
Nordic Journal of Computing 11(2004), 41–71.

BINARY QUERIES FOR DOCUMENT TREES

ALEXANDRU BERLEA
HELMUT SEIDL

Technische Universität München, Institut für Informatik
Boltzmannstr. 3, 85748 Garching, Germany

{berlea|seidl}@in.tum.de

Abstract. Motivated by XML applications, we address the problem of answering k-ary
queries, i.e. simultaneously locating k nodes of an input tree as specified by a given rela-
tion. In particular, we discuss how binary queries can be used as a means of navigation
in XML document transformations. We introduce a grammar-based approach to speci-
fying k-ary queries. An efficient tree-automata based implementation of unary queries is
reviewed and the extensions needed in order to implement k-ary queries are presented. In
particular, an efficient solution for the evaluation of binary queries is provided and proven
correct. We introduce fxgrep, a practical implementation of unary and binary queries for
XML. By means of fxgrep and of the fxt XML transformation language we suggest how
binary queries can be used in order to increase expressivity of rule-based transformations.
We compare our work with other querying languages and discuss how our ideas can be
used for other existing settings.

ACM CCS Categories and Subject Descriptors: F.2.2 [Analysis of Algorithms and
Problem Complexity]: Nonnumerical Algorithms and Problems; I.7 [Document and Text
Processing]; H.3 [Information Storage and Retrieval]

Key words: XML, tree automata, querying, transforming

1. Introduction

Locating parts of documents with specific properties is a fundamental task in doc-
ument processing and in particular in XML applications. In this work we refer to
this process as querying. Querying is used on its own in order to extract infor-
mation from documents. Furthermore, especially in the context of XML, where
documents are often dynamically created from different XML sources, querying
accomplishes the basic function of locating sub-components used for creating new
content.

The importance of query-languages becomes apparent if one notes that XPath
[21], the XML query language proposed by the W3C Consortium, is integral part
of many other important specifications, for example XML Schema Language [23],
XSLT [22] or XQuery [25]. Various other query languages have been proposed,
see for example a survey on this [6].

XML documents are textual representations of trees. Most of the attention in
the study of XML query languages has been drawn by unary queries, which locate
individual nodes from the input tree. As opposed to this, in this work we address

Received May 3, 2004; revised June 24, 2004; accepted July 7, 2004.

42 A. BERLEA, H. SEIDL

k-ary queries, which are able to locate k nodes which simultaneously satisfy a
specific property. In particular, we consider binary queries and how they can be
efficiently implemented.

Binary queries turn out to be especially useful in rule-based transformation lan-
guages like XSLT or fxt [2]. There, queries are used for two purposes. The first
purpose is to specify which are the nodes to which a rule is applicable and is ac-
complished by so-called match patterns. Secondly, within a rule, queries are used
for selecting nodes for further processing, relative to the node to which the rule is
applied (the match node). Queries used for this purpose are called select patterns.

The evaluation of select patterns may be problematic for two reasons. Firstly,
they are to be evaluated in the context of the match node, i.e. dynamically for each
match node. In contrast, match patterns can be evaluated once before the trans-
formation begins, as the applicable rule for a node is given by the match pattern
fulfilled by the node in the (static) context of the root.

Secondly, as the nodes to be selected for further processing can be anywhere
around the match node, a dynamic implementation of select patterns has to allow
for arbitrary navigation in the input tree, which might be a source of inefficiency.
Many of the nodes to be selected however, have been visited and tested for the
required properties, by the time the match pattern has been evaluated. This led us
to the idea of simultaneously locating the match node and the selected nodes.

We can even remove select patterns by combining the match pattern of a rule and
a select pattern within this rule into a match pattern expressed by a binary query.
It turns out, as binary queries can be efficiently evaluated, that this also solves the
first mentioned problematic aspect of select patterns.

Consider the following XML input document:

XML Example 1

<company>

<url>spice.girls</url>

<empl><name>Mel A.</name></empl>

<empl><name>Mel B.</name></empl>

<empl><name>Mel C.</name></empl>

</company>

The following XSLT rule produces a homepage element for each employee:

XML Example 2

<xsl:template match="company[url]/empl">

<homepage>

<body>Under construction.

See the company’s page:

<link><xsl:copy-of select="../url"/></link>

</body>

</homepage>

</xsl:template>

BINARY QUERIES FOR DOCUMENT TREES 43

A binary match could simultaneously locate an employee and the url of her
company. Let us suppose that binary queries were possible in XPath. Let the
second element of a binary match be specified by preceding the corresponding
node in the pattern with the % symbol, and referred within the rule by using the
same symbol. The rule above could then be expressed as follows:

XML Example 3

<xsl:template match="company[%url]/empl">

<homepage>

<body>Under construction.

See the company’s page:

<link>%</link>

</body>

</homepage>

</xsl:template>

Given the wide range of use of a query language for XML, it is desirable that it is
as expressive and efficient as possible. A powerful formalism for expressing unary
queries on tree-structured documents is the forest grammar formalism introduced
by Neumann [14]. Neumann and Seidl [16] introduce a class of tree automata, the
pushdown forest automata, and show how they can be efficiently used to evaluate
unary queries.

The main contribution of this work is extending the grammar formalism by
proposing a concept of recognizable k-ary queries and presenting techniques for
the efficient implementation for the special case of binary queries, based on push-
down forest automata.

The presented techniques have been implemented in our XML querying tool
fxgrep [15]. The binary queries of fxgrep are used as suggested above as select
patterns in our XML transformation tool fxt. We address some challenges arising
in practical implementations.

Querying with unary and binary patterns is an essential task in fxt. Therefore,
the used techniques must not only be efficient but also reliable. It is for this reason
that we have put some effort into proving the correctness of our main algorithm.

We firstly introduced binary queries in a contribution presented in the Extreme
Markup Languages 2002 Conference [3]. The present paper is a completely re-
vised and updated version, containing more detailed explanations of the involved
algorithms, as well as the relevant proofs.

The rest of the paper is organized as follows. Section 2 formally defines trees
and forests used to model XML documents, and introduces a set of notations to
be used throughout the paper. Section 3 introduces regular forest grammars as
a generalization of XML schema languages. Section 4 presents pushdown for-
est automata which can be used to efficiently check conformance to a schema.
In Section 5 we show how forest grammars can express queries of arbitrary ar-
ities. Section 5.1 and Section 5.2 present each an efficient algorithm based on
pushdown forest automata for answering unary and binary queries, respectively.

44 A. BERLEA, H. SEIDL

Section 6 discusses the practical implementation of the algorithms in fxgrep and
Section 7 addresses related work. We conclude in Section 8.

2. Preliminaries

Let Σ be an alphabet. RΣ is the set of regular expressions over Σ and [[r]]
R

is the
regular string language defined by some regular expression r.

The sets TΣ of trees t and FΣ of forests f over Σ are given as follows:

t ::= a〈 f 〉, a ∈ Σ f ::= ε | t1. . . tn, n > 0 ,

where ε denotes the empty forest.
We write t = x〈 〉 or lab(t) = x iff t = x〈 f 〉 for some f .
Let f be a forest. Then Π(f) ⊆

�
∗ is the set of all paths π in f and is defined as

follows:

Π(ε) = {λ}
Π(t1. . . tn) = {λ} ∪ {iπ | 1 ≤ i ≤ n, π ∈ Π(fi) for ti = ai〈 fi〉}

where λ denotes the empty string.
N(f) = Π(f) \ {λ} is the set of nodes in f . A node identifies one of f ’s subtrees.

For π ∈ N(f), f [π] is called the subtree of f located at π and is defined as follows:

(t1. . . tn)[iπ] =

{

ti , if π = λ
fi[π], if π , λ and ti = a〈 fi〉

For a path π, we define last f (π) as the number of children of the node π:

last f (π) = max({n | πn ∈ N(f)} ∪ {0})

Note that last f (π) = 0 iff π identifies a leaf. Also note that a path always locates
a tree in a forest, not in a tree. Given a tree t, t[π] denotes the tree located by π
in the forest which consists of t only. One can see by definition that in this case
π always begins with 1. In particular, one can use the subtree t = f [π1] located
by a path π1 in a forest f to further locate a subtree of t. In this case we have that
f [π1][1π2] = f [π1π2].

3. Regular forest languages

An important task in document processing consists in verifying a structural prop-
erty of a document tree. For example, XML validation means checking that a
document has a required structure. The structure of a document can be specified
by using various so-called schema languages. Besides the document type defini-
tion of a document, there exist various more precise schema languages like XML
Schema Language, DSD [18] or RelaxNG [19].

In essence, all these languages specify regular forest languages as noted by Mu-
rata et al. [13]. Regular forest languages, also called regular hedge languages by

BINARY QUERIES FOR DOCUMENT TREES 45

Brüggemann-Klein et al. [5], constitute a very expressive and theoretically robust
formalism for specifying properties of forests. Validating a document against a
schema is therefore a test of membership in a regular forest language.

One modality to specify forest regular languages is by using forest grammars, as
presented by Neumann [14]. Among other possibilities of specifying regular forest
languages, forest grammars have the advantage of being more comprehensible.

A forest grammar over Σ is a tuple G = (R, r0) where R is a set of productions
(also named rules) using non-terminals from a set X and terminal symbols from Σ
and r0 ∈ RX is the start expression.

The productions in R have the form x → a〈r〉 with x ∈ X, a ∈ Σ and r ∈ RX. A
set of productions R together with a distinguished non-terminal x ∈ X or a regular
expression r ∈ RX defines a tree derivation relation DerivR,x ∈ TΣ × TX or a forest
derivation relation DerivR,r ∈ FΣ × FX, respectively, as it follows:

(a〈 f 〉, x〈 f ′〉) ∈ DerivR,x iff x→ a〈r〉 ∈ R and (f , f ′) ∈ DerivR,r

(t1 . . . tn, t′1 . . . t
′
n) ∈ DerivR,r iff x1 . . . xn ∈ [[r]]

R
and (ti, t′i) ∈ DerivR,xi

for i = 1, . . . , n
(ε, ε) ∈ DerivR,r iff λ ∈ [[r]]

R

If (f , f ′) ∈ DerivR,r we say that f ′ is a derivation of f w.r.t. R and r. In the
following we omit R when it is clear from the context which set of productions is
meant. If (R, r) = G we write (f , f ′) ∈ DerivG and say that f ′ is a derivation of f
w.r.t. the grammar G.

Note that a derivation f ′ is a relabeling of f . If lab(f ′[π]) = x we say that f ′

labels f [π] with x.

E 1. Let R be the set of following productions:

xa→ a〈(xa|xb)∗〉
xb→ b〈〉

Let f = a〈a〈〉b〈〉〉 and suppose we want to check whether there is a derivation of f
w.r.t. R and xa. We can proceed in a bottom-up manner.

It is easy to see that (a〈〉, xa〈〉) ∈ Derivxa and (b〈〉, xb〈〉) ∈ Derivxb . Since
xaxb ∈ [[(xa|xb)∗]]

R
we have that (a〈〉b〈〉, xa〈〉xb〈〉) ∈ Deriv(xa |xb)∗ . It follows that

(a〈a〈〉b〈〉〉, xa〈xa〈〉xb〈〉〉) ∈ Derivxa .

E 2. Let R2 be the set of following productions:

(1) x> → a〈x∗>〉
(2) x> → b〈x∗>〉
(3) x> → c〈x∗>〉

(4) x1 → a〈x∗>(x1|xa)x∗>〉
(5) xa → a〈xbxc〉

(6) xb → b〈x∗>〉
(7) xc → c〈x∗>〉

Let t be the tree textually represented by the following XML document:

46 A. BERLEA, H. SEIDL

XML Example 4

<a>

<a><c/>

<a>

<a><c/>

The tree t is graphically presented in Fig. 1. Two possible derivations of t w.r.t. R
and the regular expression x1|xa are depicted in Fig. 2.

b cb

a a a

c

a

b

Fig. 1: The tree representation of t in Example 2.

x> x>xb

xa x> x>

xc

x1

x> x> xcx>

x> x> xa

x>

x1

xb

Fig. 2: Possible derivations of t from Example 2.

The meaning [[R]] of a set of productions R assigns sets of trees to the non-
terminals x ∈ X and sets of forests to regular expressions in r ∈ RX and is defined
by:

t ∈ [[R]] x iff there is t′ ∈ TX and (t, t′) ∈ DerivR,x

f ∈ [[R]] r iff there is f ′ ∈ FX and (f , f ′) ∈ DerivR,r

If t ∈ [[R]] x or f ∈ [[R]] r we say that t can be derived from x or f can be derived
from r, respectively.

E 3. Let R be the set of productions from Example 1. It is easy to see that
[[R]] xb is the set consisting only of the tree b〈〉. [[R]] xa is the set of all trees whose
internal nodes are all labeled a and whose leaves are labeled either a or b.

The regular forest language specified by a forest grammar G = (R, r0) is the set
of forests � G = [[R]] r0.

BINARY QUERIES FOR DOCUMENT TREES 47

E 4. Consider the grammar G = (R2, x1|xa) over {a, b, c} with the produc-
tions R2 as defined in Example 2.

� G is the set of documents in which there is a path from the root to a node
labeled a, whose children are a node labeled b and a node labeled c , and whose
ancestors are all labeled a. The first three productions make x> account for trees
with arbitrary content. As specified by production (5), xa stands for the a element
with the b and the c children. Productions (6) and (7) say that these children can
have arbitrary content. Finally, production (4) specifies that the a specified by (5)
can be at arbitrary depth in the input, and all its ancestors must be labeled a.

4. Recognizing forest languages

It is well known that regular ranked tree languages are recognizable by the class of
bottom-up tree automata [9]. Also, every unranked tree can be encoded to a unique
ranked tree representation and the notion of regular tree language is invariant under
these encodings (see e.g. the proof by Neumann [14]). Therefore, bottom-up tree
automata can be used to recognize regular forest languages.

In order to efficiently implement bottom-up automata, they have to be made de-
terministic. Deterministic bottom-up automata may have an exponential number
of states. Therefore, their implementation can be prohibitively expensive.

Pushdown forest automata, proposed by Neumann and Seidl [16, 14], are equally
expressive with bottom-up automata but much more concise and efficient to imple-
ment in practice. Any implementation of bottom-up automata has to traverse the
input tree. The idea of pushdown automata is based on the observation that when
reaching a node during the traversal, the information gained from the already vis-
ited part of the tree can be used in order to reduce the number of possible transitions
of the automaton at that node. Intuitively, in the case of a depth-first, left-to-right
traversal, the advantage is that the complete left context can be taken into account
before processing the current node.

The name of the automata (pushdown forest automata) is due to the fact that
information from the context is stored on the stack (pushdown) which is implicitly
used for the tree traversal.

Also, rather than working on ranked encodings of unranked trees, the pushdown
forest automata directly recognize unranked trees and forests. Besides saving the
time needed for encoding, this also has the advantage of making the construction
of the automata more straightforward and intelligible.

4.1 Pushdown forest automata

Supplementary to the tree states of classical tree automata, a pushdown automaton
(PA) also has forest states. Intuitively, a forest state contains the information gained
from the context at any point during the tree traversal. Let us consider first a left-
to-right, depth-first traversal. Later, we also will consider right-to-left traversals.
The following notations are essentially those introduced by Neumann [14].

The behaviour of a left-to-right pushdown automata is depicted in Fig. 3.

48 A. BERLEA, H. SEIDL

...

...

������ ���

�

�
	��� �
	��� �
	��� �
	���

�
	���
����������

� �
� �

� �
� �

� � � �����

� ���
�

� �

Fig. 3: The processing model of a pushdown forest automaton.

When arriving at some node n labeled a, the context information is available in
the forest state q in which the automaton reaches the node. The automaton has to
traverse n and compute a tree state p, which describes n within the context q. In
order to do so, the children of n are recursively processed. The context information
for the first child, q1, is obtained (via a Down transition) by refining q by taking
into account that the father is labeled a. Subsequently the q2 context information
for the second child is obtained (via a Side transition) from q1 and the information
p1 gained from the traversal of t1. Proceeding in this manner, after visiting all n
children, enough context-information is collected in qn in order to compute p (via
an Up transition). After processing n the context information for the subsequent
node is updated into q′.

Formally, a left-to-right pushdown forest automaton (LPA) A = (P,Q, I, F,Down,
Up, Side) consists of a set of tree states P, a set of forest states Q, a set of initial
states I ⊆ Q, a set of final states F ⊆ Q, a down-relation Down ⊆ Q × Σ × Q, an
up-relation Up ⊆ Q × Σ × P and a side-relation Side ⊆ Q × P × Σ × Q .

Based on Down, Up and Side, the behavior of A is described by the relations
δA
F
⊆ Q × FΣ × Q and δA

T
⊆ Q × TΣ × P as it follows:

(q, ε, q) ∈ δA
F

for all q ∈ Q

(q1, f a〈 f1〉, q2) ∈ δA
F

iff (q1, f , q) ∈ δA
F
, (q, a〈 f1〉, p) ∈ δA

T
and

(q, p, a, q2) ∈ Side for some q ∈ Q, p ∈ P

(q, a〈 f 〉, p) ∈ δA
T

iff (q, a, q1) ∈ Down, (q1, f , q2) ∈ δA
F

and (q2, a, p) ∈ Up for some q1, q2 ∈ Q

The language accepted by the automaton A is given by:

� A = { f ∈ FΣ | ∃ q1 ∈ I, q2 ∈ F and (q1, f , q2) ∈ δA
F }

Similarly, if we consider a right-to-left depth-first traversal we obtain a right-
to-left pushdown forest automaton (RPA). An RPA A = (P,Q, I, F,Down ,Up ,
Side) is similar to an LPA but it proceeds on a forest from the right to the left, i.e.

BINARY QUERIES FOR DOCUMENT TREES 49

the second case of δA
F

above is replaced by:

(q1, a〈 f1〉 f , q2) ∈ δA
F

iff (q1, f , q) ∈ δA
F
, (q, a〈 f1〉, p) ∈ δA

T
and

(q, p, a, q2) ∈ Side for some q ∈ Q, p ∈ P

4.1.1 Compiling forest grammars into pushdown automata

Neumann and Seidl [16] show that every non-deterministic PA can be made deter-
ministic. Neumann [14] gives a compilation schema for translating a forest gram-
mar into a deterministic LPA (DLPA) accepting the same regular forest language.
In this section we briefly recall this compilation schema.

For a forest grammar G = (R, r0) over an alphabet Σ and with non-terminals
from a set X, let r1, . . . , rl be the regular expressions occurring on the righthand
sides in the productions R, where l is the number of productions. Moreover, for
0 ≤ j ≤ l, let A j = (Y j, y0, j, F j, δ j) be the non-deterministic finite automaton (NFA)
accepting the regular string language defined by r j as obtained by the Berry-Sethi
construction [4]. Here Y j is the set of NFA states, y0, j the start state, F j the set of
final states and δ j ∈ Y j × Σ × Y j is the transition relation.

An NFA obtained by the Berry-Sethi construction has the important property
that all transitions coming into the same state are labeled by the same symbol. This
property is used in the querying algorithms based on PAs.

E 5. Consider the regular expressions occurring in the productions in Ex-
ample 4. The corresponding NFAs as obtained by the Berry-Sethi construction
are depicted in Fig. 4. Initial states are marked by the • symbol. Final states are
depicted in gray.

r3 = x>
∗(x1|xa)x>

∗

r1 = xbxc r2 = x>
∗

r0 = x1|xa

x>

x1

y9

xa
y11

x>

x>

y12

y10

xa

x1

y8

x>

x>

xb
y3 y4 y5

xT

x>

y6 y7y0

y1

y2

xa

x1

xc

Fig. 4: NFAs obtained by Berry-Sethi construction for regular expressions in Example 4.

By possibly renaming the NFA states we can always ensure that Yi ∩ Y j = ∅ for
i , j. Let Y = Y0 ∪ . . . ∪ Yl and δ = δ0 ∪ . . . ∪ δl. A DLPA A �G accepting � G can
be defined as A �G =(2X , 2Y , {q0}, F,Down,Up, Side), where:

50 A. BERLEA, H. SEIDL

q0 = {y0,0}

F = {q | q ∩ F0 , ∅}

Down(q, a) = {y0, j | y ∈ q, (y, x, y1) ∈ δ, x→ a〈r j〉 for some x, y1}

Up(q, a) = {x | x→ a〈r j〉 and q ∩ F j , ∅}

Side(q, p, a) = {y1 | y ∈ q, x ∈ p and (y, x, y1) ∈ δ}

As the Side transition of A �G does not use the a parameter, we will omit it in the
following.

E 6. Consider the grammar G from Example 4. The NFAs for the regular
expressions occurring in G are depicted in Fig. 4. As input consider the XML
document from XML Example 4. The run of A �G on the tree representation of the
input is shown in Fig. 5, where the sets containing x-s are tree states and the sets
containing y-s are forest states. The order in which the tree and forest states are
computed is denoted by the index at their right. Observe that the input tree, which
is in the regular forest language specified by G, is accepted by A �G as it stops in the
state {y1}, which is a final state of the LPA.

b

{y6}19 {y6}22

{y4, y7, y9}21

{x>, xc}23{x>, xb}20

b c

{y6}4 {y6}7

{y4, y7, y9}6

{x>, xc}8{x>, xb}5

b c

{y3, y6, y8}3

{y0}1

{y9, y12}17

{y5, y7, y9}24

{x>, xa}10

{y3, y8}2 {y9, y11}11

{y6}13

{x>, xb}14

{x1, x>}27

{x>}16 {x>, xa}25

{y1}28

{y9, y11, y12}26

a

a a a

{y5, y7, y9}9 {y3, y6, y8}12 {y3, y6, y8}18{y4, y7, y9}15

Fig. 5: The run of A �G on the input document in Example 6.

5. Recognizable queries

A recognizable k-ary query is a pair Q = (G,T) consisting of a forest grammar
G = (R, r0) and a k-ary relation T ⊆ Xk where X is the set of non-terminals in R.
The matches of Q in an input forest f are given by the k-ary relationMQ, f ⊆ N(f)k:

(π1, . . . , πk) ∈ MQ, f iff ∃(f , f ′) ∈ DerivG ,∃(x1, . . . , xk) ∈ T and
lab(f ′[πi]) = xi for i = 1, . . . , k

BINARY QUERIES FOR DOCUMENT TREES 51

We say that (π1, . . . , πk) is a match of Q in f w.r.t. to the derivation f ′. We call
the non-terminals in T targets.

For k = 1 and k = 2 we obtain unary and binary queries, respectively.

E 7. Consider the grammar G from Example 4.
The unary query Q1 = (G, {xa}) locates the a nodes within a tree over {a, b, c},

whose ancestors are all nodes labeled a and whose children are a node labeled b
followed by a node labeled c. For the tree t depicted in Fig. 1, these are the leftmost
and the rightmost a nodes. One can see that they fulfill the definition by looking at
the first and the second derivation of t w.r.t. G as depicted in Fig. 2.

The binary query Q2 = (G, {(xb, xc)} locates pairs of nodes b and c having as
father the same node a, and only a ancestors. The leftmost b and c in t form a
match pair, as one can see by definition by looking at the first derivation. Similarly,
the rightmost b and c form a match pair as defined by the second derivation w.r.t. G.

5.1 Recognizing unary queries

Specifying which are the subtrees of interest in a query typically consists of two
conceptual parts. The contextual part constrains the surrounding context of the sub-
trees of interest, whereas the structural part describes the properties of the subtrees
themselves.

E 8. Supposing we have an XML document which represents a conference
article, where sections and subsections are encoded as XML elements, we might
be interested in subsections containing the word “automata” occurring in sections
whose title contain the word “query”. The two emphasized parts denote the struc-
tural and the contextual part, respectively.

E 9. Let G be the grammar in Example 4. Q1 = (G, {xb}) is a unary query
locating the b nodes (structure) which have only a ancestors and a right c sibling
(context).

Neumann and Seidl [14, 16] show how unary queries can be specified by us-
ing forest grammars and implemented by using pushdown forest automata. In the
remaining of this section, we briefly review their approach.

The idea is that a grammar G = (R, r0) together with a distinguished non-terminal
x of it can specify both the desired structure and context of some subtree t in a
forest f . The structure is specified by the productions which can be used in order
to derive t from x. The remaining productions of the grammar, which constrain the
locations where x can occur in a derivation of f from r0, capture the context part
of the specification.

As argued in Section 4.1 a PA uses its forest states to remember information from
the already visited part of the input. Therefore, by looking into the forest state of
the PA after visiting a subtree t it should be possible to check a structural property
of t as well as whether a contextual property can be satisfied considering the part
of the context seen so far.

52 A. BERLEA, H. SEIDL

E 10. Let Q1 be the unary query from Example 9. Consider the run of the
corresponding LPA on the input as depicted in Fig. 5. One can see that by the time
the automata has seen any of the b nodes, each of them fulfills the structural part (it
is a b node) and the upper-left contextual part (all ancestors are a nodes). This is
reflected in the forest states of the LPA when it leaves each of the b nodes, depicted
at the upper right of each of them, respectively. In each of these forest states, the
NFA state y4, which is reached after reading an xb, denotes that a derivation of the
input forest may exist in which the respective node is labeled xb.

However, since the right part of the context has not yet been seen, the LPA can
not decide at the time it leaves the b nodes whether they are indeed matches.

In order to decide whether a node is a match, in general, the remaining part of the
context has to be also seen. The idea is to remember for each node the information
collected after seeing only a part of the context and to let a second automaton
proceed from the opposite direction (i.e. depth-first right-to-left traversal if the
first PA does a left-to-right traversal) in order to account for the remaining context.

Pushdown forest automata as relabelings

A run of a PA on an input forest f can be seen as a relabeling of each node in f
with the triple of states involved in the transitions at that node during the run.

Consider the DLPA A �G as defined in Section 4.1. Formally, the relabeling of f
by A �G is a mapping �α : N(f) → Q × P × Q, �α(πi) = (�qπ(i−1), �pπi, �qπi), where, for
the node πi, �qπ(i−1), �pπi and �qπi are the forest state in which the node is reached,
the tree state synthesized for the node and the forest state in which the node is left
respectively, by A �G , i.e.:

�qλ0 = �q0 (the initial state)
�qπ0 = Down(�qπ, a)

�pπ = Up(�qπn, a), if n = last f (π)
�qπi = Side(�qπ(i−1), �pπi, a)

where a = lab(f [π]).
Similarly, a deterministic RPA (DRPA) can be seen as a relabeling α(πi) =

(qπ(i−1), pπi, qπi).
In the following, given a node π, we denote by �pπ and �qπ the tree state synthesized

for π and the forest state in which π is left by A �G , respectively. Given a DRPA,
we denote by qπ and pπ, the forest state in which π is reached and the tree state
synthesized for π by a DRPA, respectively.

5.1.1 Locating unary matches

The state �qπ in which the A �G DLPA leaves the node π synthesizes all the informa-
tion collected after seeing the upper left context and all the content of π. Given this
information, a second (DRPA) automaton B G , proceeding from right to left, will
have at every node the information necessary in order to decide whether the node
fulfills the structural and contextual requirements of a query.

BINARY QUERIES FOR DOCUMENT TREES 53

Thus, by remembering �qπ one can locally decide at each node during a second
traversal of the input by B G whether the node is a match of a query. Also, to avoid
unnecessary re-computations by B G , �pπ is also remembered as to account for the
structure information collected at π.

The automaton B G runs thus on an annotation fa of the input forest f by A �G ,
fa ∈ FΣ×P×Q, N(fa) = N(f) and lab(fa[π]) = (lab(f [π]), �pπ, �qπ) for all π ∈ N(f).

The construction of B G is similar to that of A �G but follows the NFA transi-
tions in reverse and considers corresponding NFA final states at rightmost sib-
lings, as the input to the NFAs is seen from the right to the left. Supplementary,
B G takes into account information collected by A �G in order to avoid consider-
ing NFA transitions which are not relevant for the acceptance. The automaton
B G =(2X , 2Y , {F0}, ∅,Down ,Up , Side), where Y and F0 are as in the definition
of A �G , is given by:

Down (q, (a, �p, �q)) = {y2 | y ∈ q ∩ �q, (y1, x, y) ∈ δ, x→ a〈r j〉 and y2 ∈ F j}

Up (q, (a, �p, �q)) = �p
Side (q, p, (a, �p, �q)) = {y | (y, x, y1) ∈ δ, y1 ∈ q ∩ �q, x ∈ p}

Note that pπ = �pπ for all π. When it is clear from the context which is the label
(a, �p, �q) at a transition we will omit this argument.

The following proposition by Neumann [14] shows how for every node π, the
forest state qπ in which B G arrives at π, containing information from the right
context can be combined with the information for the rest part of the input given
in the annotation �qπ in order to find matches of a unary query. A node is a match
if both the forest states in which A �G leaves the node and in which B G arrives at the
node contain an NFA state reachable after seeing a target non-terminal from T .

T 1. Let Q = (G,T) be a unary query and f ∈ � G . With A �G and B G as
above, π ∈ MQ, f iff y1 ∈ qπ ∩ �qπ and (y, x, y1) ∈ δ for some y, y1 ∈ Y and x ∈ T.

P. This theorem is proven in [14] as Theorem 7.1 using different definitions
and notations, which are equivalent to those introduced in this work.

�

Directly from Theorem 1 follows the corollary:

C 1. (f , f ′) ∈ Derivr0 and lab(f ′[π]) = x iff y ∈ qπ ∩ �qπ, (y1, x, y) ∈ δ for
some y, y1 ∈ Y.

This further implies that:

C 2. If (f , f ′) ∈ Derivr0 and lab(f ′[π]) = x then x ∈ pπ.

P. By Corollary 1 there are y ∈ qπ ∩ �qπ, (y1, x, y) ∈ δ. Since y ∈ �qπ, it follows
by the definition of Side that there is (y′, x1, y) ∈ δ and x1 ∈ pπ. By the Berry-Sethi
construction x1 = x.

�

E 11. Consider the run of A �G depicted in Fig. 5. The run of B G on the tree
annotated by the A �G is presented in Fig. 6. The order in which the tree and forest

54 A. BERLEA, H. SEIDL

{y6, y7}7 {y6, y7}4{y6, y7}22 {y6, y7}19

{y4, y6, y7}21{y3, y6, y7}24

{y0}28

{y5, y6, y7}18 {y3, y6, y7}9 {y5, y6, y7}3

{y8, y9}26

{y6, y7}13

{y6, y7}12

{y10, y11, y12}2
a

{x>}
{y9, y12}

c

{y5, y7,
y9}

b
{xb, x>}
{y4, y7,

y9}

a
{xa, x>}
{y9, y11,

y12}

b
{xb, x>}
{y4, y7,

y9}

c
{xc, x>}
{y5, y7,

y9}

{xc, x>}

{xa, x>}25

{xb, x>}14

{xa, x>}10

{y8, y9, y10, y11, y12}17

{x1, x>}27

{xb, x>}23 {xc, x>}20

{y8, y9, y10, y11, y12}11

a
{x1, x>}
{y1}

a
{xa, x>}
{y9, y11}

b
{xb, x>}
{y4, y7,

y9}

{y4, y6, y7}6

{xc, x>}5{xb, x>}8

{x>}16

{y6, y7}15

{y1, y2}1

Fig. 6: The run of the B G on the input document annotated by the A �G in Example 6.

states are computed is denoted by the index at their right. Note how the rightmost b
node is recognized as a match of the query Q1 = (G, xb) . As noted in Example 10,
y4 in the annotation denotes the node as a potential match after accounting for the
upper left context and the content. The conformance of the right context is also
fulfilled as the forest state in which B G arrives at the node contains y4 as well.
Similarly, the leftmost b node is a match. On the contrary, the node b in the middle
is not a match, as its right context does not contain a c sibling as required by the
query.

5.2 Recognizing simple binary queries

In the following we present the central contribution of this work.
Let Q = (G, B) be a binary query. For convenience, we will first assume that

B = {(x1, x2)} for some x1, x2 ∈ X, where X is the set of non-terminals from G. We
call such a query a simple binary query. In this section we show how simple binary
queries can be implemented. In the next section we show how the approach works
for general binary queries.

According to the definition, a pair (π1, π2) is a match for an input f iff there is a
derivation f ′ of f w.r.t. G and f ′[π1] = x1, f ′[π2] = x2.

Observe that this implies that π1 and π2 are matches of the unary queries (G, x1)
and (G, x2), respectively. Therewith, (π1, π2) is a binary match for Q iff:

(p) π1 is a match of the unary query (G, x1) and

(s) π2 is a match of the unary query (G, x2) and

(r) π1 and π2 are unary matches w.r.t. the same derivation f ′.

BINARY QUERIES FOR DOCUMENT TREES 55

We call the nodes fulfilling (p) and (s) primary and secondary matches, or, for
short, primaries and secondaries, respectively.

We have already seen how unary matches can be located. Thus, testing (p) and (s)
can be done by an automata construction as in Section 5.1. In order to implement
binary queries, however, one must supplementary be able to test (r).

5.2.1 Construction

In the following we show that, similarly as in the case of unary queries, binary
queries can be efficiently answered by using a run of an DLPA A �G followed by a
run of a DRPA B G . A �G and B G are defined exactly as in Section 5.1. Primary and
secondary matches can be thus recognized in the same way as in Section 5.1 and
we keep the same notations as there.

In order to locate binary matches, we have to remember during the run of B G
which of the already visited nodes are primary or secondary matches, as potential
components of binary matches. We accumulate these primaries and secondaries in
set attributes l1 and l2, respectively, with which we equip each element of the tree
and forest states of B G .

For a tree state p at node π and x ∈ p, x.l1 contains primary matches and x.l2

secondary matches which are found below π and are defined w.r.t. derivations
which label f [π] with x.

Similarly, for a forest state q at node π and y ∈ q, y.l1 contains primary and y.l2

secondary matches collected from the already visited right-sibling subtrees of f [π].
These are the matches defined w.r.t. derivations in which the word of non-terminals
on the current level is accepted by an NFA reaching the current location in state y.

Similarly to attribute grammars, the values of the l1 and l2 attributes are defined
by a set of local rules, as it follows:

◦ For the elements of a forest state in which B G arrives at a node π which has
no right-siblings, the sets of primaries and secondaries collected from the
right sibling subtrees is obviously empty. This is the case for the initial state
F0 at the root and for the states obtained by executing a Down transition:

If y ∈ F0 or y ∈ Down (q, (a, �p, �q)) then y.l1 = ∅, y.l2 = ∅

◦ After finishing visiting the children of a node π, the sets of primaries and
secondaries found below π are propagated and possibly updated with π if π
is a primary or secondary match, respectively:

If x ∈ Up (q, (a, �p, �q)) then

x.l1 =

{π} ∪
⋃

{y.l1 | y ∈ q, y = y0, j, x→ a〈r j〉}, if x = x1

⋃

{y.l1 | y ∈ q, y = y0, j, x→ a〈r j〉} , otherwise

x.l2 =

{π} ∪
⋃

{y.l2 | y ∈ q, y = y0, j, x→ a〈r j〉}, if x = x2

⋃

{y.l2 | y ∈ q, y = y0, j, x→ a〈r j〉} , otherwise

56 A. BERLEA, H. SEIDL

◦ At side transitions over a node π, the list of primaries and secondaries found
so far are obtained by combining the matches below πwith the matches from
the already visited part to the right:

If y ∈ Side (q, p, (a, �p, �q)) then

y.l1 =
⋃

{y1.l1 ∪ x.l1 | (y, x, y1) ∈ δ, y1 ∈ q ∩ �q, x ∈ p}

y.l2 =
⋃

{y1.l2 ∪ x.l2 | (y, x, y1) ∈ δ, y1 ∈ q ∩ �q, x ∈ p}

Note that the rules allow a bottom-up, right-to-left evaluation of the attributes.
Therefore, they can be evaluated directly along the run of B G , which does a depth-
first, right-to-left traversal. Moreover, the information used for the evaluation of
attributes at a node π is the same as the information needed to compute the tran-
sitions at π. In our practical implementation (see Section 6), where transitions
are computed as they are needed during the run of B G , the attributes can be thus
computed at minimal costs.

E 12. Consider the binary query Q2 = (G, {(xb, xc)} from Example 7 on the
input document in XML Example 4. Fig. 7 depicts how the l1 and l2 attributes are
computed along the run of B G on the input annotated by the run of A �G . The order
of computation is the same as in Fig. 6. Note that nodes are identified by ordinal
numbers rather than by paths in order to increase readability. The attributes l1, l2
for an element x are depicted as l1

l2
x. Attributes with value ∅ are omitted.

{y6, y7} {y6, y7}

{[9]y4, y6, y7}

{y6, y7} {y6, y7}

{
[5,8]

[6,9]
y0}

{y5, y6, y7} {
[8]

[9]
y3, y6, y7} {y5, y6, y7}

{
[5,8]

[6,9]
y8,

[5,8]

[6,9]
y9}

{y6, y7}

{y6, y7} {y6, y7}

{y1, y2}

{y10, y11, y12}
a

{x>}
{y9, y12}

c

{y5, y7,
y9}

b
{xb, x>}
{y4, y7,

y9}

a
{xa, x>}
{y9, y11,

y12}

b
{xb, x>}
{y4, y7,

y9}

c
{xc, x>}
{y5, y7,

y9}

{xc, x>}

{
[5]

[6]
xa, x>}

{xb, x>}

{x>} {
[8]

[9]
xa, x>}

{[8]xb, x>}

{
[5,8]

[6,9]
x1, x>}

{
[8]

[9]
y8,

[8]

[9]
y9, y10, y11, y12}

{[9]xc, x>}

1

2

5 6

3 4

7 8 9

{
[8]

[9]
y8,

[8]

[9]
y9, y10, y11, y12}

{[6]y4, y6, y7}

{[5]xb, x>} {[6]xc, x>}

a
{x1, x>}
{y1}

a
{xa, x>}
{y9, y11}

b
{xb, x>}
{y4, y7,

y9}

{
[5]

[6]
y3, y6, y7}

Fig. 7: Evaluation of the l1 and l2 attributes.

BINARY QUERIES FOR DOCUMENT TREES 57

5.2.2 Locating binary matches

Fig. 8 (a) and (b), and Fig. 9 (c), (d) and (e) show all possible relative positions of
the primary (depicted in white) and the secondary component (depicted in black)
of one binary match (π1, π2). In all five situations, due to the construction above,
π1 and π2 belong to the attributes of one of the tree state pπi or forest state qπi in
which the automaton reaches node πi (depicted by a square). This is where the
binary match (π1, π2) will be detected at the Side (qπi, pπi) transition.

.
π

πi πj

π1 = πiπ′

1

π2 = πjπ′

2

.
π

πi πj

π2

π1

(a) (b)

Fig. 8: Relative positions of matches: π is least common ancestor or λ.

π1 = π2 = πi

(c)

���
�

π1 = πi

π2 = πiπ
′

1

π2 = πi

π1 = πiπ
′

1

(d) (e)

Fig. 9: Relative positions of matches: equal, or one is a proper ancestor of the other.

To see how, we need to observe that our construction ensures the following in-
variants:

58 A. BERLEA, H. SEIDL

(i1) A node π1 belongs to the l1 or l2 attribute of an element x of a tree state
computed for a node πi iff π1 is below πi and there is a derivation of the
input forest which labels πi with x and π1 with x1 or x2, respectively.

(i2) A node π2 belongs to the l1 or l2 attribute of an element y of a forest state in
which B G arrives at a node πi iff π2 is in some right sibling subtree and there
is a derivation of the input forest which labels πi with x, the label of the NFA
transitions coming into y, and π2 with x1 or x2, respectively.

This is formally expressed by the following theorem in which the involved nodes
are named as in Fig. 8 (a) (or (b)):

T 2.

(i1) If y ∈ �qπi ∩ qπi, x ∈ pπi, (y′, x, y) ∈ δ for some y′, x then

π1 ∈ x.l1 (or π1 ∈ x.l2) iff

π1 = πiπ′1, ∃ f1 s.t. (f , f1) ∈ Derivr0 , lab(f1[πi]) = x and
lab(f1[π1]) = x1 (or lab(f1[π1]) = x2, respectively).

(i2) y ∈ �qπi ∩ qπi, x ∈ pπi, (y′, x, y) ∈ δ and π2 ∈ y.l2 (or π2 ∈ y.l1) iff

π2 = π jπ′2, j > i, ∃ f2 s.t. (f , f2) ∈ Derivr0 , lab(f2[πi]) = x and
lab(f2[π2]) = x2 (or lab(f2[π2]) = x1, respectively)

P. The proof is given in Appendix B.
�

Let x ∈ pπi, y ∈ �qπi ∩ qπi, (y′, x, y) ∈ δ. Let π1 ∈ x.l1 and π2 ∈ y.l2. It is easy to
see that (i1) directly implies (p) and (i2) implies (s). Less obvious but still true is
that (i1) and (i2) also imply (r). It results that every pair formed with π1 ∈ x.l1 and
π2 ∈ y.l2 is a binary match.

To see why (i1) and (i2) imply (r), let us define a function which given a forest f ,
a node π and a tree t constructs a forest f1 by replacing in f the subtree located at
π with t, formally f1 = f /π t where:

(t1 . . . ti . . . tn)/i t = t1 . . . t . . . tn
(t1 . . . ti . . . tn)/iπ t = t1 . . . a〈 f /π t〉 . . . tn, if ti = a〈 f 〉

If f1 = f /π t, we say that f1 is obtained by grafting t into f at π.
The following theorem observes that given two derivations of a forest f which

label a node π with the same symbol, a new derivation can be obtained by doing a
relabeling of f in which the nodes below π are labeled as in one of the derivations
and the rest of nodes as in the other.

T 3. If (f , f1) ∈ Derivr , (f , f2) ∈ Derivr and lab(f1[π]) = lab(f2[π]) then
(f , f1/π f2[π]) ∈ Derivr and

lab((f1/
π f2[π])[π1]) =

{

lab(f2[π1]), if π1 = ππ2

lab(f1[π1]), otherwise

BINARY QUERIES FOR DOCUMENT TREES 59

P. The proof is given in Appendix A.
�

With the notations of Theorem 2, let f ′ = f2/πi f1[πi]. It follows that (f , f ′) ∈
Derivr0 , f ′[π1] = x1 and f ′[π2] = x2, thus (r) also holds for (π1, π2). It follows that
(π1, π2) is a binary match.

E 13. Consider the side transition at node 8 in Fig. 7. [9]y4 denotes that

node 9 is a secondary match in the part of the tree already visited. [8] xb denotes
that 8 is a primary match found in the subtree 8. The fact that 8 and 9 are defined
with respect to the same derivation can be seen from the fact that xb is the label of
the incoming transitions into y4. Thus (8, 9) is a binary match.

Similarly, (5, 6) is detected as a match at the side transition at node 5.

Therewith, we obtain how binary matches can be detected:

(a) Every pair (π1, π2) with π1 ∈ x.l1, π2 ∈ y.l2 is a binary match, as presented
above.

(b) Completely similarly, one can show that every pair (π1, π2) with π1 ∈ y.l1,
π2 ∈ x.l2 is a binary match.

(c) If x = x1 = x2 it is easy to see in the invariant (i1) that by definition (πi, πi)
is a binary match.

(d) If x = x1 we also have by (i1) that every pair (πi, π2) with π2 ∈ x.l2 is a binary
match.

(e) Similarly, if x = x2 we have by (i1) that every pair (π1, πi) with π1 ∈ x.l1 is a
binary match.

To see that all binary matches are detected as above, let, reciprocally, (π1, π2) be
a binary match. If π1 = πiπ′1 and π2 = π jπ′2, j > i then there is f ′, (f , f ′) ∈ Derivr0 ,
f ′[πiπ′1] = x1 and f ′[π jπ′2] = x2. Let f ′[πi] = x. It follows by Corollary 1 that
there are y′ ∈ qπi ∩ �qπi, (y′1, x, y

′) ∈ δ. By Corollary 2 we have that x ∈ pπi. By (i1)
it follows that π1 ∈ x.l1. By (i2) there are y ∈ �qπi ∩ qπi, x ∈ pπi, (y′, x, y) ∈ δ and
π2 ∈ y.l2. It follows that there is πi, x ∈ pπi, y ∈ �qπi ∩ qπi, (y′, x, y) ∈ δ, π1 ∈ x.l1
and π2 ∈ y.l2.

Similarly, for π2 = πiπ′2, π1 = π jπ′1, j > i, or π1 = π2, or π2 = π1iπ′2, or
π1 = π2iπ′1 we obtain the reciprocals of (b), (c), (d) or (e), respectively.

We have thus proven the following theorem:

T 4. A pair (π1, π2) is a binary match iff there is π ∈ N(f), x ∈ pπ, y ∈
qπ ∩ �qπ, (y′, x, y) ∈ δ and either:

(a) π1 ∈ x.l1 , π2 ∈ y.l2 or

(b) π1 ∈ y.l1, π2 ∈ x.l2 or

(c) π1 = π2 = π, x = x1 = x2 or

(d) π1 = π, x = x1, π2 ∈ x.l2 or

(e) π2 = π, x = x2, π1 ∈ x.l1.

60 A. BERLEA, H. SEIDL

Complexity

Let n be the size of the input forest f , i.e. the number of nodes in f . The complexity
of answering a binary query is given by the complexities of running A �G and B G ,
computing the l1 and l2 attributes and that of locating binary matches.

The automaton A �G executes at each node one Down, one Side and one Up tran-
sition. As one can see in the definitions of the transitions, the time cost of each
of these transitions does not depend on f . The run of A �G requires thus time O(n).
Similarly, the run of B G needs time O(n).

The l1 and l2 attributes have to be computed for each component of the state ob-
tained by a Side and Up transition. For the complexity assessment let us suppose
that m is the maximum between the number of primary and secondary matches
in f .

Consider now an Up transition. The set x.l1 of primaries for each component
is computed as the union of the sets y.l1 of primaries. As the number of sets y.l1

does not depend on f , and a set union can be computed in time O(m), the time for
computing x.l1 is in O(m). Similarly, x.l2 is computed in timeO(m). As the number
of elements in the computed state does not depend on f either, executing Up can
be done in time O(m). The sets y.l1 and y.l2 computed at Side transition for each
component of the state are similarly computed in time O(m). It follows that the
attributes can be computed in time O(n · m).

As for the complexity of locating matches, let p be the number of binary matches
in f . Note that each of the binary matches is located at exactly one of the Side
transitions, namely at the Side transitions over the ancestor of one of the primary
or secondary, which is a sibling of an ancestor of the other. As remembering each
binary match only requires constant time, locating binary matches has the overall
time cost in O(p).

The total time cost of answering binary queries is thus in O(n ·m+ p). Since p ≤
m2 and m ≤ n, the theoretical worst cost is in O(n2). This corresponds to the case
in which every pair of nodes from f is a binary match. In practice, however, the
number of primary, secondary and binary matches tend to be irrelevant as compared
to the input size. In this case, the time consumed is rather linear in the input size
and binary queries can be answered almost as efficiently as unary queries.

5.3 Recognizing general binary queries

Let Q = (G,T), where T ⊆ X2, be a binary query. The construction is similar to
that for simple binary queries but has to keep a set attribute for each non-terminal
occurring in T .

Formally, let X1 = {x | (x, x′) ∈ T or (x′, x) ∈ T } = {x1, . . . , xn}.
Rather than with two attributes as in the case of simple binary queries, we equip

each element of a state in which B G visits the input with n attributes l1, . . . , ln. The
attributes li are computed as it follows:

◦ If y ∈ F0 (the initial state of B G) or y ∈ Down (q, (a, �p, �q)) then x.li = ∅

BINARY QUERIES FOR DOCUMENT TREES 61

◦ If x ∈ Up (q, (a, �p, �q)) then

x.li =

{π} ∪
⋃

{y.li | y ∈ q, y = y0, j, x→ a〈r j〉}, if x = xi
⋃

{y.li | y ∈ q, y = y0, j, x→ a〈r j〉} , otherwise

◦ If y ∈ Side (q, p, (a, �p, �q)) then

y.li =
⋃

{y1.li ∪ x.li | (y, x, y1) ∈ δ, y1 ∈ q ∩ �q, x ∈ p}

for i = 1, . . . , n.
Similarly as in the case of simple binary queries, matches are found at Side

transitions of B G . Let Side (qπ, pπ) be such a transition and let x ∈ pπ, y ∈ qπ ∩ �qπ,
(y1, x, y) ∈ δ. In order to find binary matches, one has to look for every (xi, x j) ∈ T
into the li and l j attributes. The pairs are found similarly as in the case of simple
binary matches.

T 5. A pair (π1, π2) is a binary match iff there is π ∈ N(f), (xi, x j) ∈ T,
x ∈ pπ, y ∈ qπ ∩ �qπ, (y1, x, y) ∈ δ and either:

(a) π1 ∈ x.li , π2 ∈ y.l j or

(b) π1 ∈ x.l j , π2 ∈ y.li or

(c) π1 = π2 = π, x = xi = x j or

(d) π1 = π, x = xi, π2 ∈ x.l j or

(e) π1 = π, x = x j, π2 ∈ x.li.

P. By definition, (π1, π2) is a binary match iff there is (xi, x j) ∈ T and
(π1, π2) is a simple binary match for (G, (xi, x j)). The proof follows immediately
from Theorem 4 by noticing that the attributes l1 and l2 from the construction for
(G, (xi, x j)) equal li and l j, respectively.

�

In a similar manner as in the case of simple binary queries one obtains that the
complexity of answering binary queries is quadratic in the input size in the worst
case and rather linear in the average case.

5.4 Recognizing k-ary queries

In order to locate matches of a query (G, (x1, . . . , xk)) with pushdown-automata,
the construction has to keep a separate set attribute for each non-empty subset
A ⊂ {x1, . . . , xk}. The set attribute for A then contains all tuples of nodes which
form a partial match corresponding to the elements in A. This is necessary because
a complete match can be obtained by considering any pair of complementary partial
matches. For example, for a query (G, (x1, x2, x3)), one need to consider putting
together the partial matches corresponding to {x1} and {x2, x3}, or {x2} and {x1, x3},
or {x3} and {x1, x2}, respectively. The complexity of the construction thus grows
exponentially with k.

In the XML practice however many queries are expressed via XPath select pat-
terns which conceptually are binary relations (namely, between the context node
for the evaluation of the pattern and the set of nodes selected in that context).

62 A. BERLEA, H. SEIDL

Therefore binary queries can be satisfactory used to cover a wide range of actual
XML applications.

Nevertheless, it is possible to implement k-ary queries very efficiently if one
adopts a one-match semantics for queries. Our queries so far, have an all-matches
semantics. That is, we considered all possible ways how a query can be answered,
i.e. all possible derivations w.r.t. the given grammar, possibly yielding thus more
than one match-tuple. A one-match semantics can be obtained from an all-matches
semantics by supplementary specifying a disambiguating policy, which allows to
choose one best match. This could be for example a left-longest match policy as
in XDuce [11, 12], which can be implemented in our framework by always con-
sidering at the Side transition of B G at a node π only one NFA transition (y1, x, y)
conforming to the policy. In this case, x is the label of π for the sought-after deriva-
tion. The k match nodes can be thus directly read from the annotation by the second
automata, getting thus even linear time complexity.

6. Practical implementation

The algorithms presented here for answering unary and binary queries have been
successfully implemented in the fxgrep XML querying tool [15]. The efficient im-
plementation of unary queries was presented in detail by Neumann [14]. We briefly
review here a few aspects which are considered in the practical implementation in
order to support efficiency and ease of use.

The pushdown automata are efficiently implemented by computing their transi-
tions only as they are needed. Transitions which are not required for the traversal
of the input are not computed. This avoids the computation of possibly exponen-
tially large transition tables. The number of transitions that are actually computed
is at most linear in the size of the input document.

However, the automata do not need to compute transitions at every node, as
many transitions are repeatedly executed. The first time a transition is needed,
its computed value is cached, and the cached value is simply looked up for its
subsequent uses. In practice only few transitions need to be computed even for
large XML documents.

Even more, information which is repeatedly used for the computation of tran-
sitions, and which does not depend on the input document can be computed by a
preprocessor of the query and directly accessed when needed. For example, a tran-
sition Down(q, a) is computed only when the automaton A �G arrives in forest state
q at a node labeled a, and only if the transition was not already computed, using
the definition:

Down(q, a) = {y0, j | y ∈ q, (y, x, y1) ∈ δ, x→ a〈r j〉 for some x, y1}

To do so it can use the following preprocessed information:

y0s for y y = {y0, j | (y, x, y1) ∈ δ, x→ a〈r j〉} for all y ∈ Y
y0s for a a = {y0, j | x→ a〈r j〉} for all a occurring in G

BINARY QUERIES FOR DOCUMENT TREES 63

Therewith:

Down(q, a) =

y0s for a a ∩
⋃

y∈q
y0s for y y, if a occurs in G

∅ , otherwise

Similar information is computed by the preprocessor for supporting the other
transitions of the pushdown automata.

Even though queries specified using forest grammars can be very expressive,
their power is not easily exploitable by users who are not familiar with grammar
formalisms. Therefore, our querying tool fxgrep allows to specify queries also
by using a more intuitive pattern language. Internally, patterns are automatically
translated to forest grammars.

The pattern language of fxgrep resembles in its syntax to XPath. However XPath
can only express unary queries, while fxgrep can also express binary queries, Aside
from that, despite their similar syntax, none of XPath or fxgrep can be subsumed
in terms of expressivity by the other. XPath can express non-regular features like
counting of matches, e.g //a[42] for the 42nd a node in document order, or data
value comparisons, e.g. //a[b=c] for an element a having a b and a c children
with the same content.

On the other side XPath can hardly, if at all, express the regular features of
fxgrep. In particular, fxgrep allows a more precise specification of paths. Struc-
tural conditions for a node may be expressed by using regular expressions over the
children of the node. Structural conditions are given between brackets following
the node to which they refer. For example, the pattern a[(b b)* b[c*]] is ful-
filled by an a element which has an odd number of b children, and such that the
last b has only c children. Contextual conditions for a node may be specified as
structural conditions for nodes lying on the path from the root to that node. For ex-
ample, //appendix[# corollary]/theorem identifies theorem nodes appear-
ing inside the appendix which are followed by a corollary. A # in a structural
condition for a node denotes the child node where the path to the match continues.
Furthermore, paths can be also specified with regular expressions. For example,
(a/)+b identifies a b node, where each ancestor (at least one) is an a node. The
unary matches of Q1 in Example 9 are located by (a/)+a[# c]/b.

In order to make the specification of binary queries as simple and intuitive as
possible, we provide one extra symbol % which may be placed anywhere inside the
pattern to indicate the secondary match position. Thus, the binary query Q2 in Ex-
ample 7 can be expressed as (a/)+a[# %c]/b. As another example, consider the
unary query //book[(author/"escu$")]/title. The query locates all book ti-
tles whose author’s names end in escu. The binary query to simultaneously report
the titles as above and their authors is: //book[(%author/"escu$")]/title.

As suggested in Section 1, we provide binary queries of fxgrep as a means of
selection in the fxt rule-based XML transformation language. In previous ver-
sions of fxt, only nodes below the current node could be selected, via an fxgrep
unary pattern. When the selected nodes are to be recursively processed, this en-
sures termination. However, when the selected nodes are to be copied into the out-
put, only allowing them to be below the current node can be a serious limitation.

64 A. BERLEA, H. SEIDL

We therefore provided a sort of dynamic variables which allow nodes from the al-
ready visited part of the input to be stored and used later. This workaround, as
well as the explicit navigation of the XPath select patterns used in XSLT, affect the
intended declarativeness of rule-based transformation languages. In contrast, bi-
nary queries increased both the expressivity and declarativeness of our rule-based
transformation language.

Another advantage of using binary queries in rule-based transformation is de-
coupling navigation from the transformation rules. Consider an input document
in which an author element contains all the book-s written by the author. The
following fxt rule produces for each author a table row containing the name of the
author and the books written by him:

XML Example 5

<fxt:pat>//author[(//%book)][%name]</fxt:pat>

<tr>

<fxt:copyContent select="2"/>

<fxt:copyContent select="1"/>

</tr>

1 and 2 refer to the binary relations specified by the first and the second oc-
currence of the % symbol, respectively. Rather than pairing the primary node (the
author) with every corresponding secondary (each of his books, and each of his
names, respectively) as in the case of binary querying, for the purpose of selection
in transformations, we pair the primary (the match node) with all its secondaries,
as the nodes to be selected.

If the structure of the input document changes s.t. the books of every author
follow after the author element, only the match pattern has to be modified to
//*[# %book]/author[%name]1 as to account for the new relation between the
author and his books, in order to achieve the same transformation.

7. Related work

There exists a number of formalisms for expressing queries on trees based on for-
mal languages and logic. A survey on these was done by Neven and Schwentick
[17]. Their expressive power is in general subsumed by the monadic second-order
logic (MSO), which, in particular, is known to have exactly the same expressive
power as regular tree languages. Most of the formalisms only consider the case
of unary queries and the proposed evaluations mechanisms are rather theoretical
solutions. Neven and Schwentick [17] show that unary queries using their logic
formalism can be evaluated in linear time in the size of the input, which is also the
complexity of unary querying with pushdown forest automata [16, 14]. Another
formalism for expressing unary queries using tree automata was given by Frick
and Grohe [7]. It is shown that this formalism is equally expressive as MSO and
that their queries can be also evaluated in linear time in the size of the input.

1 is a wild-card denoting an arbitrary sequence of nodes; * is here a wild-card denoting an arbitrary
element.

BINARY QUERIES FOR DOCUMENT TREES 65

In principle, a logical approach can be easily extended from unary to k-ary
queries, by using formulas with k free variables instead of formulas with one free
variable. Schwentick [20] defines a logic whose expressivity is between first order
logic and MSO. It is shown that an algorithm exists which checks in linear time
whether a tuple of nodes verifies a formula on some input. Answering queries
using this algorithm implies generating all the k-tuples of nodes from the input,
incurring O(nk) time, where n is the size of the input. This gives the evaluation of
k-ary queries the O(nk+1) complexity. In particular, binary queries can be answered
thus in time O(n3), which is worse than the complexity of our algorithm.

Gottlob et al. [10] show that XPath queries can be evaluated in time O(n3). They
further show that XPath queries without arithmetical and string operations can be
evaluated in linear time in the size of the input.

There also exists a number of effective approaches to XML processing which
exploit techniques from the tree-theory. XDuce extends the traditional pattern-
matching from functional languages with regular expression constructs. Basically,
the XDuce patterns are forest grammars. XML values can be de-constructed into
their component parts by using patterns with variables. A variable in a pattern is a
name for a distinguished sub-pattern and allows to individually address sequences
of nodes of arbitrary length. Evaluating a pattern with k variables simultaneously
binds the k variables, and can be thus seen as a k-ary query. XDuce adopts a
one-match policy, which is well suited for pattern matching in a functional pro-
gramming language. An all-matches semantics, as the one implemented by us, is
however more suitable for a querying language, both as a stand-alone tool or em-
bedded within a rule-based transformation language. Nevertheless, as mentioned
in Section 5.4, a one-match semantics can be efficiently implemented using push-
down automata.

XDuce focuses on static type-checking and does not provide any efficient algo-
rithm for pattern-matching evaluation, other than naive backtracking. CDuce [1] is
based on XDuce and improves its pattern matching evaluation by an implementa-
tion based on a combination of top-down and bottom-up tree automata [8] similar
to the pushdown forest automata and optimized to take static type information into
account.

We have already mentioned in Section 1 how binary queries could be used in a
rule based-language like XSLT. Namely, any select queries relative to the dynamic
current context can be collected into one binary query whose evaluation can be
performed statically, i.e., preceding the transformation of the input document.

A similar usage pattern can be encountered in other cases also. XSLT keys con-
tribute one special case of binary matches. Basically, a key is a pair consisting of
the node which has the key and the value of the key (a string). The node is iden-
tified using a match pattern, while the value is given by a select pattern evaluated
in the context of the node. Thus, binary queries could be also used to implement
XSLT keys.

The latest drafts of XPath [24] and XQuery provide a for and a FLWOR expres-
sion, respectively, which allow variables to be bound to nodes which are matches of
unary queries. These nodes can be used in the scope of the expressions as context
for evaluation of further unary queries. This use of for expressions also qualifies

66 A. BERLEA, H. SEIDL

for an implementation which uses binary queries to subsume two unary queries.

8. Conclusions and future work

We have introduced forest grammars as a method for specifying queries of arbitrary
arities in document trees. We have reviewed how unary queries can be implemented
by pushdown forest automata and shown how the automata construction can be
extended in order to implement k-ary queries. In particular, we have shown that
binary queries can be efficiently implemented and proven that our algorithm is
correct.

We have shortly discussed how the algorithm has been implemented in the XML
querying tool fxgrep. We have suggested how binary queries can be used as a
means of navigation in XML transformation languages and presented the advan-
tages of binary queries over unary select patterns. We have illustrated how we
effectively made use of this in the XML transformation tool fxt. Finally, we have
mentioned how binary queries could be used in other settings for XML querying
and transforming.

For the future it is interesting to study how k-ary and binary queries can be sys-
tematically used to implement the constructs provided in the well established XML
processing languages. Also, the idea of accumulating potential matches and even-
tually reporting or dropping them, as enough relevant input is seen, is very useful
for one-pass querying, as our recent, not yet published work has proven. One-pass
querying allows to find matches without building the document tree in memory,
which can be prohibitively expensive for very large documents. Furthermore, it is
challenging to investigate how this ideas may support one-pass document transfor-
mations.

References

[1] B, V, C, G, F, A. 2003. CDuce: An XML-
centric General-purpose Language. In Proceedings of the 8th ACM SIGPLAN Interna-
tional Conference on Functional Programming. ACM Press, 51–63.

[2] B, A. 2004. fxt - The Functional XML Transformer. http://www2.infor-
matik.tu-muenchen.de/˜berlea/Fxt/.

[3] B, A S, H. 2002. Binary Queries. In Extreme Markup Lan-
guages 2002 .

[4] B, Ǵ S, R. 1986. From Regular Expressions to Deterministic Au-
tomata. Theoretical Computer Science Journal 48, 117–126.

[5] B̈-K, A, M, M, W, D. 2001. Regular Tree and
Regular Hedge Languages over Non-Ranked Alphabets. Research report, HKUST Theo-
retical Computer Science Center.

[6] F, M, Ś, J, W, P. 1999. XML Query Lan-
guages: Experiences and Exemplars. Draft manuscript: http://www.w3.org/1999/09/ql/
docs/xquery.html.

[7] F, M, G, M, K, C. 2003. Query Evaluation on Com-
pressed Trees. In Proceedings of the 18th IEEE Symposium on Logic in Computer Sci-
ence, 188–197.

[8] F, A. 2004. Regular Tree Language Recognition with Static Information. In
Programming Language Technologies for XML (PLAN-X) 2004 .

BINARY QUERIES FOR DOCUMENT TREES 67

[9] Ǵ, F S, M. 1997. Tree Languages. In Handbook of Formal
Languages, Vol. 3, Rozenberg, Grzegorz and Salomaa, Arto, Editors. Springer, Heidelberg,
chapter 1, 1–68.

[10] G, G, K, C, P, R. 2002. Efficient Algorithms for
Processing XPath Queries. In Proc. 28th Int. Conf. on Very Large Data Bases (VLDB
2002). Morgan Kaufmann, Hong Kong, China, 95–106.

[11] H, H P, B C. 2000. XDuce: A Typed XML Processing Lan-
guage. In Proceedings Of The Third International Workshop on the Web and Databases
(WebDB2000). Dallas, Texas, 111–116.

[12] H, H P, B C. 2003. XDuce: A Statically Typed XML Process-
ing Language. ACM Trans. Inter. Tech. 3, 2, 117–148.

[13] M, M, L, D, M, M. 2001. Taxonomy of XML Schema
Languages Using Formal Language Theory. In Extreme Markup Languages 2001. Mon-
treal, Canada.

[14] N, A. 2000. Parsing and Querying XML Documents in SML . PhD thesis,
University of Trier, Trier.

[15] N, A B, A. 2004. fxgrep 4.0. http://www2.informatik.tu-
muenchen.de/˜berlea/Fxgrep/.

[16] N, A S, H. 1998. Locating Matches of Tree Patterns in
Forests. In Foundations of Software Technology and Theoretical Computer Science, (18th
FST&TCS), Volume 1530 of Lecture Notes in Computer Science. Springer, Heidelberg,
134–145.

[17] N, F S, T. 2002. Automata- and Logic-based Pattern Lan-
guages for Tree-structured Data. In Semantics in Databases, Volume 2582 of Lecture
Notes in Computer Science. Springer, Heidelberg, 160–178.

[18] K, N., M, A., S, M. I. 2000. DSD: A Schema Language for
XML. In ACM SIGSOFT Workshop on Formal Methods in Software Practice.

[19] OASIS. 2001. RelaxNG Specification. http://www.relaxng.org/.
[20] S, T. 2000. On Diving into Trees. In Proceedings of the 25-th Symposium

on Mathematical Foundations of Computer Science 2000 . ACM Press, 660–669.
[21] W3C. 1999. XML Path Language (XPath) Version 1.0. http://www.w3.org/TR/xpath.
[22] W3C. 1999. XSL Transformations (XSLT) Version 1.0. http://www.w3.org/TR/xslt.
[23] W3C. 2001. XML Schema Language. http://www.w3.org/TR/xmlschema-0/.
[24] W3C. 2003. XML Path Language (XPath) 2.0. http://www.w3.org/TR/xpath20.
[25] W3C. 2003. XQuery 1.0: An XML Query Language. http://www.w3.org/TR/xquery/.

Appendix A. Proof of Theorem 3

We start by showing that if a derivation f ′ of a forest f labels a node π with x, then
the trees f [π] and f ′[π] are in the derivation relation Derivx.

L 1. If (f , f ′) ∈ Derivr and lab(f ′[π]) = x then (f [π], f ′[π]) ∈ Derivx .

P. The proof is by induction on the length of π.
Let π = i and last f (λ) = n. Thus f = f [1] . . . f [n] and f ′ = f ′[1] . . . f ′[n].

From the definition of Derivr it follows that there is some x1 . . . xn ∈ [[r]]
R

with
(f [k], f ′[k]) ∈ Derivxk for k = 1, . . . , n. In particular (f [i], f ′[i]) ∈ Derivxi .

Now let π = π1i, last f (π1) = n and let lab(f [π1]) = a, lab(f ′[π1]) = x′. By the
induction hypothesis, (f [π1], f ′[π1]) ∈ Derivx′ . By the definition of Derivx′ there
is some x′ → a〈r1〉 ∈ R with (f [π11] . . . f [π1n], f ′[π11] . . . f ′[π1n]) ∈ Derivr1 . By
the definition of Derivr1 there is some x1 . . . xn ∈ [[r1]]

R
with (f [π1k], f ′[π1k]) ∈

Derivxk for k = 1, . . . , n. In particular (f [π1i], f ′[π1i]) ∈ Derivxi .

68 A. BERLEA, H. SEIDL

In either case, from (f [π], f ′[π]) ∈ Derivxi it follows by the definition ofDerivxi

that xi = lab(f ′[π]) = x.
�

In the following we show that if a derivation f ′ of a forest f labels a node π
with x, and there is a derivation t′ of the tree f [π] from the same x, then we obtain
another derivation of f ′ by grafting t′ into f ′ at π.

L 2. Assume (f , f ′) ∈ Derivr , lab(f ′[π]) = x and (f [π], t′) ∈ Derivx. Then
(f , f ′/π t′) ∈ Derivr .

P. The proof is by induction on the length of π.
If π = i then let f = t1 . . . tn and let (t1 . . . ti . . . tn, t′1 . . . t

′
i . . . t

′
n) ∈ Derivr . By the

definition of Derivr there is some x1 . . . xn ∈ [[r]]
R

with (tk, t′k) ∈ Derivxk for k =
1, . . . , n. Since t′i = f ′[i] = x〈 〉 it follows that xi = x. From (f [i], f ′[i]) ∈ Derivxi

we have that (t1 . . . ti . . . tn, t′1 . . . t
′ . . . t′n) ∈ Derivr which is (f , f ′/i t′) ∈ Derivr .

If π = i jπ1 we have that (f [1] . . . f [i] . . . f [n], f ′[1] . . . f ′[i] . . . f ′[n]) ∈ Derivr .
By the definition of Derivr there is some x1 . . . xn ∈ [[r]]

R
with (f [k], f ′[k]) ∈

Derivxk for k = 1, . . . , n. From (f [i], f ′[i]) ∈ Derivxi it follows that f [i] = a〈 f1〉,
f ′[i] = xi〈 f ′1〉 and there is xi → a〈r1〉 ∈ R and (f1, f ′1) ∈ Derivr1 . As f1[jπ1] =
f [i jπ1] and f ′1[jπ1] = f ′[i jπ1] we have that (f1[jπ1], t′) ∈ Derivx and f ′1[jπ1] =
x〈 〉. It follows by the induction hypothesis that (f1, f ′1/

jπ1 t′) ∈ Derivr1 . By the
definition of Derivxi , (a〈 f1〉, xi〈 f ′1/

jπ1 t′〉) ∈ Derivxi which is (f [i], xi〈 f ′1/
jπ1 t′〉) ∈

Derivxi . Therewith, (f [1] . . . f [i] . . . f [n], f ′[1] . . . xi〈 f ′1/
jπ1 t′〉 . . . f ′[n]) ∈ Derivr

which is (f , f ′/i jπ1 t′) ∈ Derivr .
�

Now we show that the forest obtained by grafting t into f at π has the nodes
below π labeled as in t and all other nodes as in f .

L 3.

lab((f /π t)[π1]) =

{

lab(t[1π2]), if π1 = ππ2

lab(f [π1]) , otherwise

P. First, observe the definition of the subtree located in a grafted forest:

(f /iπ1 t)[jπ2] =

f [jπ2] , if i , j
t[1π2] , if i = j, π1 = λ

a〈 f1/π1 t〉 , if i = j, π1 , λ, π2 = λ, f [i] = a〈 f1〉
(f1/π1 t)[π2], if i = j, π1 , λ, π2 , λ, f [i] = a〈 f1〉

The proof is by induction on the length of π.
If π = i then if π1 = iπ2, (f /i t)[π1] = t[1π2] thus lab((f /i t)[π1]) = lab(t[1π2]).

If π1 = jπ2, j , i then (f /i t)[π1] = f [π1] thus lab((f /i t)[π1]) = lab(f [π1]).
We consider now the case where π = iπ′, π′ , λ.
If π1 = iπ2 then (f /π t)[π1] = (f1/π

′

t)[π2], where f[i]=a〈 f1〉. If π1 = ππ3, i.e.
if iπ2 = iπ′π3, π2 = π

′π3 then by the induction hypothesis lab((f1/
π′ t)[π2]) =

lab(t[1π3]). Thus lab(f /iπ
′

t)[iπ2]) = lab(t[1π3]) and therewith we obtain that
lab(f /π t[ππ3]) = lab(t[1π3]) as required.

BINARY QUERIES FOR DOCUMENT TREES 69

Otherwise, also by the induction hypothesis lab((f1/
π′ t)[π2]) = lab(f1[π2]).

Since f1[π2] = f [iπ2] = f [π1] it follows that lab((f /π t)[π1]) = lab(f [π1]).
If π1 = jπ2 and j , i then (f /π t)[π1] = f [π1] thus lab((f /π t)[π1]) = lab(f [π1]).

�

Using the lemmas above we prove now Theorem 3.
Let lab(f1[π]) = lab(f2[π]) = x. By Lemma 1 we have that (f [π], f2[π]) ∈
Derivx . From Lemma 2 it follows that (f , f1/

π f2[π]) ∈ Derivr . By Lemma 3:

lab((f1/
π f2[π])[π1]) =

{

lab(f2[π][1π2]), if π1 = ππ2

lab(f [π1]) , otherwise

With f2[π][1π2] = f2[ππ2] we obtain now the result of our theorem.

Appendix B. Proof of Theorem 2

We start by showing that the nodes collected in the attributes of a tree state at π are
from the subtree located at π.

L 4. If x ∈ pπ, π1 ∈ x.l1 then π1 = ππ
′.

P. The proof is by induction on the height of f [π].
If f [π] = a〈ε〉 then pπ = Up (Down (qπ, a), a). By the definition of Down , Up

and attributes it follows that π1 = π.
Otherwise, by the definition of attributes we have that π1 = π or there is y ∈ qπ0,

y = y0, j, x → a〈r j〉 and π1 ∈ y.l1. From π1 ∈ y.l1 it follows by straightforward
induction on n = last f (π) that there is x1 ∈ pπi and π1 ∈ x1.l1. By the induction
hypothesis it follows that π1 = πiπ′.

�

Appendix B.1 Proof of (i1)

Let π′ = πi and n = last f (π′).
Left-to-right: From π1 ∈ x.l1 it follows by Lemma 4 that π1 = π

′π′1. In the
following we do the proof by induction on the length of π′1.

If π′1 = λ then π1 = π
′ and by the definition of attributes it follows that x = x1.

Our conclusion follows now by Theorem 1.
If π′1 = lπ′′1 then l ≤ n. By Theorem 1 there is fa s.t. (f , fa) ∈ Derivr0 and

lab(fa[π′]) = x. From π1 ∈ x.l1 and π′ , π1 it follows by the definition of attributes
that there is x → a〈rh〉, y0,h ∈ qπ′0 and π1 ∈ y0.l1. By the definition of attributes it
follows by straightforward induction on n that there is m, 0 < m ≤ n and x1, . . . , xm,
y1, . . . , ym s.t. (yk−1, xk, yk) ∈ δ, yk ∈ qπ′k ∩ �qπ′k, xk ∈ pπ′k for k = 1, . . . ,m and
π1 ∈ xm.l1. By Lemma 4 m = l. By the induction hypothesis it follows that there is
fc s.t. (f , fc) ∈ Derivr0 , lab(fc[π′l]) = xl and lab(fc[π1]) = x1.

From yl ∈ qπ′l ∩ �qπ′l it follows from the definition of Side by straightforward
induction on n that there are xl, . . . , xn, yl, . . . , yn s.t. (yk−1, xk, yk) ∈ δ, yk ∈ qπ′k ∩

�qπ′k, xk ∈ pπ′k for k = m + 1, . . . , n. Also by the definitions of Down and Up

70 A. BERLEA, H. SEIDL

y0 = y0,h and yn ∈ Fp. As NFA transitions are done only inside one NFA we have
that p = h and it follows that x1, . . . , xn ∈ [[rh]]

R
.

By Theorem 1 there is fk s.t. (f , fk) ∈ Derivr0 , lab(fk[π′k]) = xk for all k, and by
Lemma 1, (f [π′k], fk[π′k]) ∈ Derivxk . Thus (f [π′1] . . . f [π′n], f1[π′1] . . . fn[π′n])
∈ Derivrh and with x1 . . . xn ∈ [[rh]]

R
, (f [π′], x〈 f1[π′1] . . . fn[π′n]〉 ∈ Derivx . Let

t = x〈 f1[π′1] . . . fn[π′n]〉 and let fb = fa/π ′t. By Lemma 2, (f , fb) ∈ Derivr0 ,
lab(fb[π′]) = x, lab(fb[π′l]) = xl.

Let fd = fb/π
′l fc[π′l]. By Theorem 3 we now have that (f , fd) ∈ Derivr0 ,

lab(fd[π′]) = x and lab(fd[π1]) = x1.
Right-to-left: The proof is by induction on the length of π′1.
If π′1 = λ it follows that x = x1 and by the definition of attributes π1 ∈ x.l1.
If π′1 = lπ′′1 then l ≤ n and let xk = lab(f1[π′k]) for k = 1, . . . , n. By Corollary 2,

xk ∈ pπ′k. By Lemma 1 (f [π′], f1[π′]) ∈ Derivx and by the definition of Derivx

we have that there is x → lab(f [π′])〈rh〉 and x1 . . . xn ∈ [[rh]]
R
. Thus there are

y0, . . . , yn s.t. (yk−1, xk, yk) ∈ δh for k = 1, . . . , n, y0 = y0,h and yn ∈ Fh. Also, by
hypothesis there are y ∈ qπ′ ∩ �qπ′ and y′ s.t. (y′, x, y) ∈ δ. Therewith, one can show
by using the definition of Down, Side, and Down , Side that for k = 0, . . . , n,
yk ∈ �qπ′k and yk ∈ qπ′k, respectively.

By the induction hypothesis π1 ∈ xl.l1. By straightforward induction on l, using
the definition of Side and of the attributes, it follows that π1 ∈ y0.l1. Now by the
definition of Up and of the attributes it follows that π1 ∈ x.l1.

Appendix B.2 Proof of (i2)

Let n = last f (π).
Left-to-right: Let yi = y.
From π2 ∈ y.l2 it follows from the definition of Side and of attributes by straight-

forward induction on n that there are j, i < j ≤ n, yi+1, . . . , y j, xi+1, . . . , x j, s.t.
(yk−1, xk, yk) ∈ δp for k = i+ 1, . . . , j with yk ∈ qπk ∩ �qπk for all k and π2 ∈ x j.l2. By
(i1) it follows that π2 = π jπ′2 and there is fa s.t. (f , fa) ∈ Derivr0 , lab(fa[π j]) = x j

and lab(fa[π2]) = x2.
From yi ∈ qπi ∩ �qπi it follows from the definitions of Side and Side that there

are y0, . . . , yi−1, x1, . . . , xi s.t. yk ∈ qπk ∩ �qπk for k = 0, . . . , i − 1, (yk−1, xk, yk) ∈ δh
for k = 1, . . . , i and y0 = y0,h for some h. By the Berry-Sethi construction, since
(y′, x, yi) ∈ δ and (yi−1, xi, yi) ∈ δ, it follows that x = xi. Similarly, from y j ∈

qπ j ∩ �qπ j it follows that there are y j, . . . , yn s.t. yk ∈ qπk ∩ �qπk for k = j, . . . , n,
(yk−1, xk, yk) ∈ δg for k = j+ 1, . . . n and yn ∈ Fg for some g. Because transitions in
δ can be made only inside the same NFA we have that p = g = h. We further get
that x1 . . . xn ∈ [[rh]]

R
.

By Theorem 1 it follows that there is fk s.t. (f , fk) ∈ Derivr0 , lab(fk[πk]) =
xk and by Lemma 1 (f [πk], fk[πk]) ∈ Derivxk for k = 1, . . . , n. Let the forest
fb = f1[π1] . . . fn[πn]. It follows that (f [π1] . . . f [πn], fb) ∈ Derivrh . Let fc =
fb/ j fa[π j]. By Lemma 1 (f [π j], fa[π j]) ∈ Derivx j and by Lemma 3 we have that
(f [π1] . . . f [πn], fc) ∈ Derivrh , lab(fc[i]) = lab(fb[i]) = xi = x and lab(fc[jπ′2]) =
lab(fa[π2]) = x2.

BINARY QUERIES FOR DOCUMENT TREES 71

Now, if π = λ then h = 0 and f = f [π1] . . . f [πn]. As above (f , fc) ∈ Derivr0

with the required properties.
If π , λ then by the definition of Down there are y′′ ∈ qπ ∩ �qπ, (y′′′, x′, y′′) ∈ δ,

x′ → a〈rh〉. By Theorem 1 there is fd s.t. (f , fd) ∈ Derivr0 and lab(fd[π]) = x′.
Let t = x′〈 fc〉. We have that (f [π], t) ∈ Derivx′ . Let fe = fd/π t. By Lemma 2 we
have that (f , fe) ∈ Derivr0 with the required properties.

Right-to-left: Let xk = lab(f2[πk]) for k = 1, . . . , n. By (i1) π2 ∈ x j.l2.
We first show that x1 . . . xn ∈ [[rh]]

R
for some h. If π = λ then by the definition

of Derivr0 it follows that x1 . . . xn ∈ [[r0]]
R
. If π , λ let lab(f2[π]) = x′. It follows

by Theorem 1 that there is (y′′′, x′, y′′) ∈ δ and y′′ ∈ qπ ∩ �qπ. By Lemma 1
(f [π], f2[π]) ∈ Derivx′ . By the definitions of Derivx′ there is x′ → a〈rh〉 and
x1 . . . xn ∈ [[rh]]

R
.

There are thus y0, . . . , yn s.t. y0 = y0,h, yn ∈ Fh and (yk−1, xk, yk) ∈ δh for all k.
From the definitions of transitions it follows that yk ∈ qπk ∩ �qπk.

By Corollary 2, xk ∈ pπk. From π2 ∈ x j.l2 it follows by the definitions of at-
tributes by straightforward induction on j that π2 ∈ yi.l2. With y = yi we get the
desired result.

