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Abstra
t:This 
ontribution presents a robust algorithm forvoi
e a
tivity dete
tion (VAD) and noise redu
-tion me
hanism using 
ombined properties of higher-order statisti
s (HOS) and an e�
ient algorithmto estimate the instantaneous Signal-to-Noise Ratio(SNR) of spee
h signal in a ba
kground of a
ous-ti
 noise. The Rainer Martin's algorithm with HOSis 
apable of robustly tra
king non stationary noisesignal. The �at spe
tral feature of Linear Predi
-tion Coding (LPC) residual results in distin
t 
har-a
teristi
s for the 
umulants in terms of phase, pe-riodi
ity and harmoni
 
ontent and yields 
losed-form expressions for the skewness and kurtosis. TheHOS of spee
h is immune to Gaussian noise andthis makes them parti
ularly useful in algorithms de-signed for low SNR environments. The proposed al-gorithm uses HOS and smooth power estimate met-ri
s with se
ond-order measures, su
h as SNR andLPC predi
tion error, to identify spee
h and noiseframes. A voi
ing 
ondition for spee
h frames is de-rived based on the relation between the skewness,kurtosis of voi
ed spee
h and estimate of smoothnoise power. The algorithmis presented and its per-forman
e is 
ompared to HOS-only based VAD al-gorithm. The results show that the proposed algo-rithm has an overall better performan
e than HOSonly, with noti
eable improvement in Gaussian-likenoises, su
h as street and garage, and high to lowSNR, espe
ially for probability of 
orre
tly dete
t-ing spee
h. The proposed algorithm is repli
ated onDSK C6713.





Prefa
eThis do
ument reports on the work of group 841 in the 8th semester. This report isorganized into �ve 
hapters. The �rst 
hapter provides the introdu
tion, the motivationand the s
ope of the proje
t. Chapter 2 fo
uses on the problem analysis; the workingof VAD; the di�erent noises and their e�e
t. The last part of the 
hapter mentionsthe problem statement. In 
hapter 3, the algorithms are des
ribed i.e., the HOS-VADalgorithm and the Rainer Martin's algorithm for the estimation of SNR. Chapter 4dis
usses the implementation of the algorithms on Matlab its 
onversion to C 
ode andlater the implementation on the DSK(DSP Starter Kit). Finally, 
hapter 5 provides the
on
lusion and re
ommendations of the proje
t. All the asso
iated 
odes 
an be foundin the 
ompanion CD. Several appendi
es were provided at the end of the report asreferen
es.
Mi
hael Yaw Appiah Raimonda Makri
kaite

Milda Gusaite Sasikanth Munagala

Aalborg, June 2005
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Chapter 1Introdu
tionIn spee
h 
ommuni
ations, noise is �u
tuations in and the addition of external fa
torsto the stream of target information (signal) being re
eived at a dete
tor. It may bedeliberate as for instan
e jamming of a radio or video signal, but in most 
ases it isassumed to be merely undesired interferen
e with intended operations. Many spee
hpro
essing system users are familiar with the amount of ba
kground noise present inloud environments. This is be
ause their hands free instruments amplify environmentnoise just as mu
h as the 
onversation that they are trying to follow. Work is ongoing tosuppress ba
kground noise as mu
h as possible to positively in�uen
e the intelligibilityof the spee
h in noisy environments.Although spee
h pro
essing in arti�
ially 
onstrained 
onditions has re
ently rea
hedhigh levels of performan
e, problems still remain in the deployment of spee
h re
ogni-tion te
hnology in the real world. One of the problems is the performan
e degradationof spee
h dete
tion when they are used in noisy environments su
h as o�
es, automo-bile 
abins, streets, and 
omputer rooms. Many reasons a

ount to eliminate or redu
enoise from spee
h signals. However one of the biggest 
hallenges is to avoid removal ofspee
h 
omponents in this pro
ess. An approa
h have been 
onsidered for robust spee
hdete
tion in this proje
t.To develop e�e
tive robust spee
h re
ognition method, noisy spee
h uttered in the realworld is required and the spee
h database should 
ontain every possible distortion whi
h
ould o

ur in noisy environments. But it is not feasible to 
olle
t spee
h data in vari-ous noisy environments. Spee
h or Voi
e A
tivity Dete
tor (VAD), aims to distinguishbetween spee
h and several types of a
ousti
 ba
kground noise even with low signal-to-noise ratios(SNRs).In the �eld of multimedia appli
ations, a VAD permits simultaneous voi
e and data ap-pli
ations. Similarly, in Universal Mobile Tele
ommuni
ations Systems (UMTS) [2℄, it
ontrols and redu
es the average bit rate and enhan
es overall 
oding quality of spee
h.



Motivation of Proje
t 2In 
ellular radio systems (for instan
e GSM and CDMA systems) based on Dis
ontin-uous Transmission (DTX) mode, this fa
ility is essential for enhan
ing system 
apa
ityby redu
ing 
o-
hannel interferen
e and power 
onsumption in portable digital devi
es[3℄, [4℄, [5℄.It is very di�
ult to distinguish between noise and silen
e, in the presen
e of ba
kgroundnoise, so more e�
ient and self-sustaining algorithms are needed for spee
h a
tivity de-te
tion and noise redu
tion in a 
hanging and adverse noise a
ousti
 ba
kground. Thereare di�erent metri
s used for spee
h dete
tion in VAD algorithms, but re
ently Higher-order statisti
s (HOS) have shown potential results in a number of signal pro
essingappli
ations, and are of parti
ular value when dealing with a mixture of Gaussian andnon-Gaussian pro
esses and system with non-linearity [1℄.1.1 Motivation of Proje
tThe proje
t is motivated by the fa
t that, 
ombination of HOS and an algorithm pro-posed in [6℄[7℄, yields a better, e�
ient and robust VAD.The appli
ation of Rainer Martin's algorithm with HOS to spee
h pro
essing and spe
if-i
ally to VAD is primarily triggered by:1. Observation that the smoothed power estimate of a noisy spee
h signal exhibitsdistin
t peaks and valleys that is 
apable of tra
king varying noise level duringspee
h a
tivity. Work in this area1 is based on the idea that peak 
orrespond tospee
h a
tivity the valleys of smoothed noise is used to obtain the noise powerestimates.2. The algortihm's inherent suppression of additive 
oloured Gaussian noise and phasepreservation properties. It is based on the assumptions that spee
h has 
ertain HOSproperties that are distin
t from those of Gaussian noise.Finally, the implementation and veri�
ation of the algorithm using Texas InstrumentsTMS320C6713 DSP Kit (DSK), is itself a motivation for pursuing the proje
t.1.2 S
ope of the Proje
tThe �rst part of the proje
t involves analyzing the 
hara
teristi
s of the third andfourth-order 
umulants of the LPC residual of spee
h signals. The �at spe
tral envelopeof this residual results in distin
t 
hara
teristi
s for these 
umulants in terms of phase,periodi
ity and harmoni
 
ontent and yields 
losed-form expressions for the skewness1Rainer Martin's algorithm



S
ope of the Proje
t 3and kurtosis based on harmoni
 spee
h model.The proposed algorithm is tested on variety of noise types like the noise present in thestreet, 
ar, garage, train at di�erent SNR levels and the performan
e is 
ompared to theHOS VAD. To quantify performan
e, the probability of 
orre
tly 
lassifying spee
h andnoise frames as well as the probability of false 
lassi�
ation are 
omputed by makingreferen
es to truth marker �les in 
lean spee
h 
onditions.To 
ompute these metri
s and generate the noisy spee
h test 
ases, a proposed TIAdatabase material (mentioned in E) is used for the evaluation of VAD algorithms.The se
ond part of the proje
t involves running the two 
ombined e�
ient algorithmsusing Texas Instruments (TI) Code Composer Studio(CCS) and then implement the
orresponding C program onto the TMS320C6713 DSP Starter Kit (DSK).



Chapter 2Problem AnalysisThis 
hapter explores and disse
ts the question to be 
onsidered, solved, or answered inthis proje
t. How is additive noise (in the form of gaussian noise) 
orrupted with 
leanspee
h suppressed or isolated? This is identi�ed as the main question to be explained inthis 
hapter.2.1 Voi
e A
tivity Dete
tion2.1.1 OverviewThe pro
ess of separating 
onversational spee
h and silen
e is 
alled the voi
e a
tivitydete
tion (VAD). It was �rst investigated for use on Time Assigned Spee
h Interpolation(TASI) systems. VAD is an important enabling te
hnology for a variety of spee
h-basedappli
ations in
luding spee
h re
ognition, spee
h en
oding, and hands-free telephony.For these purposes, various types of VAD algorithms were proposed that trade o� delay,sensitivity, a

ura
y and 
omputational 
ost.The primary fun
tion of a voi
e a
tivity dete
tor is to provide an indi
ation of spee
hpresen
e in order to fa
ilitate spee
h pro
essing as well as possibly provide delimitersfor the beginning and end of a spee
h segment [11℄. For a wide range of appli
ationssu
h as digital mobile radio, Digital Simultaneous Voi
e and Data (DSVD) or spee
hstorage, it is desirable to provide a dis
ontinuous transmission of spee
h-
oding param-eters. The advantage 
an be a lower average power 
onsumption in mobile handsets,or a higher average bit rate for simultaneous servi
es like data transmission or even ahigher 
apa
ity on storage 
hips. However, the improvement depends mainly on theper
entage of pauses during spee
h and the reliability of the VAD used to dete
t theseintervals. On one hand, it is advantageous to have a low per
entage of spee
h a
tiv-ity but, on the other hand, 
lipping of a
tive spee
h should be avoided to preserve thequality. This is a 
ru
ial problem for a VAD algorithm under heavy noise 
onditions [12℄.



Voi
e A
tivity Dete
tion 5Voi
e a
tivity dete
tion is important for spee
h transmission, enhan
ement and re
og-nition. The variety and the varying nature of spee
h and ba
kground noise makes it
hallenging [13℄. Earlier algorithms for VAD are based on the Itakura LPC distan
emeasure, energy levels, timing, pit
h, and zero 
rossing rates, 
epstral features, adap-tive noise modeling of voi
e signals and the periodi
ity measure. Unfortunately, thesealgorithms have some problems for low SNR values, espe
ially when the noise is non-stationary. Consistent a

ura
y 
annot be a
hieved sin
e most algorithms rely on athreshold level for 
omparison. This threshold level is often assumed to be �xed or 
al-
ulated in the silen
e (voi
e-ina
tive) intervals [18℄. During the last de
ade numerousresear
hers have studied di�erent strategies for dete
ting spee
h in noise and the in�u-en
e of the VAD de
ision on spee
h pro
essing systems [19℄.2.1.2 VAD Algorithm: The Prin
ipleThe basi
 fun
tion of a VAD algorithm is to extra
t some measured features or quanti-ties from the input signal and to 
ompare these values with thresholds, usually extra
tedfrom the 
hara
teristi
s of the noise and spee
h signals. Voi
e-a
tive de
ision is madeif the measured values ex
eed the thresholds. VAD in non-stationary noise requires atime-varying threshold value. This value is usually 
al
ulated in the voi
e-ina
tive seg-ments [18℄.A representative set of re
ently published VAD methods formulates the de
ision rule ona frame by frame basis using instantaneous measures between spee
h and noise [19℄. Thedi�erent measures whi
h are used in VAD methods in
lude spe
tral slope, 
orrelation
oe�
ients, log likelihood ratio, 
epstral, weighted 
epstral, and modi�ed distan
e mea-sures.A VAD 
an be de
omposed in two steps: the 
omputation of metri
s and the appli
a-tion of a 
lassi�
ation rule. Independently from the VAD method, the operation is a
ompromise between having voi
e dete
ted as noise or noise dete
ted as voi
e [13℄. AVAD operating in a mobile environment must be able to dete
t spee
h in the presen
e ofa range of very diverse types of a
ousti
 ba
kground noises. In these di�
ult dete
tion
onditions it is vital that a VAD should "fail-safe", indi
ating "spee
h dete
ted" whenthe de
ision is in doubt so that no 
lipping is introdu
ed. The biggest di�
ulty in thedete
tion of spee
h in this environment is the very low signal-to-noise ratios (SNRs) thatare en
ountered. It is impossible to distinguish between spee
h and noise using simplelevel dete
tion te
hniques when parts of the spee
h utteran
e are buried below the noise[20℄.Robust voi
e a
tivity dete
tion algorithms are required, as traditional solutions presenta high mis
lassi�
ation rate in the presen
e of the ba
kground noise typi
al of mobileenvironments. One important aspe
t of re
ent digital 
ellular systems is the robustness



Voi
e A
tivity Dete
tion 6of the spee
h 
oding algorithms needed for the 
hannel to be used e�
iently. They haveto be robust, not only to 
hannel degradation, but also to the ba
kground noise typi
al ofmobile environments [21℄. The underlying de�nition of the robustness 
an be formulatedas a "VAD is robust if it gives de
isions 
lose to a referen
e in quiet as well as in adverseenvironments". There is introdu
ed a new de�nition 
laiming that a VAD is robustwhen it gives similar de
isions for 
lean spee
h and noisy spee
h. The robustness 
an beestimated by taking the VAD's de
ision on 
lean spee
h as a referen
e and 
omputingerror statisti
s of the same VAD applied on noisy spee
h. The more robust the VAD,the s
ar
er the errors [13℄.2.1.3 VAD EvaluationPerforman
e of VAD 
an be measured in terms of a
tivity and the degree and severityof 
lipping. In order to evaluate the amount of 
lipping and how often noise is dete
tedas spee
h, the VAD output is 
ompared with those of an ideal VAD. The performan
eof a VAD is evaluated on the basis of the following four traditional parameters [20℄:1. FEC (Front End Clipping): 
lipping introdu
ed in passing from noise to spee
ha
tivity;2. MSC (Mid Spee
h C1ipping): 
lipping due to spee
h mis
lassi�ed as noise;3. OVER: noise interpreted as spee
h due to the VAD �ag remaining a
tive in passingfrom spee
h a
tivity to noise;4. NDS (Noise Dete
ted as Spee
h): noise interpreted as spee
h within a silen
eperiod.Although the method des
ribed above provides useful obje
tive information 
on
erningthe performan
e of a VAD, it only gives an initial estimate with regard to the subje
tivee�e
t. It is therefore important to 
arry out subje
tive tests on the VAD, the main aimof whi
h is to ensure that the 
lipping per
eived is a

eptable. This kind of test requiresa 
ertain number of listeners to judge re
ordings 
ontaining the pro
essing results of theVAD's being tested. The listeners have to give marks on the following features:1. Quality.2. Comprehension di�
ulty.3. Audibility of 
lipping.



Noise 7These marks, obtained by listening to several spee
h sequen
es, are then used to 
al
ulateaverage results for ea
h of the features listed above, thus providing a global estimate ofthe behavior of the VAD being tested. To 
on
lude, whereas obje
tive methods are veryuseful in an initial stage to evaluate the quality of a VAD, subje
tive methods are moresigni�
ant. As, however, they are more expensive (sin
e they require the parti
ipation ofa 
ertain number of people for a few days), they are generally only used when a proposalis about to be standardized [21℄.One of the primary reason for the use of HOS VAD is to suppress 
olored noise. Thefollowing se
tion des
ribes brie�y about various noises.2.2 NoiseNoise 
an be de�ned as the 
ontamination of the desired signal or the unwanted signal.Natural and deliberate noise sour
es 
an provide both or either of random interferen
eor patterned interferen
e. Only the latter 
an be 
an
elled e�e
tively in analog systems;however, digital systems are usually 
onstru
ted in su
h a way that their quantized sig-nals 
an be re
onstru
ted perfe
tly, as long as the noise level remains below a de�nedmaximum, whi
h varies from appli
ation to appli
ation. There are many forms of noisewith various frequen
y 
hara
teristi
s that are 
lassi�ed by "
olor" [25℄.White noise is a signal (or pro
ess) with a �at frequen
y spe
trum. In other words, thesignal has equal power in any band, at any 
entre frequen
y, having a given bandwidth.In pra
ti
e a signal 
an be "white" with a �at spe
trum over a de�ned frequen
y band.A signal that is "white" in the frequen
y domain must have 
ertain important statisti
alproperties in time. For example, it must have zero auto
orrelation with itself over time,ex
ept at zero timeshift. The �gures (2.2), (2.2) shows that 
ar noise taken for 10000samples is not white. The periodogram shows that the spe
trum is not uniform where asthe randomly generated Gaussian noise has a uniform distribution. The power spe
traldensity is the smoothed version of the periodogram.Noise having a 
ontinuous distribution, su
h as a normal distribution, 
an be white [26℄.Gaussian noise is sometimes misunderstood to be white gaussian noise, but this is notso. Gaussian noise only means noise with pdf1 of the Gaussian distribution, whi
h saysnothing to 
orrelation of the noise in time. Labeling Gaussian noise as white des
ribesthe 
orrelation of the noise.The next most 
ommonly used 
olored noise is pink noise. Its frequen
y spe
trum isnot �at, but has equal power in bands that are proportionally wide. Pink noise is per-
eptually white. That is, the human auditory system per
eives approximately equal1Probability Distribution Fun
tion
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h [ n ]

s [ n ]
clean speech

x [ n ]
degraded speech

additive noise
n [ n ]

linear
filteringFigure 2.3: Representation of Additive Noisemagnitude in all frequen
ies. The power density de
reases by -3 dB per o
tave within
rease in frequen
y (density proportional to 1/f). There are also many "less o�
ial"
olors of noise su
h as brown, blue, purple, voilet, grey, red, orange, green and bla
k.2.2.1 Additive NoiseThere are many sour
es of a
ousti
 distortion that 
an degrade the performan
e of spee
hre
ognition systems. For many spee
h re
ognition appli
ations the most important sour
eof a
ousti
al distortion is the additive noise [23℄. Mu
h resear
h e�ort in robust spee
hre
ognition has been devoted to 
ompensate the e�e
ts of additive noise.If the spee
h signal s(k) e�e
ted by un
orrelated noise n(k) [24℄, then the observed signalin the frequen
y domain 
an be expressed as

Y (ejw) = X(ejw) + N(ejw) (2.1)If s(t) is the original 
lean spee
h signal, the re
eived spee
h signal y(t) in time domain
an be represented as
y(t) = s(t) ∗ h(t) + n(t) = x(t) + n(t) (2.2)where h(t) is the impulse response of 
hannel distortion and n(t) the ambient noise. (∗)denotes the 
onvolution operation, and x(t) the noise-free spee
h as shown in the �gure(2.2.1). Typi
al stru
tural models for adaptation to variability assume that spee
h is
orrupted by a 
ombination of additive noise and linear �ltering.In spee
h pro
essing, the spee
h is 
onsidered as useful data and all other signals areassumed to be noise. Many algorithms and appli
ations are 
reated to redu
e or eliminatenoise from signals, su
h as Voi
e A
tivity Dete
tor.



Choi
e of HOS 102.3 Choi
e of HOSIn early VAD algorithms, short-term energy, zero-
rossing rate and LPC 
oe�
ients wereamong the 
ommon features used for spee
h dete
tion. Cepstral features, formant shapeand least-square periodi
ity measure are some of the most re
ent metri
s used in VADdesigns. G.729B VAD has a set of metri
s in
luding the line spe
tral frequen
ies(LSF),low band energy, zero-
rossing rate and full-band energy.The short-time energy or spe
tral energy has been 
onventionally used as the majorfeature parameters to distinguish the spee
h segments from other waveforms. However,these features be
ome less reliable and robust in noisy environments, espe
ially in thepresen
e of non-stationary noise and sound artifa
ts su
h as lip sma
ks, heavy breathingand mouth 
li
ks et
.[14℄.HOS has shown good results in a number of signal pro
essing appli
ations and are ofparti
ular value when dealing with a mixture of Gaussian and non-Gaussian pro
essesand system nonlinearity. The appli
ation of HOS in spee
h pro
essing is Gaussian sup-pression and phase preservation properties.2.4 Problem StatementThe following are some of the problems needed to be solved to satisfy the proje
t goal.A Matlab & ANSI-C PROGRAM1. HOS algorithm implementation.2. Implementation of traditional VAD algorithm in [6℄3. Veri�
ation of Algorithm using TIA-Database [8℄4. Convertion and optimization of Matlab 
ode to ANSI-C 
ode.B DSK IMPLEMENTATION1. Embedding C 
ode on to TI appli
ation spe
i�
 pro
essor (TMS320C6713)using Code Composer Studio(CCS).



Chapter 3DesignThe 
hapter dis
usses the various algorithms needed to design of robust VAD. The skew-ness and kurtosis as mentioned in appendi
es (A, F) of the LPC residual of voi
ed spee
his expressed in terms of the number of harmoni
s M and signal energy. These param-eters are greater than zero for any pra
ti
al value of M whi
h is a fun
tion of pit
h.The normalized values of skewness and kurtosis are expressed in terms of M . These twometri
s 
an be used to dete
t voi
e. The advantage of using the normalized metri
s isthat they are independent of the signal energy and therefore absolute thresholds are used.The varian
e of the estimators of the skewness and kurtosis and are normalized to get theunit-varian
e estimators. The relation between skewness and kurotsis in voi
ed spee
h isused to identify the spee
h frames. This forms the basis for the VAD algorithm usingHOS. The appendix B shows the design in whi
h the proje
t was implemented.3.1 Dete
tion of Noise Frames using HOSThe skewness and kurtosis of Gaussian noise are zero only in a statisti
al average sense.Generally a �nite length frames are used, so the de
ision that a given frame is noise 
anonly be made in a probabilisti
 manner with a 
on�den
e level that takes into a

ountthe varian
e and distribution of the estimators of the skewness and kurtosis. Given aGaussian pro
ess g(n), the estimators of the se
ond, third and fourth-order moments are
Mkg =

1

N
ΣN−1

n=0 [g(n)]k (3.1)The above equation is for the estimator of E[{x(n)}]k for the values of k = 2, 3, 4 and
N is the number of frames under 
onsideration. These estimators are unbiased [1℄. Forthe 
ase of white Gaussian noise, their mean and varian
e may be expressed in terms ofthe pro
ess varian
e, vg
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E[M3g] = 0

E[M4g] = 3v2
g

V ar[M3g] =
15v3

g

N

V ar[M4g] =
96v4

g

N (3.2)Thus, the estimator of the skewness SK = M3g is unbiased, with zero mean and knownvarian
e. This estimator is the sum of a large number of independent identi
ally dis-tributed (iid) random variables, then by using 
entral limit theorem, the normalizedversion is given by
SKa =

M3g√
15v3

g/N
(3.3)is a Gaussian variable with zero mean and unit varian
e. Thus given the estimate of theskewness of a frame and the 
orresponding s
aled value denoted by ”a”, the probabilitythat the frame is Gaussian noise is

Prob[Noise] = Prob[|SKa| ≥ a] (3.4)whi
h is equivalent to 
omputing the area under the tail of the Gaussian 
urve of
SKa graphi
ally. The area under the tail 
an be evaluated by erfc(x) fun
tion1.When a = 0 the area under the 
urve is unity, whereas when a > 0, Prob[Noise] =

2/
√

2π
∫
∞

a ex2/2 dx. Thus, Prob[Noise] = erfc(|a|).A negative skewness is not an indi
ation of noise, while the HOS of spee
h are positive,sin
e transient segments 
an have negative HOS. Similarly, the estimator of the kurtosisis �rst 
omputed from the se
ond and fourth-order moments. To ensure an unbiasedestimate, the modi�ed estimator is used
KUU =

(
1 +

2

N

)
M4g − 3(M2g)

2. (3.5)This estimator is unbiased, with zero mean and known varian
e. The distribution 
on-sists of the di�eren
e of two variables, one Gaussian and one 
hi-square. However anapproximation is used here and the estimator is assumed normally distributed.A unit-varian
e version of this zero-mean variable is de�ned as1error fun
tion
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KUUb =

KUU√
3v4

g

N

(
104 + 452

N + 596
N2

) (3.6)Therefore, given the value of the estimate of the kurtosis of a given frame and the
orresponding s
aled value, denoted by ”b”, the probability of a frame being noise is:
Prob[Noise] = erfc(|b|). The probability of a frame being noise using the normalizedvalues of the estimates of skewness & kurtosis and the "erf
" fun
tion 
an be determined.3.1.1 Ne
essary Condition for Voi
ingThe skewness and kurtosis of voi
ed spee
h are expressed in terms of energy and numberof harmoni
s and may be used for dete
ting voi
ed frames [1℄. To eliminate the e�e
tof energy, one may 
onsider the normalized metri
s i.e., γ3 and γ4, but these metri
sbe
ome less e�e
tive in the presen
e of noise, for dete
ting the voi
ed frames. Therefore,the ratio of the appropriate power of the skewness to that of the kurtosis is 
onsideredto eliminate the e�e
t of signal energy, while avoiding the e�e
t of noise.

SKR =
skewness2

kurtosis1.5
=

9(M − 1)2

8M

[
4
3M − 4 + 7

6M

]1.5 (3.7)SKR Ratio is independent of signal and is only a fun
tion of M where M is the number ofharmoni
s(fun
tion of pit
h). When Gaussian noise is present, the ratio is undeterminedsin
e both operands are zero. But, this zero 
ondition never o

urs due to varian
e ofthe estimators. The SKR ratio may take on any value, in
luding the range for voi
edspee
h; thus not su�
ient enough for dete
ting voi
e frames (when transient values invoi
e spee
h).3.2 HOS-Based VAD AlgorithmThe sustained unvoi
ed spee
h is shown to have Gaussian-like 
hara
teristi
s, it 
annotbe distinguished from Gaussian noise using HOS [1℄. But in reality unvoi
ed spee
ho

urs at spee
h transitional boundaries having nonzero HOS. Therefore the VAD de-te
tion proposed based on HOS and is formulated as a �nite two state ma
hine. Thealgorithm 
ombines the use of skewness, kurtosis, their normalized versions γ3 and γ4,SNR, LPC predi
tion error, and SKR ratio for distinguishing spee
h from noise frames.
The following explains the algorithmi
 steps:



HOS-Based VAD Algorithm 141. Data Format:Spee
h sampled at 8kHz is used, a tenth-order LPC analysis2 is performed on
eevery 20ms, thus generating a 20ms residual. VAD is 
arried out every 10ms usingthe residual and a 20% overlap.2. HOS Computations:Every 10ms iteration, the estimators for the se
ond, third and fourth-order mo-ments are 
omputed using (3.1) with N = 100. An autoregressive s
heme is usedto smooth the estimates of the moments. From these, the unbiased estimate of thekurtosis (3.5) is dedu
ed. The estimate of the skewness is simply the third-ordermoment (3.1). Then they are normalized by the signal energy to give
γ3 =

SK

M1.5
2x

γ4 =
KUu

M2
2x (3.8)3. Noise and SNR Estimation:The noise power is estimated using frames de
lared as nonspee
h. Moreover, it isassumed that �rst three frames are nonspee
h and are used to initialize the noisepower estimate. Whenever a frame is de
lared as nonspee
h, its energy is used toupdate noise estimate a

ording to an autoregressive averaging

vg(k) = (1 − β)vg(k − 1) + βM2X (3.9)where k is iteration index;
M2X is frame energy;
vg is estimate of the noise energy;
β is 0.1*Prob[Noise℄.At every iteration the 
urrent estimate of the noise energy is used to 
ompute theSNR of that frame.

SNR = Pos

[
M2X

vg
− 1

] (3.10)where Pos[x] = x for x > 0 and 0 otherwise. In the above equation M2X isthe power of the spee
h 
orrupted with noise and vg is the noise energy.Sin
e theresidual is low-pass �ltered at 2kHz, the above SNR is appli
able to the lowerspe
trum only. The total SNR is 
omputed using the non�ltered residual and theenergy of the full band.2refer to appendix C for details



HOS-Based VAD Algorithm 154. Probability of Noise-only Frames:On
e the skewness and kurtosis are 
omputed, the varian
e of these estimates are
omputed using the noise energy vg, a

ording to (3.3) and (3.6), to yield the zero-mean, unit varian
e estimates SKa and KUUa, respe
tively. From these two s
aledvalues, the probability of the frame being noise is dedu
ed
Prob[Noise] = [erfc(a) + erfc(b)]/2 (3.11)where a and b are the 
omputed values of SKa and KUUb, respe
tively.5. SKR Ratio:The ratio is 
omputed dire
tly from the non-normalized estimates of the skewnessand kurtosis

SKR =
[SK]2

[KUU ]1.5
(3.12)6. LPC Predi
tion Error:The LPC predi
tion error is the inverse of the predi
tion gain and may be 
omputedfrom the set of the re�e
tion 
oe�
ients (ri) generated by the LPC analysis

PE = Π10
i=0(1 − r2

i ) (3.13)7. Spee
h/Noise State Ma
hine:The VAD algorithm is implemented as a two-state ma
hine as ahown in the �gure(3.1). The following operations are 
arried out in ea
h state.(a) Noise State: The noise energy is updated a

ording to the Prob[Noise](3.11). The SKR ratio, the Gaussian likelihood (Probability of noise), theSNR (3.10) and the Probability of error (3.13) values are used to determinewhether the frame is spee
h. The o

urren
e of the following three 
onditionstriggers a transition:i. Prob[Noise] < TGaus for two 
onse
utive frames.ii. SKR in voi
ing range and (SNR > TSNR1 or PE < TPE) indi
ates avoi
ed frame.iii. Total SNR > TSNR2 indi
ates a strong spee
h frame.(b) Spee
h State:The noise likelihood (3.11) along with the values γ3 and γ4 (3.8) are used todetermine whether the frame is Gaussian. After a hangover period, transitionto the noise state o

urs if Prob[Noise] > TGaus and γ3 < Tγ3
and γ4 < Tγ4
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Either
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Total SNR >TSNR_2
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SNR_1SKR in voice range AND (SNR > T         OR PE < T     )     PE

Figure 3.1: HOS based VAD State Ma
hine3.3 Estimation of the Instantaneous SNR of Spee
h SignalsEstimation of the instantaneous SNR is an essential 
omponent of spee
h pro
essingalgorithms whi
h are sensitive to varying noise levels [6℄. An instantaneous SNR esti-mate is based on short time power estimates with time 
onstants of integration in therange of 0.02− 0.1s. To a
quire noise statisti
s, the 
onventional approa
h to SNR esti-mation employs a VAD to extra
t the noise only segments of the disturbed spee
h signal.The Rainer Martin's algorithm, does not need an expli
it spee
h/nonspee
h de
ision togather noise statisti
s and is 
apable to tra
k varying noise levels during spee
h a
tivity.The algorithm is based on the observation that the smoothed power estimate of a noisyspee
h signal exhibits distin
t peaks and valleys. While the peaks 
orrespond to spee
ha
tivity the valleys of the smoothed noise estimate 
an be used to obtain a noise powerestimate. To estimate the noise �oor, the algorithm takes the minimum of a smoothedpower estimate within a window of �nite length.3.3.1 Algorithmi
 Des
riptionAssume that the bandlimited and sampled disturbed signal x(i) is sum of a spee
h signal
s(i) and a noise signal n(i), x(i) = s(i)+n(i), where i denotes the time indexand also as-suming that s(i) and n(i) are statisti
ally independent, E{x2(i)} = E{s2(i)}+E{n2(i)}.
SNRx(i) denotes the estimated signal-to-noise ratio fo signal x(i) at time i. The algo-rithm works on a sample basis, i.e. a new output sample SNRx(i) is 
omputed for ea
h
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h Signals 17input sample x(i). The 
omputation of SNRx(i) is based on a noise power estimate
Pn(i) whi
h is obtained as the minimum of the smoothed short time power estimate
P̃x(i) within a window of L samples.Besides initialization the algorithm is split into three major parts:
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Figure 3.2: The Estimation of the Instantaneous SNR of Spee
h Signals1. Computation of a smoothed short time power estimate P̃x(i) of signal x(i)2. Computation of the noise power estimate Pn(i)3. Computation of the SNRx(i)Figure (3.2) shows the overall �ow of RM algorithm.



Estimation of the Instantaneous SNR of Spee
h Signals 181. Computation of a smoothed power estimateComputation of the short time signal power Px(i) and smoothing of the powerestimate is done in two steps. The power estimate may be obtained re
ursivelyor non-re
ursively. A sliding re
tangular window of length N with N = 128 isnormally used. Let P̃x(i) denote the smoothed short time power estimate at time
i. Smoothing of the power estimate is done 
onstant is typi
ally set to valuesbetween α = 0.95 . . . 0.98. The re
ursion for i > N is given by (3.14):

Px(i) = Px(i − 1) + x(i) ∗ x(i) − x(i − N) ∗ x(i − N)

P̃x(i) = α ∗ P̃x(i − 1) + (1 − α) ∗ Px(i) (3.14)In �gure (3.3) the �rst two parts show the short time signal power and the smoothedpower estimate respe
tively for the 
ase 67 (spee
h in 
ar noise environment) for12000 samples.2. Noise power estimationThe noise power estimate is shown in the third part of the �gure (3.3). The noisepower estimate is based on the minimum of signal power within a window of Lsamples. For reasons of 
omplexity and delay the data window of length L is de-
omposed into W windows of length M su
h that M ∗ W = L.The minimum power of the last M samples is found by a sample wise 
omparisonof the a
tual minimum Pmin(i) and the smoothed power P̃x(i). Whenever M sam-ples are read, i.e. i = r ∗ M , the minimum power of the last m samples are storedand the maximum value of Pmin(i = r ∗ M) is reset: PMmin(i = r ∗ M+) = PmaxDetermination of the noise power is estimated by two 
ases:(a) slowly varying noise power,(b) rapidly varying noise power.If the minimum power of the last W windows with M samples ea
h is monotoni-
ally in
reasing, then a rapid noise power variation de
ision is made. In this 
asethe noise power estimate equals the power minimum of the last M samples
Pn(i) = PMmin(i = r ∗ M).In 
ase of non monotoni
 power the noise power estimate is set to the minimumof the length L window Pn(i) = PLmin(i). The minimum power of the length Lwindow is easily obtained as the minimum of the last W minimum power estimates:

PLmin(i) = min(PMmin(i = r ∗ M), PMmin(i = r ∗ M), . . . PMmin(i = r ∗ M))(3.15)
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Figure 3.3: Power Estimation using Rainer Martin's AlgorithmIf the a
tual smoothed power is smaller than the estimated noise power Pn(i) thenoise power is updated immediately independent of window adjustment: Pn(i) =

min(P̃x(i), Pn(i)).3. Computation of SNRThe estimated SNR is 
omputed on the basis of the estimated minimum noise power
Pn(i). A fa
tor ofactor a

ounts that the minimum power estimate is smaller thanthe true noise power. The range of ofactor is between 1.3 and 2

SNR(i) = 10 ∗ log10

(
P̃x(i) − min(ofactor ∗ pn(i), P̃x(i))

ofactor ∗ Pn(i)

) (3.16)The window length L = M ∗W must be large enough to bridge any peak of spee
ha
tivity, but short enough to follow non stationary noise variations. In 
ase ofslowly varying noise power the update of noise estimates is delayed by L + Msamples. If a rapid noise power in
rease is dete
ted this delay is redu
ed to Msamples, thus improving the noise tra
king 
apability of the algorithm.Table (3.1) shows a simple representation of steps in implementing HOS-VAD. Figures(3.4) and (3.5) shows the system models or the implementation �ow for HOS and (RM+ HOS) Algorithm respe
tively with both in Matlab and DSK.
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Pro
ess Input Output Des
riptionBu�ering Spee
h signal Sampled frame The spee
h signal is represented in a ma-trix form resulting in the framesLPC Frame Residual, LPC 
oe�
ients Cal
ulates the LPC 
oe�
ients and resid-ualHOS 
omputations Residual Normalized skewness and nor-malized kurtosis The se
ond, third and fourth order mo-ments are 
al
ulated and hen
e the skew-ness and kurtosisEstimation of noiseand SNR Residual Estimated noise energy and SNR Noise energy and the SNR are 
al
ulatedusing the frame energy.Cal
ulation of prob-ability of noise-onlyframes Normalized skewness and kurto-sis with respe
t to Noise energy Probability of noise only frames Cal
ulated using the error fun
tion of thenormalized skewness and kurtosis.SKR Ratio Normalized skewness and kurto-sis SKR Ratio Cal
ulates the SKR ratioLPC predi
tion error Re�e
tion 
oe�
ients from theLPC analysis LPC predi
tion error Cal
ulates the LPC predi
tion errorNoise state Probability of noise, SKR ratio,SNR and probability of error Frames 
onsidered as noise Depending on the threshold, de
ision ismade that the frame is noisy.Spee
h state Noise likelihood, normalizedskewness and kurtosis Frames 
onsidered as spee
h Frame is de
ided as spee
h depending onthe threshold values.Cal
ulation of theprobabilities Corre
tly dete
ted spee
hframes, 
orre
tly dete
ted noiseframes, in
orre
tly 
lassi�edspee
h or noise frames Probability of 
orre
tly dete
tedspee
h, noise frames and proba-bility of false dete
tion Cal
ulates the probability of 
orre
tly de-te
ted spee
h, noise frames and probabil-ity of false dete
tion Pcspeech

, Pcnoise

, Pf .Table 3.1: Pro
ess Des
ription
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Figure 3.5: System Model using Rainer Martin's Algorithm of HOS-VAD



Chapter 4ImplementationThis 
hapter des
ribes the implementation of the algorithm mentioned in the previous
hapter, whi
h is done in three steps: designing the algorithm and running the simulationson Matlab then 
onverting the Matlab 
ode into C 
ode (Conversion to C 
ode was donein two ways). The resulting C 
ode is then implemented on the Code Composer Studiowhi
h is the interfa
e for the TMS320C6713 DSK.4.1 Matlab Simulation of VAD Algorithm using HOSSimulations of the system represent the fun
tionality of the individual pro
ess mentionedin this 
hapter. In simulation pro
ess it was assumed, that some program takes inputsignal, frames it in 20ms frames and supplies the result for the simulation. Duringsimulation algorithm works in real time and only with one frame at a time. Furthermore,it is assumed that RVAD algorithm using HOS is not only working with the 
urrent frame,but also gets 
oming samples of the next frame.4.1.1 Input SignalsThe system is simulated with di�erent spee
h signals1:
• Noise 
ontaminated signal i.e., the test 
ases [8℄
• Noise free signal or the 
lean spee
h signal
• Mark �les or the referen
e signalThe spee
h signals 
onsist of the 10 di�erent s
enarios of whi
h �ve are male and �veare female speakers. There are four noise signals used whi
h are Car, Garage, Trainand Street noises. The spee
h data signals and noise signals are 
ombined in variousratios and result in 80 di�erent test 
ases. Ea
h 
ase is a di�erent 
ombination of the1Refer to appendix E for details of the sour
e of the spee
h signals



Matlab Simulation of VAD Algorithm using HOS 23spee
h normalization level, the noise type and the SNR. These 
ases have di�erent SNRlevels of 6dB, 12dB, 18dB and ∞. For example, Case 6 is 
reated 
ombining spee
h �lem1left1.nom and noise �le 
ar.nom added for a SNR of 6dB. These di�erent test 
asesform the noise 
ontaminated spee
h signals as the input for the algorithm. The referen
esignal or the mark �les were generated for the 
omparison of the results.
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Figure 4.1: Spee
h Signals with and without Noise4.1.2 FramingFrame size is set to 20ms, sin
e the frame length is 
onsidered to be between 10ms to
30ms. If the length is less than 10ms, it results in roughness and the frame size morethan 30ms, the per
eptual quality is de
reased.4.1.3 WindowingThe windowing length determines the portion of the spee
h signal that is to be sele
ted.The ideal window frequen
y response has a very narrow main lobe whi
h in
reases theresolution and de
reases the side lobes or frequen
y leakage. Sin
e an ideal window doesnot exist pra
ti
ally so a 
ompromise is made depending on the spe
i�
 appli
ation.Di�erent windows are available su
h as re
tangular, hanning or hamming window. There
tangular window has the highest frequen
y resolution due to the narrow main lobeand having a large frequen
y leakage. The large side lobes results in high frequen
y



Matlab Simulation of VAD Algorithm using HOS 24leakage thus the re
tangular windowed spee
h is noisier. So the re
tangular window isnot used for spe
tral analysis of spee
h. The trapezoidal windows su
h as hammingand hanning windows are prominent having smaller frequen
y leakage but with lowerresolution. Thus produ
e a smoother spe
trum than the re
tangular window. Hanningwindow is used.4.1.4 Cal
ulation of the HOS ParametersIn order to dete
t whether the 
urrent frame is spee
h or non-spee
h frame, normalizedskewness and normalized kurtosis are estimated for the frames. Those values are 
ounteda

ording to equation (3.8). For this reason beforehand se
ond, third and fourth ordermoments are 
omputed using equation (3.2).
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Figure 4.2: SNR Estimation using Rainer Martin's Algorithm4.1.5 Cal
ulation of SNRCal
ulation of signal-to-noise ratio is performed using the 
urrent estimate of noise en-ergy as in equation (3.10). Noise power is required for estimating noise energy. If thenoise power de
lares the 
urrent frame as non spee
h then the noise energy is 
omputedusing equation (3.9). Otherwise, noise energy is left un
hanged from the previous frame.After 
al
ulation of SNR for ea
h frame, "total SNR" metri
 is updated.HOS, Rainer Martin's algorithm mentioned in (3.3) for estimation of SNR is applied



Matlab Simulation of VAD Algorithm using HOS 25to improve VAD algorithm. But SNR estimation using Rainer Martin's algorithm isdone before LPC as the SNR estimation is utilized sample by sample basis. The SNRestimation for the �rst 12000 samples of 
ase 67 is shown in the �gure (4.2).4.1.6 State Ma
hineAfter estimation of normalized skewness, normalized kurtosis, SNR, noise probability,LPC predi
tion error and SKR, the algorithm de
ides whether frame is spee
h or non-spee
h. The de
ision is made using a state ma
hine model, whi
h has two states: noiseand spee
h state. The 
urrent state depends on the previous frame.If the state ma
hine is in noise state, the veri�
ation is done based on whether the
urrent frame is still noise or not. The de
ision is made a

ording to the values of noiseprobability, predi
tion error, SKR, SNR and total SNR for the 
urrent frame in 
ompar-ison to the appropriate thresholds set.If state ma
hine is in spee
h state, de
ision is based on whether the 
urrent frame isstill spee
h or not. The de
ision is made a

ording to the results of noise probability,normalized skewness and normalized kurtosis for the 
urrent frame in 
omparison to theappropriate thresholds.
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Figure 4.6: Predi
tion Error
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Analysis of the results 284.2 Analysis of the resultsThe results of algorithm are presented in plots of the 
omputed parameters (�gures (4.1)- (4.10)). The input signal for 
omputations is 100000 samples of 
ase 67 whi
h is 
om-bination of female spee
h and 
ar noise as shown in the �gure (4.1).In this 
ase, the highest peaks in the plots of normalized skewness and normalized kur-tosis �gure (4.3) show spee
h frames. Combining the results of normalized skewnessand normalized kurtosis the de
ision is made whether the frame is spee
h or noise. Forexample, the �gure (4.4) shows 40 frames of the signal. The signal frames are noisebelow 0.5 of skewness and 0.94 of kurtosis amplitude respe
tively. Frames from 339 to341 are 
onsidered noise be
ause the skewness and kurtosis are below the thresholds.Furthermore, the frames from 354 to 357 frames are 
onsidered as spee
h, but if thevalues are less than the thresholds then the frame is de
ided as de�nitely noise. Theframes 
onsidered as spee
h are de
ided based not only on the skewness and kurtosis,but also on other thresholds.Skewness to kurtosis ratio plot shown in the �gure (4.5) is one of the parameters whi
hhelps in dete
ting the spee
h frame. The high peaks in SKR plot means non gaussiannoise, 
ontrary to normalized skewness and normalized kurtosis plots. Analyzing theplot, shows that spee
h frames belong to parti
ular range of amplitude values.The plots of predi
tion error and probability of noise depi
ted in the �gures (4.6), (4.7)respe
tively show the statisti
al information about frames. The higher the value of pre-di
tion error is, the more likely the frame is noise. The lower the probability of noise thehigher the possibility that frame is spee
h. Figure (4.8) shows the histogram of frame-by-frame values of the normalized kurtosis generated for 6250 frames of LPC residualsignal. Another histogram is generated for the normalized kurtosis for the randomlygenerated Gaussian noise before LPC �ltering. These histograms show the di�eren
e inthe fourth-order statisti
s between spee
h and Gaussian noise. It shows that the spee
hutteran
e 
ontains silen
e periods when kurtosis is zero as shown in the �gure.Based on all of the above parameters, the e�e
tiveness of algorithm is evaluated andthree performan
e metri
s are 
omputed. PcSpeech is probability of 
orre
tly dete
tingspee
h frames, 
omputed as the ratio of 
orre
t spee
h dete
tions to the total number ofhand-labeled spee
h frames. PcNoise is probability of 
orre
tly dete
ting noise frames,
omputed as the ratio of 
orre
t noise dete
tions to the total number of hand-labelednoise frames. Pf is probability of false dete
tion, 
omputed as the ratio of in
orre
tly
lassi�ed spee
h or noise frames to the total number of frames. Table 4.1 shows evalu-ation of 
ar noise signal with SNR 0dB. As there is no spee
h in this signal, therefore
PcSpeech is not 
ounted.In addition, referen
e �les for spee
h signal were made 
omparing results of algorithms
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Figure 4.8: Histograms of Normalized Kurtosis of the LPC Residual (Spee
h versus Gaussian)with true VAD. De
ision whether frame is spee
h or non-spee
h, is made a

ording toframe energy. If it is above threshold then frame is spee
h otherwise frame is silen
e. Inreferen
e plot spee
h is 
onsidered as one and silen
e has zero. Figures (4.9)and (4.10)show the plots of HOS-VAD and RM + HOS VAD algorithms respe
tively. Both algo-rithms were 
ompared to ea
h other to evaluate its e�e
tiveness.Di�erent Noise environments su
h as street, garage, 
ar and noise with di�erent SNRlevels were used and its 
orresponding PcSpeech, PcNoise, Pf were 
al
ulated as shownin the table (4.2).As mentioned earlier, Pcs and Pf are 
al
ulated based on the thresholds set for thedete
tion whether the spee
h frame is spee
h or not. The thresholds vary for di�erentnoise environments and even for the di�erent SNR levels. The thresholds were �xed and
ould not be made adaptive be
ause adaptive thresholds did not give expe
ted results.The main fo
us was set on the probability of dete
ting the frames as spee
h to be highbe
ause spee
h dete
ted as noise is not a

eptable.It 
an be inferred from the table that the overall performan
e of RM-HOS VAD isbetter than that of HOS-VAD. For example, RM-HOS produ
ed more a

eptable resultsfor CAR noise for 18dB, the PcSpeech is as high as 99% as 
ompared to that of 97% forHOS VAD. Similarly the metri
s for the other noise environments 
an be analyzed fromthe table (4.2)
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Figure 4.9: Comparison with the Referen
e VAD
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C Coding 31Noise Environment P
 Spee
h (%) P
 Noise (%) Pf (%)Type SNR RM HOS VAD RM HOS VAD RM HOS VADCar 0 dB ∞ 91.2668 8.7332Table 4.1: 0 dB SNR for CAR Noise4.3 C CodingIn this proje
t, the 
onversion of Matlab 
ode to C 
ode was performed in two di�erentte
hniques. At �rst, there was attempt to 
onvert Matlab 
ode dire
tly to C usingMatlab 
ompiler. Later there was written the plain C 
ode.4.3.1 Using Matlab for 
onversionTo write a DSP 
ompatible ANSI C 
ode, Matlab Compiler and Matlab C++ were used.Below are the steps by whi
h Matlab 
ode is 
onverted to C 
ode.
• Installing libraries, whi
h are needed during 
ompilation. To do this�mbuild -setup 
ommand is used.
• Copying M-�les of algorithm to a working dire
tory.
• Converting M-�les to C using Matlab 
ompiler. To do this m

 
ommand is used.Generated C 
ode 
an be 
ompiled by any ANSI C 
ompiler. Wrapper �les 
analso be generated to interfa
e betweeen 
onverted 
ode and exe
utable type.Not all Matlab M-�les 
an be 
onverted to C using Matlab 
ompiler. There are theserestri
tions:
• M-�les 
ontaining s
ripts
• M-�les that use obje
ts
• M-�les that use Matlab 
ommands input or eval
• M-�les that use Matlab 
ommand exist with 2 input arguments
• M-�les that load �lesThe RM+HOS C 
ode (
onverted with Matlab) has the following fun
tions:



CCoding
32

Noise Environment P
 Spee
h (%) P
 Noise (%) Pf (%)Type SNR RM HOS VAD HOS VAD RM HOS VAD HOS VAD RM HOS VAD HOS VADStreet 18 dB 95.73766 95.02624 98.61536 95.27732 19.33330 19.94640Street 12 dB 96.41824 94.81300 93.52636 97.22586 24.49698 24.24436Street 6 dB 95.90054 96.27360 89.79290 94.24034 26.80592 29.57412Garage 18 dB 92.62478 90.89854 93.81738 96.50380 16.34816 17.41288Garage 12 dB 96.76172 91.22174 98.18864 96.31108 21.21978 21.28208Garage 6 dB 97.89894 92.55860 96.54834 98.21720 25.47020 29.88722Car 18 dB 99.35094 97.49856 98.45012 93.31110 21.46160 23.55938Car 12 dB 94.00594 90.20506 96.38050 96.81272 21.76148 21.59166Car 6 dB 95.47264 93.12092 96.97286 94.75996 26.49182 27.59700Train 18 dB 93.01504 94.18450 94.08644 97.72330 18.26398 19.86844Train 12 dB 97.90404 86.78462 97.32174 98.22220 22.33514 23.31566Train 6 dB 94.83100 92.81294 92.21040 94.00732 26.79338 29.6381Table 4.2: P ′

cs and P ′

fs for the HOS based VAD
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• C 
ode 
onsists of the following highest level fun
tions/headersrt_hos_vad_mainhg.
 : main fun
tion for evaluation purpose.rt_hos_vad.
 : real time RM+HOS fun
tion.rt_hos_vad.h : real time RM+HOS header.
• The following �les 
ontain global de�nitions, 
onstants and other related subrou-tines:hanning.
 : Hanning window fun
tionlp
.
 : General linear predi
tive implementation fun
tionpoly2r
.
 : onversion of lp
 
oe�
ients to re�e
tion 
oe�. fun
tionlevinson_mex_interfa
e.
 : Levinson-durbin solution fun
tionbu�er_mex_interfa
e.
 : bu�ering signal ve
tor fun
tionMost C �les have their respe
tive header �les. All other subroutines and de�nitions 
anbe found in 
ompanion CD atta
hed to this report.4.3.2 C 
ode of the algorithmsDue to the problems en
ountered with C 
ode 
onverted from Matlab, new HOS andRM+HOS ANSI-C 
ode were written for the implementation on DSK. These programsuse input �le, whi
h 
ontains 16-bit data, stored in high-byte/low-byte word format.HOS program 
ontains the following basi
 fun
tions:
• HanningWindow: This fun
tion generates Hanning window of the set size. Di�er-ent from Matlab C 
ode, the Hanning window here is without zero padding.
• SignalFraming: Fun
tion forms 
urrent frame of the set size.
• LPC: This Linear Predi
tive Model fun
tion uses AutoCorrelation and Levinson-Re
ursion fun
tions. It generates linear predi
tion and re�e
tion 
oe�
ients.
• AllPoleFilter: Fun
tion generates residue from 
urrent frame and linear predi
tion
oe�
ients.
• HOSCompute: Fun
tion for Higher Order Statisti
s.
• GetVgSNR: It estimates noise energy and signal-to-noise ratio.
• GetSKR: Fun
tion estimates skewness-to-kurtosis ratio.
• Predi
tionError: It 
omputes LPC predi
tion error using re�e
tion 
oe�
ients.
• StateMa
hine: This fun
tion implements two-state ma
hine used for de
idingwhether a frame is spee
h or noise.



Implementing the C Code onto the DSK Board 34RM+HOS program 
onsists of su
h basi
 fun
tions:
• HanningWindow: this fun
tion generates Hanning window of the set size. Di�er-ently from Matlab 
ode this fun
tion is used without zero padding.
• SignalFraming: fun
tion forms 
urrent frame of the set size.
• LPC: Linear Predi
tive Model fun
tion whi
h uses AutoCorrelation and Levinson-Re
ursion fun
tions. In result it generates linear predi
tion and re�e
tion 
oe�-
ients.
• AllPoleFilter: fun
tion generates residue from 
urrent frame and linear predi
tion
oe�
ients.
• HOSCompute: fun
tion for Higher Order Statisti
s.
• RainerMartin: fun
tion estimates signal-to-noise ratio using to Rainer Martin'salgorithm to estimate the instantaneous SNR of spee
h signal.
• GetSKR: fun
tion 
omputes skewness-to-kurtosis ratio.
• Predi
tionError: it estimates LPC predi
tion error using re�e
tion 
oe�
ients.
• StateMa
hine: this is the fun
tion, whi
h implements two-state ma
hine for de
id-ing whether frame is spee
h or noise.Both programs give results by printing them to 
ommand window.The full 
ode of both programs 
an be found in a CD, atta
hed to this report.4.4 Implementing the C Code onto the DSK Board4.4.1 Obje
tiveThis se
tion des
ribes the implementing of the ANSI-C 
ode on TI C6713 DSK2. The C
ode �les were 
reated as explained in se
tion 4.3.1. Several related C �les are added tothe 
ode studio 
omposer (CCS) environment. Related dependen
es to ea
h C �les arelinked a

ordingly. A suitable library setting (for e.g in the program used rts6700.lib)is also linked to the whole appli
ation proje
t. Further, optimum 
on�guration settingsare triggered and the program is built or 
ompiled to 
he
k for any syntax errors. Theprogram is then loaded into the C6713 DSK Kit and exe
uted.2Refer to appendix ?? for the DSK des
ription



Implementing the C Code onto the DSK Board 354.4.2 The Code Composer Studio1. Algorithm Test on DSKThe algorithm test aims to 
on�rm the operation of the Matlab generated ANSI-C
ode on the DSK. The input signal (
lean spee
h 
orrupted with noise) is win-dowed to frames. The parameters of interest are the output of the state ma
hinemodel. The output from the DSK (in the form of displaying variables, �ashingLED or sound produ
tion) should 
on�rm with the output obtained from Matlabsimulation.2. Con�gurationOne of the s
hemes3 employed in 
on�guration of CCS, prior to the test involvedusing a stri
tly non C mode. This permitted some level of toleran
e during programexe
ution to avoid unforeseen 'low-level' error. Other s
hemes involves:
• Setting the RTDX 4 mode to Simulator.
• Using far 
alls and data memory models
• Using far RTS 5 
alls
• Dea
tivation of the of the assembly languageThe s
hemes were modi�ed as shown in the �gures (4.11) and (4.13).3. Problems during Algorithm TestingIt was found that the program su

essfully loads onto the C6713 DSK, but 
ouldnot run. One reason for that was: Trouble running target pro
essor:"Memory map error: write a

ess by default....". One of the possible solutions isto in
rease the size of the memory or use an external memory. Figure (4.12) showsthat the memory settings were extended to 0x00800000HEX. Even these attemptsand others failed to solve the problem. This problem should be 
onsidered forfuture investigation.Sin
e the implementation of Matlab 
onverted 
ode failed, the de
ision was made towrite algorithms in C 
ode manually.4.4.3 C Code on DSKThe new HOS-VAD C 
ode was used for the implementation onto the DSK board. Inthis 
ase, several 
hanges were made in the 
ode:

• HOS-VAD program on DSK does not use any input data. The signal of 400 samplesis used as program's global variable. The input of data from �le or mi
rophone
ould not be implemented on DSK.3build options, settings from the CCS4Real Time Data Ex
hange5Run-Time Support
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Figure 4.11: Con�guration S
heme using Little Endian
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Figure 4.12: Memory Settings

Figure 4.13: Linker/Complier Settings
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• The additional fun
tion was written for estimation of the 
omplementary error. Cprogram uses the in-built erf
() fun
tion. Di�erently from ANSI-C, CCS does nothave this fun
tion. For this reason, HOS-VAD 
ode for DSK was supplementedwith the fun
tion for estimation of 
omplementary error.CCS HOS-VAD algorithm program was su

essfully 
ompiled, build and then loadedonto the board for testing. After 
omputation results were displayed in CCS stdout win-dow, it was proved that the program is working 
orre
tly.The full 
ode of this program 
an be found in the CD, whi
h is atta
hed to this report.4.4.4 Optimizing ProgramDue to time 
onstraints, ea
h of the C sour
e 
ode 
ould not be examined and 
he
k forpotential areas for improvements [31℄. However, the following solutions 
an be 
onsideredfor improvement:Iteration path from the memory points (Potential Pointer Aliasing Informa-tion):It involves examining and repla
ing dupli
ation of loops by 
he
king for dependen
y or
ommon use of registers. The reason is that CCS IDE often assigns more than one regis-ter to the same loop in a 
ode, thereby 
reating an image of the same loop. These imagesneed to be removed by 
he
king the assembly 
ode and repla
ing multiple registers witha single register to improve exe
ution speed.Alternatively, the program 
an pass more information to the 
ompiler to improve itsperforman
e. This steps will redu
e 
y
les per iteration 5 times.Balan
ing resour
es with dual-data path:Generally, CCS runs faster with the even number of binary operations (register oper-ations). One way to balan
e an odd number of operations is to unroll the loop. Forexample, if there are 231 number of matrix 
olumns, then instead of 231 memory a
-
esses, the optimized proje
t uses the even number of memory a

esses, may be 462.This will redu
e 
y
les per iteration by approximately 6.7 times.Pa
ked data optimization of memory bandwidth:By analyzing a feedba
k path in the C 
ode, it 
an be observed that the memory a

esseslimit the resour
es the most. It is found that one single 32-bit load instru
tion e�e
tivelyperforms two 16-bit loads. This is 
alled Pa
ked Data Pro
essing.By setting the CCS to use single 32-bit load instru
tion e�e
tively redu
es 
y
les periteration by 10 folds.



Chapter 5Con
lusionsThe obje
tive of this proje
t is to exploit the properties of higher-order statisti
s andRainer Martin's algorithm for implementing a robust algorithm for voi
e a
tivity dete
-tion and noise redu
tion me
hanism in the presen
e of noise.Firstly, the HOS also unveiled the following important properties about 
umulants whoserelevan
e goes beyond the goal of VAD appli
ation.
• Third order HOS for a Gaussian signal is zero but skewness and kurtosis of voi
edspee
h are nonzero, so may be used as a basis for spee
h dete
tion or voi
ing 
las-si�
ation. When normalized by the appropriate power of the signal energy, thesemetri
s are independent of signal levels. This makes them 
onvenient as dete
torssin
e absolute thresholds may be used.
• Ratio of the appropriate powers of the skewness to that of the kurtosis of voi
edspee
h is independent of signal energy and is 
on�ned to a small range for anypra
ti
al range of the pit
h.
• Unvoi
ed spee
h in the LPC residual may not be modeled as a harmoni
 pro
essbut rather as a general white pro
ess.Se
ondly, the Rainer Martin's algorithm revealed the following important properties:
• Varying noise levels have a signi�
ant impa
t on the performan
e of many spee
hpro
essing algorithms. It is a

urate for medium to high SNR 
onditions butne
essarily biased when no spee
h is present.
• A priori knowledge of noise variation and noise 
orrelation is helpful to adapt win-dow length and to 
ontrol the estimation bias.



Implementation with Matlab and DSK 40Unlike other reported work in the area of HOS for spee
h, a more fundamental approa
his taken here whereby analyti
al derivations were �rst dedu
ed based on a spee
h model,thus providing a basis for justifying or refuting the experimental �ndings.The rationale for 
onsidering the LPC residual is its �at spe
tral envelope whi
h makesthe higher order 
umulant derivations for spee
h more tra
table and allows quantifyingthe bias and varian
e of the HOS estimators for Gaussian noise.The Rainer Martin's and Higher Order Statisti
s algorithm (RM + HOS) were 
ombinedtogether and used for experimental simulations.5.1 Implementation with Matlab and DSKExperimental simulations demonstrates the underlying spee
h model are valid for voi
edspee
h.The relation between the (RM + HOS) metri
s is used as a 
ondition for an improveddete
tion. Consequently, smooth noise power and HOS estimates are derived for the 
aseof Gaussian noise and is used to quantify the likelihood of a given frame being noise. Theresulting algorithm 
ombines (RM + HOS) metri
s with se
ond-order measures, su
h aslow-band and full-band SNR and the LPC predi
tion error, to 
lassify frames into oneof the two states.Di�erent noise s
enarios were 
hosen for the performan
e of VAD algorithm for boththe te
hniques. It 
an be 
learly noted that RM+HOS has better performan
e even atlow SNR values be
ause the algorithm uses the previous samples for the dete
tion ofSNR of the present samples whi
h makes it more adaptive for the estimation of the noisein the spee
h signal.This pro
ess helps in better predi
tion of spee
h and noise frames.Compared to HOS-VAD, the proposed algorithm is based on a more analyti
al frame-work. It is 
omputationally and 
on
eptually 
omplex and uses a similar parameter set,but gives more improved results. Even though the 
omplexity is high, the results weremu
h better even in the low SNR s
enarios.The proposed algorithm was implemented on C6713 DSK. Two-state ma
hine resultsfrom C6713 DSK for 300 samples were similar to those obtained from Matlab simula-tion. The performan
e in noise of the two algorithms shows the (RM + HOS) basedVAD has superior performan
e to HOS-VAD in terms of a higher probability of 
orre
tspee
h, noise 
lassi�
ation and a lower probability of false 
lassi�
ation. This fa
t sug-gests that (RM + HOS) based methods have potential in yielding VAD algorithms thatwould highly promote the 
urrent state of the art VAD appli
ations. The work how-ever does not 
laim these statisti
s to be superior in and by themselves to se
ond-order



Future work 41statisti
s. They provide additional information about the signal that is immune to thepresen
e of noise, and that makes them parti
ularly e�e
tive in low SNR appli
ations.Clearly, su

essful algorithms are those that 
an 
ombine the two approa
hes and exploitthe advantages of both.5.2 Future workThis area in
ludes:
• Investigating the 
ombination of more metri
s and tuning the algorithm withspee
h re
orded in more diverse noise environments.
• Implementation of the frequen
y version of Rainer Martin's algorithm using spe
-tral subtra
tion te
hinque.
• Examining reasons why ANSI-C 
ode (
onverted with Matlab) did not exe
ute onthe DSK even though it 
ompiled and ran without error on a standard ANSI-C
ompiler.
• Developing the synthesis �lter for (RM + HOS) based VAD (if it theoriti
allypossible).
• Optimizing the DSP 
ompatible ANSI-C 
ode of the algorithm to ensure fasterexe
ution time.



Appendix AHigher Order Spe
tra and Statisti
sThe estimation of the power spe
tral density or simply the power spe
trum of dis
rete-time deterministi
 or sto
hasti
 signals has been a useful tool in digital signal pro
essing.Power spe
trum estimation te
hniques have proved essential to the 
reation of advan
edradar, sonar, 
ommuni
ation, spee
h, biomedi
al, geophysi
al and other data pro
essingsystems [9℄.In power spe
trum estimation, the signal under 
onsideration is pro
essed in su
h a waythat the distribution of power among its frequen
y 
omponents is estimated. Thus thephase relations between frequen
y 
omponents are suppressed. The information 
on-tained in the power spe
trum is essentially that whi
h is present in the auto
orrelationsequen
e; this is su�
ient for the 
omplete statisti
al des
ription of the Gaussian signal.However, in the pra
ti
al situations we look beyond the power spe
trum of a signal toextra
t information regarding deviations from Gaussianity and the phase relations.
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Figure A.1: The Higher-order Spe
tra Classi�
ation Map of the Dis
rete Signal X(k). F[ ℄ denotesn-dimensional Fourier Transform



Appli
ations 43Higher order spe
tra(also known as polyspe
tra) de�ned in terms of higher order statis-ti
s (
umulants) of a signal, do 
ontain su
h information. Parti
ular 
ases of higher orderspe
tra are the third-order spe
trum also 
alled bispe
trum whi
h is, by de�nition, theFourier transform of the third-order statisti
s, and the trispe
trum (fourth-order spe
-trum) whi
h is the Fourier trasnform of the fourth-order statisti
s of a stationary signal.The power spe
trum is, a member of a 
lass of higher order spe
tra 
lassi�
ation mapof a given dis
rete-time signal. Higher-order statisti
s and spe
tra of a signal 
an bede�ned in terms of moments and 
umulants, Moments and moment spe
tra 
an be veryuseful in the analysis of deterministi
 signals whereas 
umulants and 
umulant spe
traare of great importan
e in the analysis of sto
hasti
 signals [22℄.
Cummulant Spectra

−Nonstacionary

− Stacionary

Stochastic Signals

Moment Spectra

Deterministic Signals

− Periodic

− Aperiodic

Higher−Order Spectra

or Polyspectra

Figure A.2: The Polysep
tra Classi�
ation MapThe motivations behind the use of higher-order spe
tra in signal pro
essing are [22℄.1. Suppress additive 
olored Gaussian noise of unknown power spe
trum, the bis-pe
trum also suppresses non-Gaussian noise with symmetri
 probability densityfun
tion(pdf).2. Identify non-minimum phase signals.3. Extra
t information due to deviations from Gaussianity.4. Dete
t and 
hara
terize nonlinear properties in signals as well as identify nonlinearsystems.A.1 Appli
ationsThe appli
ations of polyspe
tra [22℄ are in the �elds of o
eanography, geophysi
s, sonar,
omuni
ations, biomedi
ine, spee
h pro
essing, radioastonomy, image pro
essing, �uidme
hani
s, e
onomi
 time series, plasma physi
s, sunspot data and so on. Pro
edureswere developed based on polyspe
tra for de
onvolution(or equalization) and signal de-te
tion, for the identi�
ation of nonlinear; nonminimum phase; and spike-array type
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esses; for parameter estimation; and dete
tion of quadrati
 phase 
oupling, and fordete
tion of aliasing in dis
rete-time sto
hasti
 signals.A.2 De�nitions and PropertiesThis se
tion gives the introdu
tion of the de�nitions, properties and 
omputation ofhigher-order statisti
s, i.e., moments and 
umulants, and their 
orresponding higher-order spe
tra [1℄[9℄[10℄.If X(k), k = 0,±1,±2,±3, . . . is a real stationary dis
rete-time signal and its momentsup to order n exist, then
mx

n(τ1, τ2, . . . , τn−1) = E{X(k)X(k + τ1) . . . X(k + τn−1)} (A.1)represents the nth order moment fun
tion of the stationary signal, whi
h depends onlyon the time di�eren
e τ1, τ2, . . . , τn−1, τi = 0,+ − 1, . . . for all i. Clearly, the 2nd-order moment fun
tion, mx
2(τ1), is the auto
orrelation of X(k) whereas mx

3(τ1, τ2) and
mx

4(τ1, τ2, τ3) are the 3rd- and 4th-order moments, respe
tively.The nth-order 
umulant fun
tion of a non-Gaussian stationary random signal X(k) 
anbe writen as ( for n = 3, 4 only):
cx
n(τ1, τ2, . . . , τn − 1) = mx

n(τ1, τ2, . . . , τn−1) − mG
n (τ1, τ2, . . . , τn−1) (A.2)where mx

n(τ1, . . . , τn−1) is the nth-order moment fun
tion of X(k) and mG
n (τ1, . . . , τn−1)is the nth-order moment fun
tion of an equivalent Gaussian signal that has the samemean value and auto
orrelation sequen
e as X(k). For Gaussian signal,

mx
n(τ1, . . . , τn−1) = mG

n (τ1, . . . , τn−1) (A.3)and thus cx
n(τ1, τ2, . . . , τn−1) = 0. Although the equation (A.3) is only true for orders

n = 3 and 4, cx
n(τ1, τ2, . . . , τn−1) = 0 for all n if X(k) is Gaussian. Relationships betweenmoment and 
umulant sequen
es of X(k) exist for orders n = 1, 2, 3, 4.1st-order 
umulants:

cx
1 = mx

1 = E{X(k)} (mean value) (A.4)2nd-order 
umulants:
cx
2(τ1) = mx

2(τ1) − (mx
1)2 (
ovarian
e sequen
e)

= mx
2(−τ1) − (mx

1)2 = cx
2(−τ1) (A.5)where mx

2(−τ1) is the auto
orrelation sequen
e. Thus, the 2nd order 
umulant sequen
eis the 
ovarian
e while the 2nd-order moment sequen
e is the auto
orrelation.



De�nitions and Properties 453rd-order 
umulants:
cx
3(τ1, τ2) = mx

3(τ1, τ2) − mx
1 [mx

2(τ1) + mx
2(τ2) + mx

2(τ1 − τ2)] + 2(mx
1)3 (A.6)where mx

3(τ1, τ2) is the 3rd-order moment sequen
e.4th-order 
umulants:
cx
4(τ1, τ2) = mx

4(τ1, τ2, τ3) − mx
2(τ1).m

x
2(τ3 − τ2)

mx
2(τ2).m

x
2(τ3 − τ1)

mx
2(τ3).m

x
2(τ2 − τ1)

mx
1 [mx

3(τ2 − τ1, τ3, τ1) + mx
3(τ2, τ3)

(mx
3(τ2, τ4) + mx

3(τ1, τ2)]

(mx
2)2[mx

1(τ1) + mx
2(τ2)

+mx
2(τ3) + mx

2(τ3 − τ1) + mx
2(τ3 − τ2)

+mx
2(τ2 − τ1)] − 6(mx

1)4 (A.7)If the signal X(k) is zero mean mx
1 = 0, and follows from the equations (A.5),(A.6)that the se
ond and third order 
umulants are identi
al to the se
ond and third ordermoments, respe
tively. But to generate the fourth order 
umulants, we need knowledgeof the fourth-order and se
ond-order moments in equation (A.7).

cx
4(τ1, τ2) = mx

4(τ1, τ2, τ3) − mx
2(τ1).m

x
2(τ3 − τ2)

mx
2(τ2).m

x
2(τ3 − τ1) − mx

2(τ3).m
x
2(τ2 − τ1). (A.8)By putting τ1 = τ2 = τ3 = 0 in equations (A.5), (A.6), (A.7) and assuming mx

1 = 0, weget
γx
2 = E{x2(k)} = cx

2(0) (varian
e)
γx
3 = E{x3(k)} = cx

3(0, 0) (skewness)
γx
4 = E{x4(k)} − 3[γx

2 ]2 = cx
4(0, 0, 0) (kurtosis) (A.9)Normalized kurtosis is de�ned as γx

4 /[γx
2 ]2. Equation (A.9) gives the varian
e, skewnessand kurtosis measures in terms of 
umulants at zero lags.



Appendix BDesign ConsiderationsThe overall system analysis and design strategy is shown in the �gure (B.1). The de-sign pro
ess is divided into �ve domains. Beginning with the problem analysis, whereindepth analysis of the problem is presented. As the time advan
es, the problem and therequirements spe
i�ed in problem domain are represented in appli
ation, algorithmi
 andar
hite
tural domains. In qualitative domain, the quality 
ontrol analysis of the �nishedsystem is presented, de�ning the quality 
ontrol 
riteria and looks at the external system.Finally, 
on
lusion analyses the design pro
ess in all aspe
ts. The overall design pro
essand the intera
tion among the di�erent domains is iterative.Problem domain analysis deals with the information required to design the system, theneed for su
h a design and the main purpose of the design. The modeling of problemdomain, allows many possibilities whi
h 
an be used dire
tly or indire
tly in order to
olle
t information about the problemati
 situation.Appli
ation domain mentions about the system usage and analysis of the system. Therequirement in
ludes system fun
tions and interfa
es with its environment. Appli
ationdomain and the problem domain have a strong intera
tion between them. Problem do-main analysis gives the requirement to model the system behaviour and thus the systemfun
tions and interfa
e requirements are de�ned. Due to a strong intera
tion betweenthe two domains, the order of the domain analysis 
an be inter
hanged, but it dependson real situation and user requirements.Algorithmi
 domain answers the question about the main task of the system. Thesealgorithms developed and analyzed are the heart of the system. After 
areful analysisof the problem and appli
ation domain, algorithmi
 domain follows. Algorithms are de-veloped keeping in view of the requirements, whi
h are generated in the problem andappli
ation domains. Algorithm development or sele
tion of a suitable algorithm fromdi�erent available algorithms mainly depend upon the problemati
 situation des
riptionin problem domain analysis. As the proje
t is with respe
t to Voi
e A
tivity Dete
tionusing Higher order statisti
s, the 
on
ept of higher order statisti
s is explained. All the
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Figure B.1: Design Model
onsidered algorithms are simulated using Matlab on system models and real signals andthe results were analyzed.Ar
hite
tural domain gives the information regarding the te
hni
al platform. This do-main shows the mapping of the algorithm in a spe
i�
 ar
hite
ture TMS320C6713. Fora sele
ted algorithm there may be many solutions. The sele
tion of the ar
hite
tureeven depends on the spe
i�
 appli
ation and the design. In the proje
t implementationthere was no ar
hite
ture 
onstraint as the DSK kit was provided. Both algorithmi
 andar
hite
tural domains observe the system from inside.



Appendix CLinear Predi
tion Coding (LPC)LPC is 
onsidered as one of the most powerful te
hniques for spee
h analysis. In fa
t,this te
hnique is the basis of other more re
ent and sophisti
ated algorithms that are usedfor estimating spee
h parameters, e.g., pit
h, formants, spe
tra, vo
al tra
t and low bitrepresentations of spee
h. The basi
 prin
iple of linear predi
tion, states that spee
h 
anbe modeled as the output of a linear, time-varying system ex
ited by either periodi
 pulsesor random noise �gure (C.1). These two kinds of a
ousti
 sour
es are 
alled voi
ed andunvoi
ed respe
tively. In this sense, voi
ed emissions are those generated by the vibrationof the vo
al 
ords in the presen
e of an air�ow and unvoi
ed sounds are those generatedwhen the vo
al 
ords are relaxed.
RANDOM
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GENERATOR

GENERATOR

TRAIN

IMPULSE
VOCAL−TRACT

PARAMETERS

TIME VARYING

DIGITAL FILTER
S(n)

U(n)

VOICED /

UNVOICED

SPEECH

GFigure C.1: Spee
h Synthesis Generated with the LPC ModelConsider the following equation,
s(n)≈a1s(n − 1) + a2s(n − 2) + . . . + aps(n − p) (C.1)where a1, a2, . . . , ap are 
onstant 
oe�
ients. The previous equation 
an be transformedby in
luding an ex
itation term Gu(n) to:

s(n) =

p∑

i=1

ais(n − i) + Gu(n) (C.2)



49where G is the gain and u(n) the normalized ex
itation. Transforming equation (C.2)to the z-domain we obtain
S(z) =

p∑

i=1

aiz
−iS(z) + GU(z) (C.3)and 
onsequently the transfer fun
tion will be:

H(z) =
S(z)

GU(z)
=

1

1 − ∑p
i=1 aiz−1

=
1

A(z)
(C.4)that 
orresponds to the transfer fun
tion of a digital time varying �lter. The main param-eters that 
an be obtained with the LPC model are: the 
lassi�
ation of voi
ed/unvoi
ed,the pit
h period, the gain and the 
oe�
ients a1, . . . , ap. It is important to note that,the higher the order of the model is, the best the all-pole model allows a good represen-tation of the spee
h sounds. A linear predi
tor with 
oe�
ients ak is de�ned with thepolynomial P (z):

P (z) =

p∑

k=1

akz
−k (C.5)whose output is:

s̃(n) =

p∑

k=1

aks(n − k) (C.6)The predi
tion error e(n) is de�ned as:
e(n) = s(n) − s̃(n) = s(n) −

p∑

k=1

aks(n − k) (C.7)that is the output of a system A(z) = 1 − ∑p
k=1 akz

−k and if ak = ak we have then
H(z) = G

A(z) . The main goal is to obtain the set 
oe�
ients ak that minimizes thesquare of the predi
tion error in a short segment of spee
h (typi
ally 10-30ms) frames.The mean short time predi
tion error per frame is de�ned as:
En =

∑

m

e2
n(m) = [sn(m) −

p∑

k=1

aksn(m − k)]2 (C.8)where sn(m) is a segment of spee
h sele
ted in the neighbourhood of a sample n :
sn(m) = s(m + n), the value of the 
oe�
ients ak that minimizes the error En 
an beobtained 
onsidering
dEn

dai
= 0, i = 1, 2, . . . , p that result in the next equation:
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∑

m

sn(m − i)sn(m) =

p∑

k=1

al
k

∑

m

sn(m − i)sn(m − k), 1 ≤ i ≤ p (C.9)where al
k are the values of ak that minimizes En.De�ning φn(i, k) =

∑
m sn(m − i)sn(m − k), equation (C.9) 
an be written as
p∑

k=1

akφn(i, k) = φn(i, 0), i = 1, 2, . . . , , p (C.10)This is a system of p equations with p variables that 
an be solved to �nd the ak
oe�
ients for the segments sm. It 
an be demonstrated that:
En =

∑

m

s2
n(m) −

p∑

k=1

ak

p∑

k=1

sn(m − k) (C.11)and in the 
ompa
t form:
En = φn(0, 0) −

p∑

k=1

akφn(0, k) (C.12)Now, the values En(i, k) have to be obtained for 1 ≤ i ≤ p, 1 ≤ k ≤ p, and the ak
oe�
ients are obtained by solving equation (C.10). Equation (C.12) system 
an besolved using the following:
• Auto
orrelation Method
• Covarian
e MethodC.1 All Pole ModelLinear predi
tion and autoregressive modeling are two di�erent problems that 
an yieldthe same numeri
al results. In both the 
ases, the ultimate goal is to determine theparameters of a linear �lter. However, the �lter used in ea
h of the problems is di�erent.In the 
ase of linear predi
tion, the intention is to determine an FIR �lter that 
anoptimally predi
t future samples of an autoregressive pro
ess based on a linear 
ombi-nation of past samples. The di�eren
e between the a
tual autoregressive signal and thepredi
ted signal is 
alled the predi
tion error. Ideally, this error is white noise.For the 
ase of autoregressive modeling, the intention is to determine an all-pole IIR�lter, that when ex
ited with white noise produ
es a signal with the same statisti
s as



All Pole Model 51the auto-regressive pro
ess that is tried to model.Consider the equation (C.13):
s(n) = −

p∑

k=1

aks(n − k) + G

q∑

l=0

blu(n − l) 1 ≤ k ≤ p, 1 ≤ l ≤ q (C.13)if bl = 0, then the model is referred to as an all pole model or autoregressive model(AR)model. (If ak = 0, it be
omes an all zero model). In su
h a model, the signal s[n] 
anbe assumed as a linear 
ombination of the previous values and some input u[n]:
s(n) = −

p∑

k=1

aks(n − k) + Gu(n) (C.14)Where G is the gain fa
tor. We 
an also redu
e the transfer fun
tion H(z) in (C.12) toan all pole model transfer fun
tion:
H(z) =

S(z)

U(z)
=

G

1 +
∑p

k=1 akz−k
=

G

A(z)
(C.15)



Appendix DTIA DatabaseTele
ommmuni
ations Industry Asso
iation (TIA) standard TIA/EIA-136-250 de-s
ribes de�nitions, methods of measurement, minimum delay and performan
e require-ments for voi
e a
tivity dete
tors(VADs). This standard applies to mobile stations oper-ating in the dis
ontinous transmission(DTX) mode.This standard 
onsists of ten spee
h data �les, ten truth mark �les 
orresponding toea
h spee
h �le and four ba
kground noise �les. This standard de�nes the minimumperforman
e levels for the VAD; but the manufa
turer should attempt to provide thehighest possible level of performan
e [8℄.D.1 Test CasesTest 
ases have been 
hosen to exer
ise the range of VAD pro
essing. Ten spee
h data �lesand four noise data �les are 
ombined in various ratios to yield 80 
ases. Normalizationvalues are in units of dBov1 and SNR values in units of dB relative to spee
h.Sour
e Spee
h MaterialThe spee
h material 
onsists of 10 
onversational data �les of whi
h �ve are male and �veare female speakers. Ea
h �le 
ontains 16 bit PCM data, stored in high-byte/low-byteword format, sampled at a rate of 8kHz, Modi�ed-IRS2 �ltered, and normalized to anaverage level of -26dBov.Sour
e Noise MaterialThe noise material 
onsists of four data �les. The �les 
ontain noise stored as 16-bit PCMwords in high-byte/low-byte format, sampled at a rate of 8kHz, Modi�ed-IRS �ltered,and normalized to an average level of -26dBov.1Sound level in de
ibels with respe
t to 16-bit overload2Modi�ed Intermediate Referen
e System whi
h refers to the 
hara
teristi
 spe
tral shaping of spee
hsignals by the telephone network



Test Pro
edure 53D.2 Test Pro
edureThe se
tion des
ribes the pro
edure to verify that the VAD implementation meets theminimum performan
e requirements. The pro
edure for testing VAD for 
omplian
e tothe standard 
onsists of the following steps:1. Generate a test data �le of the 80 test 
ases.2. Pro
ess the test data �les with the VAD and produ
e the mark �les.3. Generate VAD performan
e metri
s for ea
h of the test 
ases.4. Evaluate performan
e metri
s for 
omplian
e with thresholds.A software tool was provided to perform the �le generation, performan
e metri
 
al
u-lation, and evaluation (steps 1,3,4 respe
tively). The C sour
e 
ode �le for the obje
tiveVAD evaluation tool is ove.
. Step 2 is the exe
ution of the VAD-HOS algorithm.Generation of Performan
e metri
sThe spee
h frames are divided into three 
ategories: onset, steady-state, and o�sets.Onsets are made up from the �rst three frames of spee
h in the beginning of the utteran
e,o�sets are the last three frames, and the steady-state spee
h frames are those in between.Counts are kept on the number of times the VAD mark agrees with the truth marks forthe ea
h 
ategory as well as the number of frames in ea
h 
ategory. The 
ounts are
olle
ted only when the lo
al SNR ex
eeds -15dB. The lo
al SNRs are 
al
ulated withthe equation:
SNR(n) = 10 log10

(
espeech(n)/enoise(n)

) (D.1)where n is 
urrent frame index,
espeech(n) is energy of the 
urrent spee
h at frame n,
enoise(n) is energy of the 
urrent noise at frame n.A delta voi
e-a
tivity fa
tor (δ VAF) metri
 is 
omputed as the di�eren
e between theVAF and the true VAF divided by the true VAF, where the voi
e-a
tivity fa
tor is thenumber of frames 
alled spee
h divided by the total number of frames [8℄. The fourperforman
e metri
s are:

• Probability of 
lipping spee
h onsets.
• Probability of dete
ting steady-state spee
h.
• Probability of 
lipping spee
h o�sets.
• Normalized di�eren
e in the VAD's voi
e-a
tivity fa
tor from truth.



Test Pro
edure 54Evaluation of Performan
e metri
sThe performan
e statisti
es are a

umulated to produ
e 12 evaluation 
ategories, onefor ea
h normalization and SNR level 
ombination. Ea
h 
ategories has four metri
slisted in the above se
tion, resulting 48 performan
e metri
s. Ea
h metri
s representsthe average of over all 
ases with the same normalization and SNR.The evaluation mode of the ove software tool reads the 
on
atenated output generatedby the performan
e tool and 
omputes evaluation metri
s [8℄. The evaluation tool thenoutputs 3 tables in the following order: the thresholds, the evaluation metri
s for theVAD, and a table indi
ating pass or fail for ea
h metri
.If the metri
 meets the threshold,the 
hara
ter p is output; and, if not, the di�eren
e between the VAD and threshold isprinted. The 
lipping and voi
e-a
tivity thresholds are maximums, while the dete
tionthresholds are minimums.



Appendix ETMS320C6000 Platform
E.1 OverviewThe TMS320C6000 platform 
onsists of the TMS320C64x and TMS320C62x �xed-pointgenerations as well as the TMS320C67x �oating-point generation. These platforms arefor broadband infrastru
ture, performan
e audio and imaging appli
ations. The C6000DSP platform's performan
e ranges from 1200 to 8000 MIPS for �xed-point and 600 to1800 MFLOPS for �oating point [28℄.E.1.1 Platform Highlights

• Optimized for good performan
e and of use in high-level language programmingwith three devi
e generations. Fixed-point performan
e ranges from 1200 to 8000MIPS and �oating-point performan
e from 600 to 1350 MFLOPS.
• Memory, peripherals and 
o-pro
essor are 
ombined to meet the needs of targetedbroadband infrastru
ture, performan
e audio and imaging appli
ations.
• Software 
ompatibility a
ross all C6000 devi
es.E.1.2 Code-Compatible GenerationsThe TMS320C6000 platform 
onsists of three 
ode-
ompatible devi
e generations:TMS320C64x: The C64x �xed-point DSPs has 
lo
k rates of up to 1GHz, C64x DSPs
an pro
ess information at rates up to 8000 MIPS. The built in extensions in
lude newinstru
tions to a

elerate performan
e in key appli
ation areas su
h as digital 
ommuni-
ations infrastru
ture, video and image pro
essing [28℄.TMS320C62x: These �rst-generation �xed-point DSPs enables new equipments andenergizes existing implementations for multi-
hannel, multi-fun
tion appli
ations, su
has wireless base stations, remote a

ess servers (RAS), digital subs
riber loop (xDSL)systems, personalized home se
urity systems, advan
ed imaging/biometri
s, industrials
anners, pre
ision instrumentation and multi-
hannel telephony systems.



DSP Starter Kit 56TMS320C67x: The C67x �oating-point DSPs has the speed, pre
ision, power savingsand dynami
 range to meet a variety of design needs. These DSPs are used in appli
ationslike audio, medi
al imaging, instrumentation and automotive.E.1.3 C CompilerThe C6000 DSP platform gives a good performan
e C language engine with a 
ompilerfor the ar
hite
ture to sustain maximum performan
e while speeding design developmenttime for high-performan
e appli
ations. The C 
ompiler/optimization tools balan
es
ode size and performan
e to meet the needs of the appli
ation.E.1.4 C6000 Signal Pro
essing Libraries and Peripherals DriversThe Signal Pro
essing and the Chip support libraries 
ontain a 
olle
tion of high-level,optimized DSP fun
tion modules and help to a
hieve good performan
e than standardANSI C 
ode.E.2 DSP Starter KitThe TMS320C6713 DSP Starter Kit (DSK) developed jointly with Spe
trum Digi-tal is designed to speed the development of high pre
ision appli
ations based on TI'sTMS320C6000 �oating point DSP generation. Can be used in the following areas:spee
h 
ompression/de
ompression, spee
h re
ognition, text-to-spee
h, fax/data 
on-version, modems, proto
ol 
onversions, tone generation/dete
tion, and e
ho 
an
ellation[29℄.The C6713 DSK tools in
ludes the simulators from TI and a

ess to the Analysis Toolkitvia Update Advisor whi
h features the Ca
he Analysis tool and Multi-Event Pro�ler.Using Ca
he Analysis, developers improve the performan
e of their appli
ation by op-timizing 
a
he usage. By providing a graphi
al view of the on-
hip 
a
he a
tivity overtime 
an determine whether the 
ode is using the on-
hip 
a
he to get good performan
e.The C6713 DSK uses Real Time Data Ex
hange (RTDX) for Host and Target 
om-muni
ations. The DSK in
ludes the Run Time Support libraries and utilities su
h asFlashburn to program �ash, Update Advisor to download tools, utilities and softwareand a power on self test and diagnosti
 utility to ensure the DSK is operating 
orre
tly.The full 
ontents of the kit in
lude [29℄:
• C6713 DSP Development Board with 512K Flash and 8MB SDRAM
• C6713 DSK Code Composer Studio v2.2 IDE in
luding the Fast Simulators anda

ess to Analysis Toolkit on Update Advisor
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Figure E.1: DSP Starter Kit
• Qui
k Start Guide
• Te
hni
al Referen
e
• Customer Support Guide
• USB Cable
• Universal Power Supply
• AC Power Cord(s)E.2.1 FeaturesThe DSK features the TMS320C6713 DSP, a 225 MHz devi
e delivering up to 1800million instru
tions per se
ond (MIPs) and 1350 MFLOPS. Other hardware features ofthe TMS320C6713 DSK board in
lude [29℄:
• Embedded JTAG support via USB
• High-quality 24-bit stereo 
ode
, TI TLV320AIC23 
ode

• Four 3.5mm audio ja
ks for mi
rophone, line in, speaker and line out
• 512K words of Flash and 8 MB SDRAM
• Expansion port 
onne
tor for plug-in modules
• On-board standard IEEE 1149.1 JTAG interfa
e for optional emulator debug
• 4 user de�nable LEDs
• 4 position dip swit
h, user de�nable
• +5V universal power supply
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al Spe
i�
ationsThe TMS320C6713 DSK is designed on a multi-layer printed 
ir
uit board using surfa
emount te
hnology. The printed 
ir
uit board measures 8.75 x 4.5 in
hes(222 x 115 mm.).The C6713 DSK operates o� +5 volts at 400mA. Its operating temperature range is0-70deg C.E.2.3 SoftwareThe TMS32C6713 DSP 
an be used through TI's Code Composer Studio DSK devel-opment platform the tool whi
h run on Windows environment. Code Composer Studiofeatures for the TMS320C6713 DSK in
lude [29℄:
• A Integrated Development Environment (IDE), optimizing C/C++ 
ompiler as-sembler, linker, debugger, and DSP BIOS, an editor for 
ode 
reation, data visu-alization, a pro�ler and a �exible proje
t manager.
• DSP/BIOS real-time kernel
• Target error re
overy software



Appendix FSpee
h Signal-Important Features
F.1 Spee
h GenerationFigure (F.1) portrays a medium saggital se
tion of the spee
h system in whi
h we viewthe anatomy midway through the upper torso as we look on from the right side. Thegross 
omponents of the system are the lungs, tra
hea (windpipe), larynx (organ of spee
hprodu
tion), pharyngeal 
avity (throat), oral or bu

al 
avity (mouth), and nasal 
avity(nose). The pharyngeal and oral 
avities are usually grouped into one unit referred toas the vo
al tra
t, and the nasal 
avity is often 
alled the nasal tra
t. A

ordingly, thevo
al tra
t begins at the output of the larynx (vo
al 
ords, or glottis) and terminatesat the input to the lips. The nasal tra
t begins at the velum and ends at the nostrils.When the velum is lowered, the nasal tra
t is a
ousti
ally 
oupled to the vo
al tra
tto produ
e the nasal sounds of spee
h. Air enters the lungs via the normal breathingme
hanism. As air is expelled from the lungs through the tra
hea, the tensed vo
al
ords within the larynx are 
aused to vibrate by the air �ow. The air �ow is 
hoppedinto quasi-periodi
 pulses whi
h are then modulated in frequen
y in passing throughthe throat, the oral 
avity, and possibly nasal 
avity. Depending on the positions of thevarious arti
ulators (i.e., jaw, tongue, velum, lips, mouth), di�erent sounds are produ
ed.The lungs and the asso
iated mus
les a
t as the sour
e of air for ex
iting the vo
alme
hanism. The mus
le for
e pushes air out of the lungs and through the tra
hea.When the vo
al 
ords are tensed, the air �ow 
auses them to vibrate, produ
ing so-
alledvoi
ed spee
h sounds. When the vo
al 
ords are relaxed, in order to produ
e a sound, theair �ow either must pass through a 
onstri
tion in the vo
al tra
t and thereby be
ometurbulent, produ
ing so-
alled unvoi
ed sounds, or it 
an build up pressure behind apoint of the total 
losure within the vo
al tra
t, and when the 
losure is opened, thepressure is suddenly and abruptly release, 
ausing a brief transient sound.The three blo
ks seen in F.2, Generator, Vo
al tra
t, and Radiation are indi
ated. Aswit
h is shown between the Generator and the Vo
al Tra
t, whi
h separates the gener-ation of voi
ed and unvoi
ed spee
h.
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Figure F.1: S
hemati
 View of Human Spee
h Produ
tion Me
hanism
Unvoiced
Voiced/

switch
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Radiation
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Speech

Figure F.2: Blo
k Diagram of Spee
h Produ
tion.
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Figure F.3: The System Model for the Vo
al Tra
t.F.2 Pit
h and FormantsThe period of the vo
al 
ord's output for vowels is known as the pit
h. Vo
al 
ord ten-sion is governed by a 
ontrol input to the mus
ulature; in system's models we represent
ontrol inputs as signals 
oming into the top or bottom of the system. Certainly inthe 
ase of spee
h and in many other 
ases as well, it is the 
ontrol input that 
arriesinformation, impressing it on the system's output. The 
hange of signal stru
ture result-ing from varying the 
ontrol input enables information to be 
onveyed by the signal, apro
ess generi
ally known as modulation.The vo
al 
ords' periodi
 output 
an be well des
ribed by the periodi
 pulse train pT (t) ,with T denoting the pit
h period. The spe
trum of this signal 
ontains harmoni
s of thefrequen
y 1/T , what is known as the pit
h frequen
y or the fundamental frequen
y F0.Before puberty, pit
h frequen
y for normal spee
h ranges between 150− 400 Hz for bothmales and females. After puberty, the vo
al 
ords of males undergo a physi
al 
hange,whi
h has the e�e
t of lowering their pit
h frequen
y to the range 80 − 160Hz [27℄. Ifwe 
ould examine the vo
al 
ord output, we 
ould probably dis
ern whether the speakerwas male or female. This di�eren
e is also readily apparent in the spee
h signal itself.model of vo
al tra
t.In the �gure (F.3) The signals l(t), pT (t), and s(t), are the air pressure provided bythe lungs, the periodi
 pulse output provided by the vo
al 
ords, and the spee
h outputrespe
tively. Control signals from the brain are shown as entering the systems from thetop. Clearly, these 
ome from the same sour
e, but for modeling purposes we des
ribethem separately sin
e they 
ontrol di�erent aspe
ts of the spee
h signal.Simplifying the spee
h modeling e�ort and assuming that the pit
h period is 
onstant,we 
ollapse the vo
al-
ord-lung system as a simple sour
e that produ
es the periodi
pulse signal (F.3). The sound pressure signal thus produ
ed enters the mouth behindthe tongue, 
reates a
ousti
 disturban
es, and exits primarily through the lips and tosome extent through the nose. Spee
h spe
ialists tend to name the mouth, tongue, teeth,lips, and nasal 
avity the vo
al tra
t. The physi
s governing the sound disturban
es pro-du
ed in the vo
al tra
t and those of an organ pipe are quite similar. Whereas the organpipe has the simple physi
al stru
ture of a straight tube, the 
ross-se
tion of the vo
altra
t varies along its length be
ause of the positions of the tongue, teeth, and lips. These
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Figure F.4: The Ideal Frequen
y Response of the Vo
al Tra
t for Sounds "oh" and "ee".positions that are 
ontrolled by the brain to produ
e the vowel sounds. Spreading thelips, bringing the teeth together, and bringing the tongue toward the front portion ofthe roof of the mouth produ
es the sound "ee". Rounding the lips, spreading the teeth,and positioning the tongue toward the ba
k of the oral 
avity produ
es the sound "oh".These variations result in a linear, time-invariant system that has a frequen
y responsetypi�ed by several peaks, as shown in �gure (F.4).The �gure (F.4) represents the sounds "oh" and "ee" shown on the top left and top right,respe
tively. The spe
tral peaks are known as formants, and are numbered 
onse
utivelyfrom low to high frequen
y. The bottom plots show spee
h waveforms 
orresponding tothese sounds.These peaks are known as formants. Thus, spee
h signal pro
essors would say that thesound "oh" has a higher �rst formant frequen
y than the sound "ee", with F2 beingmu
h higher during "ee". F2 and F3 (the se
ond and �rst formants) have more energyin "ee" than in "oh." Rather than serving as a �lter, reje
ting high or low frequen
ies,the vo
al tra
t serves to shape the spe
trum of the vo
al 
ords. In the time domain,we have a periodi
 signal, the pit
h, serving as the input to a linear system. We knowthat the output-the spee
h signal we utter and that is heard by others and ourselves-willalso be periodi
. Example time-domain spee
h signals are shown in (F.4), where theperiodi
ity is quite apparent.



LPC Order 63F.3 LPC OrderLinear Predi
tive Coding (LPC) is often used by linguists as a formant extra
tion tool.There are a few important details about LPC that may help avoid 
ommon analysiserrors. LPC analysis assumes that a signal is the output of a 
ausal linear system. Italso assumes that the vo
al-tra
t system is an all-pole �lter and that the input to thesystem is an impulse train. Be
ause of these assumptions, LPC analysis is appropriatefor modeling vowels whi
h are periodi
 and for whi
h the vo
al-tra
t resonator does notusually in
lude zeroes (e.g., in nasalized vowels). The order of an LPC model is thenumber of poles in the �lter. Usually, two poles are in
luded for ea
h formant +2 − 4additional poles to represent the sour
e 
hara
teristi
s. For adult speakers, averageformant spa
ing is in the 1000Hz range for males and in the 1150Hz range for females.The LPC order is related to the sample rate of the audio �le: 10000Hz - LPC order
= 12 − 14 (males) and 8 − 10 (females); 22050Hz - LPC order = 24 − 26 (males) and
22 − 24 (females). LPC usually requires a very good spee
h sample to work with [30℄.Many re
ordings done with omnidire
tional mi
rophones 
ontain too little spee
h detailand too mu
h noise to as
ertain reliable LPC readings.



Appendix GWorking Pro
ess
G.1 Proje
t Management1. We de
ided to use A3 Paradigm to guide us implement our proje
t

• Appli
ation
• Algorithms
• Ar
hite
ture2. The six point approa
h was used throughout the entire proje
t i.e. questions (6Wmodel) su
h as who, what, how, when, whom, why were asked during the entiredis
ussions and proje
t implementationG.2 Expe
tations for the Proje
tG.2.1 De�ne the ProblemWe expe
t to 
learly de�ne the problem by applying the A3 paradigm and the 6W'smodel.G.2.2 Good ReportWe hope to present a proje
t that is a

eptable to the requirements of the study board, adependable report whi
h 
an be referred to anytime, a report that is pre
ise and 
on
ise.G.2.3 Meet the DeadlineThe MATLAB program, implementation on DSP Tool Kit and Proje
t Report shall beready just before the deadline so the ne
essary 
he
ks/reexamination 
an be 
arried outwith before presentation



Others 65G.2.4 Share individual InformationGroup members shared new information they found in the 
ourse of the proje
t.G.3 OthersThe group improved 
ommuni
ationIndividual Responsibility was taken seriouslyG.4 Implementation PlanThe general ideas on how we solved our problems:To share di�erent tasks among group members.To divide whole group into smaller divisions to be able to deal with several tasks at atime.The table G.1 represents the general s
hedule and milestones for the proposed proje
t.
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Figure G.1: Implementation Plan
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