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Abstract--Gain scheduling has proven to be a successful 
design methodology in many engineering applications. 
However in the absence of a sound theoretical analysis, these 
designs come with no guarantees on the robustness, 
performance, or even nominal stability of the overall gain 
scheduled design. 

This paper presents such an analysis for one type of gain 
scheduled system, namely, a linear parameter-varying plant 
scheduling on its exogenous parameters. Conditions are 
given which guarantee that the stability, robustness, and 
performance properties of the fixed operating point designs 
carry over to the global gain scheduled design. These 
conditions confirm and formalize popular notions regarding 
gain scheduled design, such as the scheduling variable should 
"vary slowly." 

1. Introduction 
1.1. Problem statement. Gain scheduling (see e.g. Stein, 

1980) is a popular engineering method used to design 
controllers for systems with widely varying nonlinear and/or 
parameter dependent dynamics, i.e. systems for which a 
single linear time-invariant model is insufficient. The idea is 
to select several operating points which cover the range of 
the plant's dynamics. Then, at each of these points, the 
designer makes a linear time-invariant approximation to the 
plant and designs a linear compensator for each linearized 
plant. In between operating points, the parameters (i.e. 
"gains") of the compensators are then interpolated, or 
"scheduled," thus resulting in a global feedback 
compensator. 

Despite the lack of a sound theoretical analysis, gain 
scheduling is a design methodology which is known to work 
in a myriad of operating control systems (e.g. jet engines, 
submarines, and aircraft). However, in the absence of such 
an analysis, these designs come with no guarantees. More 
precisely, even though the local point designs may have 
excellent feedback properties, the global gain scheduled 
design need not have any of these properties, even nominal 
stability. In other words, one typically cannot assess a priori 
the guaranteed stability, robustness and performance 
properties of gain scheduled designs. Rather, any such 
properties are inferred from extensive computer simulations. 
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This paper addresses this issue of guaranteed properties 
for one class of gain scheduled control systems, namely, 
linear parameter-varying plants. This class of systems is 
important since it can be shown that gain scheduled control 
of nonlinear plants takes the form of a linear parameter- 
varying plant where the "parameter" is actually a reference 
trajectory or some endogenous signal such as the plant 
output (cf. Shamma and Athans, 1988, 1989). One example 
of a physical system whose (linearized) dynamics take the 
form of a parameter-varying plant is an aircraft, where the 
time-varying parameter is typically dynamic pressure (e.g. 
Stein et al., 1977). 

Consider a plant of the form 

i(t) = A( O(t))x(t) + B( O(t))u(t), 

y(t) = C(O(t))x(t). 

These equations represent a linear plant whose dynamics 
depend on a vector of time-varying exogenous parameters, 
0, which take their values in some prescribed set O(t)E 0 .  
Gain scheduled controllers for such plants typically are 
designed as follows. First, the designer selects a set of 
parameter values, {0i}, which represent the range of the 
plant's dynamics, and designs a linear time-invariant 
compensator for each. Then, in between operating points, 
the compensators are interpolated such that for all frozen 
values of the parameters, the closed loop system has 
desirable feedback properties, such as nominal stability, 
robustness to unmodeled dynamics, and robust performance 
(Fig. 1). 

Since the parameters are actually time-varying, none of 
these properties need carry over to the overall time-varying 
closed loop system. Even in the simplest case of nominal 
stability (i.e. no unmodeled dynamics), parameter time- 
variations can be destabilizing. 

In this paper, conditions are given which guarantee that 
the closed loop system will retain the feedback properties of 
the frozen-time designs. These conditions formalize various 
heuristic ideas which have guided successful gain scheduled 
designs. For example, one primary guideline is "the 
scheduling variables should vary slowly with respect to the 
system dynamics." Note that this idea is simply a reminder 
that the original designs were based on linear time-invariant 
approximations to the actual plant. In this sense, these 
approximations must be sufficiently faithful to the true plant 
if one expects the global design to exhibit the desired 
feedback properties. In fact, it is this idea which proves most 
fundamental in the forthcoming analysis. 

The remainder of this paper is organized as follows. This 
section closes with the mathematical notation to be used 
throughout the paper. Section 2 addresses the issues of 
robust stability and robust performance. The formal problem 
statement is given in Section 2.1. Section 2.2 presents 
background material on Volterra integrodifferentiai equa- 
tions. In Section 2.3, conditions are given which guarantee 
time-varying robustness/performance given frozen-time 
robustness/performance. The conditions are presented from 
both a state-space and input-output viewpoint. Finally, 
concluding remarks are given in Section 3. 
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exogenous 
0 ~ parameters 

FIG. 1. A linear plant scheduling on exogenous parameters. 

1.2. Mathematical notation. Some notation regarding 
standard concepts for analysis of feedback systems (e.g. 
Desoer and Vidyasagar, 1975; Willems, 1971) is established. 

denotes the field of real numbers, ~+  the set 
{t ~ ~ ] t-> 0}, ~ "  the set of n x 1 vectors with elements in 
~ ,  and ~ " × "  the set of n x m matrices with elements in ~ .  
Ai/denotes the ijth element of the matrix A. ]'1 denotes both 
a vector norm and its induced matrix norm. 

Let f : ~ + - - ~ " ,  f denotes the Laplace transform of f. 
~fr, o denotes the truncation and exponential weighting 
operator on f defined by 

[e -°(r °t(t) t~- T; 
°l¢'r'~(t) = [0, t > T. 

L#~ and ~= denote the standard Lebesgue function spaces 
of integrable and essentially bounded measurable functions, 
respectively. ~ denotes the set of measurable functions, 
f :  ~ *  --, ~ " ,  such that  

Ilfll~, a---¢~ sup If(t)l < o~. 
t ~  + 

~¢(cr) denotes the set whose elements are of the form 

JL(t) + ~ f,~(t - t,), t_> o: f( t)  I i = O  

[ 0 ,  t<O,  

where f~:~+---, ~ ,  ti>-O, f i E ~ ,  and 

IJfll~,t,,,~' f = Ifa(t)e-"l dt + ~ If/e-°~' I < oo. 
i = 0  

M"×"(a)  denotes the set of n × m matrices whose elements 
are in M(a). Let A ~ M"×"(o)  and let A' 6 ~.x,~ be defined 

t d e f  , ^ ^ n x m  
as A 0 = t lA011~or T h e n  IIAlt~<o> = IA I. M(o) and ~/ (o) 
are defined as the set of Laplace transforms of elements of 
M(o) and M"×m(o), respectively. For further details on 
M(a) and M"×m(o), see Callier and Desoer (1978) and 
Desoer and Vidyasagar (1975). 

2. Robust stability and robust performance 
2.1. Problem statement. Suppose that one has carried out 

the gain scheduled design procedure discussed in the 
introduction for some linear parameter-varying plant. Then 
for any frozen value of the parameter-vector, one has 
designed a feedback system which has desirable nominal 
stability, robust stability, and robust performance properties. 
Since the parameters are actually time-varying, these 
properties may be lost. 

Now a standard practice in robust control theory is to 
express robust stability and robust performance requirements 
as the maintaining of stability in the presence of stable linear 
uncertainties throughout the feedback loop (e.g. Doyle, 
1982; Doyle et al., 1982). The original control system block 
diagram then may be transformed into the form of Fig. 2. In 
this figure, H(0) represents a finite-dimensional parameter- 
varying linear system, and A represents a block diagonal-- 
possibly infinite-dimensional--stable linear system which 
depends on only the uncertainties. In this framework, 
satisfying the various robust stability and robust performance 
specifications is equivalent to the feedback system of Fig. 2 
being stable for an appropriate class of admissible 

FIG. 2. General block diagram for robustness/performance 
analysis. 

uncertainties (see Doyle, 1982; Doyle et al., 1982 for 
details). 

Employing this equivalent representation of design 
specifications, it then follows that the feedback diagram of 
Fig. 2, being a product of a gain scheduled design, is stable 
for all frozen parameter values. Furthermore, stability of Fig. 
2 for time-varying parameters implies that the robustness and 
performance properties are maintained in the presence of 
parameter time-variations. 

Let H(0) have the following state-space realization: 

i ( t )  = A( O(t))x(t) + B( O(t))e(t), 

y(t) = C(O(t))x(t). 

Furthermore, let the input/output relationship of A be given 
by 

fo y ' ( t ) =  A(t - Oy(r)  dr. 

Then the feedback equations are 

f~; B( O(t) )A(t i ( t )  = A(O(t))x(t) + - t )C(0( r ) )x(O dr. 

(1) 

This equation represents a type of linear Volterra 
integrodifferential equation (VIDE). In this section it is 
shown that the stability of (1), hence the desired robustness 
and performance properties, is maintained in the presence of 
sufficiently slow parameter time-variations. This generalizes a 
well known result for ordinary differential equations (e.g. 
Desoer, 1969). 

2.2. Voherra integrodifferential equations. Before time- 
varying robustness and performance are discussed, some 
facts are presented regarding equations of the form in (1). 
Evaluating (I) along any parameter vector trajectory, one 
has that 

f2 i ( t )  = A(t)x(t) + B(t)A(t - r )C(r)x(r )  dr, (2) 

where A, B and C have been appropriately redefined. This is 
the general form of time-varying VIDEs and will be the 
object of all of the forthcoming analysis. Note that any 
conditions imposed on (2) can be translated immediately into 
conditions on the parameter-varying (1). 

It was stated that equation (2) falls under the class of 
linear VIDEs. In fact, under assumptions to be stated on A, 
(2) actually represents a combination of VIDEs and linear 
delay-differential equations. Thus, both types of equations 
are treated under the same framework. VIDEs and their 
stability have been studied in, for example, Burton (1983), 
Corduneanu and Laksmikantham (1980), Miller (1971), and 
delay-differential equations in Corduneanu and Laksmikan- 
tham (1980), Driver (1977) and Hale (1977). 

In this section, assumptions on (2) are given, a definition 
of exponential stability is introduced, a sufficient condition 
for exponential stability in the case of time-invariant A, B 
and C matrices is given, and a perturbational result 
time-invariant VIDEs is presented. 

Consider the VIDE 

f2 i( t)  = A(t)x(t) + B(t)A(t - r)C(~-)x(r) dr, 

with initial condition 

x(t) O-t--<t o , q~E~; ~,(t), 
X(t~-) = ~(to). 

t > t o, 

(3) 

(4) 
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Note that  an initial condition for (3) consists of bo th  an 
initial time, t o, and  an initial function, 9. 

The following assumptions are made on (3): 
Assumption 1. The matrices A : ~+--*  ~ ×", B:  9Z +---, 9~ ~ × m  

and C : ~ + - - ) ~  p×~ are globally bounded  and Lipschitz 
continuous with Lipschitz constants LA, LB, and L o 
respectively. 
Assumption 2. For some o -> 0, A • M "  ×P(-  o). 

VIDEs  containing an integral operator  as in assumption 2 
have been studied in Corduneanu  (1973), Corduneanu  and 
Luca (1975) and Luca (1979) and references are contained in 
Corduneanu and Laksmikantham (1980). In case of 
t ime-invariant A,  B and C matrices, solutions to (3) can be 
explicitly characterized as follows: 

Theorem 1. Consider the t ime-invariant  V I D E  

i ( t )  = . ~ ( t )  + n A ( t  - O C x ( O  d r  + f(t) ,  

t>to, f•.~®, (5) 

with initial condition (4) under  assumption 2. The  unique 
solution to (5) is given by 

x(t + to) = n(t)X(to) + / ] n ( t  - O(f(r  + to) + F(r  + to)) dr,  
~ u  

t > 0 ,  
where 

F(t  + to) ~f f~°BA(t + t o - r ) C g ( r )  dr ,  t > 0 ,  

and R, known as the resolvent matrix, is the unique matrix 
satisfying 

R(t)= l + J[ (AR(r) + fo~BA(r- ~)CR(~) d~) dr, 

t > 0 ,  R(0+) = I. 

Proof. See Corduneanu (1973) and Corduneanu  and Luca 
(1975). • 

A definition of exponential  stability for V I D E s  is now 
introduced. 

Definition 1. Consider the V I D E  (3) with initial condition 
(4). This V I D E  is said to be exponentially stable if there 
exists constants m, ~., fl > 0 where  fl -> ). such that  

Ix(t)l -< me -×e-t°) II ~,o,#911~, Vt -> to. 

It is stressed that  the constants m, A and fl are independent of 
the initial condition (9 ,  to). 

This definition implies that  not  only does the state decay 
exponentially, but  also with a magnitude which is 
proportional  to an exponentially forgotten initial function. 
The convention that  fl-> 3. implies that  the solutions cannot  
decay faster than they are forgotten. Fur thermore ,  this 
inequality will be needed in subsequent  proofs (cf. Theorem 
2). 
The following theorem gives a sufficient condition for 
exponential  stability for t ime-invariant  VIDEs.  

Theorem 2. Consider the t ime-invariant  V I D E  (5) with 
initial condition (4). A sufficient condition for exponential  
stability is that  there exist a constant  fl > 0 such that  

s ~ (sl  - A - BTt ( s )C) - '  • ~t ~ ×" ( -2 f l ) ,  (6) 

h • ,~"×P( -2 f l ) .  (7) 

Proof. It is first shown that  the resolvent matrix R is 
hounded by a decaying exponential .  F rom the definition of R 
in Theorem 1, one has that  R satisfies almost everywhere 

R(t)  = Al l ( t )  + BA(t  - r l C R ( r )  dr ,  t > 0. (8) 

Taking the Laplace t ransform of (8) shows that  

R(s)  = (sI - A - B,~(s)C) -~. 

It follows by hypothesis that  R e  M"×"( -2 f l ) .  Fur thermore ,  
it may be seen from the definition of R in Theorem 1 that  R 
.contains no impulses, hence R • &e 1. From (8), it follows that  
R • .Le t. These two imply that  R • ~®. Now define 

R'(t) o-e-f R(t)e Or. 

Then R' • M"×n(-fl) because R• M"×~(-2fl). Using the 
same arguments as above along with 

R(t) = (A + f l l )R ' ( t )  + f~ BA(t  - r )e  #( t -~)CR'( r )  dr ,  t > 0, 

it follows that  R '  and l ~ ' •  &¢1, hence R ' •  ~ .  Thus,  it 
follows that there exists a constant  k 1, for example 
kl = IIR'l[~e~, such that  

IR(t)l <- k le  -a ' ,  t -> 0. 

Now recall that the solution to (5) is given by 

x(t+to)=R(t)X(to)+ R ( t - r ) F ( r + t o ) d r ,  t>O, 

where 

F( t+ to )~ f f ] °BA( t+ to  - OCO(r )dr ,  t>0 .  

It is now shown that  F is also bounded  by a decaying 
exponential.  Rewriting the definition of F, 

F(t + to) = BA(t + to- r)e#°+'°-')Ce-#tt+t°-')9(r) dr 

= e - ° '  B A ( t  + to - O e ° < ' + ' ° - ' ) C e - ° ° ° - ~ 9 ( O  dr. 

Since A • M"×"( -2 f l ) ,  it follows that  there exists a constant  
k2, for example k2 = IBI IIAll~(-0)ICI, such that  

IF(t + t0)l <- k2e -#'  II ~,o,~911~. 

Using the exponential  bounds on R and F to bound  x, 

Ix(t + t0)l 

< kte -t3'lx(to)l + kle-Ott-°k2 e-t3* I I~o .ag l l~  d r  

-< kle#~(1 + k2 t) II ~,0,~911~ 

-< k , (1  + ~e2)e-~ /2  II ~,o.#911~, 

which completes the proof. • 

Theorem 2 is novel in that it takes a state-space approach,  
rather  than an input /output  approach,  to the robust  stability 
of t ime-invariant linear systems. This approach is chosen 
since it corresponds to the original motivat ion of 
parameter-varying gain scheduled systems. Nevertheless,  
s tandard results on robust  stability can be obtained from this 
theorem. Rewriting [l(s),  one has that  

R(s)  = (I - (sl  - A ) - I B / ~ ( s ) C ) - I ( s l  - A) -1. 

Now suppose that  A is a stable matrix; thus s ~ ,  
( s l -  A) -1 • , ~ × n ( - 2 f l )  for some fl > 0 .  Assume further  
that A • ~m×P(--2fl). Then 

s ~ (! - (sI - A) - IB/~(s )C)  • ~ "  ×"( -2f l ) .  

Under  these conditions, f ~ • ~ × ~ ( - 2 f l )  if (Desoer  and 
Vidyasagar, 1975) 

inf Idet (! - (s i  - A) - IBA(s )C) I  
R e a ~ : - 2 / ~  

= a~ !nf_20 Idet (1 - C(s l  - A) - IBA(s ) ) I  > 0. 

However,  a sufficient condit ion for the above equat ion is that  

IC( ( -2 f l  + j t o ) l -  A ) - I B A ( - 2 f l  + jto)l < y < 1, Vto • ~ .  

As fl ~ 0, this condition approaches the s tandard small-gain 
robustness condition for t ime-invariant  l inear systems (e.g. 
Chen and Desoer,  1982; Doyle and Stein, 1981). Unlike 
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previous results, however, Theorem 2 gives a quantitative 
indication of the rate of exponential decay of the 
state-variables. 

This section concludes with a presentation of a 
perturbational result for time-invariant VIDEs. 

Theorem 3. Consider the following perturbation of the 
VIDE (5): 

i(t) = Ax(t) + BA(t - r)Cx(z) d~" + (gx)(t), t > to, (9) 

where g is an integral operator on x. Let 

s ~ (sl - A - BA(s)C) ~ • ~"×"( -2f l ) ,  

A ~ ~"  ×p(-2~), 

for some ~6 > 0. Assume further that there exist constants 
k > 0 and ot -> ~ such that 

I(gx)(/)l-<kll~W,,~xll~, Vt->0, V x • ~ .  

Under these conditions, there exists a y > 0 such that the 
VIDE (9) is exponentially stable for k < % 

Proof. Let (9) have an initial condition (4). Define 
z(t)~fx(t + to). As in Theorem l,  one has that 

z ( t )  = R ( t ) z ( t )  + R ( t  - "0(F(~" + to) 

+ (gx)('r + t0)) dr, t > 0 ,  

where R is the resolvent matrix and 

F(t + to) = BA(t + t o -  r)Cq~(~) dg, t>0 .  

As in the proof of Theorem 2, there exist kl and k~ such that 

tR(t)l -< k~e -~', 

IF(t + t o ) l  - k2e - ~  II ~W~0,a~Jlm. 

Using these bounds to bound z, 

-< kie -at Iz(0)l + f~i kte-¢<'-~) Iz(t) l 

x (k2e -l~t II ~o,~11,~ + k II ~ .... ~xllm) dr. 

By definition of the ~" operator 

II ~=+,0,~xllm _< II ~,+,o axll~ %t sup e-t~¢=+'°-~)x(~)l 
~ 0,T+t0 

--- e-m(¢s~to] le a°°-~)$(~)l + ~lto,SUp*+to} le-"to-¢)x(~)l]',' 

Thus, 

e a' Iz(t)l -< k~(1 + (k + kz)t) II W,0,a~ll~ 

+ k~k sup le0ez(~)ldr. 
~lO.~l 

Since the right-hand side of the above equation is a 
nondecreasing function of time, 

sup let~z(~)l-< kt(1 + (k + kz)t ) I1~¢,0,~11 ~ 
~[0,t]  

+ k~k sup [e°ez(~)ldr. 
~1o,~1 

Rewriting this equation yields 

fof  f ( t )  <-- x~ + rzt + K 3 r) dr, 

where r~, x3 and f are defined in the obvious manner. 
Applying the Bellman-Gronwall inequality (e.g. Desoer and 
Vidyasagar, 1975), 

\ K3/  K 3 

T h u s ,  

k'  le k'k"" o 00"  
- kl(1 + (k2 + k)t)e -{t~-k'k)' II ~o.~'1t~.  

Thus, it is seen that k<~,~f[3/kl implies exponential 
stability. Furthermore, 

iz(t)l_<kl(1 + 2(kz+k) ~e -((O-klk)/2)' ~V] ,.h (10) 
e(fl - k lk  ) ] to.~'~ ~.~. 

2.3. Robustness and performance of  slowly-varying linear 
systems. In this section, it is shown that if the time-varying 
VIDE (3) is exponentially stable for all frozen values of time, 
then it is exponentially stable for sufficiently slow 
time-variations. In terms of the original motivation of 
guaranteed properties of gain scheduled control systems, this 
means that robust stability and robust performance are 
maintained provided that parameter variations are 
sufficiently slow. 

Before proceeding with the main theorem, some 
assumptions and definitions are given. 
Assumption 3. Consider the time-varying VIDE (3) under 
assumptions 1-2. The matrix functions A, B, C and A are 
such that for each ~ • ~+, 

s ~, (sl - A(~) - B(~),~(s)C(~)) -t  • ,~" ×"(-2/~), 

A • ~m×p(-2~) .  

Via Theorem 2, these two conditions imply that for each 
e ~+, the time-invariant VIDE 

i ( t )=A(~)x ( t )+  B(~)A( t - r )C(~)x( r )d r ,  t> to ,  

(ll) 

is exponentially stable as in Definition 1. It is further 
assumed that this exponential stability is uniform in ~. That 
is, there exist exponential stability constants (m, i ,  ~) for 
(11) which are independent of ~. 

Note that in the case of gain scheduling, one may use 
Theorem 2 to verify exponential stability for all frozen 
parameter values, hence for all time. Furthermore, if the 
parameters take their values in some compact set, then the 
exponential stability is uniform. 

Definition 2. Let assumptions 1-2 hold. Under assumption 
1, let kn and kc satisfy '¢t e ~+ 

IB(t)[ - kB, [C(t)l -< kc. 

Then the measure, K, of the rate of time-variations of (3) is 
defined as 

Kd--e--f La + LB IlAll~-a)kc + kB IIAII~(.~) Lc. 

The question of slowly time-varying stability of linear 
VIDE's is now addressed. 

Theorem 4. Consider the time-varying VIDE (3) under 
assumptions 1-3. Under these conditions, (3) is exponen- 
tially stable for sufficiently small K, or equivalently, for 
sufficiently slow time-variations in A, B and C. 

Proof. Let R~ denote the resolvent matrix associated with 
the frozen-time VIDE (11). From assumption 2 of uniform 
frozen-time exponential stability, there exists a constant K 1 
such that 

IR~(t)l < g l e  ~', Y~•  ~+. 

Similarly, define 

Kz ~f kz [IAlt~f-a) kc. 

Note that the constants K~ and K 2 represent worst case 
values of their frozen-~ analogs in the proof of Theorem 2. 



B r i e f  P a p e r  563  

Let the initial condition of (3) be (4), and let t. denote 
to + nT, where T is some constant interval to be chosen. 
Approximating A, B and C by piecewise constant matrices, 
one has that 

I: i(t) = A(tn)x(t ) + B(tn)A(t - ¢)C(tn)x(~) de 
tn 

+ B( t )~( t  - OC(Ox(~)  d~ + (g,,x)(t), 

where 

( g , , x ) ( t )  = ( A ( t )  - A ( t , , ) ) x ( t )  

f: + (B(t) - n ( t . ) )A( t  - ~)C(t.)x(~) d~ 
tn 

+ I." n(t)~(t - O ( c ( o  - c ( t , , ) ) x ( ~ )  d ~ .  

Then 
I(g,x)(t)l -< KT [I 3Vt.t3xll~, t. < t < t.+l. 

Choose any q ~ (0, fl). Then using arguments exactly parallel 
to those of the proof of Theorem 3, it can be shown that 

KT <_fl- TI 
2K1 (12) 

implies that 

Ix(t)l-< 

1 ÷ ~ ~,~l , le-l(IJ-Xl(l~-~)/(zro)/2](t-tn) I 1 ~  .11 

= Me-l(O+n)/4l('-t") II ~V,,,oxlI~, 

where M is defined in the obvious manner [cf. (10)]. Note 
that since K~-> I by definition, one has M > I in general. 
This bound on x further implies that 

11~¢,.+, #xll~ %f sup le-#(t"÷l-~)x(t)l 
• ~ [ o , t ~ + d  

=max ( sup le-#("*'-Ox(~)l, sup le-00"+~-e)x(~)l] 
\~lO,t~l ~(tn,tn+l) / 

-<max (e -a t  sup le-a("-e)x(~)l, 
\ ~lo.t~l 

sup e-t~O"+~-¢)Me-l(O+n)/41(¢-t") II ~/Jr,.,#xll~] 
/ 

= max (e -# r  II ~r~.,0xll~, 

sup Me(t~-(a+n)/4)~e-Otn+~e [(O+n)/41tn II ~W,,,#xll~) 
~(tn,tn+ l] 

= Me -(vz)(t~+n/~)r II~,,#xll~. 

In order to guarantee (12), choose 

T = 4 In g / ( f l  - ~). 
Then 

K --< (/~ - '~)~ 
8K~ In M 

implies the desired (12). Furthermore, recursively applying 
the bound on II ~4:~.,axll~ shows that 

Ix(t)l ~ Me -|(/~+'~)/41( . . . .  ) II ~. .0xll~ 
Me-(ll2)(~l+(13-n)/2))(t-to - n T )  

× (Me-fl/2)(n+(lJ-n)/2))l~ n II ~Vto,#¢ll~ 

~. Me-(vll2)(t-tO)e-(l/ '2)((~-~l), '2))(t-tn) 

× (Me-(V2)((t~-n)rz))r). i ~/:0.0 ¢ II ~- 

Substituting the choice of T into the above equation yields 

Ix(t)[ -< Me-('7/2)( . . . .  ) I ~f,o.o¢ll~, 

which completes the proof. • 

The main idea behind Theorem 4 is as follows. The 
time-varying VIDE (3) is approximated by a piecewise 
constant VIDE which is piecewise exponentially stable. Thus 
on each interval, the time-varying VIDE is decomposed into 
a constant part and a time-varying perturbation. Using 
Theorem 3, the solution will decay provided that the 
piecewise constant approximations are sufficiently accurate 
over sufficiently long intervals, which, in turn, is guaranteed 
by sufficiently slow time-variations. 

3. Concluding remarks 
This paper has addressed the robust stability and robust 

performance of parameter-varying linear systems in the 
context of gain-scheduling. The results may be summarized 
as follows. Essentially, it was shown that a gain scheduled 
system which has desirable feedback properties for all frozen 
values of the parameters maintains these properties provided 
that the parameter time-variations are sufficiently slow. 
Explicit sufficient conditions on the parameter time- 
variations were given. Thus the heuristic guidelines of 
"scheduling on a slow variable" has been transformed into 
quantitative statements. 

Unfortunately, the actual bounds on the parameter 
time-variations may be difficult--at best--to compute. For 
example, to verify the sufficient conditions for frozen- 
parameter exponential stability (cf. Theorem 2) would 
require satisfying a small-gain condition off the j co-axis. Once 
these conditions are verified, one can then use Theorem 4 to 
guarantee time-varying stability. However, this requires 
computation of the measure of time-variations in Definition 2 
(K), a bound on the resolvent matrix for the frozen- 
parameter systems (K1) , and a bound on the exponentially 
weighted input/output norm of the linear uncertainties 
(llAll~(-#)). Furthermore, even if verified these results are 
apt to be conservative. 

In spite of these limitations, the value of the results is that 
they lead to new insights into gain-scheduled systems. For 
example, in performing the frozen parameter designs, one 
must guarantee some degree of internal exponential stability 
in addition to the input/output stability of standard 
robustness tests. Furthermore, the sufficiency of the 
conditions is simply a reminder that the designs were based 
on time-invariant approximations to the actual time-varying 
plant. If these approximations are inaccurate, then one 
should not demand guarantees on the overall gain scheduled 
system. 
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