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Abstract. For many object-oriented database applications taxonomies with a set-
inclusion semantics among the type extents are essential. In practical cases, how-
ever, common object-oriented modeling techniques often donot result in tax-
onomies as they ignore application specific constraints. Wewill elaborate that
especially in domains like CAD or similar engineering environments integrity
constraints on type attributes have a deep impact on the resulting hierarchy. We
argue that subtyping by constraints may be superior to otherobject-oriented al-
ternatives like subtyping for generalization or nearly-flat hierarchies. Subtyping
by constraints achieves a logical set-inclusion hierarchy, and in addition enables a
larger amount of semantically correct substitutability. This can even be improved
by a novel framework of automatic method adaptation for enhanced substitutabil-
ity. Moreover, a potential storage penalty caused by makingconstraints explicit
can be avoided completely by applying a new storage optimization technique
based on functional integrity constraints. Our results areillustrated by practical
examples drawn from the OCAD project.

�

Keywords. Object-oriented databasesand modeling, subtyping, inheritance, con-
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1 Introduction

Object-oriented database systems (OODBS) exhibit severalwell-accepted virtues, com-
bining the strengths of databases technology with the powerand flexibility of the object-
oriented paradigm of programming languages like C++ or Smalltalk. In particular, the
rich type system of an OODBS, supporting the natural modeling of complex attributes,
is one feature that attracted the attention of database application builders. A crucial no-
tion of the object-oriented paradigm is inheritance. One major interpretation of inheri-
tance, which especially is used in the OODBS setting, can be characterized by the fol-
lowing two constituents ([ABD

�
89; ZM90; Bud91; CY91; RBP

�
91; Boo94; Kim95]):

�
“OCAD: Object-Oriented Databases for CAD” is a joint project of Nemetschek Programm-
system GmbH, Munich (a large CAD tool manufacturer in Europe) and the Bavarian Research
Center for Knowledge-Based Systems (FORWISS) under the direction of W. Kießling.
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Definition 1.1 (Inheritance in Object-Oriented Systems).

– Structural Inheritance
A subtype in a hierarchy inherits all attributes of its supertypes.

– Substitutability
All methods of a type should be applicable to all instances ofits subtypes.

�

Some of the benefits of substitutability are software reusability, consistency of inter-
faces, and rapid prototyping. Therefore the need for overriding methods should be ex-
ceptional. The main purpose of overriding should be to provide more efficient imple-
mentations (e.g., to enhance a rapid prototype), but not to “repair” semantically incor-
rect methods.

Software reuse by inheritance is of major concern. But it is conspicuous that in
many applications (especially from the areas of CAD, GIS, and engineering) hierar-
chies resulting from conventional object-oriented analysis and design often require the
overriding of methods because inherited implementations do not match their intended
semantics. We will argue that this does not happen coincidentally, but as a consequence
of attributes that are (often implicitly) related by integrity constraints. In conventional
object-oriented modeling approaches such attributes are usually omitted for reasons of
simplicity and storage complexity. On the other hand, as theimplicit constraints may
be encoded in method implementations, these omissions may cause semantical mis-
matches. To enhance software reuse in hierarchies as described above, we propose
to make the implicit attributes and constraints explicit and to organize the types in
subtyping-by-constraints hierarchies. We show that such hierarchies have some very de-
sirable properties, both from the object-oriented modeling perspective and for OODBS
purposes.

Achieving these advantages requires that the integrityconstraints have to be checked
at run-time when we execute update methods. This is a consequence of a very general
principle concerning hierarchies with integrity constraints: we show that in this kind of
hierarchies some overriding or (as a special case) integrity checking is inevitable.

The rest of the paper is organized as follows: In Sect. 2 we illustrate by a case
study from the CAD area the drawbacks caused by implicit attributes and constraints. In
Sect. 3 we show that in hierarchies with integrity constraints (whether they are explicit
or not) method overriding is inevitable, but can be restricted to adorning update methods
with integrity checks if we organize the types in subtyping-by-constraints hierarchies.
Section 4 presents the automatic adaptation of update methods to minimize these run-
time checks and in Sect. 5 we provide a storage optimization algorithm based on the
integrity constraints, avoiding storage overhead caused by the introduction of the im-
plicit attributes. In Sect. 6 our approach is compared with related work. Finally, Sect. 7
summarizes our contributions and gives an outlook on futurework.

2 A Motivating Case Study

Object-oriented analysis and design techniques ([SM88; Bud91; RBP
�

91; Boo94]) of-
ten result in type hierarchies in such a way that methods inherited from superclasses
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Fig. 1. Some CAD-types

do not conform with their intended semantics. This means, although they are syntac-
tically applicable to instances of the subclasses they do not yield the desired result.
We will argue that the intrinsic reason for that semantic mismatch is the disregard of
integrity constraints during the design of the hierarchy, although they wereimplicitly
employed for the implementation of the methods. In the following we will distinguish
query methodsfrom update methods. Query methods are used to inspect type instances
without modifying them—update methods, on the other hand, modify objects without
returning any value. This very natural distinction is necessary because in case of sub-
typing by constraints only update methods are to be overridden in a semantically correct
way (see Sect. 3).

Example 2.1 (CAD modeling).Figure 1 shows some types of a realistic CAD applica-
tion gained by object-oriented analysis and design techniques in the OCAD project. The
types comprise ellipse arcs and specializations. Many update methods, query methods,
and (graphical) attributes are left out for shortness.

�

Ordering the types according to the requirement of structural inheritance results in a
subtyping-for-generalization hierarchy ([HO88; Bud91])depicted in Fig. 2. As all in-
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herited methods can syntactically be applied to all instances of the subclasses, this hier-
archy apparently satisfies the property of substitutability as well.

EllipseArcrelationship

The symbol 
denotes the subtype

NonRotatedEllipse

Attributes
SemiMinorAxis: real

Query Methods
SemiMajorAxis: real

Center: Point
Attributes
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Update Methods
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Ellipse

RotateAngle: real

NonRotatedEllipseArc

Fig. 2.Subtyping for generalization

Let us examine the two typesCircle andCircleArc in more detail.CircleArc inher-
its the implementation� � 	 � Radius of ArcLength from Circle. This implementation,
however, does not match the intended semantics ofArcLength for CircleArc because it
describes the circumference of the circle corresponding tothe circle arc. The reason for
this semantical mismatch is that not only circle arcs but circles as well do have a delta
angle—yet for circles it is by definition always equal to� � 	 . That is, the typeCircle
has animplicit attributeDeltaAngle that is restricted by animplicit integrity constraint.
Although this constraint was not stated explicitly, it was exploited for the implemen-
tation of ArcLength within Circle. For circle arcs, on the other hand, the arc length is
depending on theDeltaAngle—thus the inherited implementation ofArcLength has to
be overridden.

That means, Fig. 2 is not an appropriate model of the CAD-types. A further disad-
vantage of this hierarchy is that it does not match the corresponding extensional hierar-
chy (there are instances of typeCircleArc that are not instances ofCircle)—a property
especially important in the OODBS setting.
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Fig. 3.Types with explicit constraints

To remedy these drawbacks we propose to make implicit attributes explicit and to
represent the accompanying integrity constraints. Figure3 depicts the CAD-types with
all relevant attributes and the corresponding integrity constraints stated explicitly. The
attributes of all types exceptEllipseArc are restricted by integrity constraints. In Sect. 5
we show that adding those attributes and constraints does not imply a storage penalty
(except of the larger schema information that has to be stored).

To sum up, in many applications a lot of constraints are inherent to the types. Ne-
glecting those constraints enables—as demonstrated above—the inheritance of semanti-
cally not justified method implementations. We conclude that such constraints should be
an integral part of object-oriented analysis and design. Unfortunately, most design ap-



292

proaches, object-oriented programming languages, and OODBS do not cover integrity
constraints sufficiently.

3 Impacts of Constraints on Type Hierarchies

In the last section we argued that implicit attributes and constraints that are inherent
for types should be made explicit. In the sequel we will examine the impacts of this
demand on the structuring of types into hierarchies. First let us define a relationship on
types induced by structural inheritance only (see Def. 1.1).

Definition 3.1 (Candidate Subtype). Let 
 � and
 � be two types, and let� � and� �
the attributes of these types. If� � � � � , then
 � is called acandidate subtypeof 
 � . �

Let us assume that a type
 � with attributes
 � and one of its candidate subtypes
 �
are adorned with integrity constraints. We will show that if
 � possesses additional con-
straints concerning the attributes
 � , then, in general, the property of substitutability is
violated. In this case designing
 � as a subtype of
 � implies that some of the inher-
ited method implementations have to be overridden. In Sect.4, however, we will show
that this overriding can often be accomplished automatically by exploiting the integrity
constraints.

Theorem 3.2 (Applicability of inherited methods). Let the type
 � be a candidate
subtype of the type
 � , let � � be the set of integrity constraints on the attributes of
 � ,
and let� � � 
 � � be the set of integrity constraints on the attributes of
 � that restrict some
attributes of
 � (i.e., those constraints in which at least one attribute of
 � occurs).

It can be guaranteed that all methods of
 � can be applied to instances of
 � in a
semantical correct way, if and only if� � � � � �
 � � .

Proof Sketch.Let us first prove the only-if-direction. We show that if� � �� � � � 
 � � ,
then there might be a method of
 � that is not applicable to all instances of
 � in a
semantically correct way:

Case 1.Assume that� � � � � 
 � � � � � . Then there might be anupdate methodof 
 �
modifying the attribute values of an instance of
 � such that� is violated (because
that method does not necessarily obey� ).
Case 2. Assume that� � � � � � � � 
 � � . Then there might be aqueryor anupdate
methodof 
 � whose semantics and/or implementation rely on the constraint � .
Consequently this method cannot be applied in a semantically correct way to those
instances of
 � that do not satisfy� .

The if-direction is straightforward: All constraints thatmight have been exploited for
the implementation of a query or update method still hold for
 � , and, moreover, as
there are no additional constraints update methods are not obstructed.

�
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Note that Case 1 of our proof coincides with the claim stated by [ZM90] that subtyping
by constraints is not possible if substitutability is required. As an example take the
update methodSetDeltaAngle that is inherited byEllipse from EllipseArc (see Fig. 5).
If this method is called for ellipses this nearly always willresult in a pruned ellipse, i.e.,
in a violation of the integrity constraintDeltaAngle = � � 	 . Case 2 is illustrated by the
query methodArcLength discussed in Sect. 1 (see Fig. 2).

Corollary 3.3 (Nearly-Flat Hierarchies). Theorem 3.2 implies that the more con-
straints there are the flatter a type hierarchy will become, if the inheritance of semanti-
cally incorrect methods is to be avoided.

�

Let us demonstrate this corollary by our running example. For the CAD types depicted
in Fig. 3 there is only one attribute, vizCenter, not involved in any integrity constraint.
Thus it is the only one that can be inherited from a superclass(see Fig. 4). [LP91] pro-
pose in case of type restrictions, which may be considered tobe special constraints,
to use such flat hierarchies (called subtype hierarchies by them) in order to avoid up-
date anomalies, i.e., in order to guarantee substitutability. Flat hierarchies, however,
are not very satisfying, because they sacrifice the fundamental object-oriented principle
of organizing types in hierarchies to avoid redundancy and thus permit only minimal
software reuse.

To sum up, we have demonstrated by Theorem 3.2 that organizing types with con-
straints may in general require the overriding of inheritedmethods. Thus, how to orga-
nize types with constraints? We claim thatsubtyping by constraintsshould be used to
structure such types.

Definition 3.4 (Subtyping by Constraints). A subtype inherits all attributes, meth-
ods, andconstraintsfrom its supertypes. In contrast to methods constraints cannot be
overridden (further constraints, of course, may be added).

�

Type hierarchies organized by subtyping by constraints exhibit some major advantages:

1. Structural Inheritance: They satisfy the requirement of structural inheritance.

2. Substitutability for Query Methods: All inherited query methods are applicable
in a semantically correct way without any overriding (as Case 2 of the proof of
Theorem 3.2 cannot occur).

3. Restricted Substitutability for Update Methods: All inherited update methods
are applicable in a semantically correct way, if the constraints are checked at run-
time (see next section).

4. Extent Hierarchies: As physical extent of a type we consider the set of all actually
created instances (e.g., the ODMG standard supports types with extents, [Cat94];
SQL3 supports table hierarchies that can be used to store type extents, [MM95]).
Since in a subtyping-by-constraints hierarchy a type satisfies all the constraints of
its supertypes, an instance of this type can also be regardedas an instance of these
supertypes. This justifies the definition of the logical extent of a type as the physi-
cal extents of itself and all its (direct and indirect) subtypes. The logical extents of
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Fig. 4. Almost flat ellipse arc hierarchy

a subtyping-by-constraints hierarchy are ordered by set inclusion, i.e., the logical
extent of a type is a subset of the logical extents of all its supertypes. Thus logical
extents form ataxonomy. Taxonomies are especially desirable in the database set-
ting to facilitate OQL queries and, moreover, coincide withthe intuitive meaning
of the subtype/supertype relationship.

Applying subtyping by constraints to the types of Fig. 3 yields the hierarchy depicted
in Fig. 5.2 In our opinion this hierarchy is preferable both to the subtyping for gen-
eralization hierarchy (see Fig. 2) as well as to the flat hierarchy (see Fig. 4). Its only
disadvantage is that the calling of inherited update methods may cause run-time errors.
These errors, however, can often be avoided, if such methodsare adapted by the algo-
�

The same hierarchy is achieved, if in a first step all types arearranged in a taxonomy (without
paying regard to attributes and methods). Thereafter, in a second step, the types may be adorned
by attributes, methods, and constraints.
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Fig. 5. Subtyping by Constraints

rithms described in the next section. That means, we do neither comply with [MD94],
who claim that subtyping by constraints should not be supported by SQL3 at all because
this requires run-time checks, nor do we comply with [LP91],who propose to use flat
hierarchies in order to avoid update anomalies.

4 Adaptation of Update Methods

We have demonstrated in Sect. 3 that, generally, in case of subtyping by constraints
some inherited update methodsmustbe adapted, i.e. overridden in order to guarantee
that all constraints are always satisfied. Adaptation is only necessary in those cases
when a type
 � inherits an update method� from a type
 � where� modifies some of
the attributes occurring in� � � 
 � � � � � (see Theorem 3.2).

In this paper we suppose, for the sake of simplicity, that an update method only
modifies attributes of that object to which it is sent and thatupdate methods do not call
other ones. We further assume that updates are performed by update methods only. As
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a consequence no direct update access to the attributes is possible. Update methods like
SetSemiMinorAxis have to be used instead.

Definition 4.1 (Update Methods). Let 
 be a type with constraints� on its attributes.
Moreover, let� � be a set of variables and� � � � the set of those constraints in which
some attributes of� � occur. Anupdate method� is defined as follows:

update method � �<parameters>� begin <body>; check(� � ); end;

<body> modifies the attributes� � , and thecheck statement checks all constraints� � .
If check fails, then� raises an exception.3 �

In the sequel we examine three possibilities to adapt updatemethods automatically.
Note, however, that manual overriding is not excluded. A programmer always can de-
cide to replace an automatically adapted method implementation by another one.

Thenop-Adaptation. The most trivial adaptation method is to replace the bodies of
those inherited update methods that have to obey additionalconstraints by one statement
only: nop. This statement does not have any side effect on the databasebut may raise
a warning without interrupting the program run. That means,methods adapted in this
way never raise any run-time error.

The philosophy behind this adaptation technique is that it is better to leave an object
unchanged than to call an update method whose implementation is not semantically jus-
tified (as it does not take into account all applicable integrity constraints). For instance,
within the typeEllipse the implementation of the inherited update methodSetDelta-
Angle may be overridden bynop. Then a call of this method—which is not useful for
ellipses—cannot cause a run-time error any more.

Checking the Additional Constraints.Another rather trivial adaptation method is to
insert the additional constraints into the check statementof an inherited update method.

Algorithm 4.2 (Adaptation of Constraint Checking). Let 
 � be a subtype of
 � that
inherits all attributes, methods, and constraints (see Def. 3.4). Moreover, let� � and
� � � 
 � � be defined as in Theorem 3.2 and an update method� as in Def. 4.1.

The adaptation is done by adding those constraints of� � � 
 � � � � � to the set� � of
thecheck statement of� that contain some attributes of� � .

�

Additional constraints usually cause run-time errors, even if the original method� was
designed in such a way that none of the constraints� � ever becomes violated. Thus, if
algorithm Algorithm 4.2 is used, we have to deal with exceptions. This is the task of
exception handlers.

Unfortunately this simple adaptation mechanism often yields methods aborting for
almost all inputs. For instance, the update methodSetSemiMinorAxis inherited byCir-
cleArc from EllipseArc is overridden as follows:
�

Currently the issue of efficient integrity checking is an active topic in database research (see
e.g. [GSUW94]).
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update method SetSemiMinorAxis(V: real)
begin

SemiMinorAxis := V;
check(SemiMajorAxis = Radius, SemiMinorAxis = Radius);

end;

That is, an integrity check ensuring that the ellipse remains closed is included. Obvi-
ously, the method will only succeed forV = Radius . This behavior absolutely matches
the literal semantics ofSetSemiMinorAxis. Modifying only one semi axis of a circle
arc does not make any sense (unless object migration [LT95] to supertypes is possible,
which is not the case for most existing OODBS).

The Deterministic Adaptation.A smarter overriding mechanism should not only mod-
ify the check statement by Algorithm 4.2 but alsodeterministicallyadapt the body of
an update method in such a way that the constraints remain satisfied after each call (c.p.
[STSW93]) without causing too many run-time errors. In general, a deterministic adap-
tation is impossible for arbitrary constraints, since thisproblem is closely related to the
view update problem ([GPZ88; LS91]). Fortunately, for manyfunctional constraintsa
deterministic adaptation is possible and can be performed automatically.

Definition 4.3 (Functional Constraints). Let 
 be a type with attributes� . Moreover,
let 
 � 
 � � � � � � 
 � � � be different attributes, and let�  be an n-ary function.

1. An equationfc ! 
 � �  � 
 � � � � � � 
 � � is calledfunctional constraint(FC).

 is calledheadof fc (head� fc� ), " 
 � � � � � � 
 � # is thebodyof fc (body� fc� ).
The function�  � 
 � � � � � � 
 � � is calledFC-functionof fc (funct� fc� ).

2. Let $ be a set of FCs over� , and let
 � % � � be two attributes. Then
 di-
rectly depends on% , 
 & ' % , iff there is an FC
 � �  � � � � % � � � � � $ , where

� � � � � � � . The irreflexive transitive closure of this relation is denoted by
�
& ' .

3. A set$ of FCs is namedacyclic if the corresponding “depends-on” relation
�
& ' is

acyclic.
�

Functional constraints are very common; think of equality of attributes or constant at-
tributes (see Fig. 3). Now let us define a set of adaptable update methods based on
functional constraints.

Definition 4.4 (Adaptable Update Methods).Let � be an update method within type

 , let 
 have attributes� and functional constraints$ , and let( � be the attributes
accessed (read and/or write) by � .

1. The setDEP� � � � � of update-dependent attributesis defined as

DEP� � � ) � " 
 � � � ( � ) * % � ( � ) 

�
& ' % # .

2. An attribute
 � DEP� � � is calledadaptable, iff there is a FC
 � �  � �  � � $
such that each attribute% � �  is either adaptable or an element of( � . The set of
adaptable attributes is denoted byADAPT� � � .
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3. � is calledadaptable, iff DEP� � � � ADAPT� � � . �

DEP� � � denotes those attributes not accessed by the body of� that must be modified
because of the functional dependencies between them and theattributes( � . ADAPT� � �
contains those attributes ofDEP� � � that can actually be adapted by means of the FCs.
BothDEP� � � andADAPT� � � can be determined in polynomial time.

If � obeys all functional constraints then there is no attribute
 that functionally
depends on( � but is no member of( � . In this caseDEP� � � is empty, and thus no
attribute has to be adapted. That is, attributes of inherited update methods have to be
adapted only in Case 1 of Theorem 3.2.

Note that in general there are integrity constraints that are not taken into account
by the definition of adaptability: Neither non-functional constraints nor functional con-
straints
 � �  � �  � , where
 � ( � are utilized by Def. 4.4. In those cases, in general,
only non-deterministicadaptation is possible.

More functional constraints imply the adaptability of moreattributes. This empha-
sizes our claim of Sect. 2 that integrity constraints shouldbe made explicit. In particular,
apparently redundant inverse constraints4 often improve the result, sinceADAPT� � �
contains only head attributes of functional constraints. The generation of inverse con-
straints may be user-guided or supported by tools (e.g., symbolic mathematical pro-
grams for arithmetic constraints). In the sequel for the trivial but frequent caseA=B � $
(whereA andB are attributes) we assume that the inverse constraintB=A is always con-
tained in$ , too.

Adaptation functions+ A are used to compute the correct value of an adaptable at-
tributeA. They are constructed by the following recursive algorithm(with polynomial
worst case complexity):

Algorithm 4.5 (Adaptation Functions). Let the update method� , the attributes� , the
accessed attributes( � , and the functional constraints$ be defined as in Def. 4.4, and
let A � ADAPT� � � .

function adaptation_function(A)
begin

fc := some fc, � $ where head� fc, � � 
 and
body� fc, � � ( � � ADAPT� � � ;

+ A := funct� fc� ;
for B � body� fc� � ( � do

begin
+ B � ( � � := adaptation_function(B);
<substitute+ B for variableB in + A>;

end;
return + A � ( � � ;

end;
�

Let us illustrate Def. 4.4 and Algorithm 4.5 by an example.
-

Inverse constraints are functional constraints that are equivalent to other ones but have different
head attributes (e.g.,Z = X . Y is an inverse constraint ofX = Y / Z)
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Example 4.6 (Adaptability ofScale). Let the update methodScale for typeEllipseArc
be defined as:

update method Scale(V: real)
begin

SemiMajorAxis := V � SemiMajorAxis;
SemiMinorAxis := V � SemiMinorAxis;
check();

end;

The set( � is equal to" SemiMajorAxis � SemiMinorAxis # , and for typeCircleArc the
set of functional constraints$ consists ofSemiMajorAxis = Radius, SemiMinorAxis
= Radius, Radius = SemiMajorAxis, Radius = SemiMinorAxis, andRotateAngle = 0.
Thus, we getDEP� � � � " Radius # andADAPT� � � � " Radius # . That means,Scale is
adaptable in this type. The adaptation function+ Radius is due to thesome-operator used
in Algorithm 4.5 non-deterministically either implemented as

+ Radius �SemiMajorAxis � SemiMinorAxis � � SemiMajorAxis
(by constraintRadius = SemiMajorAxis)

or

+ Radius �SemiMajorAxis � SemiMinorAxis � � SemiMinorAxis
(by constraintRadius = SemiMinorAxis)

�

Adaptable update methods, such asScale, can be adapted by the following algorithm.

Algorithm 4.7 (Automatic Adaptation of Update Methods). Let 
 be a type with
attributes� and constraints� , and let� be an (inherited) adaptable update method of
type 
 that has already been adapted by Algorithm 4.2. Moreover, let � � � � be the
set of constraints checked by� , let � DEP0 � 1 � � be the set of constraints that contain
some attributes ofDEP� � � , and let+  , for 
 � ADAPT� � � , be the adaptation functions
computed by Algorithm 4.5. Then� defined as

update method � �<parameters>�
begin <body>; check(� � ); end;

is deterministicallyadapted as follows:

update method � �<parameters>�
begin <body>; <
 := +  � ( � � , for 
 � DEP� � �>; check(� � 2 � DEP0 � 1 ); end;

The constraints� DEP0 � 1 have to be checked additionally, as now the attributesDEP� � �
are also modified. Note, however, that� DEP0 � 1 contains many constraints whose satis-
faction is always guaranteed due to the adaptation (viz, allconstraint that were used by
Algorithm 4.5 and the corresponding inverse constraints).It, of course, is not necessary
to test those constraints—i.e., they might be deleted from the adaptedcheck statement.�
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The update method is rewritten in such a way that all non-accessed attributes depending
on the accessed attributes are consistently modified, too.

Example 4.8 (Automatic Adaptation ofScale). Let the update methodScale of type
EllipseArc be defined as in Example 4.6. TypeCircleArc inherits this method. Because
Scale is adaptable in this class, it can, e.g., be rewritten in the following way:

update method Scale(V: real)
begin

SemiMajorAxis := V � SemiMajorAxis;
SemiMinorAxis := V � SemiMinorAxis;
Radius := SemiMajorAxis; /* adaptation of dependent attributes*/
check(SemiMajorAxis = Radius, SemiMinorAxis = Radius,

RotateAngle = 0);
end;

�

5 Storage Optimization

An apparent advantage of subtyping-for-generalization hierarchies is the profitable stor-
age demand of this model. Let us illustrate this aspect by ourrunning example.

Example 5.1 (Storage Demand for CAD Types).Consider the CAD types and assume
the following storage requirements for basic types:real requires 4 bytes,Point 8 bytes,
and the OID 8 bytes. Then in the subtyping-for-generalization hierarchy (see Fig. 2)
each singleCircle object (i.e., its OID and attributes) occupies 20 bytes, in contrast to
40 bytes in the subtyping-by-constraints hierarchy (see Fig. 5).

�

Many a database designer may decide that the advantageous storage complexity of the
subtyping-for-generalization hierarchy outweighs the disadvantages of this model con-
cerning software reuse aspects. A low storage demand may especially be desirable in a
distributed OODBS to reduce the net load caused by transferring objects from servers to
client applications. In this section, however, we will argue that the same storage demand
can be achieved for the subtyping-by-constraints hierarchy by anautomatic storage op-
timization.

Storage optimization has always been a concern for OODBS. Here we will present
an algorithm performing a storage optimization based on theadditional functional con-
straints a subtype may define. Functional constraints
 � �  � �  � imply classical func-
tional dependencies�  3 
 between the attributes of a type ([Ull88]). Thus, the basic
idea of this algorithm relies on an application of therelational normalization theory.
The algorithm returns two disjoint sets of attributes,� store that are physically stored in
the database and� comp that are computed from� store, as well as a set$ comp of func-
tional constraints determining how to compute� compattributes.
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Algorithm 5.2 (Attribute Storage Optimization).

Input: Attributes� and anorderedlist of functional constraints$ on the attributes.

1. Compute the sets� store
� � and$ comp

� $ :5

� store:= � ; $ comp:= 4 ;
for fc � $ do

if head� fc� � � store and $ comp 2 " fc# is acyclic then
begin

� store ) � � store
� " head� fc� # ;

$ comp ) � $ comp 2 " fc# ;
end;

2. � comp ) � � � � store;

Output: � store, � comp, and$ comp
�

The quality of the optimization result depends on two parameters:

1. Cardinality of$ . Again $ should contain as many inverse constraints as possible,
because the computation of$ compdepends on the heads of functional constraints.

Let, e.g.,$ � " A � B � A � C# , then the Algorithm 5.2 yields" B � C# as stored at-
tributes. Adding the inverse constraints" B � A � C � A # improves the optimization
as then onlyoneattribute will be stored (see Example 5.4).

2. Processing ordering of$ . Distinct orderings of the functional constraints$ may
result in optimizations of various quality.

For instance, consider the functional constraintA = compress(B) and its inverse
B = uncompress(A) (whereA is a BLOB, B a CLOB, andcompress a function
to compress character strings). Then there are two possibilities: first selectingA
= compress(B) results in storingB and computingA being much more storage-
extensive than storingA and computingB by uncompress(A). The latter solution is
achieved if the algorithm first selectsB = uncompress(A).

The possibly large search space of orderings can be reduced by heuristic search—a
quite common technique in database optimization. The worsttime complexity of the
storage optimization algorithm is polynomial, and for each
 � � comp there exists
a uniquecomputation function�  � �  � , �  � � store, composed of FC-functions of
$ comp ([KKK95]). The computation functions will be used to compute the values of
computed attributes from the stored ones. They are constructed by the following recur-
sive algorithm:

5
Both, 6OID 7 store8 as well as6 9 : ; 8 for 9 < = ; 6 : ; 8 > ? comp can be regarded as the de-
composed relational schemes of the relation schema formed by the attributes and the OID of
the objects of a type.
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Algorithm 5.3 (Computation Functions). Let 
 � � comp.

function computation_function(A)
begin

fc := that fc, � $ comp where head� fc, � = A;
� A := funct� fc� ;
for B � body� fc� @ � comp do

begin
� B � � store� := computation_function(B);
<substitute� B for variableB in � A>;

end;
return � A � � store� ;

end;
�

Note that the recursion terminates because$ comp is acyclic. Its worst case complex-
ity again is polynomial. We demonstrate the storage optimization performed by Algo-
rithm 5.2 for the CAD types.

Example 5.4 (CAD Types continued).Let us examine the proceeding of the algorithm
for typeCircleArc in detail. Here we have:

� � " Center � SemiMajorAxis � SemiMinorAxis � Radius �
StartAngle � DeltaAngle � RotateAngle # �

$ � " RotateAngle = 0 �
SemiMajorAxis = Radius � Radius = SemiMajorAxis �
SemiMinorAxis = Radius � Radius = SemiMinorAxis # �

When the elements of$ are ordered as above, then step 1 of Algorithm 5.2 computes
� storeand$ compas follows:

0. � store
� " Center � SemiMajorAxis � SemiMinorAxis � Radius �

StartAngle � DeltaAngle � RotateAngle # �
$ comp

� 4
1. � store

� " Center � SemiMajorAxis � SemiMinorAxis � Radius �
StartAngle � DeltaAngle # �

$ comp
� " RotateAngle = 0 #

2. � store
� " Center � SemiMinorAxis � Radius � StartAngle � DeltaAngle # �

$ comp
� " RotateAngle = 0 � SemiMajorAxis = Radius #

3. � store and $ comp are not modified since the insertion ofRadius = SemiMajorAxis
into $ compwould cause a cycle.

4. � store
� " Center � Radius � StartAngle � DeltaAngle # �

$ comp
� " RotateAngle = 0 � SemiMajorAxis = Radius � SemiMinorAxis = Radius #

5. � store and $ comp are not modified since the insertion ofRadius = SemiMinorAxis
into $ compwould cause a cycle.
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In step 2 we get� comp
� " RotateAngle � SemiMajorAxis � SemiMinorAxis # . The cor-

responding computation functions are� RotateAngle � � store � � A , � SemiMajorAxis � � store � �
Radius, and� SemiMinorAxis � � store � � Radius.

For the remaining CAD types Algorithm 5.2 yields the following storage optimiza-
tions.

EllipseArc:
Since$ � 4 , all attributes are stored.

NonRotatedEllipseArc:
RotateAngle is computed by� RotateAngle � � store � � A , the other ones are stored.

Ellipse:
StartAngle andDeltaAngle are respectively computed by� StartAngle � � store � � A
and � DeltaAngle � � store� � � � 	 , the other ones are stored.

NonRotatedEllipse, Circle:
As there are no additional constraints, the set ofcomputedattributes is theunion
of the computed attributes of their supertypes, and the set of storedattributes is
theintersectionof the stored attributes of their supertypes.

For typeCircle, the attributesCenter andRadius are stored requiring 20 bytes of stor-
age. Thus storage optimization resulted in the same storagedemand as the subtyping-
for-generalization hierarchy.

�

In [KKK95] we demonstrate how the resulting storage optimization can be imple-
mented on top of every C++-based OODBS.

6 Related Work

A very good survey on object-oriented analysis and design (OOAD) techniques is given
by [MP92]. In this paper the authors inter alia claim that placing classes is a weakness
of current OOAD research. Most OOAD methods neglect this topic completely (only
four out of fifteen OOAD methods evaluated by [MP92] do mention class placement).
The difficulties of class placement in the presence of constraints is a direct consequence
of our Corollary 3.3 implying that each placement has some drawbacks.

[LP91] propose to distinguish subtyping hierarchies, implementation hierarchies,
and specialization hierarchies (i.e., taxonomies). Subtypinghierarchies support reusabil-
ity for the user, whereas implementation hierarchies support reusability for the imple-
mentor. The specialization hierarchy, on the other hand, isonly needed for understand-
ing logical relationships. In case of type restrictions, which may be considered to be
special constraints, [LP91] suggest to use nearly flat hierarchies as subtyping hierar-
chies in order to avoid update anomalies. In our opinion at least subtyping hierarchies
and specialization hierarchies should coincide, because it is possible to avoid update
anomalies even in taxonomies by update method adaptation (see Sect. 4). All that is
needed is to distinguish query from update methods, a not excessive price to pay, in-
deed.
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Case 1 of Theorem 3.2 was already proven by [ZM90]. Using thisobservation the
authors have argued that it is impossible to support the fourfeaturessubstitutability,
static type checking, mutability(i.e., the possibility of updating objects), andspecial-
ization via constraintsall together in a single type system although any three of the
four features seem to work just fine. They suggest to reduce the ability of static type
checking, i.e., to permit run-time checks. This coincides with the adaptation done by
our Algorithm 4.2. They also claim that at least three different types of hierarchies
(which are similar to those described by [LP91]) should be distinguished. In our opin-
ion, however, such a distinction does cause more confusion than clarify the meaning of
the types.

[MD94] discuss the question which one of the four incompatible features described
by [ZM90] should be eliminated in the upcoming SQL3 standard. They claim not to
support specialization via constraints because the other three features are more impor-
tant. However, they remark that in SQL3 sets and lists are defined by means of con-
straints as subtypes of collection, and that it is not clear how this can be handled in
SQL3. In our opinion SQL3 (or at least SQL4) should support specialization via con-
straints by all means. In SQL3 it is possible to define constraints on tables that have
to be checked at run-time. So it seems to be no problem to permit run-time constraint
checking for types, too. Furthermore, it always is possibleto automatically adapt inher-
ited update methods in such a way that no run-time errors occur (see Sect. 4).

Many researchers are of contrary opinion as to whether an object-oriented language
should support covariance or contravariance specification(see, e.g., [CCHO89; KA90;
Sha94]). The distinction between query and update methods as proposed in this paper
entails in case of taxonomic modeling a coexistence of both the contravariance rule for
query methods and the covariance rule for update methods: Onthe one hand,query
methodsthat are inherited by subclasses never need be adapted, but their input param-
eter types may be enlarged (contravariance). The set of possible input parameters of
update methods, on the other hand, is, in general, restricted by additionalconstraints.
That is, our approach reveals that both the contravariance rule and the covariance rule
are needed for natural modeling—thus they should not be considered combats but part-
ners with equal rights.

In this paper we have dealt with strict inheritance, i.e.,all attributes, methods, and
constraints are inherited by subtypes. Often, however, partial inheritance is favored (in-
heritance by default, [MMM93]; as-a inheritance, [MHM95]). By partial inheritance
we denote that only some attributes, methods, and/or constraints are inherited. Others
may either be overridden or even discarded. This kind of inheritance is important, if
there is a difference between types that are currently available and types that are to be
developed ([MHM95]). In such cases, however, the resultinghierarchies do not reflect
application semantics but are established for code reuse reasons only. Especially in the
database setting, however, taxonomies should be the outcome of a modeling process
capturing as much semantics as possible. On the other hand, apartial attribute inheri-
tance mechanism may turn out as an elegant implementation ofthe storage optimized
hierarchy. Furthermore, the storage optimization presented in Sect. 5 is applicable to
partial inheritance any way.

For reusing predefined types partial inheritance is very important. Nonetheless, it
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should not be misused as a substitute for subtyping-by-constraints. [MHM95], e.g., state
that asquare is norectangle as it must not inherit the methodsstretch_x andstretch_y.
They propose to use as-a (i.e. partial) inheritance instead. However, it has been common
sense for at least two thousand years that each squareis arectangle; everyquerymethod
applicable to a rectangle can be applied to squares as well (contravariance!). Only up-
dating must be restricted (covariance!). And there are algorithms to do this restriction
automatically in such a way that substitutability is guaranteed (see Sect. 4).

Moreover, it is remarkable that [MHM95] design asquare to have the three at-
tributesleft, top, andside_length although they assume that a definition ofrectangle
with four attributesleft, right, top,andbottom is already available and shall be reused.
Due to those differences they have (“by hand”) to prove formally that, e.g., the inher-
ited operationmove of rectangle satisfies the specification ofsquare, too. Nevertheless,
such a design is very common as it apparently saves space. Using our approach, on the
other hand, one would first simply definesquare as a subtype ofrectangle and then
add one attribute,side_length, and two constraints,right = left B side_length andtop =
bottom B side_length. Utilizing these constraints the storage optimization described in
Sect. 5 would delete the storage overhead by computingright andtop instead of storing
them. Thus it is possible to reuserectangle without much effort and without storage
penalty.

7 Summary and Outlook

We have investigated object-oriented modeling issues for application domains where
integrity constraints play a crucial role. Common modelingpractice often yields sub-
typing for generalization or nearly flat hierarchies, seriously hampering software reuse.
In contrast, we propose to use a modeling technique called subtyping by constraints that
relies on the principle of making all integrity constraintsinvolved explicit in the design
process. Making constraints explicit produces semantically more desirable hierarchies
with enhanced substitutability. Moreover, we have provided an automatic adaptation al-
gorithm to even broaden the amount of substitutable update methods. A potential coun-
terargument against our modeling technique of making all constraints explicit, namely
the storage overhead compared to subtyping for generalization, was refuted by a new
storage optimization algorithm. We think that our proposedmodeling method of sub-
typing by constraints should apply both to the OOPL and the OODBS environment. In
the OODBS setting it is even more important, since subtypingby constraints renders it
possible to maintain semantically meaningful extent hierarchies under a set-inclusion
semantics (i.e. taxonomies), being especially important for object-oriented declarative
query languages (c.p. [KBA91]). We have implemented already a prototype for our
methodology, realized by a preprocessor translating into CB B /Versant. Currently we
experiment with a realistic CAD application and we plan to analyze large type hierar-
chies emerging from existing object-oriented GIS applications.
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