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Abstract — MIPS-X is a 32-bit RISC microprocessor implemented in a

conservative 2-p m, two-level-metal, n-well CMOS technology. High per-

formance is achieved by using a nonoverlapping two-phase 20-MHz clock

and executing one instruction every cycle. To reduce its memory band-

width requirements, MIPS-X includes a 2-kbyte on-chip instruction cache.

This cache satisfies 90 percent of all instruction fetches, and reduces the

memory bandwidth of the processor by a factor of 2.5. MIPS-X has a peak

operating rate of 20 MIPS, and provides an effective throughput of 12

MIPS when the effects of the on-chip cache, external cache, and pipeline

stalls are inchsded. MIPS-X contains 150K devices in an 8 X 8.5-mm2 die.

To produce a high-speed computer system, MIPS-X uses a simple

compute engine, a simple and fast clocking scheme, and a high-perfor-

mance memory system. The simplicity of the basic processor allowed us to

use a significant fraction of the design time and silicon area to integrate a

part of the memory system on the processor. This paper provides an

overview of MIPS-X, focusing on the techniques used to reduce the

complexity of the processor and implement the on-chip instruction cache.

I. INTRODUCTION

T HE MIPS-X project began in the Summer of 1984

with the goal of designing a second-generation RISC

microprocessor that could be used as the processing nodes

of a shared-memory multiprocessor. With the knowledge

gained from early RISC designs [1]-[3] and the improved

performance available from a 2-pm two-level-metal CMOS

process we have designed a processor with a peak instruc-

tion rate of 20 MIPS. MIPS-X borrows from the original

MIPS machine [1] the ideas of a simplified instruction set,

pipelining, and a software code reorganizer to handle

pipeline interlocks. However, to improve performance,

MIPS-X uses a simpler instruction format, a deeper pipe-

line, an on-chip instruction cache, and a faster clock rate.

There are several areas that are important to consider

when designing a high-speed processor, particularly one

that is to be implemented in VLSI. These include the

memory system design, the clocking methodology and the
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complexity of the resulting hardware. We feel that the

most important factor is simplicity. For a high-speed

processor, additional functionality should only be added

when it significantly improves the overall performance of

the machine. The design team has a certain amount of time

and silicon area it can use to complete its task. Resources

spent implementing a feature are resources that cannot be

spent on other aspects of the design. In MIPS-X, the

execution portion of the processor occupies a small frac-

tion of the die area, allowing us to use the extra area to

improve the performance of another critical element of the

processor, the memory system.

As instruction rates increase, the bandwidth and latency

of the memory system become important issues. This is

evidenced by the greater use of on-chip caches and instruc-

tion prefetch queues to decrease the average time required

to access instructions [4]–[10]. Crossing chip boundaries

has become a limiting factor in high-speed processor sys-

tems; this makes it difficult to access instructions and data

quickly if they have to be kept off-chip. MIPS-X uses both

a large 2-kbyte on-chip instruction cache and an external

interface optimized for high-speed cache access to provide

the required memory bandwidth for the processor.

Increased performance also implies faster clock rates,

and this makes the problem of clock distribution more

difficult. Multiphase clocks exacerbate the situation be-

cause the time per phase is smaller and there are more

phases to distribute. MIPS-X uses a simple two-phase

clocking scheme, and locally generates additional clocks

when necessary. Circuits using local clocks are often called

self-timed because they derive the timing information from

the delay of the circuit being controlled. The use of self-

timed clocks makes the global clocking in MIPS-X simple,

but does add some circuit complexity in the parts of the

chip that require additional clocks.

The next section gives an overview of the MIPS-X

architecture and the supporting memory structure. This is

followed by a description of the pipeline in Section III.

Sections IV and V present the hardware required to imple-

ment this machine. Section VI follows with a description

of the design methodology used to keep the hardware
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relatively simple. The summary and current status of

project are given in Section VII.

II. ARCHITECTURAL OVERVIEW

the

The only instructions implemented in MIPS-X are those

that contribute significantly to the performance of the

machine. These instructions have been made to execute

very quickly. The processor is a load–store machine; the

only instructions that can access the word-addressed mem-

ory are explicit load and store instructions. All other

instructions use the 32-word register file. There are three

types of instructions: memory, branch, and compute.

Memory instructions support a single addressing mode

that adds an offset to the contents of a register to generate

the effective address. Branch instructions contain an ex-

plicit comparison operation. This COMPARE AND BRANCH

form was chosen to increase the speed of branches by

removing the instructions that are normally needed to set

the condition codes. Unlike some of the recently an-

nounced RISC machines [11], MIPS-X provides a full set

of comparison operations for branches, rather than provid-

ing only simple (equality and sign) compares. Compute

instructions are generally three-operand instructions with

two sources and a destination. MIPS-X supports a wide

variety of arithmetic, logical, and shift operations, includ-

ing variable byte rotates to support character handling. A

limited number of compute instructions include an im-

mediate field, providing a simple way to generate and use

short 17-bit constants.

The instruction format was optimized for simple decode.

All 37 instructions are 32 bits and use a fixed format for

the register specifiers. The four formats can be seen in Fig.

1. The comp func field in the compute instructions directly

feeds control inputs in the execute unit making decoding

very simple or nonexistent.

MIPS-X requires a low-latency and high-bandwidth

connection to memory. With single-cycle execution and a

20-MHz clock, the peak bandwidth required for instruc-

tions and data is 40 Mwords\s (160 Mbytes/s). Besides

the difficulty in designing a memory system to support this

data rate, transferring this amount of data across the pins

of the package is extremely difficult. To reduce the large

instruction bandwidth requirements, MIPS-X has a 2-

kbyte instruction cache (ICache) on the processor. This

cache occupies about one-half of the interior die area,

satisfies roughly 90 percent of all instruction references

[12], and reduces the instruction bandwidth requirements

across the pins by a factor of six.1 Missed instruction

references and data references go off-chip to a large 64K-

word external cache. The on-chip cache effectively dual

ports the memory system, allowing the processor to simul-
taneously fetch data from the external cache and instruc-

tions from the internal cache. The large external cache is

1During a miss two instructions are fetched during the two cycles when
the processor is stalled. This leads to an average mstructlon fetch rate of
one instruction every six cycles, or one-sixth of the original requirements.
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Memory

10 OP Srcl Dest onset (17)

Branch

00 Gond Srcl Srcz s, DISP [16)

Compute

01 OP Src< Src2 Dest Comp Func (12)

Compute Immed\ate

11 OP Srcl Dest lmmed (17)

Fig. 1. MIPS-X instruction formats.

required to minimize the miss rate because accesses to the

main memory take 15–20 processor cycles to fetch back

four words. Low miss rates are also important to reduce

bus contention in a shared-memory multiprocessor system.

The external interface is optimized for speed. It is de-

signed to connect to a large cache memory, is fully syn-

chronous, and can operate at a 50-ns cycle time. The

interface is very simple; it presents an address by the

beginning of a cycle and expects the da$a by the end of the

same cycle. The general bus interface is placed on the

other side of the external cache.

We realized early in the design that we would not be

able to fit all the functionality needed for a high-speed

computer onto a single die, so MIPS-X implements a

simple, yet efficient coprocessor interface. This interface is

made more difficult by the presence of the on-chip instruc-

tion cache which hides instructions from attached copro-

cessor. Instead of using valuable package pins to transfer

the coprocessor instruction off the chip, MIPS-X uses the

address and data bus for the coprocessor operations. Dur-

ing a coprocessor cycle an additional processor pin is

asserted, indicating that the value on the address bus is a

coprocessor instruction rather than a memory address. The

coprocessor decode the instruction and determine their

correct action. During these cycles the data bus can be

used to transfer information between the coprocessor and

MIPS-X. The inefficiency with this scheme is that all

coprocessor-memory traffic must be transferred through

the processor using extra instructions. We felt this would

only be a significant problem for the floating-point

processor. To improve the floating-point interface, two

special memory instructions were added to MIPS-X that

directly transfer data between one specific coprocessor and

memory. With this minor addition we were able to provide

a simple interface that supports high-performance copro-

cessor. One advantage of this interface is that coprocessor

instructions look just like memory instructions and thus

can be implemented easily.

MIPS-X provides separate system and user addresses.

Programs running in user mode are prevented from access-

ing system addresses, while programs running in system

mode can access either address space. The processor can

enter system mode only by taking an interrupt or by
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executing a trap instruction. To support a dynamic paged

virtual memory system, all instructions are restartable. The

processor supports both maskable and nonmaskable inter-

rupts. An interrupt causes the machine to flush the instruc-

tions in the execution pipeline, enter system mode, and

jump to location zero. This simple support for exceptions

provides the essential features needed to build an operat-

ing system for the processor.

III. PXPELINE

Instructions in MIPS-X require five clock cycles to

complete: instruction fetch (IF), register fetch (RF), ex-

ecute (ALU), memory access (M13M), and write back of

registers (WB). During IF, the instruction is fetched from

the on-chip instruction cache and loaded into the instruc-

tion register. The RF cycle is used to drive the register

specifiers from the instruction register to the register de-

coders and then to perform the actual register fetch. Dur-

ing @l of the execute cycle either the ALU or the shifter

evaluates, and during qz this result is driven onto the

result bus. For branch instructions, the ALU is used to

evaluate the branch condition, and a separate adder in the

program counter unit is used to compute the branch

destination. This adder has the same timing as the ALU

and evaluates on @l of ALU. For memory instructions, the

ALU is used to compute the effective address and during

02 this address is driven to the address pads. By having the

ALU evaluate in a single phase, the address has enough

time to be driven off the chip before the end of the ALU

cycle. Thus the address is valid at the pins of the chip

when the memory cycle begins. This predrive of the ad-

dress gives the external cache memory a full cycle (MEM)

to complete its access. The result of the instruction is

written into the register file during @l of WB.

The MIPS-X processor is pipelined so that a new in-

struction can be started every cycle. Starting the next

instruction before the current instruction is completed

gives rise to a number of pipeline dependencies as shown

in Fig. 2. For example, the result of a branch instruction is

not known until the end of the ALU cycle, too late to

affect the IF of the next two instructions. Therefore, the

two instructions following a branch will be fetched inde-

pendent of the outcome of the branch; the branch delay is

two cycles. The pipeline also has a delay slot associated

with loads. Since the data from the load does not enter the
chip until the end of the MEM cycle, it arrives too late to

be used in the ALU of the next instruction. The instruc-

tion following a load cannot use the value just loaded. The

processor does not contain pipeline interlocks in hardware

so these pipeline interlocks are handled by a pass of the

assembler called the reorganizer, a technique pioneered by

the original MIPS processor [1]. The reorganizer is re-

sponsible for generating a code sequence that is free from

pipeline dependencies. If the reorganizer cannot find a

useful instruction to put into a delay slot, it fills the slot

with a no-op instruction, effectively stalling the machine

for a cycle at the cost of increased instruction bandwidth.

‘F “p=’T,.,
IF RF ALU MEM

\

+

Delayed Branch z :;

Fig. 2. Pipeline dependencies in MIPS-X.

Fig. 3, Die photo of MIPS-X.

To help the software system use the two slots associated

with a branch, MIPS-X can optionally squash (turn into

no-ops) the instructions in the slots if the branch is not

taken. This allows the reorganizer to predict that the

branch will go and put the first two instructions of the

branch destination after the branch. In this case the ma-

chine effectively starts executing the code at the branch

destination right after the branch instruction. Only if the

branch is not taken are these instructions turned into

no-ops and the resulting cycles wasted.

To avoid having additional pipeline constraints, MIPS-X

has two levels of internal forwarding or bypassing. The

bypassing allows the result of one instruction to be used as

input for the next instruction and is needed because the

actual WRITE into the register file occurs late in the instruc-

tion, too late to be directly used in the next two instruc-
tions. The bypass logic slightly complicates the design of

the register file, but greatly reduces the number of no-ops

needed to eliminate interlocks.

IV. HARDWARE RESOURCES

A microphotograph of the processor with the major

functional blocks outlined is shown in Fig. 3. The on-chip

instruction cache dominates the die, occupying the upper

half of the chip. The data path of the processor runs under

the cache, and can be divided into four major sections. The

register file contains 32 general-purpose 32-bit registers,
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Fig. 4. MIPS-X hardware resources.

the pipeline bypass registers, and the registers associated

with the external memory interface. The execute unit con-

tains a 32-bit funnel shifter, a 32-bit ALU, registers to

support single-bit multiplication and division (MD), and

the processor status word, In the program counter unit (PC

unit), there are two 32-bit adders, one used as an incre-

mented to calculate the next instruction address and the

other used to compute the destinations of branches, and a

chain of shift registers (PC chain) that is used to hold the

addresses of the instructions currently in execution. These

addresses are needed to restart the machine in the case of

an interrupt. The tag section contains the tags and valid

bits for the on-chip instWction cache. Located between the

data path and the ICache is the instruction register, which

contains a set of pipeline staging registers, and a small

amount of instruction decode logic. The instruction reg-

ister is also responsible for writing instructions into the

cache during an internal cache miss.

Fig. 4 shows the hardware and the major buses. Data are

read from the register file on the Srcl bus and Src2 bus.

Data are written to the register file from the bypass block.

The result bus carries values to the bypass block and to the

tag section where it is multiplexed with the PC bus and

used as an address for memory instructions.

A. Instruction Cache

Much of the design effort of MIPS-X was spent imple-

menting the on-chip instruction cache. The’ goal was to

design a simple cache that provided a high hit rate and a

low cache-miss penalty. The on-chip cache is organized as

32 blocks of 16 32-bit words. Each block has a tag indicat-
ing the part of memory that is currently stored in it, and

each word in a block has a valid bit indicating whether this

word is currently stored in the cache. The use of valid bits

allows the cache to have a large block size but use sub-

block replacement. The large block size was chosen to

minimize the amount of storage required for tags, allowing

-
To Address

Pads

a full 512-word instruction cache to be-placed on the die.

The small number of tags also allowed the tag memory

array to be placed in the data path, reducing the amount

of wiring needed for the cache. With the tag array in the

data path, the large ICache above the data path becomes a

512 x 32-bit static RAM.

The cache system has a full cycle for its access, but

needs to determine whether the instruction will hit in the

cache in a single phase. The early hit detect is needed to be

able to use the next cycle to fetch the missed instruction

from the external cache as shown in Fig. 5. The root of the

problem is that external memory accesses really take one

and a half cycles; the processor must drive the address

pads on +2 of the cycle before the memory access. To fetch

the missed instruction by the end of the first cache-miss

cycle, the processor must drive the instruction address off

chip during @2of the IF that misses, and thus we need the

hit signal by the end of @l. Using the early hit detect,

internal cache misses stall the machine for two cycles. The

first cycle is used to fetch the missed instruction from the

external cache, and the second cycle is used to write this

value into the instruction cache. Since we assumed that the

data from an external cache fetch are valid just before the

end of the cycle, to reduce the miss delay to a single cycle

we would need to extend the cycle time to provide suffi-

cient time for a cache write to complete after the data

become valid. Instead, MIPS-X uses the second cache-miss

cycle to fetch from the external cache the next instruction

that will be executed. Therefore, ICache misses have a

penalty of two cycles, but fetch back two words. This fetch

of two words halves the miss rate of the cache and pro-
vides roughly the same system performance as a cache with

a single-cycle miss penalty, but accomplishes this perfor-

mance without influencing the cycle time of the processor.

The tags are stored in a content-addressable memory

using a standard ten-transistor CAM cell so they can be

quickly compared against the current instruction address.

Fig. 6 shows the tag array. The 32 tags are placed in the
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data path and match its pitch. Located above each tag are

the 16 valid bits associated with that tag. The valid bit cells

are the same width as the tag cells which means that the

valid bit store ( Vstore) fits directly on top of the tags.
Logically, the 32 tags are broken into four different sets

of eight entries each. Low-order bits of the instruction

address select a set and the associative compare is used to

find the correct entry in the set. The most significant 24

bits of the instruction address are compared against the

tag entries. The least significant 2 bits are the byte selector

and are always zero for instructions; the next four bits

select the correct word in each cache block, and the next

two bits select the correct set.

Hit detection requires first comparing the current in-

struction address against the values stored in the CAM

array, and then fetching the correct valid bit for the block

that matches. To generate the hit information in one

phase, the tag compare and valid bit fetch are performed

simultaneously. The Vstore is logically organized as 64

words of eight bits. During the tag compare the low-order

bits of the instruction address are used to index into the

Vstore to fetch the eight possible valid bits, a bit for each

tag that could match. Next these output lines are ANDed

with the output of the tag comparison, and then Oiled

together to generate the cache hit signal. Since the tag

compare and the Vstore access both require roughly 15 ns,

it is easy to generate the hit signal in a single phase.

There are two types of internal cache misses: block miss

and word miss, depending on whether the block for the
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desired instruction is already in the cache. To make the

cache-miss sequencer simpler, it only handles word misses.

When a block miss occurs, a tag is written with the new

instruction address and the valid bits for that tag are

flushed in the same phase that the block miss was detected

(Fig. 6). The tag write allocates a block for the instruction,

and makes block misses look like normal word misses. To

generate the write signal, we make use of the monotonic

nature of the tag comparison logic. The match output of

each CAM word is precharged on Q2 and falls during @l if

the instruction address does not match. The outputs of all

the match lines are NoRed together forming the block-miss

signal. This signal starts low at the beginning of $1 and

rises only if a block miss occurs. It is used to drive the

write line of the selected tag high, writing the current value

of the program counter into the tag. Fig. 7 shows how the

tag write line also serves as a virtual ground for the valid

bits associated with that tag. When the write line is pulled

high it forces all the cells to reset, clearing the valid bits for

that tag.

MIPS-X uses a simple ring counter algorithm for select-

ing the tag to be replaced during a block miss. The ring

counter is located above the Vstore, and is incremented

after each block miss. The fetch of two instructions during

a cache miss means that the ring counter must also incre-

ment when there is a block hit and word miss, and the ring

counter points to the block where the hit occurred. This

prevents a block miss during the fetch of the second

instruction from clobbering a block that only had a word

miss during the fetch of the first instruction.

The data portion of the instruction cache uses a fairly

conventional static RAM design that has been optimized

for synchronous operation. During +1 of IF, the bit lines

and sense circuit of the RAM are precharged, and the

low-order six bits of the instruction address are driven to

the RAM and decoded. These six bits form the row

address. Near the end of this phase, the tag comparison

information is available and is sent to the RAM. This

information is used for the column select. During +2 of IF

the selected word line is driven and the outputs of the

sense amplifiers are latched into the instruction register.

Because of the short bit lines and relatively large cell

transistors, MIPS-X uses a simple unclocked sense circuit
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Fig. 8. RAM sense amplifier,

(see Fig. 8). This circuit is relatively slow since one bit line

must fall below a p-FET threshold before it begins to

sense, but has the advantages of not requiring a sense

clock and not dissipating any static power. The measured

access time of the RAM is about 18 ns, well within the

single-phase access requirements.

B. Register File

The MIPS-X architecture requires a dual-READ single-

WRITE register file, with support for double bypassing. The

register file is time multiplexed, with WRITE’S occurring on

% and READ’S on % TO reduce the access time, three sets
of decoders are placed above the register array, one for

each access port. The inputs to the decoders are driven on

the phase before their output is used so the decode time is

not on the critical path for accessing the registers.

The initial design of the register cell used dual-differen-

tial buses, but this was dropped because the short bit lines

made sense amplifiers unnecessary. Instead we used a

CMOS version of the six-transistor RAM cell with split

word lines described by Sherburne et al. [2]. Fig. 9 shows

the CMOS cell. Time multiplexing the register array did.

pose a minor problem, since both bit lines must start at

5 V for a READ. The self-timed circuit shown in Fig. 10 was

used to solve this problem. This circuit detects when a

WRITE has completed, turns off the WRITE and then re-

stores both bit lines high. A row of dummy cells was

placed above the register array; these cells are hardwired

to always contain a zero. Thus, after a READ the dummy bit

line is always low and the ~ line is high. The write drive

for the dummy row input is tied high, so it always tries to

write a ONE into the cells. Transistor ikf~e~~edetects when

the bit lines have crossed by enough to write the register.

This transistor discharges the precharged node Done, caus-

ing Done to rise, and forcing the write drivers to recover

the bit lines for the following READ. Transistor MO.C. is

needed to prevent the circuit from oscillating. If it is

deleted, then the recovery of the= line will cause Done to

rise, and the write will restart. The write and recovery is

quite fast, requiring less than 20 ns to complete.

To remove many potential pipeline interlocks, the reg-

ister file is double bypassed. This requires adding bus

drivers to two latches in the data path, and adding four

comparators in the control as shown in Fig. 11. The

comparators check the destination of the previous two

Wordlme 1
I T I

E 1
Wordlme 2

Fig. 9. CMOS dud-port regrster cell.

blt

II
M J-

once

4 II I u
m t

zero Write
cell Driver

Fig. 10. Schematic of the self-timed bit-line WRtTE circuit.

Srcl
, 7

++ ++
Fig. 11. Register bypass logic showing the comparators

-*rDest

Srcl

Fig. 12. Schematic of comparator circuit.

instructions against the two register sources of the current

instruction to see if bypassing is required. If a match

occurs, the correct latch output is driven onto the source

bus instead of the data from the register file. The compara-

tors are built around the set of latches needed to delay the

destination specifier, which is driven into the register file

on +1 of RF but not used until +1 of WB. The compara-

tors use a precharged gate of n transistors and a predis-
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charged gate of p transistors to avoid requiring both the

true and complement versions of the register specifiers.

Fig. 12 shows the comparator circuit.

V. CONTROL

The simple instruction format and the use of a lock-step

pipeline make the control for the processor relatively sim-

ple. Most of this control is implemented in simple de-

coders and PLA’s located above the part of the data path

being controlled. To keep the complexity of this logic low,

each designer was responsible for the design of a section of

the data path and its control. This organization provided

incentive to arrange the overall design to minimize the

amount of random

A. Global Control

Care was taken

machine extremely

logic needed.

to keep the global control for the

simple. There are only three types of

pipeline interruptions possible—exceptions, external cache

misses, and internal cache misses— and of these only the

first one requires the pipeline to be flushed. The cache

misses only cause the processor to stall until the required

data become available. In the case of an exception (either

an interrupt, external fault, or internal fault) MIPS-X

holds the instruction addresses of the last four instructions

in the PC chain, squashes the instructions in the pipeline

by preventing them from writing their results back into the

register file, and jumps to system address O. No attempt is

made to complete instructions in the pipeline that occur

before the instruction that caused the exception. The uni-

form effect of an exception makes the controller quite

simple. The exception signal directly no-ops the instruc-

tions in the MEM and ALU phase of the pipe, and also

sets up a small finite state machine (FSM) that causes the

instructions in IF and RF to be converted to no-ops. The

machine can be restarted by simply jumping to the ad-

dresses of the instructions stored in the PC chain.

The FSM used for exceptions is also used to implement

the condition al evaluation of the two instructions that

follow a branch. If the branch does not go, then during its

ALU cycle the input to this FSM is set converting the

instructions in RF and IF (the two slots of the branch)

into no-ops. The squashing of branch slots does not need

any additional logic; the same hardware is used to imple-
ment exceptions.

An FSM for handling internal cache misses is the only

other global control that MIPS-X requires. During an

ICache miss this controller sequences the machine through

the two cache-miss states before resuming the execution

pipe. The two FSM’S are shown in Figs. 13 and 14.

Collectively, these two controllers use less than 0.2 percent

of the total chip area and are built with standard cells.

B. Stalling the Processor

The pipeline is stalled by using a set of qualified +1

clocks, + ~ and + ~Pc. These clocks are used to latch all the
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Fig, 13. Squash FSM.
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Fig, 14. Cache-miss FSM.

state information in MIPS-X, and the machine is stalled by

simply preventing these clocks from rising. This scheme is

similar to one used to stall a floating-point unit in the case

of an unusually long carry [13]. If + ~ does not rise, the

machine throws away the results computed on @l and

during the next $Z repeats the $Z operation of the previous

cvcle..
The +1 clock is @l qualified by external cache miss and

internal cache miss. The + ~Pc clock is @l qualified by only

external cache miss. Two clocks are needed since Dart of

the processor must be clocked during internal cache

misses, in particular the cache-miss FSM. This set of logic

uses + ~Pc while the rest of the chip uses + ~.

The + ~ clocks can only be used as an input to a latch;
the clocking of functional units is always done on the true

clocks @l and +2. This allows the +1 clocks to be slightly

shorter than @l, or said a different way, it means that the

external cache-miss signal can arrive a little late. As long

as the external cache-miss signal monotonically falls, it can

actually arrive at the processor after the end of the MEM

cycle, during @l of WB. The external miss signal can arrive

up to 10 ns late and still provide a valid + ~ clock. This

gives the external cache about 10 ns to generate the miss

signal after the data fetch, and prevents the cache tag

comparison from being on the critical path for memory

accesses.
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VI. DESIGN METHODOLOGY AND TESTING

The basic MIPS-X architecture and pipeline structure

were developed during the first six to nine months of the

project. During this time an instruction level simulator for

the machine was developed and used to evaluate the

effects of different architectural features. We also investi-

gated many organizations for the internal cache memory

before settling on the one described in this paper. The

different architectural trade-offs are described in more

detail in [14]. In parallel with the architectural definition,

we began investigating different implementations, and

about a year after the project started we had a paper

design of the hardware needed to implement the processor.

The paper design included the layout of a number of the

large structures MIPS-X would need. The layouts were

done to get a better feel of the density and performance of

the CMOS technology that we would use. At this point the

chip was partitioned into several major functional units:

the register file, the execute unit, the PC unit, the tag store,

the instruction cache, the instruction register, and the

external interface. Each of these sections, including its

control, was designed by a single person. There was a total

of six people. We used a tall thin design style; each

designer was responsible for the design of a section, from

writing the functional description for simulation, to gener-

ating the layout. Interface signals between the sections

were fixed at the start of this design phase and then

negotiated between the various parties if changes were

required.

The first step of the detailed design was to write a

functional description for the machine. We chose to write

a custom simulator in Modula-2 because we lacked a good

functional simulator at the time. The individual sections

were written first, debugged, and then put together when

everyone was satisfied that their sections were working

correctly. This functional simulator became the de fac~o

definition of the machine and was used quite extensively in

the verification of the layout and testing of the silicon.

Once the functional definition was cbmplete, the layout

effort was started in earnest, using the Magic [15] layout

system. This system has incremental design-rule checking

and hierarchical extraction. Each section was extracted

and then simulated using RSIM [16], a switch-level simula-

tor. The functional simulator was modified so that it could

be used to drive the RSIM simulations, making the verifi-

cation of the circuits much easier. The functional simulator

would provide the input vectors to a switch-level model of

a subsection of the chip, and check the outputs of the

switch-level simulator. This proved to be a powerful tool

because it made it very easy to find differences between

the functional and circuit representations. Using this
method each designer was able to verify his section against

the functional simulator before releasing it to the full chip

simulation. On a MicroVax II, simulation of the entire

chip (without the cache array) took about one minute per

clock cycle and only found a few errors. Most were subtle

timing errors that the functional simulator could not catch.

Five machines were kept busy for about two weeks to do

the final simulations before tape-out.

To simplify the testing of MIPS-X, we included the

ability to separately test the processor and the large in-

struction RAM. By asserting an external pin the cache can

be disabled, allowing the processor to run even if the cache

is not functional. This feature simply forces a cache miss

on every cycle so that the cache is never accessed. Assert-

ing another pin puts the processor in the cache test mode.

In this mode, the PC unit generates sequential addresses

while the data bus is connected to the cache so that the

cache can be directly read and written. These testing pins

were used quite extensively during testing.

No special hardware was needed to test the data path of

the processor. Whenever the processor is not handling an

internal cache miss, the address pins are driven to be the

value of the result bus. This makes it easy to observe the

result of compute instructions and check the functionality

of the execute unit and the register file.

Some hardware was added to make testing of the data-

path control easier. By placing a small amount of logic

under the data bus we could directly observe groups of

control pins on the data pads by asserting a test pin. This

can be done in the middle of any clock phase to allow

direct observation of the internal control state of the

machine. So far, this feature has not been used because no

problems have been found in the control.

VII. SUMMARY AND STATUS

The first version of the MIPS-X processor was sent out

for fabrication in May of 1986, and silicon was returned at

the beginning of October. The functional simulator was

used to generate test vectors for a low-speed functional

tester developed t Stanford University. Simple speed test-

ing was done by loading a small program into the instruc-

tion cache with the tester and then turning up the clock

speed while observing the address bus. These parts are

fully functional, run at 16 MHz, and dissipate less than 1

W at nominal operating conditions. Although the parts did

not meet our ultimate cycle-time specification, they did

run as fast as the simulation predicted. These die have

been probed using low-capacitance probes and the wave-

forms match the simulation results quite well. The slower

speed is caused by a slow path involving branches that has

been fixed on the next revision of the part, This revision

also includes a number of other small changes to improve

other slow paths, and to make the external interface easier

to use. We fully expect this version of the part to meet the

50-ns cycle time. We are also working on a simple shrink

of the part to a 1.6-pm CMOS technology. This will yield a

die of under 6.5 mm on a side, with a cycle time of over

25 MHz.

MIPS-X demonstrates the power of keeping VLSI

processors simple, obtaining an effective throughput of

over 10 MIPS while using a conservative technology and a

relatively small die size. The key was to use the silicon
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where it made the most difference: in the memory system

design.
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