
ROBUST VOICE ACTIVITY DETECTION

and Noise Reduction Mechanism

USING HIGHER-ORDER STATISTICS

1
2

3
4

5
6

7
8

9
10

x 10
4

−1

−0.5

0

0.5

1
x 10

4

Samples

S
pe

ec
h

100
200

300
400

500
600

700

0

0.5

1

FramesR
M

 H
O

S
 V

A
D

100
200

300
400

500
600

700

0

0.5

1

Frames

R
ef

er
en

ce
 V

A
D

Aalborg University
Institute of Electronic Systems

Department of Communication Technology

Project Group 841, 2005





Aalborg UniversityInstitute of Eletroni Systems dFredrik Bajers Vej 7 DK-9220 Aalborg East Phone +45 96 35 87 00Title: Robust Voie Ativity Detetor and Noise RedutionMehanism Using Higher-order StatistisTheme: Department of Communiations TehnologyProjet Period: Feburary 2005 to June 2005
Projet Group:841
Group Members:Mihael Yaw AppiahRaimonda MakrikaiteMilda GusaiteSasikanth MunagalaSupervisors:Per RubakOle Wolf
Publiations: 4Pages: 69Supplement: CD-ROMFinished: May 2005

Abstrat:This ontribution presents a robust algorithm forvoie ativity detetion (VAD) and noise redu-tion mehanism using ombined properties of higher-order statistis (HOS) and an e�ient algorithmto estimate the instantaneous Signal-to-Noise Ratio(SNR) of speeh signal in a bakground of aous-ti noise. The Rainer Martin's algorithm with HOSis apable of robustly traking non stationary noisesignal. The �at spetral feature of Linear Predi-tion Coding (LPC) residual results in distint har-ateristis for the umulants in terms of phase, pe-riodiity and harmoni ontent and yields losed-form expressions for the skewness and kurtosis. TheHOS of speeh is immune to Gaussian noise andthis makes them partiularly useful in algorithms de-signed for low SNR environments. The proposed al-gorithm uses HOS and smooth power estimate met-ris with seond-order measures, suh as SNR andLPC predition error, to identify speeh and noiseframes. A voiing ondition for speeh frames is de-rived based on the relation between the skewness,kurtosis of voied speeh and estimate of smoothnoise power. The algorithmis presented and its per-formane is ompared to HOS-only based VAD al-gorithm. The results show that the proposed algo-rithm has an overall better performane than HOSonly, with notieable improvement in Gaussian-likenoises, suh as street and garage, and high to lowSNR, espeially for probability of orretly detet-ing speeh. The proposed algorithm is repliated onDSK C6713.





PrefaeThis doument reports on the work of group 841 in the 8th semester. This report isorganized into �ve hapters. The �rst hapter provides the introdution, the motivationand the sope of the projet. Chapter 2 fouses on the problem analysis; the workingof VAD; the di�erent noises and their e�et. The last part of the hapter mentionsthe problem statement. In hapter 3, the algorithms are desribed i.e., the HOS-VADalgorithm and the Rainer Martin's algorithm for the estimation of SNR. Chapter 4disusses the implementation of the algorithms on Matlab its onversion to C ode andlater the implementation on the DSK(DSP Starter Kit). Finally, hapter 5 provides theonlusion and reommendations of the projet. All the assoiated odes an be foundin the ompanion CD. Several appendies were provided at the end of the report asreferenes.
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Milda Gusaite Sasikanth Munagala
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Chapter 1IntrodutionIn speeh ommuniations, noise is �utuations in and the addition of external fatorsto the stream of target information (signal) being reeived at a detetor. It may bedeliberate as for instane jamming of a radio or video signal, but in most ases it isassumed to be merely undesired interferene with intended operations. Many speehproessing system users are familiar with the amount of bakground noise present inloud environments. This is beause their hands free instruments amplify environmentnoise just as muh as the onversation that they are trying to follow. Work is ongoing tosuppress bakground noise as muh as possible to positively in�uene the intelligibilityof the speeh in noisy environments.Although speeh proessing in arti�ially onstrained onditions has reently reahedhigh levels of performane, problems still remain in the deployment of speeh reogni-tion tehnology in the real world. One of the problems is the performane degradationof speeh detetion when they are used in noisy environments suh as o�es, automo-bile abins, streets, and omputer rooms. Many reasons aount to eliminate or reduenoise from speeh signals. However one of the biggest hallenges is to avoid removal ofspeeh omponents in this proess. An approah have been onsidered for robust speehdetetion in this projet.To develop e�etive robust speeh reognition method, noisy speeh uttered in the realworld is required and the speeh database should ontain every possible distortion whihould our in noisy environments. But it is not feasible to ollet speeh data in vari-ous noisy environments. Speeh or Voie Ativity Detetor (VAD), aims to distinguishbetween speeh and several types of aousti bakground noise even with low signal-to-noise ratios(SNRs).In the �eld of multimedia appliations, a VAD permits simultaneous voie and data ap-pliations. Similarly, in Universal Mobile Teleommuniations Systems (UMTS) [2℄, itontrols and redues the average bit rate and enhanes overall oding quality of speeh.



Motivation of Projet 2In ellular radio systems (for instane GSM and CDMA systems) based on Disontin-uous Transmission (DTX) mode, this faility is essential for enhaning system apaityby reduing o-hannel interferene and power onsumption in portable digital devies[3℄, [4℄, [5℄.It is very di�ult to distinguish between noise and silene, in the presene of bakgroundnoise, so more e�ient and self-sustaining algorithms are needed for speeh ativity de-tetion and noise redution in a hanging and adverse noise aousti bakground. Thereare di�erent metris used for speeh detetion in VAD algorithms, but reently Higher-order statistis (HOS) have shown potential results in a number of signal proessingappliations, and are of partiular value when dealing with a mixture of Gaussian andnon-Gaussian proesses and system with non-linearity [1℄.1.1 Motivation of ProjetThe projet is motivated by the fat that, ombination of HOS and an algorithm pro-posed in [6℄[7℄, yields a better, e�ient and robust VAD.The appliation of Rainer Martin's algorithm with HOS to speeh proessing and speif-ially to VAD is primarily triggered by:1. Observation that the smoothed power estimate of a noisy speeh signal exhibitsdistint peaks and valleys that is apable of traking varying noise level duringspeeh ativity. Work in this area1 is based on the idea that peak orrespond tospeeh ativity the valleys of smoothed noise is used to obtain the noise powerestimates.2. The algortihm's inherent suppression of additive oloured Gaussian noise and phasepreservation properties. It is based on the assumptions that speeh has ertain HOSproperties that are distint from those of Gaussian noise.Finally, the implementation and veri�ation of the algorithm using Texas InstrumentsTMS320C6713 DSP Kit (DSK), is itself a motivation for pursuing the projet.1.2 Sope of the ProjetThe �rst part of the projet involves analyzing the harateristis of the third andfourth-order umulants of the LPC residual of speeh signals. The �at spetral envelopeof this residual results in distint harateristis for these umulants in terms of phase,periodiity and harmoni ontent and yields losed-form expressions for the skewness1Rainer Martin's algorithm



Sope of the Projet 3and kurtosis based on harmoni speeh model.The proposed algorithm is tested on variety of noise types like the noise present in thestreet, ar, garage, train at di�erent SNR levels and the performane is ompared to theHOS VAD. To quantify performane, the probability of orretly lassifying speeh andnoise frames as well as the probability of false lassi�ation are omputed by makingreferenes to truth marker �les in lean speeh onditions.To ompute these metris and generate the noisy speeh test ases, a proposed TIAdatabase material (mentioned in E) is used for the evaluation of VAD algorithms.The seond part of the projet involves running the two ombined e�ient algorithmsusing Texas Instruments (TI) Code Composer Studio(CCS) and then implement theorresponding C program onto the TMS320C6713 DSP Starter Kit (DSK).



Chapter 2Problem AnalysisThis hapter explores and dissets the question to be onsidered, solved, or answered inthis projet. How is additive noise (in the form of gaussian noise) orrupted with leanspeeh suppressed or isolated? This is identi�ed as the main question to be explained inthis hapter.2.1 Voie Ativity Detetion2.1.1 OverviewThe proess of separating onversational speeh and silene is alled the voie ativitydetetion (VAD). It was �rst investigated for use on Time Assigned Speeh Interpolation(TASI) systems. VAD is an important enabling tehnology for a variety of speeh-basedappliations inluding speeh reognition, speeh enoding, and hands-free telephony.For these purposes, various types of VAD algorithms were proposed that trade o� delay,sensitivity, auray and omputational ost.The primary funtion of a voie ativity detetor is to provide an indiation of speehpresene in order to failitate speeh proessing as well as possibly provide delimitersfor the beginning and end of a speeh segment [11℄. For a wide range of appliationssuh as digital mobile radio, Digital Simultaneous Voie and Data (DSVD) or speehstorage, it is desirable to provide a disontinuous transmission of speeh-oding param-eters. The advantage an be a lower average power onsumption in mobile handsets,or a higher average bit rate for simultaneous servies like data transmission or even ahigher apaity on storage hips. However, the improvement depends mainly on theperentage of pauses during speeh and the reliability of the VAD used to detet theseintervals. On one hand, it is advantageous to have a low perentage of speeh ativ-ity but, on the other hand, lipping of ative speeh should be avoided to preserve thequality. This is a ruial problem for a VAD algorithm under heavy noise onditions [12℄.



Voie Ativity Detetion 5Voie ativity detetion is important for speeh transmission, enhanement and reog-nition. The variety and the varying nature of speeh and bakground noise makes ithallenging [13℄. Earlier algorithms for VAD are based on the Itakura LPC distanemeasure, energy levels, timing, pith, and zero rossing rates, epstral features, adap-tive noise modeling of voie signals and the periodiity measure. Unfortunately, thesealgorithms have some problems for low SNR values, espeially when the noise is non-stationary. Consistent auray annot be ahieved sine most algorithms rely on athreshold level for omparison. This threshold level is often assumed to be �xed or al-ulated in the silene (voie-inative) intervals [18℄. During the last deade numerousresearhers have studied di�erent strategies for deteting speeh in noise and the in�u-ene of the VAD deision on speeh proessing systems [19℄.2.1.2 VAD Algorithm: The PrinipleThe basi funtion of a VAD algorithm is to extrat some measured features or quanti-ties from the input signal and to ompare these values with thresholds, usually extratedfrom the harateristis of the noise and speeh signals. Voie-ative deision is madeif the measured values exeed the thresholds. VAD in non-stationary noise requires atime-varying threshold value. This value is usually alulated in the voie-inative seg-ments [18℄.A representative set of reently published VAD methods formulates the deision rule ona frame by frame basis using instantaneous measures between speeh and noise [19℄. Thedi�erent measures whih are used in VAD methods inlude spetral slope, orrelationoe�ients, log likelihood ratio, epstral, weighted epstral, and modi�ed distane mea-sures.A VAD an be deomposed in two steps: the omputation of metris and the applia-tion of a lassi�ation rule. Independently from the VAD method, the operation is aompromise between having voie deteted as noise or noise deteted as voie [13℄. AVAD operating in a mobile environment must be able to detet speeh in the presene ofa range of very diverse types of aousti bakground noises. In these di�ult detetiononditions it is vital that a VAD should "fail-safe", indiating "speeh deteted" whenthe deision is in doubt so that no lipping is introdued. The biggest di�ulty in thedetetion of speeh in this environment is the very low signal-to-noise ratios (SNRs) thatare enountered. It is impossible to distinguish between speeh and noise using simplelevel detetion tehniques when parts of the speeh utterane are buried below the noise[20℄.Robust voie ativity detetion algorithms are required, as traditional solutions presenta high mislassi�ation rate in the presene of the bakground noise typial of mobileenvironments. One important aspet of reent digital ellular systems is the robustness



Voie Ativity Detetion 6of the speeh oding algorithms needed for the hannel to be used e�iently. They haveto be robust, not only to hannel degradation, but also to the bakground noise typial ofmobile environments [21℄. The underlying de�nition of the robustness an be formulatedas a "VAD is robust if it gives deisions lose to a referene in quiet as well as in adverseenvironments". There is introdued a new de�nition laiming that a VAD is robustwhen it gives similar deisions for lean speeh and noisy speeh. The robustness an beestimated by taking the VAD's deision on lean speeh as a referene and omputingerror statistis of the same VAD applied on noisy speeh. The more robust the VAD,the sarer the errors [13℄.2.1.3 VAD EvaluationPerformane of VAD an be measured in terms of ativity and the degree and severityof lipping. In order to evaluate the amount of lipping and how often noise is detetedas speeh, the VAD output is ompared with those of an ideal VAD. The performaneof a VAD is evaluated on the basis of the following four traditional parameters [20℄:1. FEC (Front End Clipping): lipping introdued in passing from noise to speehativity;2. MSC (Mid Speeh C1ipping): lipping due to speeh mislassi�ed as noise;3. OVER: noise interpreted as speeh due to the VAD �ag remaining ative in passingfrom speeh ativity to noise;4. NDS (Noise Deteted as Speeh): noise interpreted as speeh within a sileneperiod.Although the method desribed above provides useful objetive information onerningthe performane of a VAD, it only gives an initial estimate with regard to the subjetivee�et. It is therefore important to arry out subjetive tests on the VAD, the main aimof whih is to ensure that the lipping pereived is aeptable. This kind of test requiresa ertain number of listeners to judge reordings ontaining the proessing results of theVAD's being tested. The listeners have to give marks on the following features:1. Quality.2. Comprehension di�ulty.3. Audibility of lipping.



Noise 7These marks, obtained by listening to several speeh sequenes, are then used to alulateaverage results for eah of the features listed above, thus providing a global estimate ofthe behavior of the VAD being tested. To onlude, whereas objetive methods are veryuseful in an initial stage to evaluate the quality of a VAD, subjetive methods are moresigni�ant. As, however, they are more expensive (sine they require the partiipation ofa ertain number of people for a few days), they are generally only used when a proposalis about to be standardized [21℄.One of the primary reason for the use of HOS VAD is to suppress olored noise. Thefollowing setion desribes brie�y about various noises.2.2 NoiseNoise an be de�ned as the ontamination of the desired signal or the unwanted signal.Natural and deliberate noise soures an provide both or either of random interfereneor patterned interferene. Only the latter an be anelled e�etively in analog systems;however, digital systems are usually onstruted in suh a way that their quantized sig-nals an be reonstruted perfetly, as long as the noise level remains below a de�nedmaximum, whih varies from appliation to appliation. There are many forms of noisewith various frequeny harateristis that are lassi�ed by "olor" [25℄.White noise is a signal (or proess) with a �at frequeny spetrum. In other words, thesignal has equal power in any band, at any entre frequeny, having a given bandwidth.In pratie a signal an be "white" with a �at spetrum over a de�ned frequeny band.A signal that is "white" in the frequeny domain must have ertain important statistialproperties in time. For example, it must have zero autoorrelation with itself over time,exept at zero timeshift. The �gures (2.2), (2.2) shows that ar noise taken for 10000samples is not white. The periodogram shows that the spetrum is not uniform where asthe randomly generated Gaussian noise has a uniform distribution. The power spetraldensity is the smoothed version of the periodogram.Noise having a ontinuous distribution, suh as a normal distribution, an be white [26℄.Gaussian noise is sometimes misunderstood to be white gaussian noise, but this is notso. Gaussian noise only means noise with pdf1 of the Gaussian distribution, whih saysnothing to orrelation of the noise in time. Labeling Gaussian noise as white desribesthe orrelation of the noise.The next most ommonly used olored noise is pink noise. Its frequeny spetrum isnot �at, but has equal power in bands that are proportionally wide. Pink noise is per-eptually white. That is, the human auditory system pereives approximately equal1Probability Distribution Funtion
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Figure 2.1: Test for Whiteness of Noise in the CAR Noise
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h [ n ]

s [ n ]
clean speech

x [ n ]
degraded speech

additive noise
n [ n ]

linear
filteringFigure 2.3: Representation of Additive Noisemagnitude in all frequenies. The power density dereases by -3 dB per otave withinrease in frequeny (density proportional to 1/f). There are also many "less o�ial"olors of noise suh as brown, blue, purple, voilet, grey, red, orange, green and blak.2.2.1 Additive NoiseThere are many soures of aousti distortion that an degrade the performane of speehreognition systems. For many speeh reognition appliations the most important soureof aoustial distortion is the additive noise [23℄. Muh researh e�ort in robust speehreognition has been devoted to ompensate the e�ets of additive noise.If the speeh signal s(k) e�eted by unorrelated noise n(k) [24℄, then the observed signalin the frequeny domain an be expressed as

Y (ejw) = X(ejw) + N(ejw) (2.1)If s(t) is the original lean speeh signal, the reeived speeh signal y(t) in time domainan be represented as
y(t) = s(t) ∗ h(t) + n(t) = x(t) + n(t) (2.2)where h(t) is the impulse response of hannel distortion and n(t) the ambient noise. (∗)denotes the onvolution operation, and x(t) the noise-free speeh as shown in the �gure(2.2.1). Typial strutural models for adaptation to variability assume that speeh isorrupted by a ombination of additive noise and linear �ltering.In speeh proessing, the speeh is onsidered as useful data and all other signals areassumed to be noise. Many algorithms and appliations are reated to redue or eliminatenoise from signals, suh as Voie Ativity Detetor.



Choie of HOS 102.3 Choie of HOSIn early VAD algorithms, short-term energy, zero-rossing rate and LPC oe�ients wereamong the ommon features used for speeh detetion. Cepstral features, formant shapeand least-square periodiity measure are some of the most reent metris used in VADdesigns. G.729B VAD has a set of metris inluding the line spetral frequenies(LSF),low band energy, zero-rossing rate and full-band energy.The short-time energy or spetral energy has been onventionally used as the majorfeature parameters to distinguish the speeh segments from other waveforms. However,these features beome less reliable and robust in noisy environments, espeially in thepresene of non-stationary noise and sound artifats suh as lip smaks, heavy breathingand mouth liks et.[14℄.HOS has shown good results in a number of signal proessing appliations and are ofpartiular value when dealing with a mixture of Gaussian and non-Gaussian proessesand system nonlinearity. The appliation of HOS in speeh proessing is Gaussian sup-pression and phase preservation properties.2.4 Problem StatementThe following are some of the problems needed to be solved to satisfy the projet goal.A Matlab & ANSI-C PROGRAM1. HOS algorithm implementation.2. Implementation of traditional VAD algorithm in [6℄3. Veri�ation of Algorithm using TIA-Database [8℄4. Convertion and optimization of Matlab ode to ANSI-C ode.B DSK IMPLEMENTATION1. Embedding C ode on to TI appliation spei� proessor (TMS320C6713)using Code Composer Studio(CCS).



Chapter 3DesignThe hapter disusses the various algorithms needed to design of robust VAD. The skew-ness and kurtosis as mentioned in appendies (A, F) of the LPC residual of voied speehis expressed in terms of the number of harmonis M and signal energy. These param-eters are greater than zero for any pratial value of M whih is a funtion of pith.The normalized values of skewness and kurtosis are expressed in terms of M . These twometris an be used to detet voie. The advantage of using the normalized metris isthat they are independent of the signal energy and therefore absolute thresholds are used.The variane of the estimators of the skewness and kurtosis and are normalized to get theunit-variane estimators. The relation between skewness and kurotsis in voied speeh isused to identify the speeh frames. This forms the basis for the VAD algorithm usingHOS. The appendix B shows the design in whih the projet was implemented.3.1 Detetion of Noise Frames using HOSThe skewness and kurtosis of Gaussian noise are zero only in a statistial average sense.Generally a �nite length frames are used, so the deision that a given frame is noise anonly be made in a probabilisti manner with a on�dene level that takes into aountthe variane and distribution of the estimators of the skewness and kurtosis. Given aGaussian proess g(n), the estimators of the seond, third and fourth-order moments are
Mkg =

1

N
ΣN−1

n=0 [g(n)]k (3.1)The above equation is for the estimator of E[{x(n)}]k for the values of k = 2, 3, 4 and
N is the number of frames under onsideration. These estimators are unbiased [1℄. Forthe ase of white Gaussian noise, their mean and variane may be expressed in terms ofthe proess variane, vg
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E[M3g] = 0

E[M4g] = 3v2
g

V ar[M3g] =
15v3

g

N

V ar[M4g] =
96v4

g

N (3.2)Thus, the estimator of the skewness SK = M3g is unbiased, with zero mean and knownvariane. This estimator is the sum of a large number of independent identially dis-tributed (iid) random variables, then by using entral limit theorem, the normalizedversion is given by
SKa =

M3g√
15v3

g/N
(3.3)is a Gaussian variable with zero mean and unit variane. Thus given the estimate of theskewness of a frame and the orresponding saled value denoted by ”a”, the probabilitythat the frame is Gaussian noise is

Prob[Noise] = Prob[|SKa| ≥ a] (3.4)whih is equivalent to omputing the area under the tail of the Gaussian urve of
SKa graphially. The area under the tail an be evaluated by erfc(x) funtion1.When a = 0 the area under the urve is unity, whereas when a > 0, Prob[Noise] =

2/
√

2π
∫
∞

a ex2/2 dx. Thus, Prob[Noise] = erfc(|a|).A negative skewness is not an indiation of noise, while the HOS of speeh are positive,sine transient segments an have negative HOS. Similarly, the estimator of the kurtosisis �rst omputed from the seond and fourth-order moments. To ensure an unbiasedestimate, the modi�ed estimator is used
KUU =

(
1 +

2

N

)
M4g − 3(M2g)

2. (3.5)This estimator is unbiased, with zero mean and known variane. The distribution on-sists of the di�erene of two variables, one Gaussian and one hi-square. However anapproximation is used here and the estimator is assumed normally distributed.A unit-variane version of this zero-mean variable is de�ned as1error funtion
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KUUb =

KUU√
3v4

g

N

(
104 + 452

N + 596
N2

) (3.6)Therefore, given the value of the estimate of the kurtosis of a given frame and theorresponding saled value, denoted by ”b”, the probability of a frame being noise is:
Prob[Noise] = erfc(|b|). The probability of a frame being noise using the normalizedvalues of the estimates of skewness & kurtosis and the "erf" funtion an be determined.3.1.1 Neessary Condition for VoiingThe skewness and kurtosis of voied speeh are expressed in terms of energy and numberof harmonis and may be used for deteting voied frames [1℄. To eliminate the e�etof energy, one may onsider the normalized metris i.e., γ3 and γ4, but these metrisbeome less e�etive in the presene of noise, for deteting the voied frames. Therefore,the ratio of the appropriate power of the skewness to that of the kurtosis is onsideredto eliminate the e�et of signal energy, while avoiding the e�et of noise.

SKR =
skewness2

kurtosis1.5
=

9(M − 1)2

8M

[
4
3M − 4 + 7

6M

]1.5 (3.7)SKR Ratio is independent of signal and is only a funtion of M where M is the number ofharmonis(funtion of pith). When Gaussian noise is present, the ratio is undeterminedsine both operands are zero. But, this zero ondition never ours due to variane ofthe estimators. The SKR ratio may take on any value, inluding the range for voiedspeeh; thus not su�ient enough for deteting voie frames (when transient values invoie speeh).3.2 HOS-Based VAD AlgorithmThe sustained unvoied speeh is shown to have Gaussian-like harateristis, it annotbe distinguished from Gaussian noise using HOS [1℄. But in reality unvoied speehours at speeh transitional boundaries having nonzero HOS. Therefore the VAD de-tetion proposed based on HOS and is formulated as a �nite two state mahine. Thealgorithm ombines the use of skewness, kurtosis, their normalized versions γ3 and γ4,SNR, LPC predition error, and SKR ratio for distinguishing speeh from noise frames.
The following explains the algorithmi steps:



HOS-Based VAD Algorithm 141. Data Format:Speeh sampled at 8kHz is used, a tenth-order LPC analysis2 is performed oneevery 20ms, thus generating a 20ms residual. VAD is arried out every 10ms usingthe residual and a 20% overlap.2. HOS Computations:Every 10ms iteration, the estimators for the seond, third and fourth-order mo-ments are omputed using (3.1) with N = 100. An autoregressive sheme is usedto smooth the estimates of the moments. From these, the unbiased estimate of thekurtosis (3.5) is dedued. The estimate of the skewness is simply the third-ordermoment (3.1). Then they are normalized by the signal energy to give
γ3 =

SK

M1.5
2x

γ4 =
KUu

M2
2x (3.8)3. Noise and SNR Estimation:The noise power is estimated using frames delared as nonspeeh. Moreover, it isassumed that �rst three frames are nonspeeh and are used to initialize the noisepower estimate. Whenever a frame is delared as nonspeeh, its energy is used toupdate noise estimate aording to an autoregressive averaging

vg(k) = (1 − β)vg(k − 1) + βM2X (3.9)where k is iteration index;
M2X is frame energy;
vg is estimate of the noise energy;
β is 0.1*Prob[Noise℄.At every iteration the urrent estimate of the noise energy is used to ompute theSNR of that frame.

SNR = Pos

[
M2X

vg
− 1

] (3.10)where Pos[x] = x for x > 0 and 0 otherwise. In the above equation M2X isthe power of the speeh orrupted with noise and vg is the noise energy.Sine theresidual is low-pass �ltered at 2kHz, the above SNR is appliable to the lowerspetrum only. The total SNR is omputed using the non�ltered residual and theenergy of the full band.2refer to appendix C for details



HOS-Based VAD Algorithm 154. Probability of Noise-only Frames:One the skewness and kurtosis are omputed, the variane of these estimates areomputed using the noise energy vg, aording to (3.3) and (3.6), to yield the zero-mean, unit variane estimates SKa and KUUa, respetively. From these two saledvalues, the probability of the frame being noise is dedued
Prob[Noise] = [erfc(a) + erfc(b)]/2 (3.11)where a and b are the omputed values of SKa and KUUb, respetively.5. SKR Ratio:The ratio is omputed diretly from the non-normalized estimates of the skewnessand kurtosis

SKR =
[SK]2

[KUU ]1.5
(3.12)6. LPC Predition Error:The LPC predition error is the inverse of the predition gain and may be omputedfrom the set of the re�etion oe�ients (ri) generated by the LPC analysis

PE = Π10
i=0(1 − r2

i ) (3.13)7. Speeh/Noise State Mahine:The VAD algorithm is implemented as a two-state mahine as ahown in the �gure(3.1). The following operations are arried out in eah state.(a) Noise State: The noise energy is updated aording to the Prob[Noise](3.11). The SKR ratio, the Gaussian likelihood (Probability of noise), theSNR (3.10) and the Probability of error (3.13) values are used to determinewhether the frame is speeh. The ourrene of the following three onditionstriggers a transition:i. Prob[Noise] < TGaus for two onseutive frames.ii. SKR in voiing range and (SNR > TSNR1 or PE < TPE) indiates avoied frame.iii. Total SNR > TSNR2 indiates a strong speeh frame.(b) Speeh State:The noise likelihood (3.11) along with the values γ3 and γ4 (3.8) are used todetermine whether the frame is Gaussian. After a hangover period, transitionto the noise state ours if Prob[Noise] > TGaus and γ3 < Tγ3
and γ4 < Tγ4
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Figure 3.1: HOS based VAD State Mahine3.3 Estimation of the Instantaneous SNR of Speeh SignalsEstimation of the instantaneous SNR is an essential omponent of speeh proessingalgorithms whih are sensitive to varying noise levels [6℄. An instantaneous SNR esti-mate is based on short time power estimates with time onstants of integration in therange of 0.02− 0.1s. To aquire noise statistis, the onventional approah to SNR esti-mation employs a VAD to extrat the noise only segments of the disturbed speeh signal.The Rainer Martin's algorithm, does not need an expliit speeh/nonspeeh deision togather noise statistis and is apable to trak varying noise levels during speeh ativity.The algorithm is based on the observation that the smoothed power estimate of a noisyspeeh signal exhibits distint peaks and valleys. While the peaks orrespond to speehativity the valleys of the smoothed noise estimate an be used to obtain a noise powerestimate. To estimate the noise �oor, the algorithm takes the minimum of a smoothedpower estimate within a window of �nite length.3.3.1 Algorithmi DesriptionAssume that the bandlimited and sampled disturbed signal x(i) is sum of a speeh signal
s(i) and a noise signal n(i), x(i) = s(i)+n(i), where i denotes the time indexand also as-suming that s(i) and n(i) are statistially independent, E{x2(i)} = E{s2(i)}+E{n2(i)}.
SNRx(i) denotes the estimated signal-to-noise ratio fo signal x(i) at time i. The algo-rithm works on a sample basis, i.e. a new output sample SNRx(i) is omputed for eah



Estimation of the Instantaneous SNR of Speeh Signals 17input sample x(i). The omputation of SNRx(i) is based on a noise power estimate
Pn(i) whih is obtained as the minimum of the smoothed short time power estimate
P̃x(i) within a window of L samples.Besides initialization the algorithm is split into three major parts:
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Figure 3.2: The Estimation of the Instantaneous SNR of Speeh Signals1. Computation of a smoothed short time power estimate P̃x(i) of signal x(i)2. Computation of the noise power estimate Pn(i)3. Computation of the SNRx(i)Figure (3.2) shows the overall �ow of RM algorithm.



Estimation of the Instantaneous SNR of Speeh Signals 181. Computation of a smoothed power estimateComputation of the short time signal power Px(i) and smoothing of the powerestimate is done in two steps. The power estimate may be obtained reursivelyor non-reursively. A sliding retangular window of length N with N = 128 isnormally used. Let P̃x(i) denote the smoothed short time power estimate at time
i. Smoothing of the power estimate is done onstant is typially set to valuesbetween α = 0.95 . . . 0.98. The reursion for i > N is given by (3.14):

Px(i) = Px(i − 1) + x(i) ∗ x(i) − x(i − N) ∗ x(i − N)

P̃x(i) = α ∗ P̃x(i − 1) + (1 − α) ∗ Px(i) (3.14)In �gure (3.3) the �rst two parts show the short time signal power and the smoothedpower estimate respetively for the ase 67 (speeh in ar noise environment) for12000 samples.2. Noise power estimationThe noise power estimate is shown in the third part of the �gure (3.3). The noisepower estimate is based on the minimum of signal power within a window of Lsamples. For reasons of omplexity and delay the data window of length L is de-omposed into W windows of length M suh that M ∗ W = L.The minimum power of the last M samples is found by a sample wise omparisonof the atual minimum Pmin(i) and the smoothed power P̃x(i). Whenever M sam-ples are read, i.e. i = r ∗ M , the minimum power of the last m samples are storedand the maximum value of Pmin(i = r ∗ M) is reset: PMmin(i = r ∗ M+) = PmaxDetermination of the noise power is estimated by two ases:(a) slowly varying noise power,(b) rapidly varying noise power.If the minimum power of the last W windows with M samples eah is monotoni-ally inreasing, then a rapid noise power variation deision is made. In this asethe noise power estimate equals the power minimum of the last M samples
Pn(i) = PMmin(i = r ∗ M).In ase of non monotoni power the noise power estimate is set to the minimumof the length L window Pn(i) = PLmin(i). The minimum power of the length Lwindow is easily obtained as the minimum of the last W minimum power estimates:

PLmin(i) = min(PMmin(i = r ∗ M), PMmin(i = r ∗ M), . . . PMmin(i = r ∗ M))(3.15)
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Figure 3.3: Power Estimation using Rainer Martin's AlgorithmIf the atual smoothed power is smaller than the estimated noise power Pn(i) thenoise power is updated immediately independent of window adjustment: Pn(i) =

min(P̃x(i), Pn(i)).3. Computation of SNRThe estimated SNR is omputed on the basis of the estimated minimum noise power
Pn(i). A fator ofactor aounts that the minimum power estimate is smaller thanthe true noise power. The range of ofactor is between 1.3 and 2

SNR(i) = 10 ∗ log10

(
P̃x(i) − min(ofactor ∗ pn(i), P̃x(i))

ofactor ∗ Pn(i)

) (3.16)The window length L = M ∗W must be large enough to bridge any peak of speehativity, but short enough to follow non stationary noise variations. In ase ofslowly varying noise power the update of noise estimates is delayed by L + Msamples. If a rapid noise power inrease is deteted this delay is redued to Msamples, thus improving the noise traking apability of the algorithm.Table (3.1) shows a simple representation of steps in implementing HOS-VAD. Figures(3.4) and (3.5) shows the system models or the implementation �ow for HOS and (RM+ HOS) Algorithm respetively with both in Matlab and DSK.



EstimationoftheInstantaneousSNRofSpeehSignals
20

Proess Input Output DesriptionBu�ering Speeh signal Sampled frame The speeh signal is represented in a ma-trix form resulting in the framesLPC Frame Residual, LPC oe�ients Calulates the LPC oe�ients and resid-ualHOS omputations Residual Normalized skewness and nor-malized kurtosis The seond, third and fourth order mo-ments are alulated and hene the skew-ness and kurtosisEstimation of noiseand SNR Residual Estimated noise energy and SNR Noise energy and the SNR are alulatedusing the frame energy.Calulation of prob-ability of noise-onlyframes Normalized skewness and kurto-sis with respet to Noise energy Probability of noise only frames Calulated using the error funtion of thenormalized skewness and kurtosis.SKR Ratio Normalized skewness and kurto-sis SKR Ratio Calulates the SKR ratioLPC predition error Re�etion oe�ients from theLPC analysis LPC predition error Calulates the LPC predition errorNoise state Probability of noise, SKR ratio,SNR and probability of error Frames onsidered as noise Depending on the threshold, deision ismade that the frame is noisy.Speeh state Noise likelihood, normalizedskewness and kurtosis Frames onsidered as speeh Frame is deided as speeh depending onthe threshold values.Calulation of theprobabilities Corretly deteted speehframes, orretly deteted noiseframes, inorretly lassi�edspeeh or noise frames Probability of orretly detetedspeeh, noise frames and proba-bility of false detetion Calulates the probability of orretly de-teted speeh, noise frames and probabil-ity of false detetion Pcspeech

, Pcnoise

, Pf .Table 3.1: Proess Desription
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Chapter 4ImplementationThis hapter desribes the implementation of the algorithm mentioned in the previoushapter, whih is done in three steps: designing the algorithm and running the simulationson Matlab then onverting the Matlab ode into C ode (Conversion to C ode was donein two ways). The resulting C ode is then implemented on the Code Composer Studiowhih is the interfae for the TMS320C6713 DSK.4.1 Matlab Simulation of VAD Algorithm using HOSSimulations of the system represent the funtionality of the individual proess mentionedin this hapter. In simulation proess it was assumed, that some program takes inputsignal, frames it in 20ms frames and supplies the result for the simulation. Duringsimulation algorithm works in real time and only with one frame at a time. Furthermore,it is assumed that RVAD algorithm using HOS is not only working with the urrent frame,but also gets oming samples of the next frame.4.1.1 Input SignalsThe system is simulated with di�erent speeh signals1:
• Noise ontaminated signal i.e., the test ases [8℄
• Noise free signal or the lean speeh signal
• Mark �les or the referene signalThe speeh signals onsist of the 10 di�erent senarios of whih �ve are male and �veare female speakers. There are four noise signals used whih are Car, Garage, Trainand Street noises. The speeh data signals and noise signals are ombined in variousratios and result in 80 di�erent test ases. Eah ase is a di�erent ombination of the1Refer to appendix E for details of the soure of the speeh signals



Matlab Simulation of VAD Algorithm using HOS 23speeh normalization level, the noise type and the SNR. These ases have di�erent SNRlevels of 6dB, 12dB, 18dB and ∞. For example, Case 6 is reated ombining speeh �lem1left1.nom and noise �le ar.nom added for a SNR of 6dB. These di�erent test asesform the noise ontaminated speeh signals as the input for the algorithm. The referenesignal or the mark �les were generated for the omparison of the results.
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Figure 4.1: Speeh Signals with and without Noise4.1.2 FramingFrame size is set to 20ms, sine the frame length is onsidered to be between 10ms to
30ms. If the length is less than 10ms, it results in roughness and the frame size morethan 30ms, the pereptual quality is dereased.4.1.3 WindowingThe windowing length determines the portion of the speeh signal that is to be seleted.The ideal window frequeny response has a very narrow main lobe whih inreases theresolution and dereases the side lobes or frequeny leakage. Sine an ideal window doesnot exist pratially so a ompromise is made depending on the spei� appliation.Di�erent windows are available suh as retangular, hanning or hamming window. Theretangular window has the highest frequeny resolution due to the narrow main lobeand having a large frequeny leakage. The large side lobes results in high frequeny



Matlab Simulation of VAD Algorithm using HOS 24leakage thus the retangular windowed speeh is noisier. So the retangular window isnot used for spetral analysis of speeh. The trapezoidal windows suh as hammingand hanning windows are prominent having smaller frequeny leakage but with lowerresolution. Thus produe a smoother spetrum than the retangular window. Hanningwindow is used.4.1.4 Calulation of the HOS ParametersIn order to detet whether the urrent frame is speeh or non-speeh frame, normalizedskewness and normalized kurtosis are estimated for the frames. Those values are ountedaording to equation (3.8). For this reason beforehand seond, third and fourth ordermoments are omputed using equation (3.2).
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Figure 4.2: SNR Estimation using Rainer Martin's Algorithm4.1.5 Calulation of SNRCalulation of signal-to-noise ratio is performed using the urrent estimate of noise en-ergy as in equation (3.10). Noise power is required for estimating noise energy. If thenoise power delares the urrent frame as non speeh then the noise energy is omputedusing equation (3.9). Otherwise, noise energy is left unhanged from the previous frame.After alulation of SNR for eah frame, "total SNR" metri is updated.HOS, Rainer Martin's algorithm mentioned in (3.3) for estimation of SNR is applied



Matlab Simulation of VAD Algorithm using HOS 25to improve VAD algorithm. But SNR estimation using Rainer Martin's algorithm isdone before LPC as the SNR estimation is utilized sample by sample basis. The SNRestimation for the �rst 12000 samples of ase 67 is shown in the �gure (4.2).4.1.6 State MahineAfter estimation of normalized skewness, normalized kurtosis, SNR, noise probability,LPC predition error and SKR, the algorithm deides whether frame is speeh or non-speeh. The deision is made using a state mahine model, whih has two states: noiseand speeh state. The urrent state depends on the previous frame.If the state mahine is in noise state, the veri�ation is done based on whether theurrent frame is still noise or not. The deision is made aording to the values of noiseprobability, predition error, SKR, SNR and total SNR for the urrent frame in ompar-ison to the appropriate thresholds set.If state mahine is in speeh state, deision is based on whether the urrent frame isstill speeh or not. The deision is made aording to the results of noise probability,normalized skewness and normalized kurtosis for the urrent frame in omparison to theappropriate thresholds.
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Figure 4.6: Predition Error
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Figure 4.7: Probability of Noise



Analysis of the results 284.2 Analysis of the resultsThe results of algorithm are presented in plots of the omputed parameters (�gures (4.1)- (4.10)). The input signal for omputations is 100000 samples of ase 67 whih is om-bination of female speeh and ar noise as shown in the �gure (4.1).In this ase, the highest peaks in the plots of normalized skewness and normalized kur-tosis �gure (4.3) show speeh frames. Combining the results of normalized skewnessand normalized kurtosis the deision is made whether the frame is speeh or noise. Forexample, the �gure (4.4) shows 40 frames of the signal. The signal frames are noisebelow 0.5 of skewness and 0.94 of kurtosis amplitude respetively. Frames from 339 to341 are onsidered noise beause the skewness and kurtosis are below the thresholds.Furthermore, the frames from 354 to 357 frames are onsidered as speeh, but if thevalues are less than the thresholds then the frame is deided as de�nitely noise. Theframes onsidered as speeh are deided based not only on the skewness and kurtosis,but also on other thresholds.Skewness to kurtosis ratio plot shown in the �gure (4.5) is one of the parameters whihhelps in deteting the speeh frame. The high peaks in SKR plot means non gaussiannoise, ontrary to normalized skewness and normalized kurtosis plots. Analyzing theplot, shows that speeh frames belong to partiular range of amplitude values.The plots of predition error and probability of noise depited in the �gures (4.6), (4.7)respetively show the statistial information about frames. The higher the value of pre-dition error is, the more likely the frame is noise. The lower the probability of noise thehigher the possibility that frame is speeh. Figure (4.8) shows the histogram of frame-by-frame values of the normalized kurtosis generated for 6250 frames of LPC residualsignal. Another histogram is generated for the normalized kurtosis for the randomlygenerated Gaussian noise before LPC �ltering. These histograms show the di�erene inthe fourth-order statistis between speeh and Gaussian noise. It shows that the speehutterane ontains silene periods when kurtosis is zero as shown in the �gure.Based on all of the above parameters, the e�etiveness of algorithm is evaluated andthree performane metris are omputed. PcSpeech is probability of orretly detetingspeeh frames, omputed as the ratio of orret speeh detetions to the total number ofhand-labeled speeh frames. PcNoise is probability of orretly deteting noise frames,omputed as the ratio of orret noise detetions to the total number of hand-labelednoise frames. Pf is probability of false detetion, omputed as the ratio of inorretlylassi�ed speeh or noise frames to the total number of frames. Table 4.1 shows evalu-ation of ar noise signal with SNR 0dB. As there is no speeh in this signal, therefore
PcSpeech is not ounted.In addition, referene �les for speeh signal were made omparing results of algorithms
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Figure 4.8: Histograms of Normalized Kurtosis of the LPC Residual (Speeh versus Gaussian)with true VAD. Deision whether frame is speeh or non-speeh, is made aording toframe energy. If it is above threshold then frame is speeh otherwise frame is silene. Inreferene plot speeh is onsidered as one and silene has zero. Figures (4.9)and (4.10)show the plots of HOS-VAD and RM + HOS VAD algorithms respetively. Both algo-rithms were ompared to eah other to evaluate its e�etiveness.Di�erent Noise environments suh as street, garage, ar and noise with di�erent SNRlevels were used and its orresponding PcSpeech, PcNoise, Pf were alulated as shownin the table (4.2).As mentioned earlier, Pcs and Pf are alulated based on the thresholds set for thedetetion whether the speeh frame is speeh or not. The thresholds vary for di�erentnoise environments and even for the di�erent SNR levels. The thresholds were �xed andould not be made adaptive beause adaptive thresholds did not give expeted results.The main fous was set on the probability of deteting the frames as speeh to be highbeause speeh deteted as noise is not aeptable.It an be inferred from the table that the overall performane of RM-HOS VAD isbetter than that of HOS-VAD. For example, RM-HOS produed more aeptable resultsfor CAR noise for 18dB, the PcSpeech is as high as 99% as ompared to that of 97% forHOS VAD. Similarly the metris for the other noise environments an be analyzed fromthe table (4.2)
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Figure 4.9: Comparison with the Referene VAD
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C Coding 31Noise Environment P Speeh (%) P Noise (%) Pf (%)Type SNR RM HOS VAD RM HOS VAD RM HOS VADCar 0 dB ∞ 91.2668 8.7332Table 4.1: 0 dB SNR for CAR Noise4.3 C CodingIn this projet, the onversion of Matlab ode to C ode was performed in two di�erenttehniques. At �rst, there was attempt to onvert Matlab ode diretly to C usingMatlab ompiler. Later there was written the plain C ode.4.3.1 Using Matlab for onversionTo write a DSP ompatible ANSI C ode, Matlab Compiler and Matlab C++ were used.Below are the steps by whih Matlab ode is onverted to C ode.
• Installing libraries, whih are needed during ompilation. To do this�mbuild -setup ommand is used.
• Copying M-�les of algorithm to a working diretory.
• Converting M-�les to C using Matlab ompiler. To do this m ommand is used.Generated C ode an be ompiled by any ANSI C ompiler. Wrapper �les analso be generated to interfae betweeen onverted ode and exeutable type.Not all Matlab M-�les an be onverted to C using Matlab ompiler. There are theserestritions:
• M-�les ontaining sripts
• M-�les that use objets
• M-�les that use Matlab ommands input or eval
• M-�les that use Matlab ommand exist with 2 input arguments
• M-�les that load �lesThe RM+HOS C ode (onverted with Matlab) has the following funtions:



CCoding
32

Noise Environment P Speeh (%) P Noise (%) Pf (%)Type SNR RM HOS VAD HOS VAD RM HOS VAD HOS VAD RM HOS VAD HOS VADStreet 18 dB 95.73766 95.02624 98.61536 95.27732 19.33330 19.94640Street 12 dB 96.41824 94.81300 93.52636 97.22586 24.49698 24.24436Street 6 dB 95.90054 96.27360 89.79290 94.24034 26.80592 29.57412Garage 18 dB 92.62478 90.89854 93.81738 96.50380 16.34816 17.41288Garage 12 dB 96.76172 91.22174 98.18864 96.31108 21.21978 21.28208Garage 6 dB 97.89894 92.55860 96.54834 98.21720 25.47020 29.88722Car 18 dB 99.35094 97.49856 98.45012 93.31110 21.46160 23.55938Car 12 dB 94.00594 90.20506 96.38050 96.81272 21.76148 21.59166Car 6 dB 95.47264 93.12092 96.97286 94.75996 26.49182 27.59700Train 18 dB 93.01504 94.18450 94.08644 97.72330 18.26398 19.86844Train 12 dB 97.90404 86.78462 97.32174 98.22220 22.33514 23.31566Train 6 dB 94.83100 92.81294 92.21040 94.00732 26.79338 29.6381Table 4.2: P ′

cs and P ′

fs for the HOS based VAD



C Coding 33
• C ode onsists of the following highest level funtions/headersrt_hos_vad_mainhg. : main funtion for evaluation purpose.rt_hos_vad. : real time RM+HOS funtion.rt_hos_vad.h : real time RM+HOS header.
• The following �les ontain global de�nitions, onstants and other related subrou-tines:hanning. : Hanning window funtionlp. : General linear preditive implementation funtionpoly2r. : onversion of lp oe�ients to re�etion oe�. funtionlevinson_mex_interfae. : Levinson-durbin solution funtionbu�er_mex_interfae. : bu�ering signal vetor funtionMost C �les have their respetive header �les. All other subroutines and de�nitions anbe found in ompanion CD attahed to this report.4.3.2 C ode of the algorithmsDue to the problems enountered with C ode onverted from Matlab, new HOS andRM+HOS ANSI-C ode were written for the implementation on DSK. These programsuse input �le, whih ontains 16-bit data, stored in high-byte/low-byte word format.HOS program ontains the following basi funtions:
• HanningWindow: This funtion generates Hanning window of the set size. Di�er-ent from Matlab C ode, the Hanning window here is without zero padding.
• SignalFraming: Funtion forms urrent frame of the set size.
• LPC: This Linear Preditive Model funtion uses AutoCorrelation and Levinson-Reursion funtions. It generates linear predition and re�etion oe�ients.
• AllPoleFilter: Funtion generates residue from urrent frame and linear preditionoe�ients.
• HOSCompute: Funtion for Higher Order Statistis.
• GetVgSNR: It estimates noise energy and signal-to-noise ratio.
• GetSKR: Funtion estimates skewness-to-kurtosis ratio.
• PreditionError: It omputes LPC predition error using re�etion oe�ients.
• StateMahine: This funtion implements two-state mahine used for deidingwhether a frame is speeh or noise.



Implementing the C Code onto the DSK Board 34RM+HOS program onsists of suh basi funtions:
• HanningWindow: this funtion generates Hanning window of the set size. Di�er-ently from Matlab ode this funtion is used without zero padding.
• SignalFraming: funtion forms urrent frame of the set size.
• LPC: Linear Preditive Model funtion whih uses AutoCorrelation and Levinson-Reursion funtions. In result it generates linear predition and re�etion oe�-ients.
• AllPoleFilter: funtion generates residue from urrent frame and linear preditionoe�ients.
• HOSCompute: funtion for Higher Order Statistis.
• RainerMartin: funtion estimates signal-to-noise ratio using to Rainer Martin'salgorithm to estimate the instantaneous SNR of speeh signal.
• GetSKR: funtion omputes skewness-to-kurtosis ratio.
• PreditionError: it estimates LPC predition error using re�etion oe�ients.
• StateMahine: this is the funtion, whih implements two-state mahine for deid-ing whether frame is speeh or noise.Both programs give results by printing them to ommand window.The full ode of both programs an be found in a CD, attahed to this report.4.4 Implementing the C Code onto the DSK Board4.4.1 ObjetiveThis setion desribes the implementing of the ANSI-C ode on TI C6713 DSK2. The Code �les were reated as explained in setion 4.3.1. Several related C �les are added tothe ode studio omposer (CCS) environment. Related dependenes to eah C �les arelinked aordingly. A suitable library setting (for e.g in the program used rts6700.lib)is also linked to the whole appliation projet. Further, optimum on�guration settingsare triggered and the program is built or ompiled to hek for any syntax errors. Theprogram is then loaded into the C6713 DSK Kit and exeuted.2Refer to appendix ?? for the DSK desription



Implementing the C Code onto the DSK Board 354.4.2 The Code Composer Studio1. Algorithm Test on DSKThe algorithm test aims to on�rm the operation of the Matlab generated ANSI-Code on the DSK. The input signal (lean speeh orrupted with noise) is win-dowed to frames. The parameters of interest are the output of the state mahinemodel. The output from the DSK (in the form of displaying variables, �ashingLED or sound prodution) should on�rm with the output obtained from Matlabsimulation.2. Con�gurationOne of the shemes3 employed in on�guration of CCS, prior to the test involvedusing a stritly non C mode. This permitted some level of tolerane during programexeution to avoid unforeseen 'low-level' error. Other shemes involves:
• Setting the RTDX 4 mode to Simulator.
• Using far alls and data memory models
• Using far RTS 5 alls
• Deativation of the of the assembly languageThe shemes were modi�ed as shown in the �gures (4.11) and (4.13).3. Problems during Algorithm TestingIt was found that the program suessfully loads onto the C6713 DSK, but ouldnot run. One reason for that was: Trouble running target proessor:"Memory map error: write aess by default....". One of the possible solutions isto inrease the size of the memory or use an external memory. Figure (4.12) showsthat the memory settings were extended to 0x00800000HEX. Even these attemptsand others failed to solve the problem. This problem should be onsidered forfuture investigation.Sine the implementation of Matlab onverted ode failed, the deision was made towrite algorithms in C ode manually.4.4.3 C Code on DSKThe new HOS-VAD C ode was used for the implementation onto the DSK board. Inthis ase, several hanges were made in the ode:

• HOS-VAD program on DSK does not use any input data. The signal of 400 samplesis used as program's global variable. The input of data from �le or mirophoneould not be implemented on DSK.3build options, settings from the CCS4Real Time Data Exhange5Run-Time Support
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Figure 4.11: Con�guration Sheme using Little Endian
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Figure 4.12: Memory Settings

Figure 4.13: Linker/Complier Settings



Implementing the C Code onto the DSK Board 38
• The additional funtion was written for estimation of the omplementary error. Cprogram uses the in-built erf() funtion. Di�erently from ANSI-C, CCS does nothave this funtion. For this reason, HOS-VAD ode for DSK was supplementedwith the funtion for estimation of omplementary error.CCS HOS-VAD algorithm program was suessfully ompiled, build and then loadedonto the board for testing. After omputation results were displayed in CCS stdout win-dow, it was proved that the program is working orretly.The full ode of this program an be found in the CD, whih is attahed to this report.4.4.4 Optimizing ProgramDue to time onstraints, eah of the C soure ode ould not be examined and hek forpotential areas for improvements [31℄. However, the following solutions an be onsideredfor improvement:Iteration path from the memory points (Potential Pointer Aliasing Informa-tion):It involves examining and replaing dupliation of loops by heking for dependeny orommon use of registers. The reason is that CCS IDE often assigns more than one regis-ter to the same loop in a ode, thereby reating an image of the same loop. These imagesneed to be removed by heking the assembly ode and replaing multiple registers witha single register to improve exeution speed.Alternatively, the program an pass more information to the ompiler to improve itsperformane. This steps will redue yles per iteration 5 times.Balaning resoures with dual-data path:Generally, CCS runs faster with the even number of binary operations (register oper-ations). One way to balane an odd number of operations is to unroll the loop. Forexample, if there are 231 number of matrix olumns, then instead of 231 memory a-esses, the optimized projet uses the even number of memory aesses, may be 462.This will redue yles per iteration by approximately 6.7 times.Paked data optimization of memory bandwidth:By analyzing a feedbak path in the C ode, it an be observed that the memory aesseslimit the resoures the most. It is found that one single 32-bit load instrution e�etivelyperforms two 16-bit loads. This is alled Paked Data Proessing.By setting the CCS to use single 32-bit load instrution e�etively redues yles periteration by 10 folds.



Chapter 5ConlusionsThe objetive of this projet is to exploit the properties of higher-order statistis andRainer Martin's algorithm for implementing a robust algorithm for voie ativity dete-tion and noise redution mehanism in the presene of noise.Firstly, the HOS also unveiled the following important properties about umulants whoserelevane goes beyond the goal of VAD appliation.
• Third order HOS for a Gaussian signal is zero but skewness and kurtosis of voiedspeeh are nonzero, so may be used as a basis for speeh detetion or voiing las-si�ation. When normalized by the appropriate power of the signal energy, thesemetris are independent of signal levels. This makes them onvenient as detetorssine absolute thresholds may be used.
• Ratio of the appropriate powers of the skewness to that of the kurtosis of voiedspeeh is independent of signal energy and is on�ned to a small range for anypratial range of the pith.
• Unvoied speeh in the LPC residual may not be modeled as a harmoni proessbut rather as a general white proess.Seondly, the Rainer Martin's algorithm revealed the following important properties:
• Varying noise levels have a signi�ant impat on the performane of many speehproessing algorithms. It is aurate for medium to high SNR onditions butneessarily biased when no speeh is present.
• A priori knowledge of noise variation and noise orrelation is helpful to adapt win-dow length and to ontrol the estimation bias.



Implementation with Matlab and DSK 40Unlike other reported work in the area of HOS for speeh, a more fundamental approahis taken here whereby analytial derivations were �rst dedued based on a speeh model,thus providing a basis for justifying or refuting the experimental �ndings.The rationale for onsidering the LPC residual is its �at spetral envelope whih makesthe higher order umulant derivations for speeh more tratable and allows quantifyingthe bias and variane of the HOS estimators for Gaussian noise.The Rainer Martin's and Higher Order Statistis algorithm (RM + HOS) were ombinedtogether and used for experimental simulations.5.1 Implementation with Matlab and DSKExperimental simulations demonstrates the underlying speeh model are valid for voiedspeeh.The relation between the (RM + HOS) metris is used as a ondition for an improveddetetion. Consequently, smooth noise power and HOS estimates are derived for the aseof Gaussian noise and is used to quantify the likelihood of a given frame being noise. Theresulting algorithm ombines (RM + HOS) metris with seond-order measures, suh aslow-band and full-band SNR and the LPC predition error, to lassify frames into oneof the two states.Di�erent noise senarios were hosen for the performane of VAD algorithm for boththe tehniques. It an be learly noted that RM+HOS has better performane even atlow SNR values beause the algorithm uses the previous samples for the detetion ofSNR of the present samples whih makes it more adaptive for the estimation of the noisein the speeh signal.This proess helps in better predition of speeh and noise frames.Compared to HOS-VAD, the proposed algorithm is based on a more analytial frame-work. It is omputationally and oneptually omplex and uses a similar parameter set,but gives more improved results. Even though the omplexity is high, the results weremuh better even in the low SNR senarios.The proposed algorithm was implemented on C6713 DSK. Two-state mahine resultsfrom C6713 DSK for 300 samples were similar to those obtained from Matlab simula-tion. The performane in noise of the two algorithms shows the (RM + HOS) basedVAD has superior performane to HOS-VAD in terms of a higher probability of orretspeeh, noise lassi�ation and a lower probability of false lassi�ation. This fat sug-gests that (RM + HOS) based methods have potential in yielding VAD algorithms thatwould highly promote the urrent state of the art VAD appliations. The work how-ever does not laim these statistis to be superior in and by themselves to seond-order



Future work 41statistis. They provide additional information about the signal that is immune to thepresene of noise, and that makes them partiularly e�etive in low SNR appliations.Clearly, suessful algorithms are those that an ombine the two approahes and exploitthe advantages of both.5.2 Future workThis area inludes:
• Investigating the ombination of more metris and tuning the algorithm withspeeh reorded in more diverse noise environments.
• Implementation of the frequeny version of Rainer Martin's algorithm using spe-tral subtration tehinque.
• Examining reasons why ANSI-C ode (onverted with Matlab) did not exeute onthe DSK even though it ompiled and ran without error on a standard ANSI-Compiler.
• Developing the synthesis �lter for (RM + HOS) based VAD (if it theoritiallypossible).
• Optimizing the DSP ompatible ANSI-C ode of the algorithm to ensure fasterexeution time.



Appendix AHigher Order Spetra and StatistisThe estimation of the power spetral density or simply the power spetrum of disrete-time deterministi or stohasti signals has been a useful tool in digital signal proessing.Power spetrum estimation tehniques have proved essential to the reation of advanedradar, sonar, ommuniation, speeh, biomedial, geophysial and other data proessingsystems [9℄.In power spetrum estimation, the signal under onsideration is proessed in suh a waythat the distribution of power among its frequeny omponents is estimated. Thus thephase relations between frequeny omponents are suppressed. The information on-tained in the power spetrum is essentially that whih is present in the autoorrelationsequene; this is su�ient for the omplete statistial desription of the Gaussian signal.However, in the pratial situations we look beyond the power spetrum of a signal toextrat information regarding deviations from Gaussianity and the phase relations.
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Appliations 43Higher order spetra(also known as polyspetra) de�ned in terms of higher order statis-tis (umulants) of a signal, do ontain suh information. Partiular ases of higher orderspetra are the third-order spetrum also alled bispetrum whih is, by de�nition, theFourier transform of the third-order statistis, and the trispetrum (fourth-order spe-trum) whih is the Fourier trasnform of the fourth-order statistis of a stationary signal.The power spetrum is, a member of a lass of higher order spetra lassi�ation mapof a given disrete-time signal. Higher-order statistis and spetra of a signal an bede�ned in terms of moments and umulants, Moments and moment spetra an be veryuseful in the analysis of deterministi signals whereas umulants and umulant spetraare of great importane in the analysis of stohasti signals [22℄.
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Figure A.2: The Polyseptra Classi�ation MapThe motivations behind the use of higher-order spetra in signal proessing are [22℄.1. Suppress additive olored Gaussian noise of unknown power spetrum, the bis-petrum also suppresses non-Gaussian noise with symmetri probability densityfuntion(pdf).2. Identify non-minimum phase signals.3. Extrat information due to deviations from Gaussianity.4. Detet and haraterize nonlinear properties in signals as well as identify nonlinearsystems.A.1 AppliationsThe appliations of polyspetra [22℄ are in the �elds of oeanography, geophysis, sonar,omuniations, biomediine, speeh proessing, radioastonomy, image proessing, �uidmehanis, eonomi time series, plasma physis, sunspot data and so on. Proedureswere developed based on polyspetra for deonvolution(or equalization) and signal de-tetion, for the identi�ation of nonlinear; nonminimum phase; and spike-array type



De�nitions and Properties 44proesses; for parameter estimation; and detetion of quadrati phase oupling, and fordetetion of aliasing in disrete-time stohasti signals.A.2 De�nitions and PropertiesThis setion gives the introdution of the de�nitions, properties and omputation ofhigher-order statistis, i.e., moments and umulants, and their orresponding higher-order spetra [1℄[9℄[10℄.If X(k), k = 0,±1,±2,±3, . . . is a real stationary disrete-time signal and its momentsup to order n exist, then
mx

n(τ1, τ2, . . . , τn−1) = E{X(k)X(k + τ1) . . . X(k + τn−1)} (A.1)represents the nth order moment funtion of the stationary signal, whih depends onlyon the time di�erene τ1, τ2, . . . , τn−1, τi = 0,+ − 1, . . . for all i. Clearly, the 2nd-order moment funtion, mx
2(τ1), is the autoorrelation of X(k) whereas mx

3(τ1, τ2) and
mx

4(τ1, τ2, τ3) are the 3rd- and 4th-order moments, respetively.The nth-order umulant funtion of a non-Gaussian stationary random signal X(k) anbe writen as ( for n = 3, 4 only):
cx
n(τ1, τ2, . . . , τn − 1) = mx

n(τ1, τ2, . . . , τn−1) − mG
n (τ1, τ2, . . . , τn−1) (A.2)where mx

n(τ1, . . . , τn−1) is the nth-order moment funtion of X(k) and mG
n (τ1, . . . , τn−1)is the nth-order moment funtion of an equivalent Gaussian signal that has the samemean value and autoorrelation sequene as X(k). For Gaussian signal,

mx
n(τ1, . . . , τn−1) = mG

n (τ1, . . . , τn−1) (A.3)and thus cx
n(τ1, τ2, . . . , τn−1) = 0. Although the equation (A.3) is only true for orders

n = 3 and 4, cx
n(τ1, τ2, . . . , τn−1) = 0 for all n if X(k) is Gaussian. Relationships betweenmoment and umulant sequenes of X(k) exist for orders n = 1, 2, 3, 4.1st-order umulants:

cx
1 = mx

1 = E{X(k)} (mean value) (A.4)2nd-order umulants:
cx
2(τ1) = mx

2(τ1) − (mx
1)2 (ovariane sequene)

= mx
2(−τ1) − (mx

1)2 = cx
2(−τ1) (A.5)where mx

2(−τ1) is the autoorrelation sequene. Thus, the 2nd order umulant sequeneis the ovariane while the 2nd-order moment sequene is the autoorrelation.



De�nitions and Properties 453rd-order umulants:
cx
3(τ1, τ2) = mx

3(τ1, τ2) − mx
1 [mx

2(τ1) + mx
2(τ2) + mx

2(τ1 − τ2)] + 2(mx
1)3 (A.6)where mx

3(τ1, τ2) is the 3rd-order moment sequene.4th-order umulants:
cx
4(τ1, τ2) = mx

4(τ1, τ2, τ3) − mx
2(τ1).m

x
2(τ3 − τ2)

mx
2(τ2).m

x
2(τ3 − τ1)

mx
2(τ3).m

x
2(τ2 − τ1)

mx
1 [mx

3(τ2 − τ1, τ3, τ1) + mx
3(τ2, τ3)

(mx
3(τ2, τ4) + mx

3(τ1, τ2)]

(mx
2)2[mx

1(τ1) + mx
2(τ2)

+mx
2(τ3) + mx

2(τ3 − τ1) + mx
2(τ3 − τ2)

+mx
2(τ2 − τ1)] − 6(mx

1)4 (A.7)If the signal X(k) is zero mean mx
1 = 0, and follows from the equations (A.5),(A.6)that the seond and third order umulants are idential to the seond and third ordermoments, respetively. But to generate the fourth order umulants, we need knowledgeof the fourth-order and seond-order moments in equation (A.7).
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2(τ1).m

x
2(τ3 − τ2)

mx
2(τ2).m

x
2(τ3 − τ1) − mx

2(τ3).m
x
2(τ2 − τ1). (A.8)By putting τ1 = τ2 = τ3 = 0 in equations (A.5), (A.6), (A.7) and assuming mx

1 = 0, weget
γx
2 = E{x2(k)} = cx

2(0) (variane)
γx
3 = E{x3(k)} = cx

3(0, 0) (skewness)
γx
4 = E{x4(k)} − 3[γx

2 ]2 = cx
4(0, 0, 0) (kurtosis) (A.9)Normalized kurtosis is de�ned as γx

4 /[γx
2 ]2. Equation (A.9) gives the variane, skewnessand kurtosis measures in terms of umulants at zero lags.



Appendix BDesign ConsiderationsThe overall system analysis and design strategy is shown in the �gure (B.1). The de-sign proess is divided into �ve domains. Beginning with the problem analysis, whereindepth analysis of the problem is presented. As the time advanes, the problem and therequirements spei�ed in problem domain are represented in appliation, algorithmi andarhitetural domains. In qualitative domain, the quality ontrol analysis of the �nishedsystem is presented, de�ning the quality ontrol riteria and looks at the external system.Finally, onlusion analyses the design proess in all aspets. The overall design proessand the interation among the di�erent domains is iterative.Problem domain analysis deals with the information required to design the system, theneed for suh a design and the main purpose of the design. The modeling of problemdomain, allows many possibilities whih an be used diretly or indiretly in order toollet information about the problemati situation.Appliation domain mentions about the system usage and analysis of the system. Therequirement inludes system funtions and interfaes with its environment. Appliationdomain and the problem domain have a strong interation between them. Problem do-main analysis gives the requirement to model the system behaviour and thus the systemfuntions and interfae requirements are de�ned. Due to a strong interation betweenthe two domains, the order of the domain analysis an be interhanged, but it dependson real situation and user requirements.Algorithmi domain answers the question about the main task of the system. Thesealgorithms developed and analyzed are the heart of the system. After areful analysisof the problem and appliation domain, algorithmi domain follows. Algorithms are de-veloped keeping in view of the requirements, whih are generated in the problem andappliation domains. Algorithm development or seletion of a suitable algorithm fromdi�erent available algorithms mainly depend upon the problemati situation desriptionin problem domain analysis. As the projet is with respet to Voie Ativity Detetionusing Higher order statistis, the onept of higher order statistis is explained. All the
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Figure B.1: Design Modelonsidered algorithms are simulated using Matlab on system models and real signals andthe results were analyzed.Arhitetural domain gives the information regarding the tehnial platform. This do-main shows the mapping of the algorithm in a spei� arhiteture TMS320C6713. Fora seleted algorithm there may be many solutions. The seletion of the arhitetureeven depends on the spei� appliation and the design. In the projet implementationthere was no arhiteture onstraint as the DSK kit was provided. Both algorithmi andarhitetural domains observe the system from inside.



Appendix CLinear Predition Coding (LPC)LPC is onsidered as one of the most powerful tehniques for speeh analysis. In fat,this tehnique is the basis of other more reent and sophistiated algorithms that are usedfor estimating speeh parameters, e.g., pith, formants, spetra, voal trat and low bitrepresentations of speeh. The basi priniple of linear predition, states that speeh anbe modeled as the output of a linear, time-varying system exited by either periodi pulsesor random noise �gure (C.1). These two kinds of aousti soures are alled voied andunvoied respetively. In this sense, voied emissions are those generated by the vibrationof the voal ords in the presene of an air�ow and unvoied sounds are those generatedwhen the voal ords are relaxed.
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GFigure C.1: Speeh Synthesis Generated with the LPC ModelConsider the following equation,
s(n)≈a1s(n − 1) + a2s(n − 2) + . . . + aps(n − p) (C.1)where a1, a2, . . . , ap are onstant oe�ients. The previous equation an be transformedby inluding an exitation term Gu(n) to:

s(n) =

p∑

i=1

ais(n − i) + Gu(n) (C.2)



49where G is the gain and u(n) the normalized exitation. Transforming equation (C.2)to the z-domain we obtain
S(z) =

p∑

i=1

aiz
−iS(z) + GU(z) (C.3)and onsequently the transfer funtion will be:

H(z) =
S(z)

GU(z)
=

1

1 − ∑p
i=1 aiz−1

=
1

A(z)
(C.4)that orresponds to the transfer funtion of a digital time varying �lter. The main param-eters that an be obtained with the LPC model are: the lassi�ation of voied/unvoied,the pith period, the gain and the oe�ients a1, . . . , ap. It is important to note that,the higher the order of the model is, the best the all-pole model allows a good represen-tation of the speeh sounds. A linear preditor with oe�ients ak is de�ned with thepolynomial P (z):

P (z) =

p∑

k=1

akz
−k (C.5)whose output is:

s̃(n) =

p∑

k=1

aks(n − k) (C.6)The predition error e(n) is de�ned as:
e(n) = s(n) − s̃(n) = s(n) −

p∑

k=1

aks(n − k) (C.7)that is the output of a system A(z) = 1 − ∑p
k=1 akz

−k and if ak = ak we have then
H(z) = G

A(z) . The main goal is to obtain the set oe�ients ak that minimizes thesquare of the predition error in a short segment of speeh (typially 10-30ms) frames.The mean short time predition error per frame is de�ned as:
En =

∑

m

e2
n(m) = [sn(m) −

p∑

k=1

aksn(m − k)]2 (C.8)where sn(m) is a segment of speeh seleted in the neighbourhood of a sample n :
sn(m) = s(m + n), the value of the oe�ients ak that minimizes the error En an beobtained onsidering
dEn

dai
= 0, i = 1, 2, . . . , p that result in the next equation:
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∑

m

sn(m − i)sn(m) =

p∑

k=1

al
k

∑

m

sn(m − i)sn(m − k), 1 ≤ i ≤ p (C.9)where al
k are the values of ak that minimizes En.De�ning φn(i, k) =

∑
m sn(m − i)sn(m − k), equation (C.9) an be written as
p∑

k=1

akφn(i, k) = φn(i, 0), i = 1, 2, . . . , , p (C.10)This is a system of p equations with p variables that an be solved to �nd the akoe�ients for the segments sm. It an be demonstrated that:
En =

∑

m

s2
n(m) −

p∑

k=1

ak

p∑

k=1

sn(m − k) (C.11)and in the ompat form:
En = φn(0, 0) −

p∑

k=1

akφn(0, k) (C.12)Now, the values En(i, k) have to be obtained for 1 ≤ i ≤ p, 1 ≤ k ≤ p, and the akoe�ients are obtained by solving equation (C.10). Equation (C.12) system an besolved using the following:
• Autoorrelation Method
• Covariane MethodC.1 All Pole ModelLinear predition and autoregressive modeling are two di�erent problems that an yieldthe same numerial results. In both the ases, the ultimate goal is to determine theparameters of a linear �lter. However, the �lter used in eah of the problems is di�erent.In the ase of linear predition, the intention is to determine an FIR �lter that anoptimally predit future samples of an autoregressive proess based on a linear ombi-nation of past samples. The di�erene between the atual autoregressive signal and thepredited signal is alled the predition error. Ideally, this error is white noise.For the ase of autoregressive modeling, the intention is to determine an all-pole IIR�lter, that when exited with white noise produes a signal with the same statistis as



All Pole Model 51the auto-regressive proess that is tried to model.Consider the equation (C.13):
s(n) = −

p∑

k=1

aks(n − k) + G

q∑

l=0

blu(n − l) 1 ≤ k ≤ p, 1 ≤ l ≤ q (C.13)if bl = 0, then the model is referred to as an all pole model or autoregressive model(AR)model. (If ak = 0, it beomes an all zero model). In suh a model, the signal s[n] anbe assumed as a linear ombination of the previous values and some input u[n]:
s(n) = −

p∑

k=1

aks(n − k) + Gu(n) (C.14)Where G is the gain fator. We an also redue the transfer funtion H(z) in (C.12) toan all pole model transfer funtion:
H(z) =

S(z)

U(z)
=

G

1 +
∑p

k=1 akz−k
=

G

A(z)
(C.15)



Appendix DTIA DatabaseTeleommmuniations Industry Assoiation (TIA) standard TIA/EIA-136-250 de-sribes de�nitions, methods of measurement, minimum delay and performane require-ments for voie ativity detetors(VADs). This standard applies to mobile stations oper-ating in the disontinous transmission(DTX) mode.This standard onsists of ten speeh data �les, ten truth mark �les orresponding toeah speeh �le and four bakground noise �les. This standard de�nes the minimumperformane levels for the VAD; but the manufaturer should attempt to provide thehighest possible level of performane [8℄.D.1 Test CasesTest ases have been hosen to exerise the range of VAD proessing. Ten speeh data �lesand four noise data �les are ombined in various ratios to yield 80 ases. Normalizationvalues are in units of dBov1 and SNR values in units of dB relative to speeh.Soure Speeh MaterialThe speeh material onsists of 10 onversational data �les of whih �ve are male and �veare female speakers. Eah �le ontains 16 bit PCM data, stored in high-byte/low-byteword format, sampled at a rate of 8kHz, Modi�ed-IRS2 �ltered, and normalized to anaverage level of -26dBov.Soure Noise MaterialThe noise material onsists of four data �les. The �les ontain noise stored as 16-bit PCMwords in high-byte/low-byte format, sampled at a rate of 8kHz, Modi�ed-IRS �ltered,and normalized to an average level of -26dBov.1Sound level in deibels with respet to 16-bit overload2Modi�ed Intermediate Referene System whih refers to the harateristi spetral shaping of speehsignals by the telephone network



Test Proedure 53D.2 Test ProedureThe setion desribes the proedure to verify that the VAD implementation meets theminimum performane requirements. The proedure for testing VAD for ompliane tothe standard onsists of the following steps:1. Generate a test data �le of the 80 test ases.2. Proess the test data �les with the VAD and produe the mark �les.3. Generate VAD performane metris for eah of the test ases.4. Evaluate performane metris for ompliane with thresholds.A software tool was provided to perform the �le generation, performane metri alu-lation, and evaluation (steps 1,3,4 respetively). The C soure ode �le for the objetiveVAD evaluation tool is ove.. Step 2 is the exeution of the VAD-HOS algorithm.Generation of Performane metrisThe speeh frames are divided into three ategories: onset, steady-state, and o�sets.Onsets are made up from the �rst three frames of speeh in the beginning of the utterane,o�sets are the last three frames, and the steady-state speeh frames are those in between.Counts are kept on the number of times the VAD mark agrees with the truth marks forthe eah ategory as well as the number of frames in eah ategory. The ounts areolleted only when the loal SNR exeeds -15dB. The loal SNRs are alulated withthe equation:
SNR(n) = 10 log10

(
espeech(n)/enoise(n)

) (D.1)where n is urrent frame index,
espeech(n) is energy of the urrent speeh at frame n,
enoise(n) is energy of the urrent noise at frame n.A delta voie-ativity fator (δ VAF) metri is omputed as the di�erene between theVAF and the true VAF divided by the true VAF, where the voie-ativity fator is thenumber of frames alled speeh divided by the total number of frames [8℄. The fourperformane metris are:

• Probability of lipping speeh onsets.
• Probability of deteting steady-state speeh.
• Probability of lipping speeh o�sets.
• Normalized di�erene in the VAD's voie-ativity fator from truth.



Test Proedure 54Evaluation of Performane metrisThe performane statisties are aumulated to produe 12 evaluation ategories, onefor eah normalization and SNR level ombination. Eah ategories has four metrislisted in the above setion, resulting 48 performane metris. Eah metris representsthe average of over all ases with the same normalization and SNR.The evaluation mode of the ove software tool reads the onatenated output generatedby the performane tool and omputes evaluation metris [8℄. The evaluation tool thenoutputs 3 tables in the following order: the thresholds, the evaluation metris for theVAD, and a table indiating pass or fail for eah metri.If the metri meets the threshold,the harater p is output; and, if not, the di�erene between the VAD and threshold isprinted. The lipping and voie-ativity thresholds are maximums, while the detetionthresholds are minimums.



Appendix ETMS320C6000 Platform
E.1 OverviewThe TMS320C6000 platform onsists of the TMS320C64x and TMS320C62x �xed-pointgenerations as well as the TMS320C67x �oating-point generation. These platforms arefor broadband infrastruture, performane audio and imaging appliations. The C6000DSP platform's performane ranges from 1200 to 8000 MIPS for �xed-point and 600 to1800 MFLOPS for �oating point [28℄.E.1.1 Platform Highlights

• Optimized for good performane and of use in high-level language programmingwith three devie generations. Fixed-point performane ranges from 1200 to 8000MIPS and �oating-point performane from 600 to 1350 MFLOPS.
• Memory, peripherals and o-proessor are ombined to meet the needs of targetedbroadband infrastruture, performane audio and imaging appliations.
• Software ompatibility aross all C6000 devies.E.1.2 Code-Compatible GenerationsThe TMS320C6000 platform onsists of three ode-ompatible devie generations:TMS320C64x: The C64x �xed-point DSPs has lok rates of up to 1GHz, C64x DSPsan proess information at rates up to 8000 MIPS. The built in extensions inlude newinstrutions to aelerate performane in key appliation areas suh as digital ommuni-ations infrastruture, video and image proessing [28℄.TMS320C62x: These �rst-generation �xed-point DSPs enables new equipments andenergizes existing implementations for multi-hannel, multi-funtion appliations, suhas wireless base stations, remote aess servers (RAS), digital subsriber loop (xDSL)systems, personalized home seurity systems, advaned imaging/biometris, industrialsanners, preision instrumentation and multi-hannel telephony systems.



DSP Starter Kit 56TMS320C67x: The C67x �oating-point DSPs has the speed, preision, power savingsand dynami range to meet a variety of design needs. These DSPs are used in appliationslike audio, medial imaging, instrumentation and automotive.E.1.3 C CompilerThe C6000 DSP platform gives a good performane C language engine with a ompilerfor the arhiteture to sustain maximum performane while speeding design developmenttime for high-performane appliations. The C ompiler/optimization tools balanesode size and performane to meet the needs of the appliation.E.1.4 C6000 Signal Proessing Libraries and Peripherals DriversThe Signal Proessing and the Chip support libraries ontain a olletion of high-level,optimized DSP funtion modules and help to ahieve good performane than standardANSI C ode.E.2 DSP Starter KitThe TMS320C6713 DSP Starter Kit (DSK) developed jointly with Spetrum Digi-tal is designed to speed the development of high preision appliations based on TI'sTMS320C6000 �oating point DSP generation. Can be used in the following areas:speeh ompression/deompression, speeh reognition, text-to-speeh, fax/data on-version, modems, protool onversions, tone generation/detetion, and eho anellation[29℄.The C6713 DSK tools inludes the simulators from TI and aess to the Analysis Toolkitvia Update Advisor whih features the Cahe Analysis tool and Multi-Event Pro�ler.Using Cahe Analysis, developers improve the performane of their appliation by op-timizing ahe usage. By providing a graphial view of the on-hip ahe ativity overtime an determine whether the ode is using the on-hip ahe to get good performane.The C6713 DSK uses Real Time Data Exhange (RTDX) for Host and Target om-muniations. The DSK inludes the Run Time Support libraries and utilities suh asFlashburn to program �ash, Update Advisor to download tools, utilities and softwareand a power on self test and diagnosti utility to ensure the DSK is operating orretly.The full ontents of the kit inlude [29℄:
• C6713 DSP Development Board with 512K Flash and 8MB SDRAM
• C6713 DSK Code Composer Studio v2.2 IDE inluding the Fast Simulators andaess to Analysis Toolkit on Update Advisor



DSP Starter Kit 57

Figure E.1: DSP Starter Kit
• Quik Start Guide
• Tehnial Referene
• Customer Support Guide
• USB Cable
• Universal Power Supply
• AC Power Cord(s)E.2.1 FeaturesThe DSK features the TMS320C6713 DSP, a 225 MHz devie delivering up to 1800million instrutions per seond (MIPs) and 1350 MFLOPS. Other hardware features ofthe TMS320C6713 DSK board inlude [29℄:
• Embedded JTAG support via USB
• High-quality 24-bit stereo ode, TI TLV320AIC23 ode
• Four 3.5mm audio jaks for mirophone, line in, speaker and line out
• 512K words of Flash and 8 MB SDRAM
• Expansion port onnetor for plug-in modules
• On-board standard IEEE 1149.1 JTAG interfae for optional emulator debug
• 4 user de�nable LEDs
• 4 position dip swith, user de�nable
• +5V universal power supply



DSP Starter Kit 58E.2.2 Physial Spei�ationsThe TMS320C6713 DSK is designed on a multi-layer printed iruit board using surfaemount tehnology. The printed iruit board measures 8.75 x 4.5 inhes(222 x 115 mm.).The C6713 DSK operates o� +5 volts at 400mA. Its operating temperature range is0-70deg C.E.2.3 SoftwareThe TMS32C6713 DSP an be used through TI's Code Composer Studio DSK devel-opment platform the tool whih run on Windows environment. Code Composer Studiofeatures for the TMS320C6713 DSK inlude [29℄:
• A Integrated Development Environment (IDE), optimizing C/C++ ompiler as-sembler, linker, debugger, and DSP BIOS, an editor for ode reation, data visu-alization, a pro�ler and a �exible projet manager.
• DSP/BIOS real-time kernel
• Target error reovery software



Appendix FSpeeh Signal-Important Features
F.1 Speeh GenerationFigure (F.1) portrays a medium saggital setion of the speeh system in whih we viewthe anatomy midway through the upper torso as we look on from the right side. Thegross omponents of the system are the lungs, trahea (windpipe), larynx (organ of speehprodution), pharyngeal avity (throat), oral or bual avity (mouth), and nasal avity(nose). The pharyngeal and oral avities are usually grouped into one unit referred toas the voal trat, and the nasal avity is often alled the nasal trat. Aordingly, thevoal trat begins at the output of the larynx (voal ords, or glottis) and terminatesat the input to the lips. The nasal trat begins at the velum and ends at the nostrils.When the velum is lowered, the nasal trat is aoustially oupled to the voal tratto produe the nasal sounds of speeh. Air enters the lungs via the normal breathingmehanism. As air is expelled from the lungs through the trahea, the tensed voalords within the larynx are aused to vibrate by the air �ow. The air �ow is hoppedinto quasi-periodi pulses whih are then modulated in frequeny in passing throughthe throat, the oral avity, and possibly nasal avity. Depending on the positions of thevarious artiulators (i.e., jaw, tongue, velum, lips, mouth), di�erent sounds are produed.The lungs and the assoiated musles at as the soure of air for exiting the voalmehanism. The musle fore pushes air out of the lungs and through the trahea.When the voal ords are tensed, the air �ow auses them to vibrate, produing so-alledvoied speeh sounds. When the voal ords are relaxed, in order to produe a sound, theair �ow either must pass through a onstrition in the voal trat and thereby beometurbulent, produing so-alled unvoied sounds, or it an build up pressure behind apoint of the total losure within the voal trat, and when the losure is opened, thepressure is suddenly and abruptly release, ausing a brief transient sound.The three bloks seen in F.2, Generator, Voal trat, and Radiation are indiated. Aswith is shown between the Generator and the Voal Trat, whih separates the gener-ation of voied and unvoied speeh.
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Figure F.1: Shemati View of Human Speeh Prodution Mehanism
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Figure F.2: Blok Diagram of Speeh Prodution.



Pith and Formants 61
Figure F.3: The System Model for the Voal Trat.F.2 Pith and FormantsThe period of the voal ord's output for vowels is known as the pith. Voal ord ten-sion is governed by a ontrol input to the musulature; in system's models we representontrol inputs as signals oming into the top or bottom of the system. Certainly inthe ase of speeh and in many other ases as well, it is the ontrol input that arriesinformation, impressing it on the system's output. The hange of signal struture result-ing from varying the ontrol input enables information to be onveyed by the signal, aproess generially known as modulation.The voal ords' periodi output an be well desribed by the periodi pulse train pT (t) ,with T denoting the pith period. The spetrum of this signal ontains harmonis of thefrequeny 1/T , what is known as the pith frequeny or the fundamental frequeny F0.Before puberty, pith frequeny for normal speeh ranges between 150− 400 Hz for bothmales and females. After puberty, the voal ords of males undergo a physial hange,whih has the e�et of lowering their pith frequeny to the range 80 − 160Hz [27℄. Ifwe ould examine the voal ord output, we ould probably disern whether the speakerwas male or female. This di�erene is also readily apparent in the speeh signal itself.model of voal trat.In the �gure (F.3) The signals l(t), pT (t), and s(t), are the air pressure provided bythe lungs, the periodi pulse output provided by the voal ords, and the speeh outputrespetively. Control signals from the brain are shown as entering the systems from thetop. Clearly, these ome from the same soure, but for modeling purposes we desribethem separately sine they ontrol di�erent aspets of the speeh signal.Simplifying the speeh modeling e�ort and assuming that the pith period is onstant,we ollapse the voal-ord-lung system as a simple soure that produes the periodipulse signal (F.3). The sound pressure signal thus produed enters the mouth behindthe tongue, reates aousti disturbanes, and exits primarily through the lips and tosome extent through the nose. Speeh speialists tend to name the mouth, tongue, teeth,lips, and nasal avity the voal trat. The physis governing the sound disturbanes pro-dued in the voal trat and those of an organ pipe are quite similar. Whereas the organpipe has the simple physial struture of a straight tube, the ross-setion of the voaltrat varies along its length beause of the positions of the tongue, teeth, and lips. These
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Figure F.4: The Ideal Frequeny Response of the Voal Trat for Sounds "oh" and "ee".positions that are ontrolled by the brain to produe the vowel sounds. Spreading thelips, bringing the teeth together, and bringing the tongue toward the front portion ofthe roof of the mouth produes the sound "ee". Rounding the lips, spreading the teeth,and positioning the tongue toward the bak of the oral avity produes the sound "oh".These variations result in a linear, time-invariant system that has a frequeny responsetypi�ed by several peaks, as shown in �gure (F.4).The �gure (F.4) represents the sounds "oh" and "ee" shown on the top left and top right,respetively. The spetral peaks are known as formants, and are numbered onseutivelyfrom low to high frequeny. The bottom plots show speeh waveforms orresponding tothese sounds.These peaks are known as formants. Thus, speeh signal proessors would say that thesound "oh" has a higher �rst formant frequeny than the sound "ee", with F2 beingmuh higher during "ee". F2 and F3 (the seond and �rst formants) have more energyin "ee" than in "oh." Rather than serving as a �lter, rejeting high or low frequenies,the voal trat serves to shape the spetrum of the voal ords. In the time domain,we have a periodi signal, the pith, serving as the input to a linear system. We knowthat the output-the speeh signal we utter and that is heard by others and ourselves-willalso be periodi. Example time-domain speeh signals are shown in (F.4), where theperiodiity is quite apparent.



LPC Order 63F.3 LPC OrderLinear Preditive Coding (LPC) is often used by linguists as a formant extration tool.There are a few important details about LPC that may help avoid ommon analysiserrors. LPC analysis assumes that a signal is the output of a ausal linear system. Italso assumes that the voal-trat system is an all-pole �lter and that the input to thesystem is an impulse train. Beause of these assumptions, LPC analysis is appropriatefor modeling vowels whih are periodi and for whih the voal-trat resonator does notusually inlude zeroes (e.g., in nasalized vowels). The order of an LPC model is thenumber of poles in the �lter. Usually, two poles are inluded for eah formant +2 − 4additional poles to represent the soure harateristis. For adult speakers, averageformant spaing is in the 1000Hz range for males and in the 1150Hz range for females.The LPC order is related to the sample rate of the audio �le: 10000Hz - LPC order
= 12 − 14 (males) and 8 − 10 (females); 22050Hz - LPC order = 24 − 26 (males) and
22 − 24 (females). LPC usually requires a very good speeh sample to work with [30℄.Many reordings done with omnidiretional mirophones ontain too little speeh detailand too muh noise to asertain reliable LPC readings.



Appendix GWorking Proess
G.1 Projet Management1. We deided to use A3 Paradigm to guide us implement our projet

• Appliation
• Algorithms
• Arhiteture2. The six point approah was used throughout the entire projet i.e. questions (6Wmodel) suh as who, what, how, when, whom, why were asked during the entiredisussions and projet implementationG.2 Expetations for the ProjetG.2.1 De�ne the ProblemWe expet to learly de�ne the problem by applying the A3 paradigm and the 6W'smodel.G.2.2 Good ReportWe hope to present a projet that is aeptable to the requirements of the study board, adependable report whih an be referred to anytime, a report that is preise and onise.G.2.3 Meet the DeadlineThe MATLAB program, implementation on DSP Tool Kit and Projet Report shall beready just before the deadline so the neessary heks/reexamination an be arried outwith before presentation



Others 65G.2.4 Share individual InformationGroup members shared new information they found in the ourse of the projet.G.3 OthersThe group improved ommuniationIndividual Responsibility was taken seriouslyG.4 Implementation PlanThe general ideas on how we solved our problems:To share di�erent tasks among group members.To divide whole group into smaller divisions to be able to deal with several tasks at atime.The table G.1 represents the general shedule and milestones for the proposed projet.



Implementation Plan 66

Figure G.1: Implementation Plan
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