This results in

E(fi) ≈
∑

(x,y)∈Z

p̃(x)p(y|x)fi(x, y) , (15)

which can (analogously to equation 12) be transformed into

E(fi) =
1
N

∑
x∈T

∑
y∈Y

p(y|x)fi(x, y) . (16)

Only x values occurring in the training data are considered (x ∈ T ) while all possible y
values are taken into account (y ∈ Y). In many applications the set Y typically contains

7In fact, T is a multiset as the elements from Z can be contained several times. So the subset relation
T ⊆ Z only holds in a special case.

7



2 Probabilistic Models

only a small number of variables. Thus, summing over y is possible here and E(fi) can
be calculated efficiently.

Equation 9 postulates that the model p∗(y|x) is consistent with the evidence found in
the training material. That means, for each feature fi its expected value on the empirical
distribution must be equal to its expected value on the particular model distribution,
these are the first m constraints

E(fi) = Ẽ(fi) . (17)

Another constraint is to have a proper conditional probability ensured by

p(y|x) ≥ 0 for all x, y
∑
y∈Y

p(y|x) = 1 for all x. (18)

Finding p∗(y|x) under these constraints can be formulated as a constrained optimiza-
tion problem. For each constraint a Lagrange multiplier λi is introduced. This leads to
the following Lagrange function Λ(p,~λ):

Λ(p,~λ) = H(y|x)︸ ︷︷ ︸
primal problem

equation 9

+
m∑
i=1

λi

(
E(fi)− Ẽ(fi)

)
︸ ︷︷ ︸

!
= 0

constraints from

equation 17

+λm+1

∑
y∈Y

p(y|x)− 1


︸ ︷︷ ︸

!
= 0

constraint from

equation 18

(19)

This is maximized to get the model formulation p∗~λ
(y|x) in equation 28 on page 10. In

the following, a detailed derivation is given.
In the same manner as done for the expectation values in equation 15, H(y|x) is

approximated:

H(y|x) ≈ −
∑

(x,y)∈Z

p̃(x)p(y|x) log p(y|x) . (20)

The derivation of equation 20 is given by

∂

∂p(y|x)
H(y|x) = −p̃(x)

(
log p(y|x) +

p(y|x)
p(y|x)

)
= −p̃(x) (log p(y|x) + 1) . (21)

The derivation of the first m constraints in equation 19 is

∂

∂p(y|x)

m∑
i=1

λi

(
E(fi)− Ẽ(fi)

)
=

8



2 Probabilistic Models

=
∂

∂p(y|x)

m∑
i=1

λi

 ∑
(x,y)∈Z

p̃(x)p(y|x)fi(x, y)−
 ∑

(x,y)∈Z

p̃(x, y)fi(x, y)


=

m∑
i=1

λip̃(x)fi(x, y) . (22)

The complete derivation of the Lagrange function from equation 19 is then:

∂

∂p(y|x)
Λ(p,~λ) = −p̃(x)(1 + log p(y|x)) +

m∑
i=1

λip̃(x)fi(x, y) + λm+1 . (23)

Equating this term to 0 and solving by p(y|x) leads to

0 = −p̃(x)(1 + log p(y|x)) +
m∑
i=1

λip̃(x)fi(x, y) + λm+1

p̃(x)(1 + log p(y|x)) =
m∑
i=1

λip̃(x)fi(x, y) + λm+1

1 + log p(y|x) =
m∑
i=1

λifi(x, y) +
λm+1

p̃(x)

log p(y|x) =
m∑
i=1

λifi(x, y) +
λm+1

p̃(x)
− 1

p(y|x) = exp

(
m∑
i=1

λifi(x, y)

)
· exp

(
λm+1

p̃(x)
− 1
)
. (24)

The second constraint in equation 18 is given as∑
y∈Y

p(y|x) = 1 . (25)

Substituting equation 24 into 25 results in∑
y∈Y

exp

(
m∑
i=1

λifi(x, y)

)
· exp

(
λm+1

p̃(x)
− 1
)

= 1

exp
(
λm+1

p̃(x)
− 1
)

=
1∑

y∈Y
exp

(
m∑
i=1

λifi(x, y)

) . (26)

Substituting equation 26 back into equation 24 results in

p(y|x) = exp

(
m∑
i=1

λifi(x, y)

)
· 1∑
y∈Y

exp

(
m∑
i=1

λifi(x, y)

) . (27)

9



3 Graphical Representation

This is the general form the model needs to have to meet the constraints. The Maximum
Entropy Model can then be formulated as

p∗~λ(y|x) =
1

Z~λ(x)
exp

(
m∑
i=1

λifi(x, y)

)
, (28)

and Z~λ(x) then is

Z~λ(x) =
∑
y∈Y

exp

(
m∑
i=1

λifi(x, y)

)
. (29)

This formulation of a conditional probability distribution as a log-linear model and a
product of exponentiated weighted features is discussed from another perspective in
Section 3. In Section 4, the similarity of Conditional Random Fields, which are also log-
linear models, with the conceptually closely related Maximum Entropy Models becomes
evident.

For a more detailed discussion of Maximum Entropy Models and related approaches
we recommend the book by Pearl (1988) and the Maximum Entropy Tutorial by Berger
et al. (1996).

In this section, two kinds of probabilistic models have been introduced. On the one hand
generative models, such as Näıve Bayes and Hidden Markov Models, which are based on
joint probability distributions. As can be seen in formula 4 and 6, in such models the
observation variables xi topologically precede, also called “generate”, the input variables
y. This characteristic can be seen in the graphical representation (see Section 3), of
these models in Figures 3(a) and 4(a). On the other hand, discriminative models, such
as Maximum Entropy Models, are based on conditional probability distributions. In
the next section, both groups of models are reviewed from a different perspective: their
graphical representations.

3 Graphical Representation

The underlying probability distributions of probabilistic models can be represented in
a graphical form, this is why they are often called probabilistic graphical models. The
following explanations are inspired by Bishop (2006).

A probabilistic graphical model is a diagrammatic representation of a probability
distribution. In such a graph there is a node for each random variable. The absence
of an edge between two variables represents conditional independence between those
variables. Conditional independence means that two random variables a and b are
independent given a third random variable c if they are independent in their conditional
probability distribution, formally p(a, b|c) = p(a|b)p(b|c).8 From such graphs, also

8Note that in contrast two random variables a and b are statistically independent if and only if
p(a, b) = p(a)p(b).
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3 Graphical Representation

called independency graphs, one can read the conditional independence properties of
the underlying distribution. Note that a fully connected independency graph does not
contain any information about the probability distribution, only the absence of edges is
informative: Conditional independence in the probability distribution does not induce
the absence of the edge in the graph.9

Conditional independence is an important concept as it can be used to decompose
complex probability distributions into a product of factors, each consisting of the subset
of corresponding random variables. This concept makes complex computations (which
are for example necessary for learning or inference) much more efficient. In general,
the decomposition, in fact a factorization of a probability distribution, is written as
the product of its factors Ψs, with ~vs the subset of the respective random variables
constituting such a factor

p(~v) =
∏
s

Ψs(~vs) . (30)

Let G = (V,E) be a graph with vertexes V and edges E. In an independency graph
(for example the one shown in Figure 2(a)), the vertexes V = X ∪ Y , with X and Y
sets of random variables, are depicted by circles. X will typically be considered as
the set of input or observation variables (shaded circles), and Y as the set of output
variables (empty nodes). An independency graph can have directed or undirected edges,
depending on the kind of graphical model it represents (see Sections 3.1 and 3.2).

In a factor graph (Kschischang et al., 2001), such as the one shown in Figure 2(b), the
circles represent, as in an independency graph, the random variables of the underlying
distribution, depicted by circles. Further, a factor graph contains factor nodes, depicted
by small, filled squares, which represent the factors Ψs (compare with equation 30).10

In a factor graph, the edges are always undirected, linking the random variables to the
factor nodes. A factor Ψs includes all random variables to which the respective factor
node is directly connected by an edge. Thus, a factor graph represents more explicitly
the factorization of the underlying probability distribution. Independency graphs of
both directed and undirected graphical models can be transformed into factor graphs.

As an example, assume a probability distribution p(x1, x2, y) to factorize as p(~x) =
p(x1)p(x2)p(y|x1, x2). It has the factors Ψ1(x1) = p(x1), Ψ2(x2) = p(x2), and Ψ3(y) =
p(y|x1, x2). Here, x1 and x2 are conditionally independent given y. Figure 2 shows an
independency graph and a factor graph representing this distribution.

In the following, directed and undirected graphical models are discussed. Näıve Bayes
and Hidden Markov Models fall into the first group, the Maximum Entropy Model falls
into the second group of graphical models.

9A graph is called dependency graph if the independence of two variables implicates separability of the
corresponding nodes in the graph (Beierle and Kern-Isberner, 2003, pp. 337f.).

10A factor graph consists of two sets of nodes: variable and factor nodes. There are no edges between
nodes of the same set, so a factor graph is always bipartite.
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3 Graphical Representation

x1 x2

y

(a) Independency graph

x1 x2

y

Ψ1 Ψ2Ψ3

(b) Factor graph

Figure 2: Directed graphical model

3.1 Directed Graphical Models

A joint distribution p(~v) can be factorized into the product of conditional distributions
for each node vk, so that each such conditional distribution is conditioned on its set of
parent nodes vpk:

p(~v) =
K∏
k=1

p(vk|vpk) (31)

This is the same kind of factorization as shown in Figure 2 for the example distribution
p(x1, x2, y). As another example, take the Näıve Bayes classifier which is discussed in
Section 2.1. Figure 3 graphically represents such a model with three observation variables.
The corresponding probability distribution factorizes as p(y, x1, x2, x3) = p(y) · p(x1|y) ·
p(x2|y) · p(x3|y), following the Näıve Bayes assumption. Analogously, Figure 4 shows an
HMM classifier for a sequence of three input variables x1, x2, x3. The factorization is
p(x1, x2, x3, y1, y2, y3) = Ψ1(y1) ·Ψ2(x1, y1) ·Ψ3(x2, y2) ·Ψ4(x3, y3) ·Ψ5(y1, y2) ·Ψ6(y2, y3)
which corresponds11 to the HMM (see equation 6).

x1 x3

y

x2

(a) Independency graph

x1 x3

y

x2

Ψ2 Ψ3 Ψ4

Ψ1

(b) Factor graph

Figure 3: Näıve Bayes classifier

11A dedicated start value y0 = ⊥ is assumed, so that Ψ(y1) = p(y0 = ⊥, y1)).
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3 Graphical Representation

x1 x3x2

y1 y3y2

(a) Independency graph

x1 x3x2

y1 y3y2

Ψ4Ψ3Ψ2

Ψ1

Ψ5 Ψ6

(b) Factor graph

Figure 4: Independency and factor graph for the Hidden Markov Model.

3.2 Undirected Graphical Models

A probability distribution can be represented by an undirected graphical model using
a product of non-negative functions of the maximal cliques of G. The factorization is
performed in a way that conditionally independent nodes do not appear within the same
factor, that means that they belong to different cliques:

p(~v) =
1
Z

∏
C∈C

ΨC(~vC) . (32)

The factors ΨC ≥ 0 are so-called potential functions of the random variables ~vC within
a clique C ∈ C.

The potential functions may be any arbitrary function. Due to this generality the
potential functions do not necessarily have to be probability functions. This is in contrast
to directed graphs where the joint distribution is factorized into a product of conditional
distributions. Thus, normalization of the product of potential functions is necessary
to achieve a proper probability measure. This is yielded by a normalization factor Z.
Calculating Z is one of the main challenges during parameter learning as summing over
all possible variables is necessary:

Z =
∑
~v

∏
C∈C

ΨC(~vC) . (33)

In Section 2.3 the Maximum Entropy model was discussed which can be formulated
by such a product of non-negative potential functions (compare to equation 28)

p~λ(y|x) =
1

Z~λ(x)

m∏
i=1

exp (λifi(x, y)) . (34)

In such log-linear models, potential functions are formulated as the exponential function of
weighted features. Such a formulation is frequently used because it fulfills the requirement
of strict positivity of the potential functions. Figure 5(a) shows the independency graph
for a Maximum Entropy classifier with an observation variable x, a corresponding factor
graph with three features is shown in Figure 5(b).
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4 Conditional Random Fields

y

x

(a) Independency
graph

y

x

f1 f2 f3

(b) Factor graph

Figure 5: Maximum Entropy Classifier

Directed and undirected graphical models differ in the way the original probability
distribution is factorized. The factorization into a product of conditional probability
distributions as done in a directed graphical model is straight-forward. In undirected
graphical models a factorization into arbitrary functions is done. This does not require
an explicit specification how the variables are related. But it comes at the expense of
having to calculate the normalization factor.

4 Conditional Random Fields

In the previous section, some well-known probabilistic models were discussed from a
mathematical perspective. Moreover, the graphical representation, which characterizes
the underlying probability distribution of the model, was shown.

A Hidden Markov Model can be understood as the sequence version of a Näıve Bayes
Model: instead of single independent decisions, a Hidden Markov Model models a linear
sequence of decisions. Accordingly, Conditional Random Fields can be understood as the
sequence version of Maximum Entropy Models, that means they are also discriminative
models. Furthermore, in contrast to Hidden Markov Models, Conditional Random Fields
are not tied to the linear-sequence structure but can be arbitrarily structured.

In the following, the idea and theoretical foundation of Conditional Random Fields is
illustrated. First, a general formulation of Conditional Random Fields is given followed
by an in-depth discussion of the most popular form of CRFs, those with a linear sequence
structure. A main focus are aspects of training and inference. This section closes with a
short discussion of arbitrarily structured CRFs.

4.1 Basic Principles

Introduced by Lafferty et al. (2001), Conditional Random Fields (CRF) are probabilistic
models for computing the probability p(~y|~x) of a possible output ~y = (y1, . . . , yn) ∈ Yn

given the input ~x = (x1, . . . , xn) ∈ Xn which is also called the observation. A CRF in

14



4 Conditional Random Fields

general can be derived from formula 32:

p(~v) =
1
Z

∏
C∈C

ΨC(~vC) . (35)

The conditional probability p(~y|~x) can be written as

p(~y|~x) =
p(~x, ~y)
p(~x)

=
p(~x, ~y)∑
~y ′ p(~y ′, ~x)

=
1
Z

∏
C∈C ΨC(~xC , ~yC)

1
Z

∑
~y ′
∏
C∈C ΨC(~xC , ~y ′C)

. (36)

From this, the general model formulation of CRFs is derived:

p(~y|~x) =
1

Z(~x)

∏
C∈C

ΨC(~xC , ~yC) . (37)

As described in Section 3, ΨC are the different factors corresponding to maximal cliques
in the independency graph (see Kschischang et al. (2001)). See Figure 6 for an example
of a linear-chain CRF. Each factor corresponds to a potential function which combines
different features fi of the considered part of the observation and the output. The
normalization follows from the denominator of equation 36:

Z(~x) =
∑
~y ′

∏
C∈C

ΨC(~xC , ~y ′) . (38)

In fact, during both training and inference, for each instance a separate graph is used
which is built from so-called clique templates. Clique templates make assumptions on
the structure of the underlying data by defining the composition of the cliques. Each
clique is a set of putatively interdependent variables, namely those contained in the
corresponding potential function (Sutton and McCallum, 2007). Examples for clique
templates are given in Section 4.2 and 4.3.

4.2 Linear-chain CRFs

A special form of a CRF, which is structured as a linear chain, models the output
variables as a sequence. Figure 6 shows the respective independency and factor graphs.
The CRF introduced in equation 37 can be formulated as

p(~y|~x) =
1

Z(~x)

n∏
j=1

Ψj(~x, ~y) , (39)

15



4 Conditional Random Fields

~x

yt yt+1 yt+2 yt+3

(a) Independency graph

~x

yt yt+1 yt+2 yt+3

(b) Factor graph

Figure 6: A Linear Chain Conditional Random Field

with

Z(~x) =
∑
~y ′

n∏
j=1

Ψj(~x, ~y ′) . (40)

Given the factors Ψj(~x, ~y) in the form

Ψj(~x, ~y) = exp

(
m∑
i=1

λifi

(
yj−1, yj , ~x, j

))
, (41)

and assuming n+ 1 to be the length of the observation sequence12, a linear-chain CRF
can be written as

p~λ(~y|~x) =
1

Z~λ(~x)
· exp

 n∑
j=1

m∑
i=1

λifi

(
yj−1, yj , ~x, j

) . (42)

The index j is needed in comparison to the Maximum Entropy Model because a label
sequence is considered instead of a single label to be predicted. In equation 42, j specifies
the position in the input sequence ~x. Note that the weights λi are not dependent on the
position j. This technique, known as parameter tying, is applied to ensure a specified
set of variables to have the same value.

The normalization to [0, 1] is given by

Z~λ(~x) =
∑
~y∈Y

exp

 n∑
j=1

m∑
i=1

λifi

(
yj−1, yj , ~x, j

) . (43)

Summation over Y, the set of all possible label sequences, is performed to get a feasible
probability.
12Note, that the number of factors is n because any two consecutive positions yj−1 and yj are combined

in a factor.
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~x

yt yt+1 yt+2 yt+3

. . .
Ψ1 Ψ2Ψ3 Ψ4 Ψm

Figure 7: Alternative interpretation of a linear-chain CRF

In equation 42 a formulation of a linear-chain CRF is given. Moving the sum over the
sequence positions in front of the exponential function, the actual factorization typically
done for a CRF gets more evident:

p~λ(~y|~x) =
1

Z~λ(~x)
·
n∏
j=1

exp

(
m∑
i=1

λifi

(
yj−1, yj , ~x, j

))
. (44)

The factor graph in Figure 6(b) corresponds to this factorization. One could also move
the sum over the different features in front of the exponential function

p~λ(~y|~x) =
1

Z~λ(~x)
·
m∏
i=1

exp

 n∑
j=1

λifi

(
yj−1, yj , ~x, j

) . (45)

In this interpretation, the factors are not “running” over the sequence but over the fea-
tures. The factor graph with factors Ψi = exp

(∑n
j=1 λifi

(
yj−1, yj , ~x, j

))
corresponding

to features fi is given in Figure 7. This interpretation is less intuitive but shows the
relation to the Maximum Entropy model (in Figure 5).

The model can be interpreted with even more factors by moving both sums to the
front of the exponential function

p~λ(~y|~x) =
1

Z~λ(~x)
·
m∏
i=1

n∏
j=1

exp
(
λifi

(
yj−1, yj , ~x, j

))
. (46)

The corresponding factor graph is not shown here because of the large number of factors
in the graph.

The factorization based on maximal cliques (see equation 44) is the one usually applied
for a linear-chain CRF. The other two factorizations (see equations 45 and 46) do not
adhere to this maximality. In general, factorizing according to cliques consisting of less
variable nodes than the maximal clique lead to inaccuracies because not all dependencies
are correctly considered. In this case, however, it leads to redundant computations
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S1 S2

S3

p12(~x)

p21(~x)

p23(~x)
p31(~x)

p13(~x) p32(~x)

p33(~x)

p22(~x)p11(~x)

Figure 8: Example for a stochastic finite state automaton

as can be seen in equation 46. The rest of the paper is based on the idea of the first
factorization.

Linear chain CRFs have exactly one clique template C ∈ C: It specifies the independency
graph to consist of connections between yj and yj−1 and ~x: C =

{
Ψj(yj , yj−1, ~x) | ∀j ∈

{1, . . . , n}}. Because of that special structure, it is possible to represent a linear-
chain CRF by a stochastic finite state automaton (SFSA) similar to Hidden Markov
Models. This is beneficial for implementation purposes. In that automaton the transition
probabilities depend on the input sequence ~x. Its structure is in general arbitrary but
the most straight-forward approach is to use a fully connected automaton with states Sl
where l ∈ Y. One state is used for every symbol in the label alphabet. Such automaton
with |Y| = 3 is depicted in Figure 8.

As stated in equation 42, the features are dependent on the label sequence and herewith
on the state transitions in the finite state automaton. So it is important to point out
that only a subset of all features fi is used in every transition in the graph.

The strategy to build a linear-chain CRF can now be summarized as follows:

1. Construct an SFSA S = (S, T ) out of the set of states S (with transitions T =
(s, ṡ) ∈ S2). It can be fully connected but it is also possible to forbid some
transitions.13

2. Specify a set of feature templates14 F = {g1(~x, j), . . . , gh(~x, j)} on the input
sequence. These are not used directly but for the generation of the features fi.

3. Generate set of features F = {∀s, ṡ ∈ S. ∀go ∈ F : fk(s, ṡ, go)}
13Such a decision might depend on the training data and the transitions contained there.

14An example for such a feature template is g1(~x, j) =

(
1 if xj = V

0 else
.
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4 Conditional Random Fields

Until now, only first-order linear-chain CRFs have been considered. To define linear-
chain CRFs with a higher order (see McDonald and Pereira, 2005), the features need to
have the form

fi(~y, ~x, j) = fi(hj(~y), ~x, j) (47)

with

hj(~y) = (yj−k+1, . . . , yj) . (48)

The order is given by k. For higher orders15 (k > 2), the same probabilistic state
automaton is used by combining different previous output values yi in special states. For
example, for k = 3 the set of states would be S′ = {(Si, Sj)} for all i, j ∈ {1, . . . , |S|}
(according to the first-order SFSA in Figure 8).

For that special linear-chain structure of the CRF, training and inference are formulated
in a similar way as for Hidden Markov Models as basic problems (Rabiner, 1989):

I) Given observation ~x and a CRF M: How to find the most probably fitting label
sequence ~y ?

II) Given label sequences Y and observation sequences X : How to find parameters of
a CRF M to maximize p(~y|~x,M)?

Problem I is the most common application of a conditional random field, to find a label
sequence for an observation. Problem II is the question how to train, to adjust the
parameters of M which are especially the feature weights λi.

In discriminative approaches, the probability p(~x|M) is not modeled. Estimating this
is another basic question in context of Hidden Markov Models and not considered here.

4.2.1 Training

For all types of CRFs, as well as for Maximum Entropy Models, the maximum-likelihood
method can be applied for parameter estimation. That means, that training the model
is done by maximizing the log-likelihood L on the training data T :

L̄(T ) =
∑

(~x,~y)∈T

log p(~y|~x)

=
∑

(~x,~y)∈T

log

 exp
(∑n

j=1

∑m
i=1 λifi

(
yj−1, yj , ~x, j

))
∑

~y ′∈Y exp
(∑n

j=1

∑m
i=1 λifi

(
y′j−1, y

′
j , ~x, j

))
 . (49)

To avoid overfitting the likelihood is penalized with the term −∑n
i=1

λ2
i

2σ2 . This technique
is established for use in Maximum Entropy Models and can also be applied here (see
15Note that first order means k = 2.
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explanations by Chen and Rosenfeld, 2000). The parameter σ2 models the trade-off
between fitting exactly the observed feature frequencies and the squared norm of the
weight vector (McDonald and Pereira, 2005). The smaller the values are, the smaller the
weights are forced to be, so that the chance that few high weights dominate is reduced.

For the derivation, the notation of the likelihood function L(T ) is reorganized:

L(T ) =
∑

(~x,~y)∈T

log

 exp
(∑n

j=1

∑m
i=1 λifi

(
yj−1, yj , ~x, j

))
∑

~y ′∈Y exp
(∑n

j=1

∑m
i=1 λifi

(
y′j−1, y

′
j , ~x, j

))
− m∑

i=1

λ2
i

2σ2

=
∑

(~x,~y)∈T

 n∑
j=1

m∑
i=1

λifi

(
yj−1, yj , ~x, j

)−
− log

∑
~y ′∈Y

exp
( n∑
j=1

m∑
i=1

λifi

(
y′j−1, y

′
j , ~x, j

))− m∑
i=1

λ2
i

2σ2

=
∑

(~x,~y)∈T

n∑
j=1

m∑
i=1

λifi

(
yj−1, yj , ~x, j

)
︸ ︷︷ ︸

A

−

−
∑

(~x,~y)∈T

log

∑
~y ′∈Y

exp
( n∑
j=1

m∑
i=1

λifi

(
y′j−1, y

′
j , ~x, j

))
︸ ︷︷ ︸

Z~λ(~x)︸ ︷︷ ︸
B

−
m∑
i=1

λ2
i

2σ2︸ ︷︷ ︸
C

. (50)

The partial derivations of L(T ) by the weights λk are computed separately for the
parts A, B, and C. The derivation for part A is given by

∂

∂λk

∑
(~x,~y)∈T

n∑
j=1

m∑
i=1

λifi

(
yj−1, yj , ~x, j

)
=

∑
(~x,~y)∈T

n∑
j=1

fk

(
yj−1, yj , ~x, j

)
. (51)
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The derivation for part B, which corresponds to the normalization, is given by

∂

∂λk

∑
(~x,~y)∈T

logZ~λ(~x) =
∑

(~x,~y)∈T

1
Z~λ(~x)

∂Z~λ(~x)
∂λk

=
∑

(~x,~y)∈T

1
Z~λ(~x)

∑
~y ′∈Y

exp

 n∑
j=1

m∑
i=1

λifi

(
y′j−1, y

′
j , ~x, j

) ·
·
n∑
j=1

fk(y′j−1, y
′
j , ~x, j) .

=
∑

(~x,~y)∈T

∑
~y ′∈Y

1
Z~λ(~x)

exp

 n∑
j=1

m∑
i=1

λifi

(
y′j−1, y

′
j , ~x, j

)
︸ ︷︷ ︸

=p~λ(~y|~x) see equation (42)

·

·
n∑
j=1

fk(y′j−1, y
′
j , ~x, j)

=
∑

(~x,~y)∈T

∑
~y∈Y

p~λ(~y ′|~x)
n∑
j=1

fk(y′j−1, y
′
j , ~x, j) (52)

Part C, the derivation of the penalty term, is given by

∂

∂λk

(
−

m∑
i=1

λ2
i

2σ2

)
= −2λk

2σ2
= −λk

σ2
. (53)

The log-likelihood function in equation 50 is concave: The first term is linear (see
equation 51) the second term belongs to the normalization. Hence, it does not change
the concavity of the function and the last term is concave (see equation 53), so is the
whole function.

Equation 51, the derivation of part A, is the expected value under the empirical distri-
bution of a feature fi:

Ẽ(fi) =
∑

(~x,~y)∈T

n∑
j=1

fi

(
yj−1, yj , ~x, j

)
. (54)

Accordingly, equation 52, the derivation of part B, is the expectation under the model
distribution:

E(fi) =
∑

(~x,~y)∈T

∑
~y ′∈Y

p~λ(~y ′|~x)
n∑
j=1

fi(y′j−1, y
′
j , ~x, j) . (55)
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The partial derivations of L(T ) can also be interpreted as

∂L(T )
∂λk

= Ẽ(fk)− E(fk)− λk
σ2

. (56)

Note the relation of equations 54 and 55 to equations 12 and 16 which were formulated
for the Maximum Entropy model. Besides the fact that for the CRF several output
variables are considered, these equations correspond. A difference is the absence of the
factor 1

N , which is irrelevant for finding the maximum by the approximation of the first
derivation Ẽ(fk)− E(fk)− λk

σ2 = 0.
Computing Ẽ(fi) is easily done by counting how often each feature occurs in the

training data (McDonald and Pereira, 2005). Computing E(fi) directly is impractical
because of the high number of possible tag sequences (|Y|). Recall, that for the Maximum
Entropy models, E(fi) can be computed efficiently due to the small number of different
output variables y in most applications. In a CRF, sequences of output variables lead to
enormous combinatorial complexity. Thus, a dynamic programming approach is applied,
known as the Forward-Backward Algorithm originally described for Hidden Markov
Models (Rabiner, 1989). This algorithm can also be used for linear-chain Conditional
Random Fields in a slightly modified form.

According to McDonald and Pereira (2005), a function Tj(s) is defined, which maps a
single state s at an input position j to a set of allowed next states at position j + 1, and
the inverse function T−1

j (s), which maps the set of all states of possible predecessors to
s. Special states ⊥ and > are defined for start and end of the sequence. An example
for the states in Figure 8 is Tj(S1) = {S1, S2, S3}. Forward (α) and backward (β) scores
will be used, which can be understood in general as messages sent over the network, in
the following assumed to be a linear chain (Bishop, 2006):

αj(s|~x) =
∑

s′∈T−1
j (s)

αj−1(s′|~x) ·Ψj(~x, s′, s) (57)

βj(s|~x) =
∑

s′∈Tj(s)

βj+1(s′|~x) ·Ψj(~x, s, s′) . (58)

In relation to the definition of the potentials in equation 41 the features are defined
on special states: Ψj(~x, s, s′) = exp (

∑m
i=1 λifi(yj−1 = s, yj = s′, ~x, j)) .

The α functions are messages sent from the beginning of the chain to the end. The
β functions are messages sent from the end of the chain to the beginning. They are
initialized by

α0(⊥|~x) = 1 (59)
β|~x|+1(>|~x) = 1 . (60)

With these messages, it is possible to compute the expectation under the model distri-
bution efficiently (Lafferty et al., 2001; McDonald and Pereira, 2005) by

E(fi) =
∑

(~x,~y)∈T

1
Z~λ(~x)

n∑
j=1

∑
s∈S

∑
s′∈Tj(s)

fi(s, s′, ~x, j) · αj(s|~x)Ψj(~x, s, s′)βj+1(s′|~x) . (61)
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Figure 9: Message passing in the Forward-Backward Algorithm. Each column represents
one variable, each box in a row one possible value of that variable.

The underlined part of formula 61 can be understood as computing the potentials in all
combinations of state sequences in the training data. A nice visualization is the so-called
lattice diagram in Figure 9 (Bishop, 2006) in which possible paths of messages sent are
depicted. The values for α and β are stored after one iteration so that they have to be
computed only once.

The normalization factor is computed by

Z~λ(~x) = β0(⊥|~x) . (62)

The Forward-Backward Algorithm has a run-time of O(|S|2n), so it is linear in the
length of the sequence and quadratic in the number of states.

4.2.2 Inference

The problem of inference is to find the most likely sequence ~y for given observations
~x. Note, that this is not about to choose a sequence of states, which are individually
most likely. That would be the maximization of the number of correct states in the
sequence. In contrast, for finding the most likely sequence the Viterbi Algorithm is
applied (Rabiner, 1989). The Viterbi Algorithm is similar to the Forward-Backward
Algorithm. The main difference is, that instead of summing, a maximization is applied.

The quantity δj(s|~x), which is the highest score along a path, at position j, which
ends in state s, is defined as

δj(s|~x) = max
y1,y2,...,yj−1

p(y1, y2, . . . , yj = s|~x) . (63)
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The induction step is

δj+1(s|~x) = max
s′∈S

δj(s′) ·Ψj+1(~x, s, s′) . (64)

The array ψj(s) keeps track of the j and s values. The algorithm then works as follows:

1. Initialization:
The values for all steps from the start state ⊥ to all possible first states s are set
to the corresponding factor value.

∀s ∈ S : δ1(s) = Ψ1(~x,⊥, s)
ψ1(s) = ⊥ (65)

2. Recursion:
The values for the next steps are computed from the current value and the maxi-
mum values regarding all possible succeeding states s′.

∀s ∈ S : 1 ≤ j ≤ n : δj(s) = max
s′∈S

δj−1(s′)Ψ(~x, s′, s)

ψj(s) = argmax
s′∈S

δj−1(s′)Ψ(~x, s′, s) (66)

3. Termination:

p∗ = max
s′∈S

δn(s′) (67)

~y ∗n = argmax
s′∈S

δn(s′) (68)

4. Path (state sequence) backtracking:
Recompute the optimal path from the lattice using the track keeping values ψt.

~y ∗t = ψt+1(~y ∗t+1) t = n− 1, n− 2, . . . , 1 (69)

Steps 1-3 are very similar to the Forward-Backward Algorithm. A lattice is filled with
the “best” values. Step 4 reads the best path from that lattice.

4.3 Arbitrarily structured CRFs

In Section 4.2, efficient training and inference for the special case of a linear-chain CRF
have been discussed. In the following, CRFs with an arbitrary graphical structure, such
as a tree or a grid structure, are explained. Different CRF structures have been proposed
by Sutton and McCallum (2007), Finkel et al. (2005), Lafferty et al. (2001), Sutton and
McCallum (2004), and Tsai et al. (2006).

Moving from a linear-chain CRF to a general CRF basically means to abolish the
restrictions that the clique templates (see Section 4.1) model a linear structure. Hence,
more general algorithms for training and inference have to be applied.
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y1 y2 y3 y4 y5
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(a) Linear Chain

y1 y2 y3 y4 y5

~x

. . . . . .

(b) Skip Chain

Figure 10: Examples for Structures of Conditional Random Fields

4.3.1 Unrolling the graph

In some publications, different CRF structures are depicted (see citations above and
examples shown in Figure 10). It has to be emphasized, that these structures are meant
exemplarily because the actual graph is instantiated separately for each instance for
training or inference with the help of the clique templates. Hence, the actual graph
structure depends on the considered instance and the specific type of the CRF. The
potential functions Ψj in the model (compare with equation 39) are associated with the
clique templates, but not to the cliques in the graph. The process of building the graph
for a specific instance is called “unrolling the graph”.

As already discussed in Section 4.2 the set of clique templates C for a linear-chain
CRF is given by

C = {C} with C =
{

Ψj(yj , yj−1, ~x) | ∀j ∈ {1, . . . , n}} . (70)

Accordingly, for a linear-chain CRF there is only one clique template resulting in a linear
structure for every possible input value. Only because of this linear sequence structure,
an SFSA can be used as a basis for an efficient implementation.

Another possible set of clique templates is

C = {C1, C2} with C1 =
{

Ψj(yj , yj−1, ~x) | ∀j ∈ {1, . . . , n}} (71)

and C2 =
{

Ψab(ya, yb, ~x) | (a, b) ∈ {1, . . . , n}2} , (72)

where a and b are indexes that specify labels with special attributes on the input sequence.
For example in a sequence ~x = (x1, . . . , xn) ∈ Nn the indexes a and b could specify all
items where b is divisible by a. Given a concrete sequence 2, 3, 4, 5, 6 this leads to a
CRF with the structure shown in Figure 11. In real life applications parameter tying
is often applied, in this example, the value of the weights λj is the same for identical
clique templates, independent of the position in the sequence.
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5 Summary
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(b) Factor Graph

Figure 11: Example for an unrolled skip-chain CRF for the sequence ~x = (2, 3, 4, 5, 6)
according to equations 71 and 72.

4.3.2 Training and Inference

In sequence structures such as the HMM or the linear-chain CRF (which is a simple
chain globally conditioned on the input values ~x) the Forward-Backward and the Viterbi
Algorithm, which are based on sending messages along the chain in the only two possible
directions, can be applied. Besides conceptually different algorithms, such as sampling
methods, there are generalizations of these algorithms for tree-structured graphs, namely
the sum-product and the max-sum algorithm (Kschischang et al., 2001).

The basic idea is that the messages sent along the graph are collected from different
directions before forwarding them. This generalization can also be used on arbitrary
graphs. The basic idea is to compute a so-called junction tree from the original graph.
The algorithms can then be applied in a slightly modified form.

5 Summary

In this tutorial, a detailed overview of Conditional Random Fields and the theory
behind and related to it is given. We started with a short recapitulation of well-known
probabilistic models. Conditional Random Fields can be considered as an extension to
the Maximum Entropy model (a structured learning model instead of a single-position
classification model) on the one hand, and the Hidden Markov Model (discriminative
model instead of a generative model) on the other hand.

Probabilistic models can be represented graphically by means of independency and
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factor graphs. We distinguished between directed and undirected graphical models
which result in different types of factorization. Such factorizations can be read from the
graphical representation of a model. They are often a crucial prerequisite for efficiently
performing complex computations, as needed for training or inference. Aspects of how
a CRF can be factorized and the resulting graphical representations are a focus of this
paper.

Based on the concepts of graphical representation and factorization we have introduced
a general formulation of CRFs. For the special case of a CRF based on a linear sequence
structure, an in-depth explanation of methods for training and inference was given.
These methods were originally developed for HMMs, but can be reused in a slightly
modified way for linear-chain CRFs.

Finally, we shortly discussed the issues which arise for CRFs with an arbitrary graphical
structure. This includes aspects of how the potential functions of the model can be
defined by means of clique templates and why the training and inference algorithms
used for a linear-chain CRF cannot be used in a non-sequential scenario. For further
reading and detailed explanations on algorithms for training and inference on general
probabilistic graphical models the interested reader might refer to Bishop (2006); Lepar
and Shenoy (1999); Jordan and Weiss (2002); Mooij and Kappen (2007); Borgelt and
Kruse (2002).
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