ROBUST VOICE ACTIVITY DETECTION
and Noise Reduction Mechanism
USING HIGHER-ORDER STATISTICS

Aalborg University
Institute of Electronic Systems
Department of Communication Technology

Project Group 841, 2005






Aalborg University -

Institute of Electronic Systems JARS

Fredrik Bajers Vej 7 = DK-9220 Aalborg East Phone +45 96 35 87 00
Title: Robust Voice Activity Detector and Noise Reduction
Mechanism Using Higher-order Statistics
Theme: Department of Communications Technology
Project Period: Feburary 2005 to June 2005
Abstract:

. This contribution presents a robust algorithm for

Project Group: voice activity detection (VAD) and noise reduc-

tion mechanism using combined properties of higher-
order statistics (HOS) and an efficient algorithm
to estimate the instantaneous Signal-to-Noise Ratio
(SNR) of speech signal in a background of acous-
tic noise. The Rainer Martin’s algorithm with HOS

841

is capable of robustly tracking non stationary noise
signal. The flat spectral feature of Linear Predic-

Group Members:
tion Coding (LPC) residual results in distinct char-

Michael Yaw Appiah acteristics for the cumulants in terms of phase, pe-

Raimonda Makrickaite riodicity and harmonic content and yields closed-
form expressions for the skewness and kurtosis. The
Milda Gusaite HOS of speech is immune to Gaussian noise and

Sasikanth Munagala t%ns makes them partlcu.larly useful in algorithms de-
signed for low SNR environments. The proposed al-
gorithm uses HOS and smooth power estimate met-

rics with second-order measures, such as SNR and

Supervisors: LPC prediction error, to identify speech and noise
Per Rubak frames. A voicing condition for speech frames is de-
rived based on the relation between the skewness,

Ole Wolf kurtosis of voiced speech and estimate of smooth

urtosis of voiced sp

noise power. The algorithmis presented and its per-

formance is compared to HOS-only based VAD al-

gorithm. The results show that the proposed algo-

Publications: 4 rithm has an overall better performance than HOS
Pages: 69 only, with noticeable improvement in Gaussian-like
Supplement: CD-ROM noises, such. as street and gérage, and high to low
Finished: May 2005 SNR, especially for probability of correctly detect-

ing speech. The proposed algorithm is replicated on
DSK C6713.







Preface

This document reports on the work of group 841 in the 8th semester. This report is
organized into five chapters. The first chapter provides the introduction, the motivation
and the scope of the project. Chapter 2 focuses on the problem analysis; the working
of VAD; the different noises and their effect. The last part of the chapter mentions
the problem statement. In chapter 3, the algorithms are described i.e., the HOS-VAD
algorithm and the Rainer Martin’s algorithm for the estimation of SNR. Chapter 4
discusses the implementation of the algorithms on Matlab its conversion to C code and
later the implementation on the DSK(DSP Starter Kit). Finally, chapter 5 provides the
conclusion and recommendations of the project. All the associated codes can be found
in the companion CD. Several appendices were provided at the end of the report as

references.

Michael Yaw Appiah Raimonda Makrickaite

Milda Gusaite Sasikanth Munagala

Aalborg, June 2005
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Chapter 1

Introduction

In speech communications, noise is fluctuations in and the addition of external factors
to the stream of target information (signal) being received at a detector. It may be
deliberate as for instance jamming of a radio or video signal, but in most cases it is
assumed to be merely undesired interference with intended operations. Many speech
processing system users are familiar with the amount of background noise present in
loud environments. This is because their hands free instruments amplify environment
noise just as much as the conversation that they are trying to follow. Work is ongoing to
suppress background noise as much as possible to positively influence the intelligibility

of the speech in noisy environments.

Although speech processing in artificially constrained conditions has recently reached
high levels of performance, problems still remain in the deployment of speech recogni-
tion technology in the real world. One of the problems is the performance degradation
of speech detection when they are used in noisy environments such as offices, automo-
bile cabins, streets, and computer rooms. Many reasons account to eliminate or reduce
noise from speech signals. However one of the biggest challenges is to avoid removal of
speech components in this process. An approach have been considered for robust speech
detection in this project.

To develop effective robust speech recognition method, noisy speech uttered in the real
world is required and the speech database should contain every possible distortion which
could occur in noisy environments. But it is not feasible to collect speech data in vari-
ous noisy environments. Speech or Voice Activity Detector (VAD), aims to distinguish
between speech and several types of acoustic background noise even with low signal-to-
noise ratios(SNRs).

In the field of multimedia applications, a VAD permits simultaneous voice and data ap-
plications. Similarly, in Universal Mobile Telecommunications Systems (UMTS) [2], it
controls and reduces the average bit rate and enhances overall coding quality of speech.
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In cellular radio systems (for instance GSM and CDMA systems) based on Discontin-
uous Transmission (DTX) mode, this facility is essential for enhancing system capacity
by reducing co-channel interference and power consumption in portable digital devices

31, [4], [5].

It is very difficult to distinguish between noise and silence, in the presence of background
noise, so more efficient and self-sustaining algorithms are needed for speech activity de-
tection and noise reduction in a changing and adverse noise acoustic background. There
are different metrics used for speech detection in VAD algorithms, but recently Higher-
order statistics (HOS) have shown potential results in a number of signal processing
applications, and are of particular value when dealing with a mixture of Gaussian and

non-Gaussian processes and system with non-linearity [1].

1.1 Motivation of Project

The project is motivated by the fact that, combination of HOS and an algorithm pro-
posed in [6][7], yields a better, efficient and robust VAD.

The application of Rainer Martin’s algorithm with HOS to speech processing and specif-
ically to VAD is primarily triggered by:

1. Observation that the smoothed power estimate of a noisy speech signal exhibits
distinct peaks and valleys that is capable of tracking varying noise level during
speech activity. Work in this area' is based on the idea that peak correspond to
speech activity the valleys of smoothed noise is used to obtain the noise power
estimates.

2. The algortihm’s inherent suppression of additive coloured Gaussian noise and phase
preservation properties. It is based on the assumptions that speech has certain HOS
properties that are distinct from those of Gaussian noise.

Finally, the implementation and verification of the algorithm using Texas Instruments
TMS320C6713 DSP Kit (DSK), is itself a motivation for pursuing the project.

1.2 Scope of the Project

The first part of the project involves analyzing the characteristics of the third and
fourth-order cumulants of the LPC residual of speech signals. The flat spectral envelope
of this residual results in distinct characteristics for these cumulants in terms of phase,

periodicity and harmonic content and yields closed-form expressions for the skewness

'Rainer Martin’s algorithm
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and kurtosis based on harmonic speech model.

The proposed algorithm is tested on variety of noise types like the noise present in the
street, car, garage, train at different SNR levels and the performance is compared to the
HOS VAD. To quantify performance, the probability of correctly classifying speech and
noise frames as well as the probability of false classification are computed by making

references to truth marker files in clean speech conditions.

To compute these metrics and generate the noisy speech test cases, a proposed TITA

database material (mentioned in E) is used for the evaluation of VAD algorithms.

The second part of the project involves running the two combined efficient algorithms
using Texas Instruments (TT) Code Composer Studio(CCS) and then implement the
corresponding C program onto the TMS320C6713 DSP Starter Kit (DSK).



Chapter 2

Problem Analysis

This chapter explores and dissects the question to be considered, solved, or answered in
this project. How is additive noise (in the form of gaussian noise) corrupted with clean
speech suppressed or isolated? This is identified as the main question to be explained in

this chapter.

2.1 Voice Activity Detection

2.1.1 Overview

The process of separating conversational speech and silence is called the voice activity
detection (VAD). It was first investigated for use on Time Assigned Speech Interpolation
(TASI) systems. VAD is an important enabling technology for a variety of speech-based
applications including speech recognition, speech encoding, and hands-free telephony.
For these purposes, various types of VAD algorithms were proposed that trade off delay,
sensitivity, accuracy and computational cost.

The primary function of a voice activity detector is to provide an indication of speech
presence in order to facilitate speech processing as well as possibly provide delimiters
for the beginning and end of a speech segment [11]. For a wide range of applications
such as digital mobile radio, Digital Simultaneous Voice and Data (DSVD) or speech
storage, it is desirable to provide a discontinuous transmission of speech-coding param-
eters. The advantage can be a lower average power consumption in mobile handsets,
or a higher average bit rate for simultaneous services like data transmission or even a
higher capacity on storage chips. However, the improvement depends mainly on the
percentage of pauses during speech and the reliability of the VAD used to detect these
intervals. On one hand, it is advantageous to have a low percentage of speech activ-
ity but, on the other hand, clipping of active speech should be avoided to preserve the
quality. This is a crucial problem for a VAD algorithm under heavy noise conditions [12].
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Voice activity detection is important for speech transmission, enhancement and recog-
nition. The variety and the varying nature of speech and background noise makes it
challenging [13|. Earlier algorithms for VAD are based on the Itakura LPC distance
measure, energy levels, timing, pitch, and zero crossing rates, cepstral features, adap-
tive noise modeling of voice signals and the periodicity measure. Unfortunately, these
algorithms have some problems for low SNR values, especially when the noise is non-
stationary. Consistent accuracy cannot be achieved since most algorithms rely on a
threshold level for comparison. This threshold level is often assumed to be fixed or cal-
culated in the silence (voice-inactive) intervals [18]. During the last decade numerous
researchers have studied different strategies for detecting speech in noise and the influ-
ence of the VAD decision on speech processing systems [19].

2.1.2 VAD Algorithm: The Principle

The basic function of a VAD algorithm is to extract some measured features or quanti-
ties from the input signal and to compare these values with thresholds, usually extracted
from the characteristics of the noise and speech signals. Voice-active decision is made
if the measured values exceed the thresholds. VAD in non-stationary noise requires a
time-varying threshold value. This value is usually calculated in the voice-inactive seg-
ments [18].

A representative set of recently published VAD methods formulates the decision rule on
a frame by frame basis using instantaneous measures between speech and noise [19]|. The
different measures which are used in VAD methods include spectral slope, correlation
coefficients, log likelihood ratio, cepstral, weighted cepstral, and modified distance mea-
sures.

A VAD can be decomposed in two steps: the computation of metrics and the applica-
tion of a classification rule. Independently from the VAD method, the operation is a
compromise between having voice detected as noise or noise detected as voice [13]. A
VAD operating in a mobile environment must be able to detect speech in the presence of

conditions it is vital that a VAD should "fail-safe", indicating "speech detected" when
the decision is in doubt so that no clipping is introduced. The biggest difficulty in the
detection of speech in this environment is the very low signal-to-noise ratios (SNRs) that
are encountered. It is impossible to distinguish between speech and noise using simple
level detection techniques when parts of the speech utterance are buried below the noise
[20].

Robust voice activity detection algorithms are required, as traditional solutions present
a high misclassification rate in the presence of the background noise typical of mobile

environments. One important aspect of recent digital cellular systems is the robustness
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of the speech coding algorithms needed for the channel to be used efficiently. They have
to be robust, not only to channel degradation, but also to the background noise typical of
mobile environments [21]. The underlying definition of the robustness can be formulated
as a "VAD is robust if it gives decisions close to a reference in quiet as well as in adverse
environments”. There is introduced a new definition claiming that a VAD is robust
when it gives similar decisions for clean speech and noisy speech. The robustness can be
estimated by taking the VAD’s decision on clean speech as a reference and computing
error statistics of the same VAD applied on noisy speech. The more robust the VAD,
the scarcer the errors [13].

2.1.3 VAD Evaluation

Performance of VAD can be measured in terms of activity and the degree and severity
of clipping. In order to evaluate the amount of clipping and how often noise is detected
as speech, the VAD output is compared with those of an ideal VAD. The performance
of a VAD is evaluated on the basis of the following four traditional parameters [20]:

1. FEC (Front End Clipping): clipping introduced in passing from noise to speech
activity;

2. MSC (Mid Speech Clipping): clipping due to speech misclassified as noise;

3. OVER: noise interpreted as speech due to the VAD flag remaining active in passing
from speech activity to noise;

4. NDS (Noise Detected as Speech): noise interpreted as speech within a silence
period.

Although the method described above provides useful objective information concerning
the performance of a VAD, it only gives an initial estimate with regard to the subjective
effect. It is therefore important to carry out subjective tests on the VAD, the main aim
of which is to ensure that the clipping perceived is acceptable. This kind of test requires
a certain number of listeners to judge recordings containing the processing results of the
VAD’s being tested. The listeners have to give marks on the following features:

1. Quality.
2. Comprehension difficulty.

3. Audibility of clipping.
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These marks, obtained by listening to several speech sequences, are then used to calculate
average results for each of the features listed above, thus providing a global estimate of
the behavior of the VAD being tested. To conclude, whereas objective methods are very
useful in an initial stage to evaluate the quality of a VAD, subjective methods are more
significant. As, however, they are more expensive (since they require the participation of
a certain number of people for a few days), they are generally only used when a proposal
is about to be standardized [21].

One of the primary reason for the use of HOS VAD is to suppress colored noise. The
following section describes briefly about various noises.

2.2 Noise

Noise can be defined as the contamination of the desired signal or the unwanted signal.
Natural and deliberate noise sources can provide both or either of random interference
or patterned interference. Only the latter can be cancelled effectively in analog systems;
however, digital systems are usually constructed in such a way that their quantized sig-
nals can be reconstructed perfectly, as long as the noise level remains below a defined
maximum, which varies from application to application. There are many forms of noise
with various frequency characteristics that are classified by "color" [25].

White noise is a signal (or process) with a flat frequency spectrum. In other words, the
signal has equal power in any band, at any centre frequency, having a given bandwidth.
In practice a signal can be "white" with a flat spectrum over a defined frequency band.
A signal that is "white" in the frequency domain must have certain important statistical
properties in time. For example, it must have zero autocorrelation with itself over time,
except at zero timeshift. The figures (2.2), (2.2) shows that car noise taken for 10000
samples is not white. The periodogram shows that the spectrum is not uniform where as
the randomly generated Gaussian noise has a uniform distribution. The power spectral
density is the smoothed version of the periodogram.

Noise having a continuous distribution, such as a normal distribution, can be white [26].
Gaussian noise is sometimes misunderstood to be white gaussian noise, but this is not
so. Gaussian noise only means noise with pdf' of the Gaussian distribution, which says
nothing to correlation of the noise in time. Labeling Gaussian noise as white describes
the correlation of the noise.

The next most commonly used colored noise is pink noise. Its frequency spectrum is
not flat, but has equal power in bands that are proportionally wide. Pink noise is per-
ceptually white. That is, the human auditory system perceives approximately equal

'"Probability Distribution Function
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clean speech degraded speech
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Figure 2.3: Representation of Additive Noise

magnitude in all frequencies. The power density decreases by -3 dB per octave with
increase in frequency (density proportional to 1/f). There are also many "less official"
colors of noise such as brown, blue, purple, voilet, grey, red, orange, green and black.

2.2.1 Additive Noise

There are many sources of acoustic distortion that can degrade the performance of speech
recognition systems. For many speech recognition applications the most important source
of acoustical distortion is the additive noise [23]. Much research effort in robust speech
recognition has been devoted to compensate the effects of additive noise.

If the speech signal s(k) effected by uncorrelated noise n(k) [24], then the observed signal
in the frequency domain can be expressed as

Y () = X(e7®) + N(el®) (2.1)

If s(t) is the original clean speech signal, the received speech signal y(t) in time domain
can be represented as

y(t) = s(t) x h(t) +n(t) = z(t) + n(t) (2.2)

where h(t) is the impulse response of channel distortion and n(t) the ambient noise. (x)
denotes the convolution operation, and z(t) the noise-free speech as shown in the figure
(2.2.1). Typical structural models for adaptation to variability assume that speech is
corrupted by a combination of additive noise and linear filtering.

In speech processing, the speech is considered as useful data and all other signals are
assumed to be noise. Many algorithms and applications are created to reduce or eliminate
noise from signals, such as Voice Activity Detector.
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2.3 Choice of HOS

In early VAD algorithms, short-term energy, zero-crossing rate and LPC coefficients were
among the common features used for speech detection. Cepstral features, formant shape
and least-square periodicity measure are some of the most recent metrics used in VAD
designs. G.729B VAD has a set of metrics including the line spectral frequencies(LSF),
low band energy, zero-crossing rate and full-band energy.

The short-time energy or spectral energy has been conventionally used as the major
feature parameters to distinguish the speech segments from other waveforms. However,
these features become less reliable and robust in noisy environments, especially in the
presence of non-stationary noise and sound artifacts such as lip smacks, heavy breathing
and mouth clicks etc.[14].

HOS has shown good results in a number of signal processing applications and are of
particular value when dealing with a mixture of Gaussian and non-Gaussian processes
and system nonlinearity. The application of HOS in speech processing is Gaussian sup-

pression and phase preservation properties.

2.4 Problem Statement

The following are some of the problems needed to be solved to satisfy the project goal.

A Matlab & ANSI-C PROGRAM

HOS algorithm implementation.
Implementation of traditional VAD algorithm in [6]
Verification of Algorithm using TTA-Database [8|

==

Convertion and optimization of Matlab code to ANSI-C code.
B DSK IMPLEMENTATION

1. Embedding C code on to TT application specific processor (TMS320C6713)
using Code Composer Studio(CCS).



Chapter 3
Design

The chapter discusses the various algorithms needed to design of robust VAD. The skew-
ness and kurtosis as mentioned in appendices (A, F) of the LPC residual of voiced speech
15 expressed in terms of the number of harmonics M and signal energy. These param-
eters are greater than zero for any practical value of M which is a function of pitch.
The normalized values of skewness and kurtosis are expressed in terms of M. These two
metrics can be used to detect voice. The advantage of using the normalized metrics is
that they are independent of the signal energy and therefore absolute thresholds are used.
The variance of the estimators of the skewness and kurtosis and are normalized to get the
unit-variance estimators. The relation between skewness and kurotsis in voiced speech is
used to identify the speech frames. This forms the basis for the VAD algorithm using
HOS. The appendiz B shows the design in which the project was implemented.

3.1 Detection of Noise Frames using HOS

The skewness and kurtosis of Gaussian noise are zero only in a statistical average sense.
Generally a finite length frames are used, so the decision that a given frame is noise can
only be made in a probabilistic manner with a confidence level that takes into account
the variance and distribution of the estimators of the skewness and kurtosis. Given a
Gaussian process g(n), the estimators of the second, third and fourth-order moments are

L ono1 k
Myy = S0 o) (31)
The above equation is for the estimator of E[{z(n)}]* for the values of k = 2,3,4 and
N is the number of frames under consideration. These estimators are unbiased [1|. For
the case of white Gaussian noise, their mean and variance may be expressed in terms of

the process variance, vy
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E[Ms,] =0
E[My] =3v,
1503
Var[Msg] = Ng
960
Var[My] = Ng

(3.2)

Thus, the estimator of the skewness SK = M3, is unbiased, with zero mean and known
variance. This estimator is the sum of a large number of independent identically dis-
tributed (iid) random variables, then by using central limit theorem, the normalized
version is given by

M
SK,=——29 (3.3)

\/ 1503 /N

is a Gaussian variable with zero mean and unit variance. Thus given the estimate of the
skewness of a frame and the corresponding scaled value denoted by ”a”, the probability

that the frame is Gaussian noise is

Prob[Noise] = Prob||SK,| > a] (3.4)

which is equivalent to computing the area under the tail of the Gaussian curve of
SK, graphically. The area under the tail can be evaluated by erfc(x) function'.
When a = 0 the area under the curve is unity, whereas when a > 0, Prob[Noise] =

2/\V2m [° /2 dz. Thus, Prob[Noise] = erfc(|al).

A negative skewness is not an indication of noise, while the HOS of speech are positive,
since transient segments can have negative HOS. Similarly, the estimator of the kurtosis
is first computed from the second and fourth-order moments. To ensure an unbiased
estimate, the modified estimator is used

KUy = <1 + %)M@ — 3(My,)*. (3.5)

This estimator is unbiased, with zero mean and known variance. The distribution con-

sists of the difference of two variables, one Gaussian and one chi-square. However an
approximation is used here and the estimator is assumed normally distributed.

A unit-variance version of this zero-mean variable is defined as

lerror function
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KUy

3v4
\/%<104+4—]32+%§>

Therefore, given the value of the estimate of the kurtosis of a given frame and the

KUy = (3.6)

corresponding scaled value, denoted by ”b”, the probability of a frame being noise is:
Prob[Noise] = erfc(|b]). The probability of a frame being noise using the normalized
values of the estimates of skewness & kurtosis and the "erfc" function can be determined.

3.1.1 Necessary Condition for Voicing

The skewness and kurtosis of voiced speech are expressed in terms of energy and number
of harmonics and may be used for detecting voiced frames [1]. To eliminate the effect
of energy, one may consider the normalized metrics i.e., y3 and -4, but these metrics
become less effective in the presence of noise, for detecting the voiced frames. Therefore,
the ratio of the appropriate power of the skewness to that of the kurtosis is considered
to eliminate the effect of signal energy, while avoiding the effect of noise.

2 M-—1 2
skewness _ 9( ) (37)

SKR —
4 7
8M [gM — 4+ W}

~ kurtosis!®

SKR Ratio is independent of signal and is only a function of M where M is the number of
harmonics(function of pitch). When Gaussian noise is present, the ratio is undetermined
since both operands are zero. But, this zero condition never occurs due to variance of
the estimators. The SKR ratio may take on any value, including the range for voiced
speech; thus not sufficient enough for detecting voice frames (when transient values in

voice speech).

3.2 HOS-Based VAD Algorithm

The sustained unvoiced speech is shown to have Gaussian-like characteristics, it cannot
be distinguished from Gaussian noise using HOS [1]. But in reality unvoiced speech
occurs at speech transitional boundaries having nonzero HOS. Therefore the VAD de-
tection proposed based on HOS and is formulated as a finite two state machine. The
algorithm combines the use of skewness, kurtosis, their normalized versions 3 and 4,
SNR, LPC prediction error, and SKR ratio for distinguishing speech from noise frames.

The following explains the algorithmic steps:
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1. Data Format:

Speech sampled at 8kHz is used, a tenth-order LPC analysis? is performed once
every 20ms, thus generating a 20ms residual. VAD is carried out every 10ms using
the residual and a 20% overlap.

2. HOS Computations:

Every 10ms iteration, the estimators for the second, third and fourth-order mo-
ments are computed using (3.1) with N = 100. An autoregressive scheme is used
to smooth the estimates of the moments. From these, the unbiased estimate of the
kurtosis (3.5) is deduced. The estimate of the skewness is simply the third-order
moment (3.1). Then they are normalized by the signal energy to give

SK
Y3 = 745
M213b5
” KU,
4 = S5
M22x

(3.8)

3. Noise and SNR Estimation:

The noise power is estimated using frames declared as nonspeech. Moreover, it is
assumed that first three frames are nonspeech and are used to initialize the noise
power estimate. Whenever a frame is declared as nonspeech, its energy is used to

update noise estimate according to an autoregressive averaging

vg(k) = (1 = B)ug(k — 1) + BMax (3.9)

where k is iteration index;

Mosx is frame energy;

vg is estimate of the noise energy;
B is 0.1*Prob[Noise].

At every iteration the current estimate of the noise energy is used to compute the
SNR of that frame.

SNR = Pos [M2X — 1}

. (3.10)

where Pos[z] = x for z > 0 and 0 otherwise. In the above equation My is
the power of the speech corrupted with noise and v, is the noise energy.Since the
residual is low-pass filtered at 2kHz, the above SNR is applicable to the lower
spectrum only. The total SNR is computed using the nonfiltered residual and the
energy of the full band.

refer to appendix C for details
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4. Probability of Noise-only Frames:

Once the skewness and kurtosis are computed, the variance of these estimates are
computed using the noise energy v, according to (3.3) and (3.6), to yield the zero-
mean, unit variance estimates SK, and KUy, respectively. From these two scaled
values, the probability of the frame being noise is deduced

Prob[Noise] = [erfc(a) + erfe(b)]/2 (3.11)
where ¢ and b are the computed values of SK, and KUy, respectively.

5. SKR Ratio:

The ratio is computed directly from the non-normalized estimates of the skewness
and kurtosis

2
SKR = % (3.12)

6. LPC Prediction Error:

The LPC prediction error is the inverse of the prediction gain and may be computed
from the set of the reflection coefficients (r;) generated by the LPC analysis

PE =T12,(1 — %) (3.13)

7. Speech/Noise State Machine:

The VAD algorithm is implemented as a two-state machine as ahown in the figure
(3.1). The following operations are carried out in each state.

(a) Noise State: The noise energy is updated according to the Prob[Noise]
(3.11). The SKR ratio, the Gaussian likelihood (Probability of noise), the
SNR (3.10) and the Probability of error (3.13) values are used to determine
whether the frame is speech. The occurrence of the following three conditions
triggers a transition:

i. Prob[Noise] < Tgaus for two consecutive frames.

ii. SKR in voicing range and (SNR > Tsyg1 or PE < Tpg) indicates a
voiced frame.

iii. Total SNR > Tgnpgo indicates a strong speech frame.

(b) Speech State:
The noise likelihood (3.11) along with the values 3 and 74 (3.8) are used to
determine whether the frame is Gaussian. After a hangover period, transition
to the noise state occurs if Prob[Noise| > Tgqus and 73 < T, and y4 < T,
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Pr[Noise] < T for 2 frames

Either _ _
condition SKRinvoicerange AND (SNR > TSNR_loR PE<T PF_)
Total SNR >T SNR 2
Update
Speech noise energy
and SNR

All threehold [/ PrINOISEl > T
for hangover ¥3< Ty3
period V< Ty4

Figure 3.1: HOS based VAD State Machine

3.3 Estimation of the Instantaneous SNR of Speech Signals

Estimation of the instantaneous SNR is an essential component of speech processing
algorithms which are sensitive to varying noise levels [6]. An instantaneous SNR esti-
mate is based on short time power estimates with time constants of integration in the
range of 0.02 — 0.1s. To acquire noise statistics, the conventional approach to SNR esti-
mation employs a VAD to extract the noise only segments of the disturbed speech signal.

The Rainer Martin’s algorithm, does not need an explicit speech/nonspeech decision to
gather noise statistics and is capable to track varying noise levels during speech activity.
The algorithm is based on the observation that the smoothed power estimate of a noisy
speech signal exhibits distinct peaks and valleys. While the peaks correspond to speech
activity the valleys of the smoothed noise estimate can be used to obtain a noise power
estimate. To estimate the noise floor, the algorithm takes the minimum of a smoothed

power estimate within a window of finite length.

3.3.1 Algorithmic Description

Assume that the bandlimited and sampled disturbed signal z(7) is sum of a speech signal
s(4) and a noise signal n(i), x(i) = s(i)+n(i), where ¢ denotes the time indexand also as-
suming that s(i) and n(i) are statistically independent, E{x?(i)} = E{s?(i)} +E{n%(i)}.

SNR,(i) denotes the estimated signal-to-noise ratio fo signal z(7) at time 7. The algo-
rithm works on a sample basis, i.e. a new output sample SN R,(i) is computed for each
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input sample x(i). The computation of SNR,(i) is based on a noise power estimate
P, (i) which is obtained as the minimum of the smoothed short time power estimate

P,(i) within a window of L samples.

Besides initialization the algorithm is split into three major parts:

Initialize

sample_counter = 0

P, =P

Mmin max

read next sample x(i)
sample_counter += 1

i

update power estimate P (i) ‘

SNRx(i) _  min(ofactor *P"(i) PG )
ofactor *P (i) ¢

compute smoothed power

estimate Px(i)

i

P =P (i)

Mmin

P = min(P ) P()

no

sample_counter >= M

yes

(i+)=P

max

Mmin

i S(PF _
min_vec(r*M) = PMmin

l

Monotonically
increasing power?

Pn(i) = min(min_vec(r*M)),
min_vec((r—1)*M), ..., min_vec((r—W+1)*M))

P () =F

Mmin

Figure 3.2: The Estimation of the Instantaneous SNR of Speech Signals

1. Computation of a smoothed short time power estimate P, (i) of signal z(i)
2. Computation of the noise power estimate P, (i)

3. Computation of the SN R, ()

Figure (3.2) shows the overall flow of RM algorithm.



Estimation of the Instantaneous SNR of Speech Signals 18

1. Computation of a smoothed power estimate
Computation of the short time signal power P.(i) and smoothing of the power
estimate is done in two steps. The power estimate may be obtained recursively
or non-recursively. A sliding rectangular window of length N with N = 128 is
normally used. Let Px(z) denote the smoothed short time power estimate at time
7. Smoothing of the power estimate is done constant is typically set to values
between a = 0.95...0.98. The recursion for ¢ > N is given by (3.14):

P.(i) =P,(i—1)+x()*xz(i) —x(i— N)*z(i—N)
(i) = axPy(i — 1) + (1 — a) * Py(i)
(3.14)

In figure (3.3) the first two parts show the short time signal power and the smoothed
power estimate respectively for the case 67 (speech in car noise environment) for
12000 samples.

2. Noise power estimation
The noise power estimate is shown in the third part of the figure (3.3). The noise
power estimate is based on the minimum of signal power within a window of L
samples. For reasons of complexity and delay the data window of length L is de-
composed into W windows of length M such that M « W = L.

The minimum power of the last M samples is found by a sample wise comparison
of the actual minimum P, (i) and the smoothed power P, (i). Whenever M sam-
ples are read, i.e. ¢ = r % M, the minimum power of the last m samples are stored
and the maximum value of P, (i = r* M) is reset: Pyrmin(i = 7% M+) = Phax

Determination of the noise power is estimated by two cases:

(a) slowly varying noise power,

(b) rapidly varying noise power.

If the minimum power of the last W windows with M samples each is monotoni-
cally increasing, then a rapid noise power variation decision is made. In this case

the noise power estimate equals the power minimum of the last M samples
P, (i) = Pyrmin(i = 7% M).

In case of non monotonic power the noise power estimate is set to the minimum
of the length L window P, (i) = Pprmin(i). The minimum power of the length L
window is easily obtained as the minimum of the last W minimum power estimates:

(3.15)
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Figure 3.3: Power Estimation using Rainer Martin's Algorithm

If the actual smoothed power is smaller than the estimated noise power P, (i) the
noise power is updated immediately independent of window adjustment: P, (i) =

min(Py(i), P (i)).

3. Computation of SNR
The estimated SNR is computed on the basis of the estimated minimum noise power
P,(i). A factor ofactor accounts that the minimum power estimate is smaller than
the true noise power. The range of ofactor is between 1.3 and 2

(3.16)

SNR() = 10 + logyq (Px(z) —min(ofactor * py (i), PI(Z))>

ofactor x P, (i)

The window length L = M x W must be large enough to bridge any peak of speech
activity, but short enough to follow non stationary noise variations. In case of
slowly varying noise power the update of noise estimates is delayed by L + M
samples. If a rapid noise power increase is detected this delay is reduced to M
samples, thus improving the noise tracking capability of the algorithm.

Table (3.1) shows a simple representation of steps in implementing HOS-VAD. Figures
(3.4) and (3.5) shows the system models or the implementation flow for HOS and (RM
+ HOS) Algorithm respectively with both in Matlab and DSK.



Process Input Output Description

Buffering Speech signal Sampled frame The speech signal is represented in a ma-
trix form resulting in the frames

LPC Frame Residual, LPC coefficients Calculates the LPC coefficients and resid-
ual

HOS computations Residual Normalized skewness and nor- | The second, third and fourth order mo-

malized kurtosis ments are calculated and hence the skew-

ness and kurtosis

Estimation of noise | Residual Estimated noise energy and SNR | Noise energy and the SNR are calculated

and SNR

using the frame energy.

Calculation of prob-
ability of noise-only
frames

Normalized skewness and kurto-

sis with respect to Noise energy

Probability of noise only frames

Calculated using the error function of the

normalized skewness and kurtosis.

SKR Ratio

Normalized skewness and kurto-
sis

SKR Ratio

Calculates the SKR ratio

LPC prediction error

Reflection coefficients from the
LPC analysis

LPC prediction error

Calculates the LPC prediction error

Noise state

Probability of noise, SKR ratio,
SNR and probability of error

Frames considered as noise

Depending on the threshold, decision is
made that the frame is noisy.

Speech state

Noise likelihood, normalized

skewness and kurtosis

Frames considered as speech

Frame is decided as speech depending on
the threshold values.

Calculation of the
probabilities

detected

frames, correctly detected noise

Correctly speech

frames, incorrectly classified

speech or noise frames

Probability of correctly detected
speech, noise frames and proba-
bility of false detection

Calculates the probability of correctly de-
tected speech, noise frames and probabil-
ity of false detection P, P, Py

speech’ Cnoise?

Table 3.1: Process Description
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Figure 3.4: System Model of HOS-VAD
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Figure 3.5: System Model using Rainer Martin's Algorithm of HOS-VAD



Chapter 4

Implementation

This chapter describes the implementation of the algorithm mentioned in the previous
chapter, which is done in three steps: designing the algorithm and running the simulations
on Matlab then converting the Matlab code into C code (Conversion to C code was done
in two ways). The resulting C code is then implemented on the Code Composer Studio
which is the interface for the TMS320C6713 DSK.

4.1 Matlab Simulation of VAD Algorithm using HOS

Simulations of the system represent the functionality of the individual process mentioned
in this chapter. In simulation process it was assumed, that some program takes input
signal, frames it in 20ms frames and supplies the result for the simulation. During
simulation algorithm works in real time and only with one frame at a time. Furthermore,
it is assumed that RVAD algorithm using HOS is not only working with the current frame,
but also gets coming samples of the next frame.

4.1.1 Input Signals

The system is simulated with different speech signals':

e Noise contaminated signal i.e., the test cases [§]
e Noise free signal or the clean speech signal

e Mark files or the reference signal

The speech signals consist of the 10 different scenarios of which five are male and five
are female speakers. There are four noise signals used which are Car, Garage, Train
and Street noises. The speech data signals and noise signals are combined in various
ratios and result in 80 different test cases. Each case is a different combination of the

'Refer to appendix E for details of the source of the speech signals
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speech normalization level, the noise type and the SNR. These cases have different SNR
levels of 6dB, 12dB, 18dB and oco. For example, Case 6 is created combining speech file
m1leftl.nom and noise file car.nom added for a SNR of 6dB. These different test cases
form the noise contaminated speech signals as the input for the algorithm. The reference
signal or the mark files were generated for the comparison of the results.

Noisy Speech Signal
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Figure 4.1: Speech Signals with and without Noise

4.1.2 Framing

Frame size is set to 20ms, since the frame length is considered to be between 10ms to
30ms. If the length is less than 10ms, it results in roughness and the frame size more

than 30ms, the perceptual quality is decreased.

4.1.3 Windowing

The windowing length determines the portion of the speech signal that is to be selected.
The ideal window frequency response has a very narrow main lobe which increases the
resolution and decreases the side lobes or frequency leakage. Since an ideal window does
not exist practically so a compromise is made depending on the specific application.

Different windows are available such as rectangular, hanning or hamming window. The
rectangular window has the highest frequency resolution due to the narrow main lobe
and having a large frequency leakage. The large side lobes results in high frequency
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leakage thus the rectangular windowed speech is noisier. So the rectangular window is
not used for spectral analysis of speech. The trapezoidal windows such as hamming
and hanning windows are prominent having smaller frequency leakage but with lower
resolution. Thus produce a smoother spectrum than the rectangular window. Hanning
window is used.

4.1.4 Calculation of the HOS Parameters

In order to detect whether the current frame is speech or non-speech frame, normalized
skewness and normalized kurtosis are estimated for the frames. Those values are counted
according to equation (3.8). For this reason beforehand second, third and fourth order
moments are computed using equation (3.2).

T
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Samples

Figure 4.2: SNR Estimation using Rainer Martin's Algorithm

4.1.5 Calculation of SNR

Calculation of signal-to-noise ratio is performed using the current estimate of noise en-
ergy as in equation (3.10). Noise power is required for estimating noise energy. If the
noise power declares the current frame as non speech then the noise energy is computed
using equation (3.9). Otherwise, noise energy is left unchanged from the previous frame.
After calculation of SNR for each frame, "total SNR" metric is updated.

HOS, Rainer Martin’s algorithm mentioned in (3.3) for estimation of SNR is applied
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to improve VAD algorithm. But SNR estimation using Rainer Martin’s algorithm is
done before LPC as the SNR estimation is utilized sample by sample basis. The SNR
estimation for the first 12000 samples of case 67 is shown in the figure (4.2).

4.1.6 State Machine

After estimation of normalized skewness, normalized kurtosis, SNR, noise probability,
LPC prediction error and SKR, the algorithm decides whether frame is speech or non-
speech. The decision is made using a state machine model, which has two states: noise
and speech state. The current state depends on the previous frame.

If the state machine is in noise state, the verification is done based on whether the
current frame is still noise or not. The decision is made according to the values of noise
probability, prediction error, SKR, SNR and total SNR for the current frame in compar-
ison to the appropriate thresholds set.

If state machine is in speech state, decision is based on whether the current frame is
still speech or not. The decision is made according to the results of noise probability,
normalized skewness and normalized kurtosis for the current frame in comparison to the
appropriate thresholds.
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Figure 4.3: Normalized Skewness and Kurtosis
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4.2 Analysis of the results

The results of algorithm are presented in plots of the computed parameters (figures (4.1)
- (4.10)). The input signal for computations is 100000 samples of case 67 which is com-
bination of female speech and car noise as shown in the figure (4.1).

In this case, the highest peaks in the plots of normalized skewness and normalized kur-
tosis figure (4.3) show speech frames. Combining the results of normalized skewness
and normalized kurtosis the decision is made whether the frame is speech or noise. For
example, the figure (4.4) shows 40 frames of the signal. The signal frames are noise
below 0.5 of skewness and 0.94 of kurtosis amplitude respectively. Frames from 339 to
341 are considered noise because the skewness and kurtosis are below the thresholds.
Furthermore, the frames from 354 to 357 frames are considered as speech, but if the
values are less than the thresholds then the frame is decided as definitely noise. The
frames considered as speech are decided based not only on the skewness and kurtosis,
but also on other thresholds.

Skewness to kurtosis ratio plot shown in the figure (4.5) is one of the parameters which
helps in detecting the speech frame. The high peaks in SKR plot means non gaussian
noise, contrary to normalized skewness and normalized kurtosis plots. Analyzing the
plot, shows that speech frames belong to particular range of amplitude values.

The plots of prediction error and probability of noise depicted in the figures (4.6), (4.7)
respectively show the statistical information about frames. The higher the value of pre-
diction error is, the more likely the frame is noise. The lower the probability of noise the
higher the possibility that frame is speech. Figure (4.8) shows the histogram of frame-
by-frame values of the normalized kurtosis generated for 6250 frames of LPC residual
signal. Another histogram is generated for the normalized kurtosis for the randomly
generated Gaussian noise before LPC filtering. These histograms show the difference in
the fourth-order statistics between speech and Gaussian noise. It shows that the speech
utterance contains silence periods when kurtosis is zero as shown in the figure.

Based on all of the above parameters, the effectiveness of algorithm is evaluated and
three performance metrics are computed. P,Speech is probability of correctly detecting
speech frames, computed as the ratio of correct speech detections to the total number of
hand-labeled speech frames. P.Noise is probability of correctly detecting noise frames,
computed as the ratio of correct noise detections to the total number of hand-labeled
noise frames. Py is probability of false detection, computed as the ratio of incorrectly
classified speech or noise frames to the total number of frames. Table 4.1 shows evalu-
ation of car noise signal with SNR 0dB. As there is no speech in this signal, therefore
P_.Speech is not counted.

In addition, reference files for speech signal were made comparing results of algorithms
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with true VAD. Decision whether frame is speech or non-speech, is made according to
frame energy. If it is above threshold then frame is speech otherwise frame is silence. In
reference plot speech is considered as one and silence has zero. Figures (4.9)and (4.10)
show the plots of HOS-VAD and RM + HOS VAD algorithms respectively. Both algo-
rithms were compared to each other to evaluate its effectiveness.

Different Noise environments such as street, garage, car and noise with different SNR
levels were used and its corresponding P.Speech, P.Noise, P; were calculated as shown
in the table (4.2).

As mentioned earlier, P.s and Py are calculated based on the thresholds set for the
detection whether the speech frame is speech or not. The thresholds vary for different
noise environments and even for the different SNR levels. The thresholds were fixed and
could not be made adaptive because adaptive thresholds did not give expected results.
The main focus was set on the probability of detecting the frames as speech to be high
because speech detected as noise is not acceptable.

It can be inferred from the table that the overall performance of RM-HOS VAD is
better than that of HOS-VAD. For example, RM-HOS produced more acceptable results
for CAR noise for 18dB, the P.Speech is as high as 99% as compared to that of 97% for
HOS VAD. Similarly the metrics for the other noise environments can be analyzed from
the table (4.2)
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Noise Environment || Pc Speech (%) || Pc Noise (%) Pt (%)
Type SNR || RM HOS VAD || RM HOS VAD || RM HOS VAD
Car 0dB || 91.2668 8.7332

4.3 C Coding

Table 4.1: 0 dB SNR for CAR Noise

In this project, the conversion of Matlab code to C code was performed in two different

techniques. At first, there was attempt to convert Matlab code directly to C using

Matlab compiler. Later there was written the plain C code.

4.3.1 Using Matlab

for conversion

To write a DSP compatible ANSI C code, Matlab Compiler and Matlab C++ were used.
Below are the steps by which Matlab code is converted to C code.

e Installing libraries, which are needed during compilation. To do this

»mbuild -setup command is used.

e Copying M-files of algorithm to a working directory.

e Converting M-files to C using Matlab compiler. To do this mec command is used.

Generated C code can be compiled by any ANSI C compiler. Wrapper files can

also be generated to interface betweeen converted code and executable type.

Not all Matlab M-files can be converted to C using Matlab compiler. There are these

restrictions:

e M-files containing scripts

e M-files that use objects

M-files that load files

M-files that use Matlab commands input or eval

M-files that use Matlab command exist with 2 input arguments

The RM+HOS C code (converted with Matlab) has the following functions:



Noise Environment

Pc Speech (%)

Pc Noise (%)

Pf (%)

Type SNR || RM HOS VAD HOS VAD || RM HOS VAD HOS VAD || RM HOS VAD HOS VAD
Street 18 dB || 95.73766 95.02624 || 98.61536 95.27732 || 19.33330 19.94640
Street 12 dB || 96.41824 94.81300 || 93.52636 97.22586 | 24.49698 24.24436
Street 6 dB || 95.90054 96.27360 || 89.79290 94.24034 | 26.80592 29.57412
Garage 18 dB || 92.62478 90.89854 || 93.81738 96.50380 || 16.34816 17.41288
Garage 12 dB || 96.76172 91.22174 || 98.18864 96.31108 | 21.21978 21.28208
Garage 6 dB || 97.89894 92.55860 || 96.54834 98.21720 || 25.47020 29.88722
Car 18 dB || 99.35094 97.49856 || 98.45012 93.31110 || 21.46160 23.55938
Car 12 dB || 94.00594 90.20506 || 96.38050 96.81272 || 21.76148 21.59166
Car 6 dB || 95.47264 93.12092 || 96.97286 94.75996 || 26.49182 27.59700
Train 18 dB || 93.01504 94.18450 || 94.08644 97.72330 || 18.26398 19.86844
Train 12 dB || 97.90404 86.78462 || 97.32174 98.22220 || 22.33514 23.31566
Train 6 dB || 94.83100 92.81294 || 92.21040 94.00732 || 26.79338 29.6381

Table 4.2: P/s and Pjs for the HOS based VAD

Suipo) D

4%
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e C code consists of the following highest level functions/headers
rt_hos vad mainhg.c : main function for evaluation purpose.
rt_hos_vad.c : real time RM-+HOS function.
rt _hos vad.h : real time RM+HOS header.

e The following files contain global definitions, constants and other related subrou-
tines:
hanning.c : Hanning window function
Ipc.c : General linear predictive implementation function
poly2rc.c : onversion of Ipc coefficients to reflection coeff. function
levinson mex interface.c : Levinson-durbin solution function

buffer mex interface.c : buffering signal vector function

Most C files have their respective header files. All other subroutines and definitions can
be found in companion CD attached to this report.

4.3.2 C code of the algorithms

Due to the problems encountered with C code converted from Matlab, new HOS and
RM+HOS ANSI-C code were written for the implementation on DSK. These programs
use input file, which contains 16-bit data, stored in high-byte/low-byte word format.

HOS program contains the following basic functions:

o Hanning Window: This function generates Hanning window of the set size. Differ-
ent from Matlab C code, the Hanning window here is without zero padding.

e SignalFraming: Function forms current frame of the set size.

e LP(C: This Linear Predictive Model function uses AutoCorrelation and Levinson-
Recursion functions. It generates linear prediction and reflection coefficients.

e AllPoleFilter: Function generates residue from current frame and linear prediction
coefficients.

e HOSCompute: Function for Higher Order Statistics.

e (GetVgSNR: It estimates noise energy and signal-to-noise ratio.

e (GGetSKR: Function estimates skewness-to-kurtosis ratio.

e PredictionError: 1t computes LPC prediction error using reflection coefficients.

o StateMachine: This function implements two-state machine used for deciding
whether a frame is speech or noise.
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RM-+HOS program consists of such basic functions:
o HanningWindow: this function generates Hanning window of the set size. Differ-
ently from Matlab code this function is used without zero padding.
e SignalFraming: function forms current frame of the set size.

e LPC: Linear Predictive Model function which uses AutoCorrelation and Levinson-
Recursion functions. In result it generates linear prediction and reflection coeffi-
cients.

e AllPoleFilter: function generates residue from current frame and linear prediction
coefficients.

e HOSCompute: function for Higher Order Statistics.

e RainerMartin: function estimates signal-to-noise ratio using to Rainer Martin’s
algorithm to estimate the instantaneous SNR of speech signal.

e (GetSKR: function computes skewness-to-kurtosis ratio.
o PredictionError: it estimates LPC prediction error using reflection coefficients.

o StateMachine: this is the function, which implements two-state machine for decid-
ing whether frame is speech or noise.

Both programs give results by printing them to command window.
The full code of both programs can be found in a CD, attached to this report.

4.4 Implementing the C Code onto the DSK Board

4.4.1 Objective

This section describes the implementing of the ANSI-C code on TI C6713 DSK?. The C
code files were created as explained in section 4.3.1. Several related C files are added to
the code studio composer (CCS) environment. Related dependences to each C files are
linked accordingly. A suitable library setting (for e.g in the program used rts6700.1ib)
is also linked to the whole application project. Further, optimum configuration settings
are triggered and the program is built or compiled to check for any syntax errors. The
program is then loaded into the C6713 DSK Kit and executed.

2Refer to appendix ?? for the DSK description



Implementing the C Code onto the DSK Board 35

4.4.2 The Code Composer Studio

1. Algorithm Test on DSK
The algorithm test aims to confirm the operation of the Matlab generated ANSI-C
code on the DSK. The input signal (clean speech corrupted with noise) is win-
dowed to frames. The parameters of interest are the output of the state machine
model. The output from the DSK (in the form of displaying variables, flashing
LED or sound production) should confirm with the output obtained from Matlab

simulation.

2. Configuration

3 employed in configuration of CCS, prior to the test involved

One of the schemes
using a strictly non C mode. This permitted some level of tolerance during program

execution to avoid unforeseen 'low-level” error. Other schemes involves:

Setting the RTDX 4 mode to Simulator.

Using far calls and data memory models

Using far RTS ° calls

e Deactivation of the of the assembly language
The schemes were modified as shown in the figures (4.11) and (4.13).

3. Problems during Algorithm Testing
It was found that the program successfully loads onto the C6713 DSK, but could
not run. One reason for that was: Trouble running target processor:
"Memory map error: write access by default....”. One of the possible solutions is
to increase the size of the memory or use an external memory. Figure (4.12) shows
that the memory settings were extended to 0x00800000HEX. Even these attempts
and others failed to solve the problem. This problem should be considered for

future investigation.

Since the implementation of Matlab converted code failed, the decision was made to

write algorithms in C code manually.

4.4.3 C Code on DSK

The new HOS-VAD C code was used for the implementation onto the DSK board. In
this case, several changes were made in the code:

e HOS-VAD program on DSK does not use any input data. The signal of 400 samples
is used as program’s global variable. The input of data from file or microphone
could not be implemented on DSK.

build options, settings from the CCS
“Real Time Data Exchange
’Run-Time Support
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Figure 4.11: Configuration Scheme using Little Endian
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e The additional function was written for estimation of the complementary error. C
program uses the in-built erfc() function. Differently from ANSI-C, CCS does not
have this function. For this reason, HOS-VAD code for DSK was supplemented

with the function for estimation of complementary error.

CCS HOS-VAD algorithm program was successfully compiled, build and then loaded
onto the board for testing. After computation results were displayed in CCS stdout win-
dow, it was proved that the program is working correctly.

The full code of this program can be found in the CD, which is attached to this report.

4.4.4 Optimizing Program

Due to time constraints, each of the C source code could not be examined and check for
potential areas for improvements [31]. However, the following solutions can be considered
for improvement:

Iteration path from the memory points (Potential Pointer Aliasing Informa-
tion):

It involves examining and replacing duplication of loops by checking for dependency or
common use of registers. The reason is that CCS IDE often assigns more than one regis-
ter to the same loop in a code, thereby creating an image of the same loop. These images
need to be removed by checking the assembly code and replacing multiple registers with

a single register to improve execution speed.

Alternatively, the program can pass more information to the compiler to improve its
performance. This steps will reduce cycles per iteration 5 times.

Balancing resources with dual-data path:

Generally, CCS runs faster with the even number of binary operations (register oper-
ations). One way to balance an odd number of operations is to unroll the loop. For
example, if there are 231 number of matrix columns, then instead of 231 memory ac-
cesses, the optimized project uses the even number of memory accesses, may be 462.

This will reduce cycles per iteration by approximately 6.7 times.

Packed data optimization of memory bandwidth:

By analyzing a feedback path in the C code, it can be observed that the memory accesses
limit the resources the most. It is found that one single 32-bit load instruction effectively
performs two 16-bit loads. This is called Packed Data Processing.

By setting the CCS to use single 32-bit load instruction effectively reduces cycles per
iteration by 10 folds.
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Conclusions

The objective of this project is to exploit the properties of higher-order statistics and
Rainer Martin’s algorithm for implementing a robust algorithm for voice activity detec-

tion and noise reduction mechanism in the presence of noise.

Firstly, the HOS also unveiled the following important properties about cumulants whose
relevance goes beyond the goal of VAD application.

e Third order HOS for a Gaussian signal is zero but skewness and kurtosis of voiced
speech are nonzero, so may be used as a basis for speech detection or voicing clas-
sification. When normalized by the appropriate power of the signal energy, these
metrics are independent of signal levels. This makes them convenient as detectors
since absolute thresholds may be used.

e Ratio of the appropriate powers of the skewness to that of the kurtosis of voiced
speech is independent of signal energy and is confined to a small range for any
practical range of the pitch.

e Unvoiced speech in the LPC residual may not be modeled as a harmonic process

but rather as a general white process.
Secondly, the Rainer Martin’s algorithm revealed the following important properties:

e Varying noise levels have a significant impact on the performance of many speech
processing algorithms. It is accurate for medium to high SNR conditions but
necessarily biased when no speech is present.

e A priori knowledge of noise variation and noise correlation is helpful to adapt win-
dow length and to control the estimation bias.
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Unlike other reported work in the area of HOS for speech, a more fundamental approach
is taken here whereby analytical derivations were first deduced based on a speech model,
thus providing a basis for justifying or refuting the experimental findings.

The rationale for considering the LPC residual is its flat spectral envelope which makes
the higher order cumulant derivations for speech more tractable and allows quantifying

the bias and variance of the HOS estimators for Gaussian noise.

The Rainer Martin’s and Higher Order Statistics algorithm (RM + HOS) were combined

together and used for experimental simulations.

5.1 Implementation with Matlab and DSK

Experimental simulations demonstrates the underlying speech model are valid for voiced
speech.

The relation between the (RM + HOS) metrics is used as a condition for an improved
detection. Consequently, smooth noise power and HOS estimates are derived for the case
of Gaussian noise and is used to quantify the likelihood of a given frame being noise. The
resulting algorithm combines (RM + HOS) metrics with second-order measures, such as
low-band and full-band SNR and the LPC prediction error, to classify frames into one
of the two states.

Different noise scenarios were chosen for the performance of VAD algorithm for both
the techniques. It can be clearly noted that RM+HOS has better performance even at
low SNR values because the algorithm uses the previous samples for the detection of
SNR of the present samples which makes it more adaptive for the estimation of the noise
in the speech signal.This process helps in better prediction of speech and noise frames.

Compared to HOS-VAD, the proposed algorithm is based on a more analytical frame-
work. It is computationally and conceptually complex and uses a similar parameter set,
but gives more improved results. Even though the complexity is high, the results were
much better even in the low SNR scenarios.

The proposed algorithm was implemented on C6713 DSK. Two-state machine results
from C6713 DSK for 300 samples were similar to those obtained from Matlab simula-
tion. The performance in noise of the two algorithms shows the (RM + HOS) based
VAD has superior performance to HOS-VAD in terms of a higher probability of correct
speech, noise classification and a lower probability of false classification. This fact sug-
gests that (RM + HOS) based methods have potential in yielding VAD algorithms that
would highly promote the current state of the art VAD applications. The work how-
ever does not claim these statistics to be superior in and by themselves to second-order
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statistics. They provide additional information about the signal that is immune to the

presence of noise, and that makes them particularly effective in low SNR applications.

Clearly, successful algorithms are those that can combine the two approaches and exploit

the advantages of both.

5.2

This

Future work

area includes:

Investigating the combination of more metrics and tuning the algorithm with
speech recorded in more diverse noise environments.

Implementation of the frequency version of Rainer Martin’s algorithm using spec-
tral subtraction techinque.

Examining reasons why ANSI-C code (converted with Matlab) did not execute on
the DSK even though it compiled and ran without error on a standard ANSI-C
compiler.

Developing the synthesis filter for (RM + HOS) based VAD (if it theoritically
possible).

Optimizing the DSP compatible ANSI-C code of the algorithm to ensure faster
execution time.
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Higher Order Spectra and Statistics

The estimation of the power spectral density or simply the power spectrum of discrete-
time deterministic or stochastic signals has been a useful tool in digital signal processing.
Power spectrum estimation techniques have proved essential to the creation of advanced
radar, sonar, communication, speech, biomedical, geophysical and other data processing
systems [9].

In power spectrum estimation, the signal under consideration is processed in such a way
that the distribution of power among its frequency components is estimated. Thus the
phase relations between frequency components are suppressed. The information con-
tained in the power spectrum is essentially that which is present in the autocorrelation
sequence; this is sufficient for the complete statistical description of the Gaussian signal.
However, in the practical situations we look beyond the power spectrum of a signal to
extract information regarding deviations from Gaussianity and the phase relations.

Autocorrelation | C(T)

Computation A0 Cyw)  (Power Spectrum)

Third-Order T, T,
Statistics
Computation

Eyf]

C;(‘*’l » @) (Bispectrum)

Discrete-Time Signal, X(k)

TIME DOMAIN Fourth-Order | Cj(T; 1,0 T)
Statistics
Computation

Ey]

c;( @, 0y, W) (Trispectrum)

nth—-Order (SIS
Statistics
Computation

CR(® v Qy)  (nth-order spectrum)

Figure A.1: The Higher-order Spectra Classification Map of the Discrete Signal X(k). F[] denotes
n-dimensional Fourier Transform
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Higher order spectra(also known as polyspectra) defined in terms of higher order statis-
tics (cumulants) of a signal, do contain such information. Particular cases of higher order
spectra are the third-order spectrum also called bispectrum which is, by definition, the
Fourier transform of the third-order statistics, and the trispectrum (fourth-order spec-
trum) which is the Fourier trasnform of the fourth-order statistics of a stationary signal.
The power spectrum is, a member of a class of higher order spectra classification map
of a given discrete-time signal. Higher-order statistics and spectra of a signal can be
defined in terms of moments and cumulants, Moments and moment spectra can be very
useful in the analysis of deterministic signals whereas cumulants and cumulant spectra
are of great importance in the analysis of stochastic signals [22].

Higher—Order Spectra
or Polyspectra

Cummulant Spectra Moment Spectra
Stochastic Signals Deterministic Signals
— Stacionary — Periodic
—Nonstacionary — Aperiodic

Figure A.2: The Polysepctra Classification Map

The motivations behind the use of higher-order spectra in signal processing are [22].

1. Suppress additive colored Gaussian noise of unknown power spectrum, the bis-
pectrum also suppresses non-Gaussian noise with symmetric probability density
function(pdf).

2. Identify non-minimum phase signals.
3. Extract information due to deviations from Gaussianity.

4. Detect and characterize nonlinear properties in signals as well as identify nonlinear

systems.

A.1 Applications

The applications of polyspectra [22] are in the fields of oceanography, geophysics, sonar,
comunications, biomedicine, speech processing, radioastonomy, image processing, fluid
mechanics, economic time series, plasma physics, sunspot data and so on. Procedures
were developed based on polyspectra for deconvolution(or equalization) and signal de-
tection, for the identification of nonlinear; nonminimum phase; and spike-array type
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processes; for parameter estimation; and detection of quadratic phase coupling, and for
detection of aliasing in discrete-time stochastic signals.

A.2 Definitions and Properties

This section gives the introduction of the definitions, properties and computation of
higher-order statistics, i.e., moments and cumulants, and their corresponding higher-
order spectra [1][9][10].

If X(k),k=0,+1,4+2,43,... is a real stationary discrete-time signal and its moments

up to order n exist, then

me (11,72, ..oy Tn—1) = B{X(K)X(k+71)...X(k+Th-1)} (A1)

represents the nth order moment function of the stationary signal, which depends only
on the time difference 7,70,...,7—1,7% = 0,4 — 1,... for all 4. Clearly, the 2nd-
order moment function, mj(7;), is the autocorrelation of X (k) whereas m% (7, 72) and

mj (71, T2, T3) are the 3rd- and 4th-order moments, respectively.

The nth-order cumulant function of a non-Gaussian stationary random signal X (k) can

be writen as ( for n = 3,4 only):

Cr(T1, T2y oy Ty — 1) =my (11,72, .o, Tn—1) — mg(Tl,Tg, ey Tn—1) (A.2)

where mZ(7y,...,T,_1) is the nth-order moment function of X (k) and m&(ry,..., T 1)
is the nth-order moment function of an equivalent Gaussian signal that has the same
mean value and autocorrelation sequence as X (k). For Gaussian signal,

mﬁ(Tl,...,Tn_l):mg(Tl,...,Tn_l) (AS)

and thus ¢ (7, 72,...,7—1) = 0. Although the equation (A.3) is only true for orders
n=3and 4, ¢ (1,72,...,Tn—1) = 0 for all n if X (k) is Gaussian. Relationships between
moment and cumulant sequences of X (k) exist for orders n = 1,2, 3,4.

1st-order cumulants:

¢ =mi =E{X(k)} (mean value) (A4)
2nd-order cumulants:
&(r) =mi(m) — (m¥)? (covariance sequence)
= m3(—m1) — (m)* = 5 (~71)

(A.5)

where m%(—m;) is the autocorrelation sequence. Thus, the 2nd order cumulant sequence

is the covariance while the 2nd-order moment sequence is the autocorrelation.
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3rd-order cumulants:

c5(r1,m2) = m§(r1,72) = mi[m3(m1) +m5(r2) + m3 (11 — 7)) + 2(m7)° (A.6)

where m% (7, 72) is the 3rd-order moment sequence.

4th-order cumulants:

ms(1e).m5 (13 — 71)

)
+m§(7'3) + m2(7'3 — 7'1) + mg(Tg — TQ)
+m(ry — 71)] — 6(m{)"*

(A7)

If the signal X (k) is zero mean mj = 0, and follows from the equations (A.5),(A.6)
that the second and third order cumulants are identical to the second and third order
moments, respectively. But to generate the fourth order cumulants, we need knowledge
of the fourth-order and second-order moments in equation (A.7).

ci(r1,m2) = mi(m1, 79, 73) — mz(11).m5 (13 — 72)
mé(m2).m& (13 — 1) — mE(13).mE (12 — 11).
(A8)

By putting 71 = 72 = 73 = 0 in equations (A.5), (A.6), (A.7) and assuming m{ = 0, we
get

v = E{z®(k)} = (
& = E{z3(k)} = ¢5(0,0) (skewness)
¢ = E{z*(k)} — 3[13]? = ¢£(0,0,0) (kurtosis)

0) (variance)

(A.9)

Normalized kurtosis is defined as 7§ /[y§]2. Equation (A.9) gives the variance, skewness
and kurtosis measures in terms of cumulants at zero lags.
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Design Considerations

The overall system analysis and design strategy is shown in the figure (B.1). The de-
sign process is divided into five domains. Beginning with the problem analysis, where
indepth analysis of the problem is presented. As the time advances, the problem and the
requirements specified in problem domain are represented in application, algorithmic and
architectural domains. In qualitative domain, the quality control analysis of the finished
system s presented, defining the quality control criteria and looks at the external system.
Finally, conclusion analyses the design process in all aspects. The overall design process
and the interaction among the different domains is iterative.

Problem domain analysis deals with the information required to design the system, the
need for such a design and the main purpose of the design. The modeling of problem
domain, allows many possibilities which can be used directly or indirectly in order to
collect information about the problematic situation.

Application domain mentions about the system usage and analysis of the system. The
requirement includes system functions and interfaces with its environment. Application
domain and the problem domain have a strong interaction between them. Problem do-
main analysis gives the requirement to model the system behaviour and thus the system
functions and interface requirements are defined. Due to a strong interaction between
the two domains, the order of the domain analysis can be interchanged, but it depends

on real situation and user requirements.

Algorithmic domain answers the question about the main task of the system. These
algorithms developed and analyzed are the heart of the system. After careful analysis
of the problem and application domain, algorithmic domain follows. Algorithms are de-
veloped keeping in view of the requirements, which are generated in the problem and
application domains. Algorithm development or selection of a suitable algorithm from
different available algorithms mainly depend upon the problematic situation description
in problem domain analysis. As the project is with respect to Voice Activity Detection
using Higher order statistics, the concept of higher order statistics is explained. All the
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Figure B.1: Design Model

considered algorithms are simulated using Matlab on system models and real signals and
the results were analyzed.

Architectural domain gives the information regarding the technical platform. This do-
main shows the mapping of the algorithm in a specific architecture TMS320C6713. For
a selected algorithm there may be many solutions. The selection of the architecture
even depends on the specific application and the design. In the project implementation
there was no architecture constraint as the DSK kit was provided. Both algorithmic and

architectural domains observe the system from inside.
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Linear Prediction Coding (LPC)

LPC is considered as one of the most powerful techniques for speech analysis. In fact,

this technique is the basis of other more recent and sophisticated algorithms that are used

for estimating speech parameters, e.g., pitch, formants, spectra, vocal tract and low bit

representations of speech. The basic principle of linear prediction, states that speech can

be modeled as the output of a linear, time-varying system excited by either periodic pulses

or random noise figure (C.1). These two kinds of acoustic sources are called voiced and

unwvoiced respectively. In this sense, voiced emissions are those generated by the vibration

of the vocal cords in the presence of an airflow and unvoiced sounds are those generated

when the vocal cords are relazed.

IMPULSE
TRAIN VOCAL-TRACT
GENERATOR PARAMETERS
VOICED /
UNVOICED Utn) TIME VARYING
SPEECH
DIGITAL FILTER
RANDOM
NOISE h
GENERATOR

Figure C.1: Speech Synthesis Generated with the LPC Model

Consider the following equation,

s(n)=ais(n — 1) + azs(n —2) + ...+ aps(n —p) (C.1)
where a1, as,...,a, are constant coefficients. The previous equation can be transformed
by including an excitation term Gu(n) to:

P
s(n) = Z a;s(n —1i) + Gu(n) (C.2)
i=1

S(n)
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where G is the gain and u(n) the normalized excitation. Transforming equation (C.2)
to the z-domain we obtain

S(z) =) aiz"'S(z) + GU(2) (C.3)
=1

and consequently the transfer function will be:

S(z) 1 _ 1 (C.4)

HE) = G0 " TS e~ 402)

that corresponds to the transfer function of a digital time varying filter. The main param-
eters that can be obtained with the LPC model are: the classification of voiced /unvoiced,
the pitch period, the gain and the coefficients a1, ..., a,. It is important to note that,
the higher the order of the model is, the best the all-pole model allows a good represen-
tation of the speech sounds. A linear predictor with coefficients aj is defined with the
polynomial P(z):

p
P(z)=> apz " (C.5)
k=1

whose output is:

$(n) =) aps(n—k) (C.6)
k=1

The prediction error e(n) is defined as:

e(n) = s(n) —3(n) = s(n) = > _aps(n — k) (C.7)
k=1

that is the output of a system A(z) = 1 —>_7_ arz~" and if ay = ax we have then
H(z) = %. The main goal is to obtain the set coefficients a; that minimizes the
square of the prediction error in a short segment of speech (typically 10-30ms) frames.

The mean short time prediction error per frame is defined as:

En=> ep(m)=[sn(m) = apsn(m—k))* (C.8)
m k=1

where s,(m) is a segment of speech selected in the neighbourhood of a sample n :
sn(m) = s(m + n), the value of the coefficients aj that minimizes the error E,, can be
obtained considering

% =0, 1=1,2,...,p that result in the next equation:
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an(m—z’)sn(m):ZcﬁCan m—i)sp(m—Fk),1 <i<p (C.9)
l

where a;, are the values of a; that minimizes F,.

Defining ¢, (i, k) =, sn(m — i)sp(m — k), equation (C.9) can be written as

p
> argnlik) = ¢n(i,0),  i=1,2,...,,p (C.10)
k=1

This is a system of p equations with p variables that can be solved to find the ay
coefficients for the segments s,,. It can be demonstrated that:

P P
En:Zs,%(m - akZSn(m—k) (C.11)
m k=1 k=1
and in the compact form:
E, = ¢,,(0,0) Zakgbn (0, k) (C.12)

Now, the values E,(i,k) have to be obtained for 1 < i < p, 1 < k < p, and the a;
coefficients are obtained by solving equation (C.10). Equation (C.12) system can be
solved using the following:

e Autocorrelation Method

e Covariance Method

C.1 All Pole Model

Linear prediction and autoregressive modeling are two different problems that can yield
the same numerical results. In both the cases, the ultimate goal is to determine the
parameters of a linear filter. However, the filter used in each of the problems is different.

In the case of linear prediction, the intention is to determine an FIR filter that can
optimally predict future samples of an autoregressive process based on a linear combi-
nation of past samples. The difference between the actual autoregressive signal and the
predicted signal is called the prediction error. Ideally, this error is white noise.

For the case of autoregressive modeling, the intention is to determine an all-pole IIR
filter, that when excited with white noise produces a signal with the same statistics as
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the auto-regressive process that is tried to model.

Consider the equation (C.13):

P q
S(n):—Zaks(n—k)+GZblu(n—Z) 1<k <p, 1<i<q (C.13)
k=1 1=0

if b = 0, then the model is referred to as an all pole model or autoregressive model(AR)
model. (If a; = 0, it becomes an all zero model). In such a model, the signal s[n] can
be assumed as a linear combination of the previous values and some input u[n]:

p
s(n) = — Z ars(n — k) + Gu(n) (C.14)
k=1

Where G is the gain factor. We can also reduce the transfer function H(z) in (C.12) to
an all pole model transfer function:

= (C.15)




Appendix D

TIA Database

Telecommmunications Industry Association (TIA) standard TIA/EIA-136-250 de-
scribes definitions, methods of measurement, minimum delay and performance require-
ments for voice activity detectors(VADs). This standard applies to mobile stations oper-

ating in the discontinous transmission(DTX) mode.

This standard consists of ten speech data files, ten truth mark files corresponding to
each speech file and four background noise files. This standard defines the minimum
performance levels for the VAD; but the manufacturer should attempt to provide the

highest possible level of performance [8].

D.1 Test Cases

Test cases have been chosen to exercise the range of VAD processing. Ten speech data files
and four noise data files are combined in various ratios to yield 80 cases. Normalization
values are in units of dBov! and SNR values in units of dB relative to speech.

Source Speech Material

The speech material consists of 10 conversational data files of which five are male and five
are female speakers. Each file contains 16 bit PCM data, stored in high-byte/low-byte
word format, sampled at a rate of 8kHz, Modified-TRS? filtered, and normalized to an
average level of -26dBov.

Source Noise Material

The noise material consists of four data files. The files contain noise stored as 16-bit PCM
words in high-byte/low-byte format, sampled at a rate of 8kHz, Modified-IRS filtered,
and normalized to an average level of -26dBov.

'Sound level in decibels with respect to 16-bit overload
?Modified Intermediate Reference System which refers to the characteristic spectral shaping of speech
signals by the telephone network
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D.2 Test Procedure

The section describes the procedure to verify that the VAD implementation meets the
minimum performance requirements. The procedure for testing VAD for compliance to
the standard consists of the following steps:

1. Generate a test data file of the 80 test cases.
2. Process the test data files with the VAD and produce the mark files.
3. Generate VAD performance metrics for each of the test cases.

4. Evaluate performance metrics for compliance with thresholds.

A software tool was provided to perform the file generation, performance metric calcu-
lation, and evaluation (steps 1,3,4 respectively). The C source code file for the objective
VAD evaluation tool is ove.c. Step 2 is the execution of the VAD-HOS algorithm.

Generation of Performance metrics

The speech frames are divided into three categories: onset, steady-state, and offsets.
Onsets are made up from the first three frames of speech in the beginning of the utterance,
offsets are the last three frames, and the steady-state speech frames are those in between.
Counts are kept on the number of times the VAD mark agrees with the truth marks for
the each category as well as the number of frames in each category. The counts are
collected only when the local SNR exceeds -15dB. The local SNRs are calculated with
the equation:

SNR(n) = 10log; (espeech(n)/enoise(n)> (D.1)

where n is current frame index,
espeech(n) is energy of the current speech at frame n,
enm'se(n) is energy of the current noise at frame n.

A delta voice-activity factor (6 VAF) metric is computed as the difference between the
VAF and the true VAF divided by the true VAF, where the voice-activity factor is the
number of frames called speech divided by the total number of frames [8]. The four
performance metrics are:

e Probability of clipping speech onsets.
e Probability of detecting steady-state speech.
e Probability of clipping speech offsets.

e Normalized difference in the VAD’s voice-activity factor from truth.
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Evaluation of Performance metrics

The performance statistices are accumulated to produce 12 evaluation categories, one
for each normalization and SNR level combination. Each categories has four metrics
listed in the above section, resulting 48 performance metrics. Each metrics represents
the average of over all cases with the same normalization and SNR.

The evaluation mode of the ove software tool reads the concatenated output generated
by the performance tool and computes evaluation metrics [8]. The evaluation tool then
outputs 3 tables in the following order: the thresholds, the evaluation metrics for the
VAD, and a table indicating pass or fail for each metric.If the metric meets the threshold,
the character p is output; and, if not, the difference between the VAD and threshold is
printed. The clipping and voice-activity thresholds are maximums, while the detection
thresholds are minimums.



Appendix E

TMS320C6000 Platform

E.1 Overview

The TMS320C6000 platform consists of the TMS320C64x and TMS320C62x fixed-point
generations as well as the TMS320C67x floating-point generation. These platforms are
for broadband infrastructure, performance audio and imaging applications. The C6000
DSP platform’s performance ranges from 1200 to 8000 MIPS for fixed-point and 600 to
1800 MFLOPS for floating point |28].

E.1.1 Platform Highlights

e Optimized for good performance and of use in high-level language programming
with three device generations. Fixed-point performance ranges from 1200 to 8000
MIPS and floating-point performance from 600 to 1350 MFLOPS.

e Memory, peripherals and co-processor are combined to meet the needs of targeted
broadband infrastructure, performance audio and imaging applications.

e Software compatibility across all C6000 devices.

E.1.2 Code-Compatible Generations

The TMS320C6000 platform consists of three code-compatible device generations:

TMS320C64x: The C64x fixed-point DSPs has clock rates of up to 1GHz, C64x DSPs
can process information at rates up to 8000 MIPS. The built in extensions include new
instructions to accelerate performance in key application areas such as digital communi-
cations infrastructure, video and image processing [28].

TMS320C62x: These first-generation fixed-point DSPs enables new equipments and
energizes existing implementations for multi-channel, multi-function applications, such
as wireless base stations, remote access servers (RAS), digital subscriber loop (xDSL)

systems, personalized home security systems, advanced imaging/biometrics, industrial

scanners, precision instrumentation and multi-channel telephony systems.
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TMS320C67x: The C67x floating-point DSPs has the speed, precision, power savings
and dynamic range to meet a variety of design needs. These DSPs are used in applications
like audio, medical imaging, instrumentation and automotive.

E.1.3 C Compiler

The C6000 DSP platform gives a good performance C language engine with a compiler
for the architecture to sustain maximum performance while speeding design development
time for high-performance applications. The C compiler/optimization tools balances
code size and performance to meet the needs of the application.

E.1.4 C6000 Signal Processing Libraries and Peripherals Drivers

The Signal Processing and the Chip support libraries contain a collection of high-level,
optimized DSP function modules and help to achieve good performance than standard

ANSI C code.

E.2 DSP Starter Kit

The TMS320C6713 DSP Starter Kit (DSK) developed jointly with Spectrum Digi-
tal is designed to speed the development of high precision applications based on TI’s
TMS320C6000 floating point DSP generation. Can be used in the following areas:
speech compression/decompression, speech recognition, text-to-speech, fax/data con-
version, modems, protocol conversions, tone generation/detection, and echo cancellation

29].

The C6713 DSK tools includes the simulators from T1I and access to the Analysis Toolkit
via Update Advisor which features the Cache Analysis tool and Multi-Event Profiler.
Using Cache Analysis, developers improve the performance of their application by op-
timizing cache usage. By providing a graphical view of the on-chip cache activity over
time can determine whether the code is using the on-chip cache to get good performance.

The C6713 DSK uses Real Time Data Exchange (RTDX) for Host and Target com-
munications. The DSK includes the Run Time Support libraries and utilities such as
Flashburn to program flash, Update Advisor to download tools, utilities and software

and a power on self test and diagnostic utility to ensure the DSK is operating correctly.
The full contents of the kit include [29]:

e C6713 DSP Development Board with 512K Flash and 8MB SDRAM

e (6713 DSK Code Composer Studio v2.2 IDE including the Fast Simulators and
access to Analysis Toolkit on Update Advisor
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E.2.1 Features

The DSK features the TMS320C6713 DSP, a 225 MHz device delivering up to 1800
million instructions per second (MIPs) and 1350 MFLOPS. Other hardware features of
the TMS320C6713 DSK board include [29]:

e Embedded JTAG support via USB

e High-quality 24-bit stereo codec, TT TLV320AIC23 codec

Four 3.5mm audio jacks for microphone, line in, speaker and line out

e 512K words of Flash and 8 MB SDRAM

Expansion port connector for plug-in modules

On-board standard IEEE 1149.1 JTAG interface for optional emulator debug

4 user definable LEDs

4 position dip switch, user definable

+5V universal power supply
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E.2.2 Physical Specifications

The TMS320C6713 DSK is designed on a multi-layer printed circuit board using surface
mount technology. The printed circuit board measures 8.75 x 4.5 inches(222 x 115 mm.).

The C6713 DSK operates off +5 volts at 400mA. Its operating temperature range is
0-70deg C.

E.2.3 Software

The TMS32C6713 DSP can be used through TI’s Code Composer Studio DSK devel-
opment platform the tool which run on Windows environment. Code Composer Studio
features for the TMS320C6713 DSK include [29]:

e A Integrated Development Environment (IDE), optimizing C/C++ compiler as-
sembler, linker, debugger, and DSP BIOS, an editor for code creation, data visu-
alization, a profiler and a flexible project manager.

e DSP/BIOS real-time kernel

e Target error recovery software



Appendix F

Speech Signal-Important Features

F.1 Speech Generation

Figure (F.1) portrays a medium saggital section of the speech system in which we view
the anatomy midway through the upper torso as we look on from the right side. The
gross components of the system are the lungs, trachea (windpipe), larynx (organ of speech
production), pharyngeal cavity (throat), oral or buccal cavity (mouth), and nasal cavity
(nose). The pharyngeal and oral cavities are usually grouped into one unit referred to
as the vocal tract, and the nasal cavity is often called the nasal tract. Accordingly, the
vocal tract begins at the output of the larynx (vocal cords, or glottis) and terminates
at the input to the lips. The nasal tract begins at the velum and ends at the nostrils.
When the velum is lowered, the nasal tract is acoustically coupled to the vocal tract
to produce the nasal sounds of speech. Air enters the lungs via the normal breathing
mechanism. As air is expelled from the lungs through the trachea, the tensed vocal
cords within the larynx are caused to vibrate by the air flow. The air flow is chopped
into quasi-periodic pulses which are then modulated in frequency in passing through
the throat, the oral cavity, and possibly nasal cavity. Depending on the positions of the
various articulators (i.e., jaw, tongue, velum, lips, mouth), different sounds are produced.

The lungs and the associated muscles act as the source of air for exciting the vocal
mechanism. The muscle force pushes air out of the lungs and through the trachea.
When the vocal cords are tensed, the air flow causes them to vibrate, producing so-called
voiced speech sounds. When the vocal cords are relaxed, in order to produce a sound, the
air flow either must pass through a constriction in the vocal tract and thereby become
turbulent, producing so-called unvoiced sounds, or it can build up pressure behind a
point of the total closure within the vocal tract, and when the closure is opened, the
pressure is suddenly and abruptly release, causing a brief transient sound.

The three blocks seen in F.2, Generator, Vocal tract, and Radiation are indicated. A
switch is shown between the Generator and the Vocal Tract, which separates the gener-
ation of voiced and unvoiced speech.
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F.2 Pitch and Formants

The period of the vocal cord’s output for vowels is known as the pitch. Vocal cord ten-
sion is governed by a control input to the musculature; in system’s models we represent
control inputs as signals coming into the top or bottom of the system. Certainly in
the case of speech and in many other cases as well, it is the control input that carries
information, impressing it on the system’s output. The change of signal structure result-
ing from varying the control input enables information to be conveyed by the signal, a
process generically known as modulation.

The vocal cords’ periodic output can be well described by the periodic pulse train pp(t) |
with T denoting the pitch period. The spectrum of this signal contains harmonics of the
frequency 1/7, what is known as the pitch frequency or the fundamental frequency Fy.
Before puberty, pitch frequency for normal speech ranges between 150 — 400 Hz for both
males and females. After puberty, the vocal cords of males undergo a physical change,
which has the effect of lowering their pitch frequency to the range 80 — 160Hz [27]. If
we could examine the vocal cord output, we could probably discern whether the speaker
was male or female. This difference is also readily apparent in the speech signal itself.

model of vocal tract.

In the figure (F.3) The signals [(t),pr(t), and s(t), are the air pressure provided by
the lungs, the periodic pulse output provided by the vocal cords, and the speech output
respectively. Control signals from the brain are shown as entering the systems from the
top. Clearly, these come from the same source, but for modeling purposes we describe
them separately since they control different aspects of the speech signal.

Simplifying the speech modeling effort and assuming that the pitch period is constant,
we collapse the vocal-cord-lung system as a simple source that produces the periodic
pulse signal (F.3). The sound pressure signal thus produced enters the mouth behind
the tongue, creates acoustic disturbances, and exits primarily through the lips and to
some extent through the nose. Speech specialists tend to name the mouth, tongue, teeth,
lips, and nasal cavity the vocal tract. The physics governing the sound disturbances pro-
duced in the vocal tract and those of an organ pipe are quite similar. Whereas the organ
pipe has the simple physical structure of a straight tube, the cross-section of the vocal
tract varies along its length because of the positions of the tongue, teeth, and lips. These



Pitch and Formants 62

__ 30 — 30
% uohu I
- 20 2014, \ \
g : | | 1 | [
Z of pY ol e
% ro ! | [ [
= o ' ! P oL 1 1 [
— | | | | | 1 | | |
o ro ! . l | l [
g 10r | Lo 10 Vo
C% (I 1 1 1 | | | o
20 L . . I R T R . -20 o ; ; o .
o ! o 5000 0 5000
FiF2 F3 F4F5 F1 F2 F3 F4F5
Freguency (Hz) Freguency (Hz}
05 : . — 05 : : —
oh ee”
Li]
o
Z 0 0
o
E
<
05 -

0 0005 001 0015 002 0 0005 001 0015 002
Time (s} Time (s)

Figure F.4: The Ideal Frequency Response of the Vocal Tract for Sounds "oh" and "ee".

positions that are controlled by the brain to produce the vowel sounds. Spreading the
lips, bringing the teeth together, and bringing the tongue toward the front portion of
the roof of the mouth produces the sound "ee". Rounding the lips, spreading the teeth,
and positioning the tongue toward the back of the oral cavity produces the sound "oh".
These variations result in a linear, time-invariant system that has a frequency response
typified by several peaks, as shown in figure (F.4).

The figure (F.4) represents the sounds "oh" and "ee" shown on the top left and top right,
respectively. The spectral peaks are known as formants, and are numbered consecutively
from low to high frequency. The bottom plots show speech waveforms corresponding to
these sounds.

These peaks are known as formants. Thus, speech signal processors would say that the
sound "oh" has a higher first formant frequency than the sound "ee", with F2 being
much higher during "ee". F2 and F3 (the second and first formants) have more energy
in "ee" than in "oh." Rather than serving as a filter, rejecting high or low frequencies,
the vocal tract serves to shape the spectrum of the vocal cords. In the time domain,
we have a periodic signal, the pitch, serving as the input to a linear system. We know
that the output-the speech signal we utter and that is heard by others and ourselves-will
also be periodic. Example time-domain speech signals are shown in (F.4), where the

periodicity is quite apparent.
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F.3 LPC Order

Linear Predictive Coding (LPC) is often used by linguists as a formant extraction tool.
There are a few important details about LPC that may help avoid common analysis
errors. LPC analysis assumes that a signal is the output of a causal linear system. It
also assumes that the vocal-tract system is an all-pole filter and that the input to the
system is an impulse train. Because of these assumptions, LPC analysis is appropriate
for modeling vowels which are periodic and for which the vocal-tract resonator does not
usually include zeroes (e.g., in nasalized vowels). The order of an LPC model is the
number of poles in the filter. Usually, two poles are included for each formant +2 — 4
additional poles to represent the source characteristics. For adult speakers, average
formant spacing is in the 1000H z range for males and in the 1150H z range for females.
The LPC order is related to the sample rate of the audio file: 10000Hz - LPC order
= 12 — 14 (males) and 8 — 10 (females); 22050Hz - LPC order = 24 — 26 (males) and
22 — 24 (females). LPC usually requires a very good speech sample to work with [30].
Many recordings done with omnidirectional microphones contain too little speech detail
and too much noise to ascertain reliable LPC readings.



Appendix G

Working Process

G.1 Project Management

1. We decided to use A3 Paradigm to guide us implement our project

e Application
e Algorithms

e Architecture

2. The six point approach was used throughout the entire project i.e. questions (6W
model) such as who, what, how, when, whom, why were asked during the entire

discussions and project implementation

G.2 Expectations for the Project

G.2.1 Define the Problem

We expect to clearly define the problem by applying the A3 paradigm and the 6W’s
model.

G.2.2 Good Report

We hope to present a project that is acceptable to the requirements of the study board, a
dependable report which can be referred to anytime, a report that is precise and concise.

G.2.3 Meet the Deadline

The MATLAB program, implementation on DSP Tool Kit and Project Report shall be
ready just before the deadline so the necessary checks/reexamination can be carried out

with before presentation
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G.2.4 Share individual Information

Group members shared new information they found in the course of the project.

G.3 Others

The group improved communication

Individual Responsibility was taken seriously

G.4 Implementation Plan

The general ideas on how we solved our problems:
To share different tasks among group members.

To divide whole group into smaller divisions to be able to deal with several tasks at a

time.

The table G.1 represents the general schedule and milestones for the proposed project.
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Implementation Plan
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Figure G.1: Implementation Plan
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