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Galileo’s Observations of Neptune 

Charles T. Kowal 
KOWAL1@yahoo.com 

 
 
 

This informal narrative will describe my discovery that Galileo had seen the 
planet Neptune in 1612, over two centuries before Neptune was “officially” 
discovered.  I am not a historian, and my discovery had little or no 
astronomical importance.  Nevertheless, this was one of the most exciting and 
rewarding experiences of my life. I found something obvious, that historians 
had overlooked for over three centuries!  I hope you will find this story 
interesting and amusing 

 

A little background 

I spent most of my career as an observational astronomer.  Mostly, I used the 
48-inch Schmidt telescope at Mt. Palomar to perform various surveys.  My 
main job was to search for supernovae, but my real passion was to search for 
unusual objects in the Solar System – comets, Apollo asteroids, and whatever 
else might be out there.  The 48-inch telescope was ideal for Solar System 
surveys, although few people actually used it for that purpose.  I recovered lost 
asteroids and comets, and found new ones.  In 1974 I discovered the 13th 
satellite of Jupiter, (Leda), and another one the following year.  Encouraged by 
these successes, I started a full-scale survey of the ecliptic region in 1977.  
This promptly led to my discovery of the object Chiron in November of that 
year. 
 
In the back of my mind during this survey, was the possibility of discovering a 
new planet.  The only evidence that such a planet might exist were the 
unexplained residuals in the orbit of Neptune.  Of particular interest to me was 
an article by Dennis Rawlins in the Astronomical Journal.  [Astron. J. 75, 
856−857 (1970)]. Rawlins described some pre-discovery observations of 
Neptune by Lalande in 1795.  Lalande’s residuals were small, but apparently 
significant.  Clearly, more pre-discovery observations, especially even earlier 
ones, would be most interesting.  I was on the lookout! 
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The occultations 

The March 1979, issue of Sky and Telescope magazine contained an excellent 
article by Steve Albers, which listed mutual occultations of planets for the 
years 1557 to 2230. Among these occultations were two of Neptune by Jupiter, 
in January 1613, and  September 1702.  Aha!  The telescope is in wide use by 
1702, but who was watching Jupiter in 1613?  Galileo, and no one else.  
Albers’ article gave me the raw material I needed to search for a pre-discovery 
observation of Neptune.  [In his article, Albers specifically mentioned that his 
computed occultations could be used to find pre-discovery observations of 
planets.  At the time, I thought this was obvious, but I was subsequently 
criticized for not giving him credit for that insight.  I scrupulously gave him 
credit for his occultation calculations, but Sky and Telescope implied that I 
gave him no credit at all!  Let me make it plain that my subsequent work 
would not have been possible without the work of Steve Albers.] 
 
 

The search 

 
I did not know if Galileo’s notebooks had ever been published in their entirety.  
Nor did I know how extensive they might be.  To find out, I went to the Hale 
Observatories library, and talked with Dr. Alexander Pogo – one of the most 
fascinating people I ever met. 
 
Dr. Pogo was an astronomer and classical scholar, born in Russia in 1893.  He 
talked very little about himself, but rumors of his past exploits abounded.  It 
was said that he had helped rebuild the Parthenon in Athens.  At the time I did 
my search he was 87 years old.  He looked exceedingly frail, but he delighted 
in climbing ladders while onlookers held their breath.  (Years later, Dr. Pogo 
did fall down and break his hip.  He died in 1988, at the age of 95.)  Pogo 
knew every book in that library, as well as the publication history of many of 
them.  When I asked Dr. Pogo about Galileo’s notebooks, he gave me a long 
account of the various editions that had been published.  As it happened, the 
Hale Observatories library had a copy of an edition published in Italy in 1909.  
(This book was on a top shelf, giving Dr. Pogo another opportunity to show off 
his ladder-climbing skills.) 
 
It turned out that the notebooks were indeed extensive, and contained hundreds 
of drawings of Jupiter and its satellites, sometimes including background stars.  
It was a simple matter to look at the drawings for the days around the 
occultation. 
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The outcome 

 
I was able to compute the positions of Jupiter and Neptune for each day in 
December 1612, and January 1613.  I simply plotted those positions, and 
compared my plots with Galileo’s drawings.  The result was stunning.  Galileo 
had seen Neptune at least three times.  
 
The first candidate was on a drawing from December 28, 1612.  Galileo had 
marked a “fixed star” near Jupiter.  Upon checking the SAO star catalog, it 
became clear that there was no star in that position, but it did match my plotted 
position of Neptune.  I was beginning to get excited. 
 
The next candidate was another fixed star Galileo plotted five days later.  This 
turned out to be SAO 119234.  Finally, I found the Holy Grail on the drawing 
for January 28, 1613.  On that night Galileo drew two stars near Jupiter.  Star 
‘A’ was SAO 119234 again.  Star ‘B’ was Neptune!  Galileo made a separate 
drawing showing just these two stars.  He also wrote a comment in Latin, 
which I translated as:  “After fixed star A, following in the same line, is star B, 
which I saw in the preceding night, but they then seemed farther apart from 
one another”.  Not only had Galileo spotted Neptune, he even noticed that it 
had moved from night to night! 
 
My initial reaction was disbelief.  It was all so easy, and it seemed impossible 
that historians had studied Galileo’s notebooks for over three centuries and had 
never noticed these observations.  Just to reassure myself, I contacted Stillman 
Drake, who was one of those Galileo historians.  Drake became as excited at I 
was, and provided me with much information about Galileo’s measurement 
techniques.  He also confirmed my translation of the Latin note which 
indicated that Galileo had seen Neptune move from one night to the next.  We 
agreed to write two papers about this discovery.  I wrote one for Nature, 
[Nature, 287, 311] and Drake wrote one for Scientific American 
[SciAm,243,52]. 
 
 

Charles Kowal               Galileo’s Observations of Neptune               DIO 15 

                                                   - 6 -  

The aftermath 
 
Galileo did not indicate the scale of his drawing of stars A and B, but I still had 
hope of using it for astrometric purposes.  All I could do was to speculate that 
this drawing had the same scale as the main drawing of Jupiter and its 
satellites.  Stillman Drake was particularly eager to move Neptune around like 
an old piece of furniture, and I was still optimistic, so we published our 
speculations about Neptune’s position, particularly in the Scientific American 
article.  Myles Standish and Dennis Rawlins quickly pointed out that our 
derived positions of Neptune were impossible, since they would have moved 
Neptune out of its known orbital plane.  No surprise there, but it did make the 
SciAm article somewhat tainted. 
 
The article in Nature was badly chopped-up in the editing, and it was preceded 
by a ridiculous and error-filled preface by the editor.  Nevertheless, the article 
did, I think, prove that Galileo saw Neptune.  Reaction in the popular news 
media tended to be on the order of:  “Galileo May Have Seen Neptune”, “Did 
Galileo See Neptune?”, or even “Galileo’s Mistaken Discovery”!  By not 
accepting my work at face value, the media showed an admirable restraint 
which I can only wish they would show when reporting the latest medical 
“breakthrough”. 
 
Later, I continued to look through Galileo’s notebooks for mentions of a 
“stella fixa”.  I identified several cataloged stars, but there were a few objects 
that I could not identify.  It is entirely possible that Galileo saw some of the 
brighter asteroids, but I did not pursue this.  Those of you who are looking for 
something to do might look into this potential gold mine! 
 
In 1982 I traveled to the Royal Greenwich Observatory, then at Herstmonceux 
Castle in East Sussex, England, to look at Flamsteed’s notebooks from 1702.  I 
found no evidence that Flamsteed or his colleagues had ever seen Neptune 
during that year’s occultation by Jupiter.  Of course, there were other 
observatories operating in Europe in 1702, and somebody, somewhere, may 
have seen Neptune in that year.  This, too, is something that others might want 
to pursue. 
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Statistical Dating of the Phenomena of 
Eudoxus 

 
Dennis Duke 

Florida State University 
 
 
In about 275 B.C. Aratus wrote Phenomena, a poem describing, among 
other things, the arrangement of the constellations relative to each other and 
relative to the principal circles on the celestial sphere: the equator, the 
northern and southern tropics, the ecliptic, and the arctic and antarctic 
circles.1 We know from the extensive Commentary of Hipparchus, ca. 130 
B.C., that Aratus’ main and possibly exclusive source was Eudoxus, who in 
about 370 B.C. wrote two books, Phenomena and Mirror, giving essentially 
the same descriptions that we find in Aratus, plus some additional material 
– principally lists of constellations on the colures and arctic circles – that 
we know only through Hipparchus.2 
 
We therefore know that Eudoxus had a fully developed conception of the 
celestial sphere. He understood the importance of the celestial poles and the 
celestial equator, and that the path of the Sun – the ecliptic – is a circle 
inclined to the equator. He understood the tropics as the circles parallel to 
the equator that touch the ecliptic at its most northern and southern points – 
the solstices, and when the Sun was at a solsticial point, he knew the 
fraction of the circumference of a tropic above and below the horizon. He 
understood the colures as circles through the celestial poles and the 
solsticial points, and through the celestial poles and the equinoctial points, 
the points where the equator and ecliptic intersect. He understood that the 
solsticial and equinoctial points are precisely a quadrant apart on both the 
equator and the ecliptic, and that the two colure circles intersect at right 
angles at the poles. He understood that stars above the arctic circle are 
always above the horizon, and hence always visible on any night, and that 
stars below the antarctic circle are never above the horizon. Eudoxus 
describes the zodiac as a band bisected by the ecliptic, and he names the 
sequence of twelve zodiacal constellations that we still use today. 
Furthermore, he names constellations, and usually specific parts of 

                                                 
1 D. Kidd, Aratus Phenomena, (Cambridge, 1997). 
2 I am using the English translation of Roger MacFarlane (private communication) 
with the assistance of Paul Mills. Until this is published, the interested reader must 
use Hipparchus, In Arati et Eudoxi phaenomena commentariorium, ed. and transl. by 
K. Manitius (Leipzig, 1894), which has an edited Greek text and an accompanying 
German translation. 
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constellations, that lie on the major celestial circles. Eudoxus is thus the 
earliest surviving source that describes the fully developed celestial sphere 
and, what is most important for our considerations, the relation of those 
circles to the constellations. 
 
We may also infer, with at least some level of confidence, what Eudoxus 
did not know, or saw no reason to mention. It seems unlikely that he gave 
values for the height of the celestial north pole above the horizon or for his 
geographical latitude (which would be the same numbers, of course). 
Likewise, it is unlikely that he gave any information about the size of the 
arctic or antarctic circles. It also seems unlikely that he gave a value for the 
obliquity of the ecliptic, even a round number such as 24° or 1/15th of a full 
circle. It seems equally unlikely that he gave any actual numbers 
characterizing the position of constellations or stars relative to the principal 
celestial circles, or that he imagined any coordinate system of any kind 
beyond the circles already mentioned. Indeed, it seems unlikely that he 
gave any direct measures of position whatsoever, since while Hipparchus 
left us plenty of his own numbers in his Commentary, he does not mention 
any position numbers from Eudoxus. 
 
Instead, what seems to have concerned Eudoxus more than quantitative 
spatial measurements are temporal relations, both daily and annual. For 
example, he gives two ratios for the length of longest day to shortest day 
(5/3 and 12/7). While Hipparchus knew that these can be used to specify 
geographical latitude, it is not clear that Eudoxus knew that. Eudoxus gives 
the constellations that rise and set simultaneously with the rising of each 
zodiacal constellation for the stated purpose of knowing when to expect 
sunrise. We know from the Geminus parapegma that Eudoxus tabulated the 
dates of heliacal rising and setting for several bright stars, and he gives the 
dates in that calendar for autumn equinox and winter solstice.3 Indeed, it 
seems most likely that Eudoxus’ interest in the tropics and equator was 
prompted mostly from observation of the annual north-south excursion of 
the rising and setting points of the Sun on an arc along the eastern and 
western horizons. 
 
What we may know even less about is when and where Eudoxus’ model of 
the celestial sphere was developed, and who developed it. Presumably some 
astronomical observations were made that underlie the information in 
Eudoxus’ books, and if we could somehow assign a reliable date, or even a 
range of dates, to those observations, we would at least know that the 
celestial sphere was developed no earlier than the observation dates. It is 
therefore of some interest to use the information from Eudoxus to try and 
assign dates and possibly locations to the underlying observations. 

                                                 
3 G. Aujac, Geminus Introduction to the Phenomena (Paris, 1975). 
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Dating a Star catalog 
 
Before we perform a statistical analysis to date the phenomena of Eudoxus, 
it will be useful to review a simpler problem: the statistical analysis 
required to date a star catalog. For simplicity, let’s assume we have a 
catalog listing a set of ecliptic longitudes and latitudes for known stars. 
Since the longitudes change with time due to precession, we can attempt to 
date the catalog by comparing the catalog longitudes Li with the 
theoretically computed longitudes λi(t). Assuming that the errors in the 
catalog longitudes,4 
 
 ( )i i iL tλ ε− =  
 
are normally distributed with variance σ2 and mean zero, i.e. N(0,σ2), then 
we can find the best fit time tmin by minimizing 
 

                         
2

2
2

1

( ( ))N
i i

i

L tλ
χ

σ=

−
= ∑  

 
Naively, and as we shall see incorrectly, the uncertainty σt in the 
determination of tmin can be determined from 
 
                                   2 2

min min( ) ( ) 1tt tχ σ χ± − =  
 
and is approximately  

                                                 
2

2
2t p N
σσ =  

 
where p is the precession constant (about 1.4° per century). It is clear that 
the size of σt can be made smaller and smaller by using more stars N. 
 
There is another easy, and equally naïve and incorrect, way to determine 
the uncertainty σt, and that is to use a Monte Carlo simulation. Having 
determined tmin as above, we simply construct a large number of new 
pseudo-catalogs, perhaps 1,000 or more, 
  

                                                 
4 In practice, it is necessary to weight the errors by the cosine of the latitude of each 
star. 
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                                 min{ ( ) , 1... }i i iL t i Nλ ε′ ′= + =  
 
where the iε ′ are N(0,σ2). Then for each set we minimize χ2 and determine 

mint′ . The standard deviation of these mint′ values will be an estimate of σt. 
 
Two final notes: 

(a) All of the above analyses assume that the errors are uncorrelated, 
i.e. while 2 2

iε σ< > = , we must also have 0i jε ε< > =  (where 
<..> is the usual statistical expectation value).  

(b) In the Monte Carlo it is essential that each of the pseudo-catalogs 
be possible sets of observations, even though none is the same as 
the observed catalog. Another way of saying this is that each set 
of errors could have been the set given by the author, and has the 
same statistical distribution as the set the author did give. 

 
As it happens, and as discussed below, both of these conditions lead to 
severe problems when computing the uncertainty in the date naively. 
 
 
The Effect of Calibration Errors in the Star Catalog 
 
Now let us suppose that the original observer had a calibration error in his 
measurements, i.e. he misplaced his zero-point in longitude with respect to 
the theoretically correct point that we are using for the λi’s. In practice, such 
an error is guaranteed to happen, of course. Thus we would have 
 
                                             ( )i i iL tλ ε η− = +  
 
where we can assume that η is 2(0, )cN σ , but uncorrelated with the εi, so 
<εiη> = 0. Now σc is the uncertainty in the observer’s determination of the 
zero point in longitude, which for all practical purposes is equivalent to 
how well he knows the position of the Sun relative to the stars on the day of 
some cardinal event, i.e. an equinox or solstice. Since σ2 is the variance in 
the positioning of the stars themselves, then it seems the most reasonable 
assumption is that σc should be at least as big as σ. In any event, it is clear 
that in the presence of a calibration error the errors in ( )i iL tλ−  are 
correlated, and the analyses outlined above must be done differently. 
 
We first compute the covariance matrix of the errors. The diagonal terms in 
this matrix are just  
                                  2 2( )( )ii i i cV ε η ε η σ σ= < + + > = +  
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while the off-diagonal terms, which are of course zero in the case of 
uncorrelated errors, are  
                                           2( )( )ij i j cV ε η ε η σ= < + + > =  
 
Now we have to minimize 

                                      2 1

1

( ( )) ( ( ))
N

i i ij j j
i

L t V L tχ λ λ−

=

= − −∑  

 
which clearly reduces to the familiar case when V is diagonal. The 
uncertainty σt in the determination of tmin can still be estimated from 
 
                                      2 2

min min( ) ( ) 1tt tχ σ χ± − =  
 
and is now approximately  

                                            
22

2
2 2

c
t p N p

σσσ = +  

 
Contrary to what we found assuming uncorrelated errors, it is clear that 
now σt cannot be smaller than σc/p, and so can no longer be made arbitrarily 
small by using more stars N. In fact, if σc is about the same size as σ, then 
the final uncertainty in pσt cannot be smaller than the uncertainty in the 
longitude of a single star. 
 
 
Dating the Phenomena of Eudoxus  
 
Now let us now suppose that instead of a star catalog, which of course 
gives in one way or another the author’s determination of the positions of a 
collection of stars, we have the statements of Eudoxus, which have come 
down to us in two ways: first, through the collection of what are apparently 
direct quotes from Eudoxus by Hipparchus in his Commentary to Aratus 
and Eudoxus, and second, through the poem of Aratus, which according to 
Hipparchus is a fairly accurate paraphrase of Eudoxus’ works. The relevant 
quotations from Eudoxus are given in the Appendix. 
 
Instead of fitting ecliptic longitudes, it is just as easy to fit right ascensions 
and declinations, especially if we are using the first analysis outlined above, 
which treats the phenomena as if they are from a star catalog and ignores 
calibration errors. Indeed, one finds 
 

for the colure data   1150 ≤ 130 B.C.  
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for the equator data    950 ≤ 230 B.C.  
for the northern tropic data  1120 ≤ 280 B.C. 
for the southern tropic data  1170 ≤ 300 B.C. 
for all declination data  1070 ≤ 160 B.C. 
for all the data   1130 ≤   90 B.C.  

 
in good agreement with previous results.5 Note that the date 1130 B.C. is 
about 8σ away from Eudoxus’ date 370 B.C. 
 
It is the case, however, that the phenomena of Eudoxus should not be 
analyzed as if they come from a star catalog. In order to see this, let us 
initially consider the data for the solsticial colure. This is a line of constant 
ecliptic longitude (as well as constant right ascension). Thus the ‘measured 
values’ Li are all either 90° or 270°, and we compute the various λi(t) as 
before. For the moment let us ignore the calibration error, and consider just 
the statistical errors 
 
                                         ( )i i iL tλ ε− =  
 
We might minimize χ2 and determine tmin using 
 

                                        
2

2
2

1

( ( ))N
i i

i

L tλ
χ

σ=

−
= ∑  

 
and proceed as described above, determining σt 
from 2 2

min min( ) ( ) 1tt tχ σ χ± − = , and adjusting σ in each fit so that the χ2 
per degree of freedom is about unity. 
  
On the other hand, we might try instead to use a Monte Carlo simulation to 
determine σt. 
The first task is to generate a new set of errors  
 
                                     min{ ( ) , 1... }i i iL t i Nλ ε′ ′= + =  
 
Suppose that the first star is supposed to be on the 90° colure. We can 
generate the first error, 1ε ′ , but then we must have that  
 

                                                 
5 B. E. Schaefer, “The Latitude and Epoch for the Origin of the astronomical Lore of 
Eudoxus”, Journal for the History of Astronomy, xxxv (2004) 161– 223, and 
references therein. 
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                                      1 min 190 ( )tλ ε ′− =  
 
Note, however, that once we know the error in the position of the first star 
with respect to the supposed solsticial colure, we automatically know the 
value of t: it is the time 1t′when the true colure is a distance (in longitude) 

1ε ′ from the position of the star at time tmin. Suppose we try to generate the 
error in position for the second star, also said by Eudoxus to be on the 90° 
colure. Picking a random ε from N(0,σ2), we would get 
  
                                      2 min 290 ( )tλ ε ′− =  
 
and from this a 2t′  as before. However, it is in general statistically 

impossible that 1 2t t′ ′= , and so this set of errors is not a physically 
realizable set, and cannot be used in a valid Monte Carlo simulation. 
 
In fact, it is easy to see in this case that once we know the error in the first 
star, which is after all just the distance from a specified circle of constant 
longitude, we can use the theoretically known position of the second, and 
all subsequent, stars to compute their positions relative to that same circle, 
and hence their errors must all be computed and not generated as random 
variables. 
 
It is furthermore clear that this analysis generalizes to circles of constant 
right ascension and declination. Once we know the distance of the first star 
from such a circle, we can find the unique time 1t′when that error would be 
realized, and we must use exactly that same time to compute the positions 
of all the other stars, and hence their distances from any circle. To do 
otherwise would be to create a set of errors and star positions that is not 
physically possible, and would not be acceptable in a Monte Carlo 
simulation. 
 
In practice, this all means that the uncertainty in the determination of the 
time is proportional to the uncertainty in position of a single star, so 
 

                                                   
2

2
2t p

σσ =  

 
In the presence of a calibration error (which, of course, should not be 
ignored in any event) we then get  
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2 2

2
2

c
t p

σ σ
σ

+
=  

Thus if σc is about the same size as σ, then the total uncertainty in pσt is 
about 2σ . For σ = 5°, which is the correct average value for all the data, 
the uncertainty in t is then about σt = 500 y, and so the difference in the 
dates 1130 B.C. and 370 B.C. is about an 8σ effect when computed naively, 
but only a 1.5σ effect when computed correctly. 
 
There is another consideration that should be taken into account in any 
statistical analysis of historical data that span many centuries. One 
justification for minimum χ2 analyses comes from consideration of 
likelihood. In this case, there is only one model parameter to be determined, 
the time t, and the likelihood assumption is that at any time t, if the errors 

( )i i iL tε λ= − are independently distributed according to some probability 

density ( ; )if tε , then the likelihood of observing the values 

{ , 1,..., }i i Nε ε= = at that time t is  

                                          
1

( | ) ( ; )
N

i
i

L t f tε ε
=

=∏ , 

and the most likely value of t is that which maximizes the likelihood. 
If ( ; )if tε  is the normal distribution, 

                                          

2
221( ; )

2

i

i
i

if t e

ε
σε

σ π

−
= , 

 
then χ2 is, up to irrelevant constants, just 2 ln ( | )L tε− , so clearly the 

maximum likelihood occurs at the same value of t that minimizes 2χ . 
 
More generally, however, we can ask what is the probability density 

( | )p t ε  of t given the observed error set { , 1,..., }i i Nε ε= = . That is 
given by Bayes’ theorem as 
 

                                       
( | ) ( )( | )

( | ) ( )
L t tp t

L t t dt
ε πε
ε π

=
′ ′ ′∫
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where L(e| t) is the likelihood defined above, and π(t) is the prior 
probability density of t, reflecting whatever knowledge we might have of t 
before we consider the data set e.6 

Note that if we have no prior information on t then π(t) is simply a constant, 
corresponding to a uniform probability distribution, and Bayes’ theorem 
reduces to conventional maximum likelihood or minimum 2χ . In practice, 
of course, we must obviously admit that π(t) can be constant only over 
some appropriate interval of time, so, for example, no one would accept an 
analysis indicating that Eudoxus’ data was measured in, say, 4000 B.C. or 
A.D. 2000. What we learn from this is that if the only information we have 
about t in the case of Eudoxus’ on-circle data is the data itself, then it is 
correct to perform a conventional minimum 2χ  analysis as we did above. 
But if we have any other independent information on t, then we should 
include it according to Bayes’ theorem.  

In fact, one thing we do know is that Eudoxus’ lore is given in the context 
of a fully developed model of the celestial sphere. Thus, when Eudoxus 
says that a constellation is on a colure, he obviously must know what a 
colure is, and where it is located with respect to the visible stars. If we 
conclude that the lore date to a time much earlier than Eudoxus, then it 
must be the case that the celestial sphere was fully developed at that earlier 
time. So if we say that π(t) is a constant over some interval of time, one of 
the things we are implicitly saying is that the knowledge of the celestial 
sphere and its associated cosmology was constant over that same interval. 
For the specific case of the on-circle data, we would be saying that the 
model of the celestial sphere known to Eudoxus in, say, 370 B.C., was 
equally well known in, say, 1120 B.C. 

Now I strongly doubt that many historians would agree with that last 
statement. In disputing it, they would point out that, setting aside the on-
circle data of Eudoxus, no evidence has come down to us suggesting that 
any culture prior to Eudoxus’ time understood the cosmology of the 
celestial sphere. For example, the stories from Homer and Hesiod mention 
a few astronomical facts, but nothing approaching the celestial sphere. The 
same is true for all known Greek sources earlier than Eudoxus.7 The 
cuneiform texts from Babylon and Uruk give no hint that the Babylonians 
understood the celestial sphere. Furthermore, the information in 
MUL.APIN, which is similar in some respects to the phenomena of 

                                                 
6 this is all very standard material that is discussed in many places. See, e.g., Glen 
Cowan, Statistical Data Analysis, (Oxford, 1998) 93-94. 
7 See, e.g. David Dicks, Early Greek Astronomy to Aristotle, (Ithaca, 1970). 
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Eudoxus and which probably dates to late second millennium B.C., gives 
no hint of a celestial sphere.8  

Considering all of these cases together, it strains credulity to the breaking 
point that each and every source we know from the time before Eudoxus 
might have known about the celestial sphere in all its details, but either 
chose not to write anything about it, or if they did, it has not reached us, 
even indirectly through intermediate sources such as Hipparchus. 
Therefore, it appears that if we invoke the knowledge we have independent 
of Eudoxus, we might tolerate a uniform prior for perhaps a century before 
Eudoxus, but we should most certainly not be assuming a uniform prior for 
the millennium or more predating Eudoxus.  

The implementation of the prior knowledge of t in a statistical analysis is 
unavoidably somewhat subjective, but we can easily imagine reasonable 
approaches to the issue. One simple way to proceed is to assume that the 
celestial sphere was developed no later than some time t0 and over some 
time interval τ, and use a function that approaches zero for times earlier 
than t0, with the rate of approach controlled by the time interval τ, and is 
strictly zero for times later than t0. One such probability distribution is the 
truncated normal, 
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For the case of the cosmology of the celestial sphere, the choices 

0 400 B.C.t =  and τ = 50 yrs might be appropriate, although there is no 
way to know these parameters with any certainty. Adding to χ2 the term 

2ln ( )tπ− and minimizing the resulting sum leads to an estimated date of 
550 ≤ 50 B.C. Clearly, this estimate is effectively determined entirely by 
the assumed values of t0 and τ, and so there is some truth in saying that we 
have essentially assumed the answer. In reality, though, what has been done 
is to simply enforce in the statistical analysis the very strong belief, 
founded on substantial historical data, that the celestial sphere did not 
precede Eudoxus by very long. Similarly, to omit the prior is to effectively 
assert an equally strong belief that invention of the concept of the celestial 
sphere is uniformly likely at any time over the millennium preceding 370 
B.C. 
  
                                                 
8 Herman Hunger and David Pingree, Astral Sciences in Mesopotamia, (Leiden, 
1999); James Evans, The History and Practice of Ancient Astronomy, (Oxford, 1998) 
5-8. 



Dennis Duke                  Statistical Dating of Eudoxus                     DIO 15 

                                       - 17 - 

Of course, a more direct and for all practical purposes equivalent strategy is 
to go ahead and perform a standard χ2 analysis ignoring the prior 
information, and if the result is found to conflict with the prior information, 
we simply discard the result as unreliable and say instead that Eudoxus, or 
some near contemporary, made errors sufficiently large to account for the 
observations he used.9 
 
Altogether, we must conclude that statistical analysis provides no 
significant evidence that the phenomena of Eudoxus were not originated 
sometime near to 370 B.C. 
 
  
Appendix 
 
Hipparchus’ quotations from Eudoxus list which constellations are on the 
colures, the equator, and the two tropics (omitting for now the two arctic 
circles).10 For the equator and tropics Aratus gives similar lists, but 
whenever we have the direct quotations from Eudoxus, there is no reason to 
use the information from Aratus. There are several cases where it appears 
that Aratus is correcting Eudoxus, but we certainly do not want to use that 
information when attempting to date the observations underlying Eudoxus’ 
statements. 
 
The Solsticial Colure 
 

1.11.9 Further, Eudoxus treats also the stars which lie upon the so-
called colures, and says that the Great Bear’s middle lies upon one of 
them, and also the Crab’s middle, the Water-snake’s neck, and the part 
of Argo between the prow and the mast; then it is drawn after the 
invisible pole through the tail of the Southern Fish, the Capricorn’s 
middle, and the middle of Arrow; then through the Bird’s neck, its 
right wing, and through Cepheus’ left hand; and through the bend of 
the Snake and beside the Small Bear’s tail. 

 
 

                                                 
9 A. Gelman et al., Bayesian Data Analysis, (Boca Raton, 2000) 259-262. It is 
perhaps interesting that this was exactly the conclusion of the discussion by Dicks 
(see ref. 7, p 162-3 and p 250, n 265) of R. Böker, ‘Die Enstehung der Sternsphaere 
Arats’,  Berichte über die Verhandlungen der sächsischen Akademie der 
Wissenschaften zu Leipzig, 99 (1952) 3-68. Böker’s statistical analysis puts the epoch 
of Eudoxus’ phenomena as 1000 ± 30–40 B.C. and the latitude of the observer as 
between 32°30´ and 33°40´. 
 
10 The following quotations are all from the translation of Roger MacFarlane (ref. 2). 
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Solsticial Colure DD PK

the Great Bear’s middle bet Uma 25

the Crab’s middle M44 449

the Water-snake’s neck the Hya 900

the part of Argo between the prow and the mast 880

the tail of the Southern Fish gam Gru 1022

the Capricorn’s middle eta Cap 618

the middle of Arrow del Sge 283

the Bird’s neck eta Cyg 161

the Bird’s right wing kap Cyg 167

Cepheus’ left hand the Cep 80

the bend of the Snake chi Dra 61

beside the Small Bear’s tail zet Umi 4
 
The Equinoctial Colure 
 

1.11.17 In the other colure, he says that there lie first the left hand of 
Arctophylax and his middle, taken lengthwise; then the middle of the 
Claws, taken breadth-wise, and the right hand of the Centaur and his 
front knees; then after the invisible pole the bend of the River and the 
Sea-monster’s head and the back of the Ram, taken breadth-wise, and 
the head of Perseus and his right hand. 

 
Equinoctial Colure DD PK

the left hand of Arctophylax kap Boo 88

the middle of Arctophylax, taken lengthwise alp Boo 110

the middle of the Claws, taken breadth-wise alp Lib 529

the right hand of the Centaur kap Cen 951

the front knee's of the Centaur alp Cen 969

the bend of the River  rho Eri 786

the Sea-monster’s head gam Cet 714

the back of the Ram, taken breadth-wise alp Ari 375

the head of Perseus the Per 194
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the right hand of Perseus CG869 191
 
 
The Equator 
 
For most of the constellations, Hipparchus does not quote explicitly from 
Eudoxus, but from Aratus, who wrote [511-524]: 
 

As a guide the Ram and the knees of the Bull lie on it, the Ram as 
drawn lengthwise along the circle, but of the Bull only the widely 
visible bend of the legs. On it is the belt of the radiant Orion and the 
coil of the blazing Hydra, on it too are the faint Bowl, on it the Raven, 
on it the not very numerous stars of the Claws, and on it the knees of 
Ophiuchus ride. It is certainly not bereft of the Eagle: it has the great 
messenger of Zeus flying near by; and along it the Horse’s head and 
neck move round. 

 
Hipparchus then adds that Eudoxus gives the flowing additional 
information: 
 

1.10.22 Eudoxus expressed the rest similarly; but, he says that the 
middle of the Claws lies on the equator, and that the left wing of the 
Eagle, the rump of the Horse, and also the northern of the Fishes do 
also. 
 

Equator DD PK
the Ram as drawn lengthwise alp Ari 375
the Bull, only the widely visible bend of the legs mu Tau 386
the belt of Orion eps Ori 760
the coil of Hydra alp Hya 905
the Bowl del Crt 923
the Raven gam Crv 931
the Claws alp Lib 529
the knees of Ophiuchus zet Oph 252
the left wing of the Eagle alp Aql 288
the rump of the Horse gam Peg 316
the Horse’s head (Aratus) eps Peg 331
the Horse’s neck (Aratus) zet Peg 325
the northern of the Fishes eta Psc 695
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The Summer Tropic 
 

1.2.18 Concerning the stars which are borne upon the summer and 
winter tropics, and also upon the equator, Eudoxus says this about the 
summer tropic:  
Upon it are: the middle of the Crab, the parts lengthwise through the 
middle of the Lion, the area a little above the Maiden, the neck of the 
held Snake, Engonasin’s right hand, Ophiuchus’ head, the Bird’s neck 
and its left wing, the Horse’s feet, but also Andromeda’s right hand 
and the part between her feet, Perseus’ left shoulder and left shin, and 
also the Charioteer’s knees and the Twins’ heads. It then concludes 
near the middle of the Crab. 

 

Summer Tropic DD PK

the middle of the Crab M44 449

lengthwise through the middle of the Lion eta Leo 468

the area a little above the Maiden eps Vir 509

the neck of the held Snake del Ser 269

Engonasin’s right hand kap Her 122

Ophiuchus’ head alp Oph 234

the Bird’s neck eta Cyg 161

the Bird's left wing eps Cyg 168

the Horse’s feet pi Peg 332

Andromeda’s right hand  rho And 340

the part between her [Andromeda's] feet gam And 349

Perseus’ left shoulder the Per 194

Perseus’ left shin xi Per 214

the Charioteer’s knees chi Aur 231

the Twins’ heads bet Gem 425
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The Winter Tropic 
 

1.2.20 About the winter tropic, Eudoxus says this:  
Upon it are: the middle of the Capricorn, the feet of the Water-pourer, 
the Sea-monster’s tail, the River’s Bend, the Hare, the Dog’s feet and 
tail, the Argo’s prow and mast, the Centaur’s back and chest, the 
Beast, and the Scorpion’s stinger. Then proceeding through the Archer 
it concludes at the middle of the Capricorn. 

 
Winter Tropic DD PK

the middle of the Capricorn eta Cap 618

he feet of the Water-pourer del Aqr 646

the Sea-monster’s tail iot Cet 732

the River’s Bend rho Eri 786

the Hare alp Lep 812

 the Dog’s feet zet Cma 834

 the Dog’s tail eta Cma 835

the Argo’s prow 879

the Argo’s mast alp Pyx 876

the Centaur’s back nu Cen 946

the Centaur’s chest 

the Beast del Lup 974

the Scorpion’s stinger lam Sco 565

the bow of the Archer (Aratus) del Sgr 571
 
 
Hipparchus also writes: 

 
2.1.20 Eudoxus makes it clear in the following statement that he 
places the tropic points at the middles of the zodiacal signs: “There is 
a second circle [the northern tropic], on which the summer solstices 
occur; and on this is the middle (parts) of the Crab.” Again he says, 
“There is a third circle [the equator] on which the equinoxes occur; 
and on this are both the middle (parts) of the Ram and the Claws. And 
there is a fourth [the southern tropic] on which the winter solstices 
occur; on it is the middle (parts) of the Capricorn.” He states it yet 
more conspicuously in the following, for the so-called colures, which 
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are drawn through the poles and the solstices and the equinoxes, he 
says: “There are two other circles through the poles of the cosmos, 
which cut one another in half, and at right angles. The constellations 
upon these lines are the following: first the ever-visible pole of the 
cosmos, then the middle of the Bear, reckoned breadth-wise, and the 
middle of the Crab.” Then a little later he says, “Both the tail of the 
Southern Fish and the middle of the Capricorn.” In later passages he 
says that in the other of the circles through the poles lie among others, 
which he enumerates, the middle (parts) of the Claws, reckoned 
breadth-wise, and the back (parts) of the Ram, reckoned breadth-wise. 

 
The precise meaning of these passages is connected with how Eudoxus is 
treating the relationship of the zodiacal constellations and the zodiacal 
signs.11 Hipparchus clearly thinks that when Eudoxus says ‘the middle 
(parts) of the Claws” he is referring to the middle of the zodiacal sign. We 
know this because Hipparchus repeatedly tells us that Eudoxus has 
arranged his signs so that the solstices and equinoxes occur at the middle of 
the signs. 
 
However, as discussed in detail by Bowen and Goldstein, it is not at all 
clear that Eudoxus was, as Hipparchus thought, referring to the signs of the 
zodiac when he mentions the middle of the Crab, the Claws, the Ram, and 
the Capricorn. Instead, by analogy with his coincident statements that the 
colure also goes through, e.g. the Great Bear’s middle, Eudoxus might well 
have been referring not to the signs but to the constellations. Of course, it is 
also possible that Eudoxus was considering the zodiacal signs and 
constellations as equivalent in some sense. 
 
In addition, it is also not at all clear that Eudoxus was referring to anything 
as specific as the midpoint of either the sign or the constellation, since his 
use of the plural (τά μέσα) implies simply ‘in the interior’, and nothing as 
specific as a central position. 
 
Therefore, for our purposes we can safely assume that Eudoxus understood 
that 
 

(a) the colures are great circles that intersect at right angles at the 
north celestial pole, so that one colure goes through the two 
solsticial points, the other through the two equinoctial points; 

                                                 
11 The question of just what Eudoxus meant, as opposed to what Hipparchus says he 
meant, is dealt with in detail by Bowen, A.C., & Goldstein, B.R. "Hipparchus' 
Treatment of Early Greek Astronomy: The case of Eudoxus and the length of 
daytime". Proceedings of the American Philosophical Society 1991, 135: 233-254. 
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(b) the ecliptic and the tropics touch at the solstices, the ecliptic and 
the equator cross at the equinoxes, and neighboring cardinal 
points are exactly one quadrant apart on both the equator and the 
ecliptic; 

(c) the solsticial colure goes through the middle parts of the Crab and 
the Capricorn, while the equinoctial colure goes through the 
middle parts of the Ram and the Claws 

(d) the solsticial and equinoctial points mark a location where 
Eudoxus thought the Sun was on a particular day of the year, but 
he specifies the location no more precisely than the middle parts 
of the Crab on summer solstice, the middle parts of the Claws on 
autumn equinox, etc. 

(e) various other specified constellations and constellation parts lie 
on or nearby the circles which define the celestial sphere. 

 
So while we may be relatively sure that Eudoxus knew the date of, say, 
summer solstice, to an accuracy of a few days, perhaps by looking for the 
turnings of the Sun on the eastern and western horizons in summer and 
winter, we have no specific information about how he might have 
determined the sidereal location of the Sun on those dates, or on the 
equinoxes. One plausible explanation is that he observed the date of 
summer solstice by observing the most northerly setting of the Sun on the 
western horizon, and then observed which constellations rose at sunrise on 
nearby mornings.
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An Interesting Property of the Equant 
 

Dennis W. Duke 
Florida State University 

 
 
Early astronomers were well aware of the fact that the speed of the planets 
varies as the planets move around the zodiac. This zodiacal anomaly, a 
departure from the perfect uniform motion expected of a celestial body 
according to many philosophers, was modeled by the early astronomers in 
several ways. For the Sun and the Moon (neglecting for now the second 
lunar anomaly), the simplest models used either an eccentric deferent with 
eccentricity e or an epicycle of radius r.  
 
In the eccentric deferent model, the planet rotates around a deferent circle 
of radius R at a uniform speed as seen from the center of the circle. The 
Earth, which is of course taken as the center of the universe, is displaced a 
distance e from the center of the deferent. The effect of this shift is that as 
seen from the Earth the speed of the planet is slowest when the planet is on 
the extension of the line from Earth to the center of the deferent (apogee), 
and fastest in the opposite direction, when the planet is on the extension of 
the line from the center of the deferent to the Earth (perigee). The planet 
moves at its mean speed when it is normal to the apsidal line as seen from 
the Earth, which means that it is more than 90° from apogee as seen from 
the center of the deferent. 
 
In the epicycle model, the planet rotates clockwise1 around a (smaller) 
epicycle circle of radius r at a uniform speed as seen from the center of the 
epicycle, and the center of the epicycle moves at uniform speed around a 
deferent circle of radius R, which is centered on the Earth. In this case, the 
minimum speed of the planet occurs when the planet is at the apogee of the 
epicycle, i.e. when it is as far as possible from the Earth, and its maximum 
speed occurs when the planet is at the perigee of the epicycle, i.e. when it is 
as near as possible to the Earth. The planet once again moves at its mean 
speed when it is normal to the apsidal line as seen from the Earth, which of 
course means that the epicycle center is more than 90° from the direction of 
apogee as seen from Earth. 
 
In Almagest 3.3, regarding the Sun, and again in Almagest 4.5 for the 
Moon, Ptolemy (ca. A.D. 150) explains in great detail the geometrical 
                                                 
1 This clockwise motion on the epicycle when modeling the zodiacal anomaly should 
not, of course, be confused with the counterclockwise motion of the planets on their 
epicycles when modeling the solar anomaly, which is responsible for retrograde 
motion. 
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equivalence of these models.2 This is seen most easily in Figure 1, which 
shows the two models superimposed, and the equivalence follows 
immediately from the elementary geometrical properties of the 
parallelogram. The equivalence of the models is further demonstrated in 
Almagest 3.5 by numerical examples, where Ptolemy essentially shows that 
the equation of center for the eccentric model is 
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so the equations of center are the same when e = r and α = – γ (the sign 
arising from the opposite direction of increase for the angles). We know 
from Theon of Smyrna,3 writing perhaps a generation earlier than Ptolemy, 
that the equivalence of eccentric and epicycle models was broadly 
understood among early astronomers, at least as far back as Hipparchus (ca. 
                                                 
2 G. J. Toomer, Ptolemy’s Almagest (1984). 
3 R. & D. Lawlor, Theon of Smyrna: Mathematics Useful for Understanding Plato 
Or, Pythagorean Arithmetic, Music, Astronomy, Spiritual Disciplines (1978). 

Figure 1.  In the epicycle mode the Earth is at the center O of a deferent circle 
of radius R, an epicycle of radius r is centered at C, and the planet is at S on the 
epicycle. In the eccentric model the Earth is displaced a distance e from the 
center D of the eccentric deferent of radius R, and the planet is at S on the 
deferent. If r = e, then ODSC is a parallelogram and the position of S as seen 
from O is the same in both models. 
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130 B.C.), and we furthermore know from remarks by Ptolemy in Almagest 
12.1 that the equivalence was very likely understood as far back as the time 
of Apollonius of Perge (ca. 200 B.C.). 
 
Beyond these models, however, there is very good reason to believe that an 
additional model was used for the Sun and the Moon by Greco-Roman 
astronomers, most likely between the time of Hipparchus and Ptolemy.4 
The modern name for that model is the concentric equant, and it was used 
exclusively for the Sun and Moon in texts from the fifth through seventh 
centuries A.D. from ancient India.5 For the concentric equant, the Earth is 
at the center of a deferent circle which is the orbit of the Sun or Moon, but 
the motion of the luminary on the deferent is seen as uniform not from the 
Earth, but from a point, the equant, displaced a distance e from the center of 
the deferent (see Figure 2). The speed of the planet as seen from the earth is 
slowest in the direction of the equant, fastest in the direction opposite the 
equant, and it has its mean value when the planet is 90° from the direction 
of apogee as seen from Earth. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

                                                 
4 David Pingree, “History of Mathematical astronomy in India”, Dictionary of 
Scientific Biography, 15 (1978), 533-633. 
5 K. S. Shukla, “Use of Hypotenuse in the Computation of the Equation of Center 
under the Epicyclic Theory in the School of Aryabhata I ???”, Indian Journal of 
History of Science, 8 (1973) 43-57. 

Figure 2. In the concentric equant model the Earth is at the center O 
of a deferent of radius R and the planet is at S on the deferent. The 
motion of S is uniform as seem from the equant point E, which is a 
distance e from O. 



Dennis Duke              An interesting property of the equant               DIO 15 

                                       - 27 - 

The idea that these ancient Indian texts are ultimately of Greco-Roman 
origin, and from the time between Hipparchus and Ptolemy, dates from the 
very first investigations by Western scholars in the 1800’s.6 In the second 
half of the 20th century the most prominent champions of the idea, and the 
scholars who did the most to document and elaborate it, were Pingree7 and 
van der Waerden,8 and so it seems appropriate to refer to the idea as the 
Pingree – van der Waerden (PvdW) hypothesis. The principal basis of the 
argument is that almost all of the astronomical features in the early texts are 
significantly less developed than those we find in the Almagest. 
 
The temporal coexistence of the concentric equant and the 
eccentric/epicycle models and the extensive surviving discussion of the 
equivalence of those models immediately begs the questions (a) can we 
extend the equivalence theorem to include all three models, and (b) is there 
any evidence that the ancient astronomers were aware of such an 
equivalence? The answer to (a) is a definite yes, but with an interesting 
twist, and the answer to (b) is also yes, at least in the framework of the 
PvdW hypothesis. 
 
The geometrical equivalence of the concentric equant and eccentric models 
is illustrated in Figure 3.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

                                                 
6 E. Burgess and W. D. Whitney, “Translation of the Surya Siddhanta”, Journal of 
the American Oriental Society, (1858) 141-498, and references therein. 
7 David Pingree, “On the Greek Origin of the Indian Planetary Model Employing a 
Double Epicycle”, Journal for the history of astronomy, ii (1971), 80-85; D. Pingree, 
“The Recovery of Early Greek astronomy from India”, Journal for the history of 
astronomy, 7 (1976), 109-123; D. Pingree, ibid. (ref. 4), and references therein. 
8 B. L. van der Waerden, “The heliocentric system in greek, persian, and indian 
astronomy”, in From deferent to equant: a volume of studies in the history of science 
in the ancient and medieval near east in honor of E. S. Kennedy, Annals of the new 
york academy of sciences, 500 (1987), 525-546, and references therein. 
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The models will be equivalent if and only if they predict the same value of 
the true centrum given the same value for the mean centrum. It is clear 
from the figure that this will in general be the case if and only if the 
eccentricity in the eccentric model is not constant but instead oscillates in a 
well-defined way about the value of the eccentricity in the equant model. 
This can be proved analytically by considering two cases: 
 

(1) an eccentric model with eccentricity e′ , and 
(2) a concentric equant model with eccentricity e. 

 
For the eccentric the equation of center is given by  
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while for the concentric equant we have 
 

Figure 3. The concentric equant has the Earth at O, the planet at S on a 
deferent of radius R, and the equant at E. The equivalent simple eccentric 
has an eccentric deferent also of radius R but centered at D, and the planet 
is now at T. Since ES and DT are parallel both models have the same mean 
centrum (angles FDT and  DES), and since OST is a straight line, the S and 
T have the same position as seen from the Earth and so both models have 
the same true centrum (angles EOS and DOT). 
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where α is the mean centrum. These models are equivalent when 
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It is clear that 
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and that /e e′ varies smoothly from its maximum at apogee to its minimum 
at perigee (see Figure 4). This then answers question (a) in the affirmative, 
and defines how the eccentricity of a simple eccentric model must vary in 
order to give the same equation of center as the concentric equant for a 
given mean centrum. Since the simple eccentric model is equivalent to a 
simple epicycle model, it immediately follows that the concentric equant is 
also equivalent to an epicycle model with a radius r′ varying in the same 
way. 
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Of course question (a) would be of only academic interest unless we can 
also answer affirmatively question (b), and clearly establish an historical 
background for believing that the extension of the equivalence to the 
concentric equant was known to ancient astronomers. In fact, the point is 
demonstrated explicitly in Bhaskara’s Mahabhaskariya9 (A.D. 629) which 
is a commentary on the Aryabhatiya10 (A.D. 499), the primary text of 
Aryabhata. Bhaskara explains the equivalence of the concentric equant and 
an oscillating eccentric model by directly computing one from the other, as 
follows:11 
 

IV 19. Subtract (the Sine of) the final equation 
from (the Sine of) the koti or again add it, 
depending on the quadrant; the square-root of 
the sum of the square of that and the square of 
the bahu is the hypotenuse. 

                                                 
9 K. S. Shukla, Mahabhaskariya of Bhaskara I (1960). 
10 K. S. Shukla, Aryabhatiya of Aryabhata (1976). 
11 David Pingree, “Concentric with Equant”, Archives Internationales d’Histoire des 
Sciences, 24 (1974) 26-28. 

Figure 4. The effective eccentricity e´/R of the simple eccentric model 
that is equivalent to a concentric equant with e/R = 0.1. Clearly e´ is 
maximum when the mean centrum α is zero, or at apogee, and e´ is 
minimum at perigee. 
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IV 20. Multiply (the Sine of) the final equation 
by the hypotenuse (and) divide (the product) by 
the Radius; add (the quotient) to or subtract it 
from the previous koti (repeatedly) until the 
hypotenuse is equal (to the hypotenuse 
obtained in the immediately preceding 
computation). 
IV 21. Multiply the Radius by the Sine of the 
bahu (and) divide (the product) by the (final) 
hypotenuse. Add the arc (corresponding to that 
quotient) to (the longitude of) the apogee 
according to the quadrant of the argument. 

 
However terse this may appear to us, it is actually rather verbose in 
comparison to many early Indian astronomical texts. In any event, the 
execution of the algorithm is as follows (see again Figure 3):  
 
Let OS = DT = R and adjust point D so that DT is parallel to OS and 
triangles OES and ODT are similar. The mean centrum α (angles DES and 
FDT) and the eccentricity EO = e of the concentric equant are given. The 
algorithm finds OD and OT = h = ‘the hypotenuse’, and uses those to 
compute the true centrum (angle EOS). First, drop a perpendicular line 
from T to a point F on the apsidal line.  

 
Step 1. (verse 19) assume OD = e  

Step 2. then OF = OD + R cos(α) and TF = R sin(α). Here R cos(α) 
and R sin(α) are the Sine of the koti and the Sine of the bahu, 
respectively. 

Step 3. then 2 2OT OF TF h= + =  

Step 4. (verse 20) by similar triangles 
OT R
OD e

= , so we have a new 

estimate for /OD eh R= . 
 
Step 5. go to step 2 with the new estimate of OD and recompute OF, 

TF, and h. When h stops changing, go to step 6.  

Step 6. (verse 21) compute angle DOT = 
arcsin( sin / )c R hα= which, added to the longitude of apogee, 

gives the longitude of the planet.  
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The algorithm solves 2 2 2( cos ) sinh eh R Rα α= + +  by iteration 

beginning with h R=  as the first trial value. The angle computed in Step 6 
will, of course, be the same value you could have gotten directly from 

arcsin( / sin )c q e Rα α α= + = + −  with a much simpler calculation 
(dropping a perpendicular from O to the extension of SE), so it is not clear 
why the iterative solution was used. 
 
Verses IV 9-12 in Bhaskara’s text give a similar solution employing an 
epicycle of varying radius. Invoking the PvdW hypothesis, we conclude 
that some Greco-Roman astronomers not only knew and used the 
concentric equant for the Sun and Moon, but they also understood that it 
was equivalent to an eccentric model with oscillating eccentricity and an 
epicycle model with oscillating radius. 
 
The modern history of the concentric equant is interesting in itself. In 1952 
van der Waerden noticed that the Tamil rules (ca. A.D. 1300) for 
computing solar longitude, based on the 248 day anomalistic cycle, were 
explained better by a concentric equant than by an Hipparchan eccentric 
model.12 In 1956, van der Waerden’s student Krishna Rav showed that the 
Tamil lunar longitudes computed using the same 248 day cycle were also 
explained better by a concentric equant model than by either an Hipparchan 
model or Babylonian System A or System B schemes for the lunar 
motion.13 
 
However, in 1956 in the paper in Centaurus immediately following Krishna 
Rav’s, van der Waerden changed his mind.14 He claimed that since there 
was no known tradition of a concentric equant model in either Greek or 
Indian astronomy, it would be better to assume that the Indians were in fact 
using a conventional Hipparchan eccentric model, but were computing the 
equation of center by approximation. Thus, while sin / sinq e R α= −  is 
exact for the concentric equant and is indeed used exclusively in Indian 
astronomy to compute the equation of center for the Sun and Moon, it is 
also a good approximation to the Hipparchan equation of center for small e, 
since 
 
                   2 2sin / sin( ) / sin ( / )q e R q e R O e Rα α= − + − + . 
 

                                                 
12 B. L. van der Waerden, “Die Bewegung der Sonne nach Griechischen und 
Indischen Tafeln”, Bayer. Akad. Wiss. Munchen 1952, math.-nat. K1., 219. 
13 I. V. M. Krishna Rav, “The Motion of the Moon in Tamil Astronomy”, Centaurus, 
4 (1956) 198-220. 
14 B. L. van der Waerden, “Tamil Astronomy”, Centaurus, 4 (1956) 221-234. 
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Thus van der Waerden concluded that the agreement of the approximation 
with the concentric equant was accidental. 
 
However, in 1974 Pingree pointed out that there is indeed an explicit 
discussion of the concentric equant in Indian astronomy, the very 
commentary on Aryabhata by Bhaskara discussed above, thus contradicting 
the premise of van der Waerden’s doubt.15 Since Pingree, van der Waerden, 
and virtually all other western scholars agree that these Indian texts 
represent a tradition derived from much older Greco-Roman sources, it 
appears that van der Waerden’s and Krishna Rav’s original conclusions are 
indeed correct. 
 
There is one other possible reflection of the concentric equant in ancient 
Greek astronomy. In Book 5 of the Almagest Ptolemy resolves the 
discrepancies between the simple Hipparchan lunar model and lunar 
elongations at quadrature by adding a complication to the model that bears 
a striking resemblance to the concentric equant. Indeed, Ptolemy’s lunar 
model is a concentric equant as discussed above, with the modification that 
the Earth is positioned not at the center of the deferent but at the equant 
point. This is the earliest point in the Almagest that Ptolemy employs a 
deviation from uniform circular motion, and he does so here silently, so we 
have no information from him on the origin of the model. Ptolemy goes 
further by adjusting the position of the apsidal line of the lunar epicycle, but 
that has no bearing on the modified concentric equant construction he uses. 
It might, however, be worth noting that according to one plausible reading 
of Ptolemy’s earliest commentator, the shift of the epicycle’s apogee is in 
fact the only contribution by Ptolemy to the full lunar model.16 Such an 
interpretation is, of course, not inconsistent with the present discussion. 
 
It is also at least possible that the concentric equant was at some point used 
for not only the Sun and Moon, but that with an added epicycle it was also 
used for planetary motion. We have no textual evidence for this, but the 
textual evidence that the simple eccentric plus epicycle model was ever 
used for planetary motion is also very sparse, so both cases are essentially 
on the same footing. Such joint models exhibit both zodiacal and solar 
anomalies, the latter being responsible for retrograde motion. In addition, a 
concentric equant plus epicycle model has a great practical advantage over 
the eccentric plus epicycle model in that the two anomalies are not coupled, 
so computation is as easy as a couple of table look-ups, and no complicated 
decoupling interpolation, such as the scheme Ptolemy provides in the 
Almagest, is required for computation using tables. It turns out, however, 

                                                 
15 David Pingree, ibid. (ref. 11). 
16 Alexander Jones, Ptolemy’s first commentator. Philadelphia, 1990. Transactions of 
the American Philosophical Society, 80.7. 62 pp. 
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that such a model is no better or worse for explaining the observed 
phenomena than an eccentric plus epicycle model, although the models fail 
in virtually opposite ways, so for example when one model produces 
retrograde arcs that are too small, the other produces arcs too large, and 
vice versa (see Figure 5).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
At some point between the times of Hipparchus and Ptolemy astronomers 
realized that a more sophisticated model, the equant, was required to 
account for the observed phenomena. One way to think of the equant is to 
start from an eccentric deferent model, and to displace the center of 
uniform motion toward the apogee, and hence away from the Earth, by an 
amount equal to the distance e between Earth and the center of the deferent. 
But an equivalent view is to start with a concentric equant and displace the 
Earth away from the equant. Either way, if any ancient analyst had noticed 
the pattern of mirror image failing of the simplest models, then it is 
tempting to muse that at least one factor leading to the Almagest equant was 
a consideration of the sort shown schematically in Figure 6, where the full 
equant is seen as a sort of merging of an eccentric deferent and a concentric 
equant.  
 
 
 
 

+

Figure 5. The width of retrograde arcs for Mars is shown as a function 
of zodiacal longitude. The apogee of Mars is around 115°, so the 
simple eccentric model gives arcs of maximum width at apogee and 
minimum width at perigee, while the concentric equant gives just the 
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Ptolemy, of course, uses the equant extensively in the Almagest to account 
for the zodiacal motion of Venus, Mars, Jupiter, and Saturn, and he gives 
detailed derivations of the equant model parameters based on empirical data 
for each of those planets, but he gives virtually no historical information on 
the development of the equant, and no other author even mentions its 
existence until Islamic astronomers began criticizing its philosophical 
shortcomings (nonuniform motion as seen from the center of the deferent 
and the impossibility of implementing such motion with rigid rotating 
celestial spheres). Several paths to the equant have been proposed, none of 
them mutually exclusive of the others, but the simple fact is that we cannot 
be sure when the equant was invented or how long it took, who invented it, 
or even what empirical data triggered the invention.17 So whether or not 
anyone ever thought about planetary models along this line is of course a 
matter of speculation, but hardly more so than all other proposed histories 
of the equant. 
 
In this context it is interesting to note that while all early Indian texts use 
the concentric equant to account for the zodiacal anomaly in both solar and 
lunar models, they use more complicated constructs to account for the 
planets, which exhibit both zodiacal and solar anomalies. Despite being 
effectively disguised by a remarkable series of approximations, the 
                                                 
17 James Evans, “On the function and probable origin of Ptolemy’s equant”, 
American journal of physics, 52 (1984), 1080-9; Noel Swerdlow, “The empirical 
foundations of Ptolemy’s planetary theory”, Journal for the history of astronomy, 35 
(2004), 249-71; Alexander Jones, “A Route to the ancient discovery of non-uniform 
planetary motion”, Journal for the history of astronomy, 35 (2004); Dennis W. Duke, 
“Comment on the Origin of the Equant papers by Evans, Swerdlow, and Jones”, 
Journal for the History of Astronomy 36 (2005) 1-6. 

Figure 6. A schematic representation of how someone might have thought 
to combine the simple eccentric and concentric equant models into the 
Almagest equant. 

=
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underlying mathematical basis of these Indian models is precisely the 
Almagest equant.18 In particular, the longitude in the Indian models is 
computed by means of a sequence of steps involving the concentric equant 
for the zodiacal anomaly, using sin / sinq e R α= − , and the usual 
epicycle equation 
 

                                      
sintan

cos
rp

R r
γ
γ

=
+

 

 
for the solar anomaly. The development of this approximation scheme, 
itself an especially brilliant achievement in applied mathematics, might 
well be expected from someone familiar with the concentric equant, but of 
course by no means proves that case. 
 
The equivalence of the concentric equant to an eccentric with oscillating 
eccentricity and an epicycle with oscillating radius can be easily extended 
to the Almagest equant. The discussion parallels that given above for the 
concentric equant, except for the Almagest equant one has 
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In this case /e e′ is bounded by 
                                       

                                             
1 1

21 1

e
e ee
R R

′
≤ ≤

+ −
 

 
and so the variation is smaller than in the case of the concentric equant. 
 
The fact that such an equivalence scheme for the equant is never mentioned 
in any Greco-Roman text is hardly surprising. Since only Ptolemy mentions 

                                                 
18 B. L. van der Waerden, “Ausgleichspunkt, ’methode der perser’, und indische 
planetenrechnung”, Archive for history of exact sciences, 1 (1961), 107-121; Dennis 
W. Duke, “The equant in India: the mathematical basis of Indian planetary models”, 
Archive for History of Exact Sciences, 59 (2005) 563-576. 
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the equant, and since we know that Ptolemy, and according to Theon of 
Smyrna, earlier astronomers, were developing a cosmology of the heavens 
in terms of physical spheres, it is certainly not unreasonable to suppose that 
even if he knew about this oscillating radius/eccentricity view of the 
equant, Ptolemy would see no reason to mention it since it conflicts so 
starkly with his view of cosmological reality.  
 
However, one very curious feature of most of the Indian schemes is the use 
of pulsating values for e and r. One might suppose that these pulsating 
values somehow reflect an earlier knowledge of the relationship of the 
equant to oscillating e and r values, except for the facts that (a) the Indian 
schemes have two maxima and minima per rotation instead of the single 
maximum and minimum that we find in the equivalence with the equant, 
and (b) the Indian schemes already incorporate the equant, and the 
oscillating eccentricity arises from the equivalent simple eccentric model. 
Altogether this suggests that someone was tinkering, perhaps in order to 
improve some perceived fault in the model. Whether this tinkering was 
done originally in Greco-Roman times or later in India seems impossible to 
say in the absence of any further evidence. 
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A Database for the British Neptune-discovery Correspondence 
Nick Kollerstrom 

 
In my experience the discovery of Neptune is the one story which 
astronomers do really, really like to hear told.  A few of the Neptune-
discovery letters are already up at www.dioi.org/kn/neptune/corr.htm and 
previous articles in DIO 2.3 and 9.1 cover the story. But soon a much richer 
collection of documents will appear at www.dioi.org. 
 
Summaries of around 440 letters concerning the discovery of the planet 
Neptune in 1846 are going into a database on the DIO website. These come 
mainly from the British libraries in Cambridge and London, and also Paris 
and a few from Washington. The discovery of Neptune was a huge 
international drama which involved France (where it was predicted), 
Germany (where it was found), England (where priority of prediction was 
claimed, retrospectively) and America (where the orbit theory seemed to 
show that the prediction had been a mere fluke).  
 
The database will be searchable, so one can search by author, recipient, 
date of letter, archive or subject. It indicates where the original letter is 
stored and where copies exist. This integration of the correspondence 
enables a complete version of the story to be told, for the first time. For 
example, by collecting together the 22 letters by and to Leverrier a fuller 
version of his elusive personality becomes possible. This will appear in my 
forthcoming article ‘The Naming of Neptune’ in the next issue of the 
Journal of Astronomical History and Heritage (Australia). Leverrier sunk 
into a depression after the planet’s discovery and would not participate in 
the naming process, leading to an impasse in the decision-making. It is 
remarkable that there is no extant French correspondence of Leverrier 
around this period. It is all with his English colleagues chiefly Herschel and 
Airy.  
 
The database also has a copy of the first line of each letter. Many of the 
letters are only readable because they have been transcribed around the 
beginning of the 20th century (the MacAlister collection at John’s College, 
the Herschel collection at the Royal Society). In Cornwall there is an 
archive with many family letters of John Couch Adams, and quite a few of 
these are of some relevance to the story. The web enables History of 
Astronomy to be researched and experienced by persons far from these few 
old libraries, or I suggest that it should do so. I hope we can eventually get 
scanned-in images of these actual letters, maybe with text enhanced to 
make the old handwriting more readable! John Herschel’s spidery scrawl is 
quite a nightmare to read, and nearly all of Airy’s letters in ‘The Neptune 
File’ exist only as blotting-paper copies of the letters he sent out.  
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