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Abstract. For many object-oriented database applications taxorswith a set-
inclusion semantics among the type extents are essentiaittical cases, how-
ever, common object-oriented modeling techniques oftematoresult in tax-
onomies as they ignore application specific constraintswilleelaborate that
especially in domains like CAD or similar engineering eoniments integrity
constraints on type attributes have a deep impact on thétingshierarchy. We
argue that subtyping by constraints may be superior to athjerct-oriented al-
ternatives like subtyping for generalization or nearly-fieerarchies. Subtyping
by constraints achieves a logical set-inclusion hierarahgl in addition enables a
larger amount of semantically correct substitutabilityisTcan even be improved
by a novel framework of automatic method adaptation for eskd substitutabil-
ity. Moreover, a potential storage penalty caused by makomgstraints explicit
can be avoided completely by applying a new storage optioizaechnique
based on functional integrity constraints. Our resultsiléustrated by practical
examples drawn from the OCAD projett.

Keywords. Object-oriented databasesand modeling, subtyping,itahee, con-
straints, update method adaptation, storage optimizagimftware reuse.

1 Introduction

Object-oriented database systems (OODBS) exhibit sewetkhccepted virtues, com-
bining the strengths of databases technology with the paneflexibility of the object-
oriented paradigm of programming languages like C++ or &atlal In particular, the
rich type system of an OODBS, supporting the natural mogelfrcomplex attributes,
is one feature that attracted the attention of databasécatiph builders. A crucial no-
tion of the object-oriented paradigm is inheritance. Ongomiaterpretation of inheri-
tance, which especially is used in the OODBS setting, carhbeacterized by the fol-
lowing two constituents ([ABD89; ZM90; Bud91; CY91; RBP91; Boo94; Kim95]):

* “OCAD: Object-Oriented Databases for CAD" is a joint prdjed Nemetschek Programm-
system GmbH, Munich (a large CAD tool manufacturer in Eujgpel the Bavarian Research
Center for Knowledge-Based Systems (FORWISS) under tleetitin of W. Kief3ling.
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Definition 1.1 (Inheritance in Object-Oriented Systems).

— Structural Inheritance
A subtype in a hierarchy inherits all attributes of its supees.

— Substitutability
All methods of a type should be applicable to all instancessafubtypes. O

Some of the benefits of substitutability are software reilisglconsistency of inter-
faces, and rapid prototyping. Therefore the need for odiergimethods should be ex-
ceptional. The main purpose of overriding should be to mlevnore efficient imple-
mentations (e.g., to enhance a rapid prototype), but natfeeir’ semantically incor-
rect methods.

Software reuse by inheritance is of major concern. But itosspicuous that in
many applications (especially from the areas of CAD, GIS| angineering) hierar-
chies resulting from conventional object-oriented anialgad design often require the
overriding of methods because inherited implementatiansat match their intended
semantics. We will argue that this does not happen cointatlgrbut as a consequence
of attributes that are (often implicitly) related by intégrconstraints. In conventional
object-oriented modeling approaches such attributessarally omitted for reasons of
simplicity and storage complexity. On the other hand, asniicit constraints may
be encoded in method implementations, these omissions m&e csemantical mis-
matches. To enhance software reuse in hierarchies as likb@bove, we propose
to make the implicit attributes and constraints explicitl@an organize the types in
subtyping-by-constraints hierarchies. We show that sigtaichies have some very de-
sirable properties, both from the object-oriented modgtiarspective and for OODBS
purposes.

Achieving these advantages requires that the integritgtcaimts have to be checked
at run-time when we execute update methods. This is a coaesequwf a very general
principle concerning hierarchies with integrity constitai we show that in this kind of
hierarchies some overriding or (as a special case) inyegjrécking is inevitable.

The rest of the paper is organized as follows: In Sect. 2 vustilhte by a case
study from the CAD area the drawbacks caused by implicitaites and constraints. In
Sect. 3 we show that in hierarchies with integrity constsa{whether they are explicit
or not) method overriding is inevitable, but can be restddb adorning update methods
with integrity checks if we organize the types in subtyplmgeonstraints hierarchies.
Section 4 presents the automatic adaptation of update oetbaninimize these run-
time checks and in Sect. 5 we provide a storage optimizatigorithm based on the
integrity constraints, avoiding storage overhead caugetthd introduction of the im-
plicit attributes. In Sect. 6 our approach is compared wathted work. Finally, Sect. 7
summarizes our contributions and gives an outlook on fukume.

2 A Motivating Case Study

Object-oriented analysis and design techniques ([SM889BURBP 91; Boo94]) of-
ten result in type hierarchies in such a way that methodsriitgltefrom superclasses
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Fig. 1. Some CAD-types
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do not conform with their intended semantics. This meartepabh they are syntac-
tically applicable to instances of the subclasses they doyietd the desired result.
We will argue that the intrinsic reason for that semanticmaitch is the disregard of
integrity constraints during the design of the hierarchthaugh they weremplicitly
employed for the implementation of the methods. In the feileg we will distinguish
guery method&rom update methodQQuery methods are used to inspect type instances
without modifying them—update methods, on the other haratlify objects without
returning any value. This very natural distinction is neaeg because in case of sub-
typing by constraints only update methods are to be ovegridda semantically correct

way (see Sect. 3).

Example 2.1 (CAD modelingfrigure 1 shows some types of a realistic CAD applica-
tion gained by object-oriented analysis and design teclasiin the OCAD project. The
types comprise ellipse arcs and specializations. Manytepdathods, query methods,
and (graphical) attributes are left out for shortness.

d

Ordering the types according to the requirement of strattaheritance results in a
subtyping-for-generalization hierarchy ([HO88; Bud9d§picted in Fig. 2. As all in-
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herited methods can syntactically be applied to all instarmf the subclasses, this hier-
archy apparently satisfies the property of substitutgtaktwell.
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Query Methods
ArcLength: real

Area: real
Update Methods
Scale(real)
[ |
CircleArc NonRotatedEllipse
Attributes Attributes
StartAngle: real SemiMinorAxis: real
DeltaAngle: real Query Methods SemiMajorAxis
Update Methods SemiMajorAxis: real '; %n alias for
adius
SetDeltaAngle(real) Update Methods
SetSemiMinorAxis(real)
[ |
‘ NonRotatedEllipseArc ‘ Ellipse
Attributes
RotateAngle: real
The symbol/\ Z#
denotes the subtype
relationship EllipseArc ‘

Fig. 2. Subtyping for generalization

Let us examine the two type&srcle andCircleArc in more detail CircleArc inher-
its the implementatiof x = * Radius of ArcLength from Circle. This implementation,
however, does not match the intended semantiégafength for CircleArc because it
describes the circumference of the circle corresponditigeaircle arc. The reason for
this semantical mismatch is that not only circle arcs budlesr as well do have a delta
angle—yet for circles it is by definition always equal2e =. That is, the typeCircle
has animplicit attributeDeltaAngle that is restricted by aimplicit integrity constraint.
Although this constraint was not stated explicitly, it wagpleited for the implemen-
tation of ArcLength within Circle. For circle arcs, on the other hand, the arc length is
depending on th®eltaAngle—thus the inherited implementation AfcLength has to
be overridden.

That means, Fig. 2 is not an appropriate model of the CADgypdurther disad-
vantage of this hierarchy is that it does not match the cpaording extensional hierar-
chy (there are instances of typircleArc that are not instances @fircle)—a property
especially important in the OODBS setting.
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Fig. 3. Types with explicit constraints

To remedy these drawbacks we propose to make implicit atggoexplicit and to
represent the accompanying integrity constraints. Figutepicts the CAD-types with
all relevant attributes and the corresponding integritystaints stated explicitly. The
attributes of all types excepllipseArc are restricted by integrity constraints. In Sect. 5
we show that adding those attributes and constraints daempty a storage penalty
(except of the larger schema information that has to bed}ore

To sum up, in many applications a lot of constraints are iafieto the types. Ne-
glecting those constraints enables—as demonstrated-alibegnheritance of semanti-
cally not justified method implementations. We concludeé $iiah constraints should be
an integral part of object-oriented analysis and desigrioktitnately, most design ap-
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proaches, object-oriented programming languages, andB32I®» not cover integrity
constraints sufficiently.

3 Impacts of Constraints on Type Hierarchies

In the last section we argued that implicit attributes andsta@ints that are inherent
for types should be made explicit. In the sequel we will exarihe impacts of this
demand on the structuring of types into hierarchies. Fétai$ define a relationship on
types induced by structural inheritance only (see Def..1.1)

Definition 3.1 (Candidate Subtype). Let 7} andT> be two types, and letl; and.4-
the attributes of these types Ay C .4,, thenTs is called acandidate subtypef 7. O

Let us assume that a tyfg with attributesA, and one of its candidate subtypgs
are adorned with integrity constraints. We will show thatifpossesses additional con-
straints concerning the attributds, then, in general, the property of substitutability is
violated. In this case designiriy as a subtype df; implies that some of the inher-
ited method implementations have to be overridden. In Settowever, we will show
that this overriding can often be accomplished automayitsi exploiting the integrity
constraints.

Theorem 3.2 (Applicability of inherited methods). Let the typels be a candidate
subtype of the typ€}, let C; be the set of integrity constraints on the attribute§of
and letC,[T1] be the set of integrity constraints on the attribute%'othat restrict some
attributes of7; (i.e., those constraints in which at least one attribut&'pbccurs).

It can be guaranteed that all methods’@f can be applied to instances 8% in a
semantical correct way, if and only@f = C»[T1].

Proof Sketch.Let us first prove the only-if-direction. We show thatdf # C[T1],
then there might be a method @t that is not applicable to all instances Bf in a
semantically correct way:

Case 1Assume that € C5[T}] \ C1. Then there might be ampdate methoof 7
modifying the attribute values of an instancelgfsuch that is violated (because
that method does not necessarily obgy

Case 2. Assume thate C; \ C;[T1]. Then there might be gueryor anupdate

methodof 77 whose semantics and/or implementation rely on the comsteai

Consequently this method cannot be applied in a semanticaitect way to those
instances of; that do not satisfy.

The if-direction is straightforward: All constraints thaight have been exploited for
the implementation of a query or update method still hold#or and, moreover, as
there are no additional constraints update methods arebstriuzted. O
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Note that Case 1 of our proof coincides with the claim statefz©90] that subtyping
by constraints is not possible if substitutability is regdi. As an example take the
update metho&etDeltaAngle that is inherited byEllipse from EllipseArc (see Fig. 5).
If this method is called for ellipses this nearly always waé$ult in a pruned ellipse, i.e.,
in a violation of the integrity constraiimieltaAngle = 2 x . Case 2 is illustrated by the
guery methodArcLength discussed in Sect. 1 (see Fig. 2).

Corollary 3.3 (Nearly-Flat Hierarchies).  Theorem 3.2 implies that the more con-
straints there are the flatter a type hierarchy will beconfi¢hé inheritance of semanti-
cally incorrect methods is to be avoided. O

Let us demonstrate this corollary by our running example tike CAD types depicted
in Fig. 3 there is only one attribute, vizenter, not involved in any integrity constraint.
Thus it is the only one that can be inherited from a super¢kess Fig. 4). [LP91] pro-
pose in case of type restrictions, which may be considerdzktepecial constraints,
to use such flat hierarchies (called subtype hierarchiefi&m} in order to avoid up-
date anomalies, i.e., in order to guarantee substitutyaliiat hierarchies, however,
are not very satisfying, because they sacrifice the fundtahebject-oriented principle
of organizing types in hierarchies to avoid redundancy #&og permit only minimal
software reuse.

To sum up, we have demonstrated by Theorem 3.2 that orggrtigaes with con-
straints may in general require the overriding of inheritegthods. Thus, how to orga-
nize types with constraints? We claim ttsatbtyping by constraintshould be used to
structure such types.

Definition 3.4 (Subtyping by Constraints). A subtype inherits all attributes, meth-
ods, andconstraintsfrom its supertypes. In contrast to methods constraintaaaine
overridden (further constraints, of course, may be added). O

Type hierarchies organized by subtyping by constraintéé@dome major advantages:

1. Structural Inheritance: They satisfy the requirement of structural inheritance.

2. Substitutability for Query Methods: All inherited query methods are applicable
in a semantically correct way without any overriding (as €€asof the proof of
Theorem 3.2 cannot occur).

3. Restricted Substitutability for Update Methods: All inherited update methods
are applicable in a semantically correct way, if the corstsaare checked at run-
time (see next section).

4. Extent Hierarchies: As physical extent of a type we consider the set of all acguall
created instances (e.g., the ODMG standard supports tyjplegxtents, [Cat94];
SQL3 supports table hierarchies that can be used to stoeeeistents, [MM95]).
Since in a subtyping-by-constraints hierarchy a type fagisll the constraints of
its supertypes, an instance of this type can also be regaslad instance of these
supertypes. This justifies the definition of the logical extaf a type as the physi-
cal extents of itself and all its (direct and indirect) syigg. The logical extents of
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a subtyping-by-constraints hierarchy are ordered by s#tision, i.e., the logical
extent of a type is a subset of the logical extents of all itsestypes. Thus logical
extents form @aaxonomy Taxonomies are especially desirable in the database set-
ting to facilitate OQL queries and, moreover, coincide vifth intuitive meaning

of the subtype/supertype relationship.

Applying subtyping by constraints to the types of Fig. 3 gigethe hierarchy depicted
in Fig. 52 In our opinion this hierarchy is preferable both to the spinyg for gen-
eralization hierarchy (see Fig. 2) as well as to the flat hotra(see Fig. 4). Its only
disadvantage is that the calling of inherited update metimoaly cause run-time errors.
These errors, however, can often be avoided, if such methredadapted by the algo-

2 The same hierarchy is achieved, if in a first step all typesisnged in a taxonomy (without
paying regard to attributes and methods). Thereafter,étared step, the types may be adorned
by attributes, methods, and constraints.
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Fig. 5. Subtyping by Constraints

rithms described in the next section. That means, we doereittmply with [MD94],
who claim that subtyping by constraints should not be suiepldyy SQLS3 at all because
this requires run-time checks, nor do we comply with [LPS@jo propose to use flat
hierarchies in order to avoid update anomalies.

4 Adaptation of Update Methods

We have demonstrated in Sect. 3 that, generally, in casely@ng by constraints
some inherited update methochsistbe adapted, i.e. overridden in order to guarantee
that all constraints are always satisfied. Adaptation iy orcessary in those cases
when a typél: inherits an update methadfrom a type7; whereu modifies some of
the attributes occurring iéi:[77] \ C; (see Theorem 3.2).

In this paper we suppose, for the sake of simplicity, that pdate method only
modifies attributes of that object to which it is sent and ti@date methods do not call
other ones. We further assume that updates are performepgdagaumethods only. As
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a consequence no direct update access to the attributessibleo Update methods like
SetSemiMinorAxis have to be used instead.

Definition 4.1 (Update Methods). Let 7" be a type with constraintson its attributes.
Moreover, letX, be a set of variables artt} C C the set of those constraints in which
some attributes ok, occur. Anupdate method is defined as follows:

update method u(<parameters) begin <body>; check(C,); end;

<body> modifies the attribute¥’,,, and thecheck statement checks all constraiigts.
If check fails, thenu raises an exceptioh. O

In the sequel we examine three possibilities to adapt uptiethods automatically.
Note, however, that manual overriding is not excluded. Agpaonmer always can de-
cide to replace an automatically adapted method implertientay another one.

The nop-Adaptation. The most trivial adaptation method is to replace the bodfes o
those inherited update methods that have to obey addittonatraints by one statement
only: nop. This statement does not have any side effect on the dathbaseay raise
a warning without interrupting the program run. That meansthods adapted in this
way never raise any run-time error.

The philosophy behind this adaptation technique is thatittter to leave an object
unchanged than to call an update method whose implememtatiot semantically jus-
tified (as it does not take into account all applicable intggionstraints). For instance,
within the typeEllipse the implementation of the inherited update meti8atDelta-
Angle may be overridden byiop. Then a call of this method—which is not useful for
ellipses—cannot cause a run-time error any more.

Checking the Additional ConstraintsAnother rather trivial adaptation method is to
insert the additional constraints into the check staterokam inherited update method.

Algorithm 4.2 (Adaptation of Constraint Checking). Let 75 be a subtype df; that
inherits all attributes, methods, and constraints (see Bd). Moreover, leC; and
C»[T1] be defined as in Theorem 3.2 and an update methexlin Def. 4.1.

The adaptation is done by adding those constraints[df; ] \ C; to the setC,, of
thecheck statement of: that contain some attributes &f, . O

Additional constraints usually cause run-time errorsnatiéhe original method: was
designed in such a way that none of the constraintever becomes violated. Thus, if
algorithm Algorithm 4.2 is used, we have to deal with exaapsi This is the task of
exception handlers.

Unfortunately this simple adaptation mechanism oftendgehethods aborting for
almost all inputs. For instance, the update met@etbemiMinorAxis inherited byCir-
cleArc from EllipseArc is overridden as follows:

 Currently the issue of efficient integrity checking is anisetopic in database research (see
e.g. [GSUW94)).
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update method SetSemiMinorAxis(V: real)
begin
SemiMinorAxis =V,
check(SemiMajorAxis = Radius, SemiMinorAxis = Radius);
end;

That is, an integrity check ensuring that the ellipse remainsed is included. Obvi-
ously, the method will only succeed fgr= Radius . This behavior absolutely matches
the literal semantics adetSemiMinorAxis. Modifying only one semi axis of a circle
arc does not make any sense (unless object migration [LT&]pertypes is possible,
which is not the case for most existing OODBS).

The Deterministic AdaptationA smarter overriding mechanism should not only mod-
ify the check statement by Algorithm 4.2 but aldeterministicallyadapt the body of
an update method in such a way that the constraints remasfisdiafter each call (c.p.
[STSW93]) without causing too many run-time errors. In gahe deterministic adap-
tation is impossible for arbitrary constraints, since fhisblem is closely related to the
view update problem ([GPZ88; LS91]). Fortunately, for méngctional constraints
deterministic adaptation is possible and can be performtzhzatically.

Definition 4.3 (Functional Constraints). Let 7" be a type with attributed. Moreover,
letA Ay, ..., A, € A be different attributes, and I¢t; be an n-ary function.

1. Anequationfc= A = f4(A4, ..., Ay,) is calledfunctional constrain{FC).
A is calledheadof fc (headfc)), {41, ..., A, } is thebodyof fc (body fc)).
The functionfa(As, ..., Ay,) is calledFC-functionof fc (funct( fc)).

2. Let F be a set of FCs oved, and letA, B € A be two attributes. Thent di-
rectly depends o, A «,4 B, iffthere isan FCA = f4 (X1, B, X2) € F, where

X1, X2 C A. The irreflexive transitive closure of this relation is desmbby & ;.

3. AsetF of FCs is nameacyclicif the corresponding “depends-on” relatidn, is
acyclic. 0O

Functional constraints are very common; think of equalftgttributes or constant at-
tributes (see Fig. 3). Now let us define a set of adaptabletapdathods based on
functional constraints.

Definition 4.4 (Adaptable Update Methods). Let u be an update method within type
T, let T have attributesd and functional constraint§, and letY, be the attributes
accessedréad and/or writ by w.

1. The seDEP(u) C A of update-dependent attributesdefined as
DEP(u) := {A€ A\Y,:IB€Y,: A &, B}

2. An attributed € DEP(u) is calledadaptableiff there isa FCA = f4(X4) € F
such that each attribufe € X 4 is either adaptable or an elemenfigf. The set of
adaptable attributes is denoted ASRAPTv).
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3. uis calledadaptableiff DEP(u) = ADAPTu). O

DEP(u) denotes those attributes not accessed by the bodytivdit must be modified
because of the functional dependencies between them aattibetesy;,. ADAPT u)
contains those attributes BEEP(«) that can actually be adapted by means of the FCs.
Both DEP(u) andADAPT{«) can be determined in polynomial time.

If « obeys all functional constraints then there is no attribtitithat functionally
depends orY,, but is no member ot,. In this caseDEP(u) is empty, and thus no
attribute has to be adapted. That is, attributes of intebtipdate methods have to be
adapted only in Case 1 of Theorem 3.2.

Note that in general there are integrity constraints thatrent taken into account
by the definition of adaptability: Neither non-functionakhstraints nor functional con-
straintsA = f4(X4), whereA €Y, are utilized by Def. 4.4. In those cases, in general,
only non-deterministiadaptation is possible.

More functional constraints imply the adaptability of matéributes. This empha-
sizes our claim of Sect. 2 that integrity constraints shbelchade explicit. In particular,
apparently redundant inverse constrathtsften improve the result, sinc®DAPT u)
contains only head attributes of functional constraintge §eneration of inverse con-
straints may be user-guided or supported by tools (e.g.bslimmathematical pro-
grams for arithmetic constraints). In the sequel for th@dtbut frequent casa=B ¢ F
(whereA andB are attributes) we assume that the inverse consBaiftis always con-
tained inF, too.

Adaptation functiong, are used to compute the correct value of an adaptable at-
tribute A. They are constructed by the following recursive algoriifwith polynomial
worst case complexity):

Algorithm 4.5 (Adaptation Functions). Let the update method the attributest, the
accessed attributés,, and the functional constrainfs be defined as in Def. 4.4, and
letA € ADAPTu).

function adaptation_function(A)
begin
fc:= some fc’ € F where headfc’) = A and
body(fc') \ Y., C ADAPT(u);
ap 1= funct(fc);
for B € body(fc) \ Y, do
begin
ag(Y,) := adaptation_function(B);
<substituterg for variableB in ap>;
end;
return aa(Yy);
end; (I

Let us illustrate Def. 4.4 and Algorithm 4.5 by an example.

* Inverse constraints are functional constraints that anévabgnt to other ones but have different
head attributes (e.gZ,= X — Y is an inverse constraint of= Y + 2)
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Example 4.6 (Adaptability ofcale). Let the update metho8cale for typeEllipseArc
be defined as:

update method Scale(V: real)
begin
SemiMajorAxis =V * SemiMajorAxis;
SemiMinorAxis :=V * SemiMinorAxis;
check();
end;

The setY,, is equal to{SemiMajorAxis, SemiMinorAxis}, and for typeCircleArc the
set of functional constraint& consists ofSemiMajorAxis = Radius, SemiMinorAxis
= Radius, Radius = SemiMajorAxis, Radius = SemiMinorAxis, andRotateAngle = 0.
Thus, we geDEP(u) = {Radius} andADAPT«) = {Radius}. That meansScale is
adaptable in this type. The adaptation functiggys is due to thesome-operator used
in Algorithm 4.5 non-deterministically either implemedtas

dradius(SemiMajorAxis, SemiMinorAxis) = SemiMajorAxis
(by constrainRadius = SemiMajorAxis)

or

dradius(SemiMajorAxis, SemiMinorAxis) = SemiMinorAxis
(by constrainRadius = SemiMinorAxis)

(I
Adaptable update methods, suctsasle, can be adapted by the following algorithm.

Algorithm 4.7 (Automatic Adaptation of Update Methods). Let T' be a type with
attributes4 and constraintg, and letu be an (inherited) adaptable update method of
typeT that has already been adapted by Algorithm 4.2. Moreovet,lec C be the
set of constraints checked hy let Cpep.,) C C be the set of constraints that contain
some attributes dDEP(u), and leta 4, for A € ADAPTu), be the adaptation functions
computed by Algorithm 4.5. Themdefined as

update method u(<parameters)
begin <body>; check(C,); end;

is deterministicallyadapted as follows:

update method u(<parameters)
begin <body>; <A := a4 (Yy), for A € DEP(u)>; check(C, U Cpeprw)); end;

The constraint€pep(,) have to be checked additionally, as now the attribDEs(u)

are also modified. Note, however, thi@jep.,) contains many constraints whose satis-
faction is always guaranteed due to the adaptation (vizoaltraint that were used by
Algorithm 4.5 and the corresponding inverse constrailtt)f course, is not necessary
to test those constraints—i.e., they might be deleted flwratiaptedheck statement.

(I
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The update method is rewritten in such a way that all nonssezkattributes depending
on the accessed attributes are consistently modified, too.

Example 4.8 (Automatic Adaptation 8tale). Let the update metho8cale of type
EllipseArc be defined as in Example 4.6. TypécleArc inherits this method. Because
Scale is adaptable in this class, it can, e.g., be rewritten in tfleiing way:

update method Scale(V: real)

begin
SemiMajorAxis :=V * SemiMajorAxis;
SemiMinorAxis :=V *x SemiMinorAxis;
Radius := SemiMajorAxis; /* adaptation of dependent attributgs
check(SemiMajorAxis = Radius, SemiMinorAxis = Radius,

RotateAngle = 0);
end; |

5 Storage Optimization

An apparent advantage of subtyping-for-generalizatierdnchies is the profitable stor-
age demand of this model. Let us illustrate this aspect bywuring example.

Example 5.1 (Storage Demand for CAD TypeSpnsider the CAD types and assume
the following storage requirements for basic typesl requires 4 bytesoint 8 bytes,
and the OID 8 bytes. Then in the subtyping-for-generaliatiierarchy (see Fig. 2)
each singleCircle object (i.e., its OID and attributes) occupies 20 bytes,antast to
40 bytes in the subtyping-by-constraints hierarchy (sge%)i. O

Many a database designer may decide that the advantageoagestomplexity of the
subtyping-for-generalization hierarchy outweighs treadivantages of this model con-
cerning software reuse aspects. A low storage demand magialip be desirable in a
distributed OODBS to reduce the net load caused by tramsfgsbjects from servers to
client applications. In this section, however, we will aéghat the same storage demand
can be achieved for the subtyping-by-constraints hieyaogtanautomatic storage op-
timization

Storage optimization has always been a concern for OODB& We will present
an algorithm performing a storage optimization based omtititional functional con-
straints a subtype may define. Functional constraints f 4 (X 4 ) imply classical func-
tional dependencie¥ s — A between the attributes of a type ([UII88]). Thus, the basic
idea of this algorithm relies on an application of tteéational normalization theory
The algorithm returns two disjoint sets of attributes;ore that are physically stored in
the database andcomp that are computed fromlsiore as well as a sefiomp of func-
tional constraints determining how to computgom attributes.
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Algorithm 5.2 (Attribute Storage Optimization).

Input: Attributes.4 and anorderedlist of functional constraintg on the attributes.

1. Compute the setdsiore C A andFeomp C F:°

Astore= A; Feomp= 0;
for fc € F do
if headfc) € Asworeand FeompU { fc} is acyclic then
begin
Astore := Astore\ {headfc)};
Feomp := FeompU {fc};
end;

2. Acomp =A \ Astore
Output As[ore Acomp, andfcomp |:|
The quality of the optimization result depends on two patanse

1. Cardinality of 7. Again F should contain as many inverse constraints as possible,
because the computation f,mp depends on the heads of functional constraints.

Let, e.g..F = {A =B, A = C}, then the Algorithm 5.2 yield$B, C} as stored at-
tributes. Adding the inverse constrai§ = A, C = A} improves the optimization
as then onlyneattribute will be stored (see Example 5.4).

2. Processing ordering of . Distinct orderings of the functional constrairfsmay
result in optimizations of various quality.

For instance, consider the functional constraint compress(B) and its inverse
B = uncompress(A) (whereA is a BLOB,B a CLOB, andcompress a function
to compress character strings). Then there are two paseilfirst selectingA

= compress(B) results in storingd and computingdA being much more storage-
extensive than storingand computind® by uncompress(A). The latter solution is
achieved if the algorithm first seled®s= uncompress(A).

The possibly large search space of orderings can be redyceéuistic search—a
guite common technique in database optimization. The worg& complexity of the

storage optimization algorithm is polynomial, and for eathe Acomp there exists

a uniquecomputation functior 4 (X4), Xa C Aswre cOMposed of FC-functions of
Feomp ([KKK95]). The computation functions will be used to compuhe values of

computed attributes from the stored ones. They are constriy the following recur-

sive algorithm:

® Both, (OID Astore) as well as(A X ) for A = fa(X4) € Feomp can be regarded as the de-
composed relational schemes of the relation schema formdiebattributes and the OID of
the objects of a type.
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Algorithm 5.3 (Computation Functions). Let A € Acomp

function computation_function(A)
begin
fc:=that fc' € Feompwhere headfc’) = A;
ea 1= funct(fc);
for B € body(fc) N Acompdo
begin
g (Astore) := computation_function(B);
<substitute:g for variableB in ca>;
end;
return ca(Astore);
end; O

Note that the recursion terminates becafsgn is acyclic. Its worst case complex-
ity again is polynomial. We demonstrate the storage opttion performed by Algo-
rithm 5.2 for the CAD types.

Example 5.4 (CAD Types continued)et us examine the proceeding of the algorithm
for typeCircleArc in detail. Here we have:

A = {Center, SemiMajorAxis, SemiMinorAxis,, Radius,
StartAngle, DeltaAngle, RotateAngle },

F = {RotateAngle = 0,
SemiMajorAxis = Radius , Radius = SemiMajorAxis,
SemiMinorAxis = Radius, Radius = SemiMinorAxis} .

When the elements of are ordered as above, then step 1 of Algorithm 5.2 computes
AstoreaNdFeomp as follows:

0. Astore = {Center, SemiMajorAxis, SemiMinorAxis, Radius,
StartAngle, DeltaAngle, RotateAngle },
fcomp = 0

1. Asiore = {Center, SemiMajorAxis, SemiMinorAxis, Radius,
StartAngle, DeltaAngle},
Feomp= {RotateAngle = 0}

2. Astore = {Center, SemiMinorAxis, Radius, StartAngle, DeltaAngle},
Feomp= {RotateAngle = 0, SemiMajorAxis = Radius }

3. Astore and Feomp are not modified since the insertion R&dius = SemiMajorAxis
into Fompwould cause a cycle.

4. Astore = {Center, Radius, StartAngle, DeltaAngle},
Feomp= {RotateAngle = 0, SemiMajorAxis = Radius, SemiMinorAxis = Radius}

5. Astore and Feomp are not modified since the insertion R&dius = SemiMinorAxis
into Fompwould cause a cycle.
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In step 2 we getdcomp = {RotateAngle, SemiMajorAxis, SemiMinorAxis }. The cor-
responding ComDUtation functions arl@)tateAngle(Astore) = 0: CSemiMajorAxis (Astore) =
Radius, andCSemiMinorAxis (Astore) = Radius.

For the remaining CAD types Algorithm 5.2 yields the follmgistorage optimiza-
tions.

EllipseArc:
SinceF = (), all attributes are stored.

NonRotatedEllipseArc:
RotateAngle is computed byrotateangie (-Astore) = 0, the other ones are stored.

Ellipse:
StartAngle andDeltaAngle are respectively computed b¥arangie (Astore ) = 0
andcpeitaangle (Astord = 2 * m, the other ones are stored.

NonRotatedEllipse, Circle:
As there are no additional constraints, the setashputedttributes is theinion
of the computed attributes of their supertypes, and thefs&beedattributes is
theintersectiorof the stored attributes of their supertypes.

For typeCircle, the attributeenter andRadius are stored requiring 20 bytes of stor-
age. Thus storage optimization resulted in the same stalagend as the subtyping-
for-generalization hierarchy. d

In [KKK95] we demonstrate how the resulting storage optatian can be imple-
mented on top of every C++-based OODBS.

6 Related Work

A very good survey on object-oriented analysis and desighAD) techniques is given
by [MP92]. In this paper the authors inter alia claim thatpig classes is a weakness
of current OOAD research. Most OOAD methods neglect thisctopmpletely (only
four out of fifteen OOAD methods evaluated by [MP92] do memtitass placement).
The difficulties of class placement in the presence of cairs is a direct consequence
of our Corollary 3.3 implying that each placement has sonagvdacks.

[LP91] propose to distinguish subtyping hierarchies, ienpéntation hierarchies,
and specialization hierarchies (i.e., taxonomies). Saibtyhierarchies support reusabil-
ity for the user, whereas implementation hierarchies sttppasability for the imple-
mentor. The specialization hierarchy, on the other hanahlig needed for understand-
ing logical relationships. In case of type restrictionsjeckhmay be considered to be
special constraints, [LP91] suggest to use nearly flat hibias as subtyping hierar-
chies in order to avoid update anomalies. In our opinionagtlsubtyping hierarchies
and specialization hierarchies should coincide, becauisepiossible to avoid update
anomalies even in taxonomies by update method adaptagenSsct. 4). All that is
needed is to distinguish query from update methods, a nesske price to pay, in-
deed.
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Case 1 of Theorem 3.2 was already proven by [ZM90]. Usingdbsgervation the
authors have argued that it is impossible to support the fieaturessubstitutability
static type checkingmutability(i.e., the possibility of updating objects), asgecial-
ization via constraint®ll together in a single type system although any three of the
four features seem to work just fine. They suggest to reduealbility of static type
checking, i.e., to permit run-time checks. This coincidéthwhe adaptation done by
our Algorithm 4.2. They also claim that at least three défertypes of hierarchies
(which are similar to those described by [LP91]) should sidguished. In our opin-
ion, however, such a distinction does cause more confusamdlarify the meaning of
the types.

[MD94] discuss the question which one of the four incomgatibatures described
by [ZM90] should be eliminated in the upcoming SQL3 standdittky claim not to
support specialization via constraints because the otinee features are more impor-
tant. However, they remark that in SQL3 sets and lists areeléfby means of con-
straints as subtypes of collection, and that it is not cleaw this can be handled in
SQL3. In our opinion SQL3 (or at least SQL4) should suppoec&gdization via con-
straints by all means. In SQL3 it is possible to define coimsan tables that have
to be checked at run-time. So it seems to be no problem to peumitime constraint
checking for types, too. Furthermore, it always is posdibeutomatically adapt inher-
ited update methods in such a way that no run-time errorsrdsee Sect. 4).

Many researchers are of contrary opinion as to whether attbyiented language
should support covariance or contravariance specificgtea, e.g., [CCHO89; KA90;
Sha94]). The distinction between query and update mettogsaposed in this paper
entails in case of taxonomic modeling a coexistence of baltontravariance rule for
guery methods and the covariance rule for update methodsh®none handguery
methodghat are inherited by subclasses never need be adaptedieininput param-
eter types may be enlarged (contravariance). The set ofpp@ssput parameters of
update method®on the other hand, is, in general, restricted by additicoaktraints.
That is, our approach reveals that both the contravarianeeand the covariance rule
are needed for natural modeling—thus they should not beders combats but part-
ners with equal rights.

In this paper we have dealt with strict inheritance, iadl. attributes, methods, and
constraints are inherited by subtypes. Often, howevetigbarheritance is favored (in-
heritance by default, [MMM93]; as-a inheritance, [MHM95By partial inheritance
we denote that only some attributes, methods, and/or @nttrare inherited. Others
may either be overridden or even discarded. This kind ofritdnece is important, if
there is a difference between types that are currentlyaailand types that are to be
developed ([MHMB95]). In such cases, however, the resultiegarchies do not reflect
application semantics but are established for code reasems only. Especially in the
database setting, however, taxonomies should be the oatobm modeling process
capturing as much semantics as possible. On the other haradtial attribute inheri-
tance mechanism may turn out as an elegant implementatitive gtorage optimized
hierarchy. Furthermore, the storage optimization preskim Sect. 5 is applicable to
partial inheritance any way.

For reusing predefined types partial inheritance is veryoirtgmt. Nonetheless, it
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should not be misused as a substitute for subtyping-byt@ints. [MHM95], e.g., state
that asquare is norectangle as it must not inherit the methodsetch_x andstretch_y.
They propose to use as-a (i.e. partial) inheritance instéagever, it has been common
sense for at least two thousand years that each stpmrectangle; everguerymethod
applicable to a rectangle can be applied to squares as \welir&variance!). Only up-
dating must be restricted (covariance!). And there arerélgus to do this restriction
automatically in such a way that substitutability is guéead (see Sect. 4).

Moreover, it is remarkable that [MHM95] designsguare to have the three at-
tributesleft, top, andside_length although they assume that a definitionretangle
with four attributedeft, right, top,andbottom is already available and shall be reused.
Due to those differences they have (“by hand”) to prove fdlyrtaat, e.g., the inher-
ited operatiomove of rectangle satisfies the specification sfuare, too. Nevertheless,
such a design is very common as it apparently saves spacey bisi approach, on the
other hand, one would first simply defisquare as a subtype ofectangle and then
add one attributeside_length, and two constraintsight = left + side_length andtop =
bottom + side_length. Utilizing these constraints the storage optimizatiorcdesd in
Sect. 5 would delete the storage overhead by comptutihgandtop instead of storing
them. Thus it is possible to reusectangle without much effort and without storage
penalty.

7 Summary and Outlook

We have investigated object-oriented modeling issues gptieation domains where
integrity constraints play a crucial role. Common modelgngctice often yields sub-
typing for generalization or nearly flat hierarchies, sesly hampering software reuse.
In contrast, we propose to use a modeling technique calleiygiimg by constraints that
relies on the principle of making all integrity constraiimgolved explicit in the design
process. Making constraints explicit produces sematyicabre desirable hierarchies
with enhanced substitutability. Moreover, we have proglidie automatic adaptation al-
gorithm to even broaden the amount of substitutable updateads. A potential coun-
terargument against our modeling technique of making atraints explicit, namely
the storage overhead compared to subtyping for genelalizatas refuted by a new
storage optimization algorithm. We think that our proposeatleling method of sub-
typing by constraints should apply both to the OOPL and thé86 environment. In
the OODBS setting it is even more important, since subtypingonstraints renders it
possible to maintain semantically meaningful extent hiri@s under a set-inclusion
semantics (i.e. taxonomies), being especially importanobject-oriented declarative
guery languages (c.p. [KBA91]). We have implemented alyemgrototype for our
methodology, realized by a preprocessor translating inte-G/ersant. Currently we
experiment with a realistic CAD application and we plan talgre large type hierar-
chies emerging from existing object-oriented GIS appiicet.
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