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SOLUTION OF SOME PROBLEMS IN THE THEORY OF
PROBABILITIES OF SIGNIFICANCE IN AUTOMATIC
TELEPHONE EXCHANGES

First published in ‘“Elektroteknikeren” Vol. 13 (1917) p. 5.

Summary. — Sections 1—7. First main problem: Systems without
waiting arrangements. (Two different presuppositions.) Accompanied by
Tables 1, 2, 3. Sections 8—9. Second main problem: Systems with waiting
arrangement. (Two different presuppositions.) Accompanied by Tables
4,5,6,7. Sections 10—12. Approximative methods, references, conclusion.
Accompanied by Table 8.

1. First Main Problem. — Let us suppose that an automatic system
is arranged in such a manner that there are provided x lines to take a
certain number of subscribers. These z lines are said to be co-operative,
or to constitute a “group” (or “team’). It is presupposed that all the lines
disengaged are accessible. At present we will only speak of systems with-
out waiting arrangements, 5. e. systems in which the subscriber, when he
finds that all x lines are engaged, replaces the receiver, and does not
try to get connection again immediately. The probability of thus finding
the lines engaged is called the loss, or degree of hindrance, and is here
designated by B. With respect to the length of the conversations (some-
times called the holding-time), we will (for the present) suppose that it
is constant, and it will be convenient to consider this quantity equal to 1
(““the natural time-unit’’). With respect to the subscribers’ calls, it is as-
sumed that they are distributed quite accidentally throughout the time in
question (e. g. that part of the day when the heaviest traffic usually
occurs). This presupposition does not only imply that there must not be
points of time within the period of time in consideration at which it may
be expected in advance that there will be exceptionally many or few
calls, but also that the calls must be mutually independent. In practice
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these presuppositions will, with great approximation, be fulfilled. The
average number of calls per time-unit (intensity of traffic) is called y. The
ratio of y to , 4. e. the traffic intensity per line, is designed by o; it is
often called the efficiency of the group. We have to determine B (as a
function of ¥ and z). The exact expression for this is as follows:

yx
P
B= W

y oy y*
1+T!+ 21+"'+&T

as proved in the following sections (2—5).

2. The following proof may be characterised as belonging to the ma-
thematical statistics, and is founded on the theory of “statistical equilib-
rium” — a conception which is of great value in solving certain classes
of problems in the theory of probabilities. Let us consider a very great
number of simultaneously operating groups of lines of the previously
described kind (number of lines x, traffic intensity y). If we examine a
separate group at a definite moment, we may describe its momentary
condition by stating, firstly, how many of the z lines (0, 1, 2, .... z) are
engaged; and secondly, how much there is left of each of the conver-
sations in question. If we examine the same group a short time dt later,
we will find that certain changes of two different kinds have ta.ken' place.
On the one hand, the conversations which were nearly finished will now
be over, and the others have become a little older. On the other hand,
new calls may have been made, which, however, will have significance
only if not all the lines are engaged. (The probability of & new call during
the short time di is ydi.) We assume that we examine in this manner not
only one group, but a very great number of groups, both with respect
to the momentary condition and the manner in which this alters. The
state, of which we thus can get an accurate description, if we use a suf-
ficiently large material, has the characteristic property that, notwith-
standing the aforesaid individual alterations, it maintains itself, and,
when once begun, remains unaltered, since the alterations of the different
kinds balance each other. This property is called ‘“‘statistic equilibrium”.

3. Temporarily as a postulate, we will now set forth the following
description of the state of statistical equilibrium. A

The probabilities that 0, 1, 2, 3, .... z lines are engaged are respec-
tively—



140 A. K. Erlang:

. 1 :
7 ;5’0:1 y Z\/Z . T
+‘i‘!-‘|"a+ S +’F
< 1
M T y yg . y:u
1+ “‘+”_‘+--'+“.*’
1! !
¥ )
. 5 (2)
2 = 2 z
Yy vy Y
+i+?!+ +};T
yrc
z!
Sm:l U S
11 2! ' -zl

where the sum of all the probabilities is 1, as it should be. And we fur-
ther postulate for each of the x+1 aforesaid special conditions, that
the still remaining parts of the current conversations (‘‘remainders’)
will vary quite accidentally between the limits 0 and 1, so that no spe-
cial value or combination of values is more probable than the others.

4. We shall prove that the thus described general state is in statistical
equilibrium. For that purpose we must keep account of the fluctuations
(increase and decrease), during the time d¢, for the z -+ 1 different states,
beginning with the first two. The transition from the first state S, to the

second state S, amounts to
Sy ydt,

while the transition from the second S, to the first §, amounts to
Sy - dt.

These quantities are according to (3) equal and thus cancel each othel
Furthermore, the amount of trans1t1on from S to 8, is:

Sl Jdtﬁ

and, conversely, the transition from S , to 8§y is:
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Sy 2-di,

which two quantities also are equal and cancel each obher
Finally, we have
Sm—l A dt
and

S, - x-di,

€T

. which also cancel each other. The result is that the reciprocal changes
which take place between the x + 1 different states during the time dt,
compensate each other, so that the distribution remains unaltered. We
still have to prove that neither will there be any alterations in the dis-
tribution of the magnitude of the remainders, 7. e. that the decrease and
increase, also in this respect, compensate each other.

5. Let us consider the cases in which the number of current conver-
sations is n, and among. these cages, more especially those in which the
magnitudes of the n remainders lie, respectively, between the following
limits: ’

: t, and ¢; + Al,

t, and ty, + 4,,

t, and ¢, + 4,,.

The probability of this is (according to Section 3):
4,-dy-dy ... 4,8,

During the time d¢ there may occur, in four different ways, both increase
and decrease.
Firstly, transition to 8, .,; namely, if a call arrives; the probablhty of
this will be:
411-412-413 oo 4,08,y - di.

Secondly, transition from S, ,,; namely, if one among the n 41
current conversations finishes during the time df, and, thereafter, the
n remainders lie between the above settled limits. The corresponding
probability is: :
d,-dy-dy...4,(n +1)8, - dt,

which is equal to the preceding one. A
"Thirdly, transition from S, itself; namely, if, among the n remainders,
the n — 1 lie between the settled limits, and the one lies just below the
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lower limit in question, at a distance shorter than di. The probability for
this will be:

o
A, -4, 4y ... An<——~—l-
4,

1 1
AZ—I— ...+Z)Sn ')dt.

Fourthly, transition to S, itself; namely, if, among the n remainders,
the n — 1 lie between the settled limits, and the one lies just below the
upper limit, at a distance shorter than d¢. The probabﬂlty of this eventu-
ality is obviously equal to the preceding one.

Thus, there is a balance. So it is proved by this that there will be
statistical equilibrium. On the other hand, any other supposition than
the one set forth in Section 3 will at once be seen to be inconsistent with
statistic equilibrium. The formulee in Section 3 are now proved, and thereby
the proposition in Section 1 is also proved. '

6. The above presupposition, that all conversations are of equal length,
applies with. great approximation to trunk-line conversations, but not,
of course, to the usual local conversations. Now, a statistic investigation,
which I have undertaken, shows that the duration of these conversations
is ruled by a simple law of distribution, which may be expressed as fol-
lows: ‘ ,

The probability that the duration will exceed a certain time = is equal to

: A — ,

when the average duration is taken to be equal to 1, as before. Or, in
other words, the probability that a conversation which has been pro-
ceeding for some time is nearly finished, is quite independent of the length
of the time which bas already elapsed. The average number of conver-
sations finished during the time di (per current conversation) will be
equal to di. It is now easy to see that we must arrive at the same ex-
pression (1) for B as under the former presupposition, only that the proof
becomes somewhat simpler, because it is necessary to take into account
only the number of current conversations without paying any attention
to their age. (It will appear from the following that the two aforesaid
presuppositions do not lead to the same result in all problems.)

7. In Table 1 are shown some numerical values of the “loss” B as
dependent of  and y (or «), and as given by the proposed theory.

In Table 2 the results of formula (1) are presented in another form,
which is probably the one that is most useful in practice; z and B are
here entry numbers, and the table gives y as a function of x and B.

In Table 3a only the first and second lines treat of systems with, ‘“‘pure’
groups (to which formula (1) applies). The values given in the third line
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Table 1.
Values of the Loss, or Grade of Service, B. (Formula (1), Section 1).

@ a Y B

1 0.1 0.1 0.091
1 0.2 0.2 0.167
2 0.1 0.2 0.016
2 0.2 0.4 0.054
2 0.3 0.6 0.101
3 0.1 0.3 0.003
3 0.2 0.6 0.020
3 0.3 0.9 0.050
3 0.4 1.2 0.090
4 0.1 0.4 0.001
4 0.2 0.8 0.008
4 0.3 1.2 0.026
4 0.4 1.6 0.056
5 0.2 1.0 0.003
5 0.3 1.5 0.014
5 0.4 2.0 0.037
5 0.5 2.5 0.070
6 0.2 1.2 0.001
6 0.3 1.8 0.008
6 0.4 2.4 0.024
6 0.5 3.0 0.052
8 0.3 2.4 0.002
8 0.4 3.2 0.011
8 0.5 4.0 0.030
10 0.3 3 0.001
10 0.4 4 0.005
10 0.5 5 0.018
10 0.6 6 0.043
10 0.7 7 0.079
20 0.4 8 0.000
20 0.5 10 0.002
20 0.6 12 0.010
20 0.7 14 0.030
30 0.5 15 0.000
30 0.6 18 0.003
30 0.7 21 0.014
40 0.5 20 0.000
40 0.6 24 0.001
40 0.7 28 0.007

143
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Table 2.

Values of the intensity of traffic, ¥, as a function of
the number of lines, x, for a loss of 1, 2, 3, 494,

:v 1% 2 %40 3 %0 4 %40
1 0.001 £ 0.002 0.003 0.004
2 0.046 0.065 0.081 0.094
3 0.19 0.25 0.29 0.32
4 0.44 0.53 0.60 0.66
5 0.76 0.90 0.99 1.07
6 1.15 1.33 1.45 1.54
7 1.58 1.80 1.95 2.06
8 2.05 2.31 2.48 2.62
9 2.56 2.85 3.05 3.21
10 " 3.09 3.43 3.65 3.82
11 3.65 4.02 4.26 4.45
12 4.23 4.64 4.90 5.11
13 4.83 5.27 5.56 5.78
14 5.45 5.92 6.23 6.47
15 6.08 6.58 6.91 7.17
16 6.72 7.26 7.61 7.88
17 7.38 7.95 8.32 8.60
18 8.05 8.64 9.03 9.33
19 8.72 9.35 9.76 10.07
20 9.41 10.07 10.50 10.82
25 12.97 13.76 14.28 14.67
30 16.68 17.61 18.20 18.66
35 20.52 21.56 29.93 22.75
40 24.44 25.6 26.3 26.9
45 28.45 29.7 30.5 31.1
50 32.5 33.9 34.8 35.4
55 36.6 38.1 39.0 39.8
60 40.8 42.3 43.4 44.1
65 45.0 46.6 47.7 48.5
70 49.2 51.0 52.1 53.0
75 53.5 55.3 56.5 57.4
80 57.8 59.7 61.0 61.9
85 62.1 64.1 65.4 66.4
90 66.5 68.6 69.9 70.9
95 70.8 73.0 74.4 75.4
100 75.2 71.5 78.9 80.0
105 79.6 82.0 83.4 84.6
110 84.1 86.4 88.0 89.2
115 88.5 \ 91.0 92.5 93.7
120 93.0 95.5 97.1 98.4
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Table 3 a.
The “Loss” (in /o) by 8 different arrangements (one with “Grading and Interconnecting”).

y 3 4 5 6 7 8 9 10 11 12

1) = 10, with 10

contacts ...... 08 | 53 | 184|431 — | — | — — — —
1) z = 18, with 18
contacts ...... — | — | — | — | 02] 09|29 7.1 | 14.8| 26.5
3),x = 18, with 10
contacts ...... — | — | — | — | 11 {38174 ]151]|26.8]|42.8
Table 3 b. »
Values of o and y by different arrangements for a loss of 1 9/,.
a Y
2 = 10; 10 contacts .............. 0.31 :3».1
r=18; 10 - ... ... . 0.38 6.9
x=o003; 10 - ... 0.50 —

correspond to a different system, in which a special arrangement, the
so-called “‘grading and interconnecting”, is used. We may describe this
arrangement as follows: ,

The number of contacts of the selectors (here ten) is less than the
number of lines (here eighteen) in the “group”. Thus each call searches
not all eighteen but only ten lines. It is hereby presupposed (for the sake
of simplicity) that the ten lines are each time accidentally chosen, out
of the eighteen, and that they are tested one after the other according
to an arbitrary selection. The method of calculation here to be used may
be considered as a natural extension of the method which leads to for-
mula (1), but it is, of course, a little more complicated. A few results of
this kind of calculating are given, in the two Tables 3 a and 3 b. Finally, I
want to point out that the systems for “grading and interconnecting”’
being used in practice at present, which I, however, do not know in de-
tail, are said to deviate a little from the description given here, and,
therefore, it may be expected that they will give somewhat less favour-
able results. )

8. Second Main Problem. — The problem to be considered now con-
cerns systems with waiting arrangements. Here, the problem to be solved
is determining the probability S (> n) of a waiting time greater than
an arbitrary number n, greater than or equal to zero. The last case is
the one which is most frequently asked for. In the same manner we

10
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define S (< n) where S (< n) + S (> n) = 1. Furthermore, we may ask
about the average waiting time M. We shall answer these questions in
the following. Here, too, we may begin by assuming that the duration
of the conversations is constant and equal to 1. The accurate treatment
of this case gives rise to rather difficult calculations, which, however, are
unavoidable. Among other things, we find that we cannot use the same
formula for § (> n) for all values of n, but we must distinguish between
the various successive ‘“‘periods’, or spaces of time of the length 1. In
practice, however, the first period will, as a rule, be the most important.
T shall content myself by giving, without proof, the necessary formule
for the cases of # = 1, 2, and 3, and then (chiefly for the purpose of show-
ing the possibility of carrying out the practical calculation) the corre-
sponding numerical results, also for z =1, 2, 3. Formule and results
for z = 1 have already been published in an article in “Nyt Tidsskrift
for Mathematik”, B, 20, 1909. The formuls for greater values of z, e. g.
x = 10, = 20 are quite analogous to those given here.

COLLECTION OF FORMULAE

Presupposition: the duration of conversations is constant and equal to 1
Denotations:

x is the number of co-operating lines
y is the intensity of traffic (average number of calls during unit of time)

S (> m) is the probability of a waiting time greater than =
8 (< n) is the probability of a waiting time less than, or equal to n
ny =2
2—y =1u
z— 2y = v, et cetera.
M = the average waiting time.
I. Formulae for the case of z = 1:
a) First period, 0<n<l:
S(< In’) = a’O : ez;
where Gy =1—a
b) Second period, 1 <mn < 2:
S (< n) = (by—bou) €
by = aye¥
by =0,

where k {
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c¢) Third period, 2<n <3:
S(<n) =(c,—ow + dog?) e

[ ¢y = (by—bey) ¢
where 1y =b,
l co = by
et cetera.
1 1 a
M= ((L=by) (1 —0) + (1 —dg) +...) = -
Y 2 l—a

II. Formulae for the case of x — 2:
a) First period, 0<n<l:
S(<n) = (a,— ag) e

. a
a, = 2 (1l —a) -
where B
Gy =—2(1—a) "
B denoting the negative root of the equation
Bem B = _—qgee,

b) Second period, 1 <n < 2:
S (< n) — (bs —byu + 3 byu? — & byu?) e*

I by = (a1 —awy) ¢

' b, = aye¥
where 2 0
b, =a,
by =a,

¢) Third period, 2 < n < 3:

S(<n) = (cs—c@w + b e —Eow® + o C1ot — 18, cg0%) €

65 = (bg— by ++ 0> —+ boy?) e
Cy = (by—byy + Fboy?) e
where 03 = by
Cs = by
¢, = by
¢y = by
et cetera.

M= S () (1—b) 4 (1=t (1—a5) - (—dg) - () ...}

<
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III. Formulae for the case of x = 3
a) First period, 0 <n<<1l: '’

S(<n) = (a,—az + 5 ap?) &

" R P —
where 2 @y =—3(1—a) (ai_(ﬁ_)(_%%_;)
By
= 3(l—a)— T
¢ R Py
as ‘B-g"‘ﬁ:a.e—a_k

oy.-e—yza.e_a.k2

We understand by & a complex value of f/ L.

b) Second period, 1 <n < 2:
§ (< m) = (by— by + } by —+ byu® + 7z byut — k3 byd) e

by = (@a—ayy + ¥ agy?) ¢’
by, = (@, —agy) ¢’
where by = o
by = ay
by = a,
by = ay

¢) Third period, 2 <= < 3:
| S(<n) =

1 2, 1 1. L 1 1 1
(03—07’0—|—§06’00'— §Cs03 3 1C 0 —T355Cg0° F7ige v — 551 06V 155y icov®)e’,

ey = (bs—bgy + T by — & byy® + T byt — 1 bey®) e’
¢; = (by—bgy + 3 boy? — 4 by 2l boyt) ¢
cg = (bg— by + 3 b.y* — T boy®) ¢
c5 = bs
where 1 g =0b,
¢y = by
cy = by
¢, =by
Cp = bo,

et cetera.

M=;((1—b3>+<1—b4>+(1—bs)+<1—c6)+<1—c7>+(1—c8)+ L)
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Table 4. (z = 1).
N 00 [ 01 | 02 | 03| 04 | 05| 06 | 07| 08 | 09 | 10
0.00 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000
0.05 | 0.950 | 0.955 | 0.960 | 0.964 | 0.969 | 0.974 | 0.979 | 0.984 | 0.989 | 0.994 | 0.999
0.10 | 0.900 | 0.909 | 0.918 | 0.927 | 0.937 | 0.946 | 0.956 | 0.965 | 0.975 | 0.985 | 0.995
0.15 | 0.850 | 0.863 | 0.876 | 0.889 | 0.903 | 0.916 | 0.930 | 0.944 | 0.958 | 0.973 | 0.988
0.20 | 0.800 | 0.816 | 0.833 | 0.849 | 0.867 | 0.884 | 0.902 | 0.920 | 0.939 | 0.958 | 0.977
0.25 | 0.750 | 0.769 | 0.788 { 0.808 | 0.829 | 0.850 | 0.871 | 0.893 | 0.916 | 0.939 | 0.963
0.30 | 0.700 | 0.721 | 0.743 | 0.766 | 0.789 | 0.813 | 0.838 | 0.864 | 0.890 | 0.917 | 0.945 |
0.35 | 0.650 | 0.673 | 0.697 | 0.722 | 0.748 | 0.774 | 0.802 | 0.830 | 0.860 | 0.891 | 0.922 |
0.40 | 0.600 | 0.624 | 0.650 | 0.677 | 0.704 | 0.733 | 0.763 | 0.794 | 0.826 | 0.860 | 0.895 |
. 0.45 | 0.550 | 0.575 | 0.602 | 0.630 | 0.658 | 0.689 | 0.720 | 0.754 | 0.788 | 0.825 | 0.863 |
0.50 | 0.500 | 0.526 | 0.553 | 0.581 | 0.611 | 0.642 | 0.675 | 0.710 | 0.746 | 0.784 | 0.824 |
0.55 | 0.450 | 0.475 |0.502 | 0.581 | 0.561 | 0.592 | 0.626 | 0.661 | 0.699 | 0.738 | 0.780
0.60 | 0.400 | 0.425 | 0.451 | 0.479 | 0.508 | 0.540 | 0.573 | 0.609 | 0.646 | 0.686 | 0.729
0.65 | 0.350 | 0.374 | 0.399 | 0.425 | 0.454 | 0.484 | 0.517 | 0.552 | 0.589 | 0.628 | 0.670
0.70 | 0.300 | 0.322 | 0.345 | 0.370 | 0.397 | 0.426 | 0.457 | 0.490 | 0.525 | 0.563 | 0.604
0.75 | 0.250 | 0.269 | 0.290 | 0.313 | 0.337 | 0.364 | 0.392 | 0.423 | 0.456 | 0.491 | 0.529
0.80 | 0.200 | 0.217 | 0.235 | 0.254 | 0.275 | 0.298 | 0.323 | 0.350 | 0.379 | 0.411 | 0.445
0.85 | 0.150 [ 0.163 | 0.178 | 0.194 | 0.211 | 0.229 | 0.250 | 0.272 | 0.296 | 0.322 | 0.351
0.90 | 0.100 | 0.109 | 0.120 | 0.131 | 0.143 | 0.157 | 0.172 | 0.188 | 0.205 | 0.225 | 0.246
0.95 | 0.050 | 0.055 | 0.060 | 0.066 | 0.073 | 0.080 | 0.088 | 0.097 | 0.107 | 0.118 | 0.129
1.00 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000
Table 5. (z=2).

N 00 | 01 | 02 | 03 | 04 | 05 | 06 | 07 | 08 | 0.9 [ 1.0
0.00 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000
0.05 | 0.995 | 0.996 | 0.997 | 0.998 | 0.998 | 0.999 | 0.999 | 1.000 | 1.000 | 1.000'| 1.000
0.10 | 0.982 | 0.985 | 0.988 | 0.991 | 0.993 | 0.995 | 0.997 | 0.998 | 0.999 | 1.000 | 1.000
0.15 | 0.962 | 0.968 | 0.974 | 0.980 | 0.985 | 0.989 | 0.993 | 0.996 | 0.998 | 0.999 | 1.000
0.20 | 0.936 | 0.946 | 0.956 | 0.965 | 0.973 | 0.980 | 0.987 | 0.992 | 0.995 | 0.998 | 0.999
0.25 | 0.903 | 0.918 | 0.933 | 0.946 | 0.958 | 0.969 | 0.978 | 0.986 | 0.992 | 0.996 | 0.998
0.30 | 0.866 | 0.886 | 0.905 | 0.922 | 0.939 | 0.953 | 0.967 | 0.978 | 0.986 | 0.992 | 0.995
0.35 | 0.825 | 0.849 | 0.872 | 0.895 | 0.915 | 0.935 | 0.952 | 0.966 | 0.978 | 0.987 | 0.991
0.40 | 0.779 | 0.808 | 0.835 | 0.862 | 0.888 | 0.911 | 0.933 | 0.952 | 0.967 | 0.978 | 0.985
0.45 | 0.730 | 0.762 | 0.794 | 0.825 | 0.855 | 0.883 | 0.909 | 0.932 | 0.951 | 0.966 | 0.975
0.50 | 0.677 | 0.712 | 0.748 | 0.783 | 0.817 | 0.849 | 0.880 | 0.907 | 0.931 | 0.949 | 0.961
0.55 | 0.621 | 0.658 | 0.697 | 0.735 | 0.773 | 0.809 | 0.844 | 0.875 | 0.903 | 0.925 | 0.941
0.60 | 0.561 | 0.601 | 0.641 | 0.681 | 0.722 | 0.762 | 0.800 | 0.836 | 0.868 | 0.894 | 0.913
0.65 | 0.499 | 0.539 | 0.580 | 0.622 | 0.664 | 0.706 | 0.748 | 0.787 | 0.822 | 0.852 | 0.875
0.70 | 0.435 | 0.473 | 0.514 | 0.556 | 0.599 | 0.642 | 0.685 | 0.726 | 0.764 | 0.798 | 0.824
0.75 | 0.368 | 0.404 | 0.442 | 0.483 | 0.525 | 0.568 | 0.611 | 0.653 | 0.692 | 0.728 | 0.757
0.80 | 0.298 | 0.331 | 0.366 | 0.403 | 0.442 | 0.482 | 0.523 | 0.564 | 0.603 | 0.639 | 0.669
0.85 | 0.227 | 0.254 | 0.283 | 0.315 | 0.348 | 0.384 | 0.420 | 0.457 | 0.493 | 0.527 | 0.556
0.90 | 0.153 | 0.173 | 0.195 | 0.219 | 0.244 | 0.272 | 0.300 | 0.330 | 0.359 | 0.387 | 0.412
0.95 | 0.077 | 0.088 | 0.101 | 0.114 | 0.129 | 0.144 | 0.161 | 0.179 | 0.196 | 0.214 | 0.230
1.00 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000
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Table 6. (x=3).

a0 0.0 ‘ 01 | 02 | 03 | 04 | 05 | 06 | 07 | 08 | 09 | 1.0
0.00 :| 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000
0.05 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000
-0:10 | | 0.996 | 0.997 | 0.998 | 0.999 | 0.999 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000
0.15 | 0.989 | 0.992 | 0.994 | 0.996 | 0.997 | 0.998 | 0.999 | 1.000 | 1.000 | 1.000 | 1.000
0.20 | 0.976 | 0.982 | 0.987 | 0.991 | 0.994 | 0.996 | 0.998 | 0.999 | 1.000 | 1.000 | 1.000
0.25 | 0.958 | 0.967 | 0.975 | 0.983 | 0.988 | 0.993 | 0.996 | 0.998 | 0.999 | 1.000 | 1.000
0:30 | 0.933 | 0.948 | 0.960 | 0.971 | 0.980 | 0.987 | 0.992 | 0.996 | 0.998 | 0.999 | 0.999
0.35 | 0.903 | 0.923 | 0.940 | 0.956 | 0.969 | 0.979 | 0.987 | 0.993 | 0.996 | 0.998 [ 0.999
0.40 | 0.866 [ 0.892 | 0.915 | 0.936 | 0.953 | 0.968 | 0.980 | 0.988 | 0.993 | 0.996 | 0.998
0.45 | 0.823 | 0.855 | 0.884 | 0.910 | 0.934 | 0.953 | 0.969 | 0.980 | 0.988 | 0.993 | 0.995
0.50 | 0.775 | 0.812 | 0.847 | 0.879 | 0.908 | 0.933 | 0.953 | 0.969 | 0.980 | 0.987 | 0.991
0.55 | 0.720 | 0.762 | 0.803 | 0.841 | 0.876 | 0.906 | 0.932 | 0.952 | 0.967 | 0.977 | 0.983
0.60 | 0.660 | 0.706 | 0.752 | 0.795 | 0.835 | 0.872 | 0.903 | 0.929 | 0.948 | 0.962 | 0.971
0.65 | 0.595 | 0.644 | 0.693 | 0.740 | 0.786 | 0.827 | 0.864 | 0.895 | 0.920 | 0.938 | 0.951
0.70 | 0.524 | 0.574 | 0.625 | 0.676 | 0.725 | 0.771 | 0.813 | 0.849 | 0.879 | 0.902 | 0.919
0.75 | 0.448 | 0.497 | 0.548 | 0.600 | 0.651 | 0.700 | 0.746 | 0.787 | 0.821 | 0.849 | 0.871
0.80 | 0.367 | 0.413 | 0.461 | 0.511 | 0.562 | 0.611 | 0.659 | 0.702 | 0.740 | 0.773 | 0.799
0.85 | 0.282 | 0.322 | 0.364 | 0.409 | 0.455 | 0.501 | 0.547 | 0.590 | 0.629 | 0.663 | 0.693
0.90 [0.192 | 0.222 | 0.255 | 0.291 | 0.328 | 0.366 | 0.405 | 0.442 | 0.477 | 0.509 | 0.538
0.95 | 0.098 | 0.115 | 0.134 | 0.155 | 0.177 | 0.201 | 0.225 | 0.249 | 0.273 | 0.295 | 0.316
1.00 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000

9. There still remains the problem of investigating the magnitude of
the waiting times in systems with waiting arrangement under the second
presupposition, namely, that the durations of the conversations vary in
the manner already described in Section 6...

Here we find, without difficulty, the following two formulee:

where

Cc =

S(>0)=c¢

S(>n) =c-e @V

y .y
1+TT+2_!+

+

1

(x'f n!

T

Y

X

z! x—y

(4)

(5)

while 2 and y have the same significance as before, and the average

duration, of
values of n

&
= 0.

conversation is equal to 1. The formula is exact for all
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Table 7. - . . ,
Systems with Waiting Arrangement (Second Presupposition). Values of S (>n) and M.
© a y S(>0) |S(>0.1)|S(>0.2) M
1 0.1 0.1 0.100. 0.091 0.084 0.111
1 0.2 0.2 0.200 0.185 0.170 0.250
2 0.1 0.2 0.018 0.015 0.013 0.010
2 0.2 0.4 0.067 - 0.057 0.049 0.042
2 0.3 0.6 0.138 0.120 0.104 0.099
3 0.1 0.3 0.004 0.003 0.002 0.001
3 0.2 0.6 0.024 0.019 0.015 0.010
3 0.3 0.9 0.070 0.057 0.046 0.033
3 0.4 1.2 0.141 0.118 0.099 0.078
4 0.1 0.4 0.001 0.001 0.000 0.000
4 0.2 0.8 0.010 0.007 0.005 “0.003
4 0.3 1.2 0.037 0.028 0.022 0.013
4 0.4 1.6 0.091 0.072 0.056 . . 0.038 .
5 0.2 1.0 0.004 0.003 0.002 - 0.001
5 0.3 1.5 0.020 0.014 0.010 0.006
5 0.4 2.0 0.060 0.044 0.033 - 0.020
5 0.5 2.5 0.130 0.102 0.079 0.052
6 0.2 1.2 0.002 0.001 0.001 0.000
6 0.3 1.8 0.011 0.007 0.005 0.003
6 04 2.4 0.040 0.026 0.018 0.011
6 0.5 3.0 0.099 0.073 0.054 0.033
8 0.3 2.4 0.004 0.002 0.001 0.001
8 0.4 3.2 0.018 0.011 0.007 0.004
8 0.5 4.0 0.059 0.040 0.026 0.015
10 0.3 3 0.001 0.001 0.000 0.000
10 0.4 4 0.009 0.005 0.003 0.001
10 0.5 5 0.036 0.022 0.013 0.007
10 0.6 6 0.102. 0.068 0.046 0.026
10 0.7 7 0.222 0.165 0.122 0.074
20 0.4 8 0.000 0.000 0.000 0.000
20 0.5 10 0.004 -.0.001 0.001 0.000
20 0.6 12 0.024 0.011 0.005 0.003
20 0.7 14 0.094 0.052 -0.028 0.016
22 0.5 11.0 0.002 0.001 0.000 0.000
22 0.6 13.2 0.018 0.007 0.003 0.002
22 0.7 15.4 0.081 0.042 0.022 0.012
30 0.5 ‘15 0.000 0.000 0.000 0.000
30 0.6 18 0.007 0.002 0.001 0.001
30 0.7 21 0.044 0.018 0.007 0.005
40 0.5 20 0.000 0.000 0.000 0.000
40 0.6 24 0.002 0.000 0.000 0.000
40 0.7 28 0.022 0.007 0.002 0.002
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For the average waiting time we get the formula:

M- o

(6)
rT—Y

The numerical calculation causes no special difficulty. It ought, perhaps,
to be pointed out that, both here and in Section 8, it is presupposed that
the waiting calls are despatched in the order in which they have been
received. If this does not take place in practice, it will, of course, have a
slight effect upon the value of S (> n), but not at all on the value of M,
neither on § (> 0).

10. Approximative Formule. — The exact formule given above are
throughout so convenient, that there is hardly any need of approximative
formulee. This does not, however, apply to the formulse which concern
the second main problem, first presupposition. Therefore, it may be
worth while to mention a couple of approximative methods which quickly
lead to a serviceable result, at least in such cases as have the greatest
practical significance.

One of these methods has already been used by me, at the request of
- Mr. P. V. Christensen, Assistant Chief Engineer to the Copenhagen Tele-
phone Company, for caleulating the explicit tables given in the first
pages of his fundamental work, “The Number of Selectors in Automatic
Telephone Systems’ (published in the Post Office Electrical Engineers’
Journal, October, 1914, p. 271; also in “Elektroteknikeren’, 1913, p. 207;
“E. T.Z.”, 1913, p. 1314).

Since the method used has not been described in full, I shall here say
a few words about the same. The probability of just x calls being origi-
nated during a period of time for which the average number is y, is, as
well known, under the usual presuppositions (Section 1):

o
x!

The mathematical theorem here used is due to S. D. Poisson (“‘Re-
cherches sur la probabilité, etc.”’, 1835), and has later been studied by
L. v. Bortkewstsch (‘“Das Gesetz der kleinen Zahlen’, 1898). The function
has been tabulated by the latter (loc. cit.), and later by H. E. Soper
(“Biometrica”, vol. X, 1914; also in K. Pearson ‘“Tables for Statisticians,
ete.”, 1914).

Thus the probability of # or more calls during the mentioned period

of time is:
_ ya: yx+1 . yn:—l—z
P 7 —y v J
T T e T wron T

(7)
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Table 8.
Values of y as a function of z, for P = 0.001 — 0.002 — 0.003 — 0.004.
T 1% 2 %/4 3 %/5 4%
1 0.001 0.002 0.003 0.004
2 0.045 0.065 0.08 0.09
3 0.19 0.24 0.28 0.31
4 0.42 0.52 0.58 0.63
5 0.73 0.86 0.95 1.02
6 1.11 1.27 1.38 1.46
7 1.52 1.72 1.85 1.95
8 1.97 2.20 2.35 2.47
9 2.45 2.72 2.89 3.02
10 2.96 - 3.25 3.45 3.60
11 3.49 3.82 4.03 4.19
12 4.04 4.41 4.62 4.81
13 4.61 5.00 5.24 5.43
14 5.19 5.61 5.87 6.07
15 5.79 6.23 6.51 6.72
16 6.40 6.86 7.16 7.38
17 7.03 7.51 7.82 8.06
18 7.66 8.17 8.49 8.74
19 8.31 8.84 9.18 9.44
20 8.96 9.51 9.87 10.14
21 9.61 10.20 10.57 10.84
22 10.28 10.89 11.27 11.56
23 10.96 1159 11.98 12.28
24 11.65 12.29 12.70 13.01
25 12.34 13.00 13.42 13.74
30 15.87 16.6 17.1 17.4
35 19.5 20.4 20.9 21.3
40 23.5 24.2 24.8 25.2
45 27.1 28.1 28.7 29.2
50 30.9 32.0 32.7 33.2
55 34.9 36.0 36.8 37.3
60 38.9 40.1 40.9 41.4
65 43.0 44.2 45.0 45.6
70 47.0 48.3 49.2 49.8
75 51.0 524 53.3 54.0
80 55.1 56.6 57.6 58.3
85 59.3 60.9 61.8 62.5
90 63.5 65.1 66.1 66.9
95 67.7 69.3 70.4 71.1
100 71.9 73.6 74.7 75.5
105 76.2 77.9 79.0 79.8
110 80.4 82.2 83.3 84.2
115 84.7 86.6 87.7 88.5
120 89.0 90.9 92.1 93.0
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It will then be seen that P, in many cases, viz. when ¥ is not unpropor-
tionally great, will be a good approximate value for the fraction of the
calls which will find all the lines engaged (or for “the probability of not
getiting through”). Thus P in-the case of exchanges without waiting
arrangements approximates the “loss”, and here gives obviously a some-
what too great value. In exchanges with waiting arrangement P ap-
proximates the quantity S (> 0), the probability of delay, and gives
here a somewhat too small value. Or, if it is the fraction named above
which is given beforehand, as is generally the case in practice, where
often the value 0.001 is used, the formula will show the connexion be-
tween y and z. The values of ¥ found in this manner (see Table 8) will
never deviate 5 per cent. from the correct values in systems without
waiting arrangement; never 1 per cent. in systems with waiting arrange-
ment (both presuppositions), if we take the named, frequently used value
of P = 0.001. Possible intermediate systems between the two main clas-
ses of exchanges may, of course, be treated with good results according
to the same method. .

If, in systems with waiting arrangement, we ask about the number
of waiting times beyond a certain limit n, S (> =), an extension of the
same formula may be used, y being replaced by y (1 — n). The method
is best suited for small values of n, and the error goes to the same side as
mentioned above. Furthermore, it may be mentioned in this connexion
that if we use, in the case considered, the formule following from presup-
position No. 2, instead of those based upon presupposition No. 1, the
errors thus introduced will be small, as a rule; they go, this time, in such
a direction that we get too great values for § (> 0) and 8 (> n); or, if
it is y which is sought, there will be too small values for .

11. Tt will be too lengthy to describe or mention, in this connexion,
all the systematic practical experiments and measurements (also only
partly published), which of late years have been made, partly by the
firms in question (especially, Siemens and Halske, and Western Electric
Co.), partly by others, or such purely empirical formule as have thus
been set forth. On the other hand, it would be incorrect to neglect one or
two interesting theoretical works from recent years, which directly con-
cern one of the problems treated above. In his doctor’s thesis, Mr. F.
Spiecker (“Die Abhingigkeit des erfolgreichen Fernsprechanrufes von der
Anzahl der Verbindungsorgane”, 1913), has indicated a method for de-
termining the loss in systems without waiting arrangement, which (as he
himself admits) is not quite free from errors, and which, besides, is so
complicated that it can hardly find application in practice. It should be
emphasized, however, that the results in the cases in which the author
has completed his calculations, lie very near the results of formula (1)
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given above. In the same work is also given an approximative formula,
which can best be compared with the formula for P (Section 10 above). The
difference is exclusively due to a somewhat deviating, and probably less
practical, formulation of the problem. Mr. W. H. Grinsted, in his treatise,
“A Study of Telephone Traffic Problems, etc.”” (Post Office Electrical
Engineers’ Journal, April 1915), presents a solution of the same problem.
Since this solution has, probably, by many readers as well as by the
author himself, been considered mathematically exact, it should be no-
ticed that an error has occurred in the derivation of the formula in question
and that, for this reason, the formula gives rather incorrect results. It
should be added that the treatise is a reprint of an older work from 1907
(which I have not had opportunity to examine). In spite of the faulty
results, Grinsted’s work is, however, when its time of publication is
considered, of no little merit. ,

12. In closing this article, I feel called upon to render my best thanks
to Mr. F. Johannsen, Managing Director “of the Copenhagen Telephone
Co., not only for his interest in the investigations recorded here, but also
for his energetic initiative in starting rational and scientific treatment
of many different problems in connexion with telephone traffic. I also
owe many thanks to Mr. J. L. W. V. Jensen, Engineer-in-Chief to the
same Company, for his valuable assistance especially in the treatment of
some mathematical difficulties.



