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1 The Positioning Problem

A Global Positioning System (GPS) is a device that uses satellite readings to determine a receivers’s geocentric
coordinates (x, y, z); that is, the coordinates relative to the center of the earth (0, 0, 0). These measurements
are accurate to at least 80 meters, usually better.

A GPS device will read information from a number of satellites, at least four satellites are necessary as we
shall see. The ith satellite will send out four pieces of information: its geocentric coordinates (xi, yi, zi) and
the time ti of transmission. The distances xi, yi, zi are measured in meters m from the center of the earth,
and the time ti is measured in nanoseconds nsec. In GPS, time ti is the fourth dimension. Furthermore,
these values are highly accurate. The receiver gets this information at a time Ti, measured on the receiver’s
clock. The distance between the receiver and the satellite can then be computed by

ρi = c(Ti − ti) meters, where c is the speed of light in m/nsec.

We will keep track of the information that we get from satellite i in a single vector

~si =


xi
yi
zi
ρi

 (data we get from satellite i).

Finding the geocentric position of the receiver is a fundamental problem in GPS. Part of the problem
comes from the fact that receiver clocks are inexpensive and not perfectly in sync with the satellite clock.
This can cause a major error when multiplied by the speed of light in the calculation ρi = c(Ti − ti). Since
there are 109 nanoseconds (nsec) per second, the speed of light is approximately

c = 299792458 m/s
= 0.299792458 m/nsec.

Thus, each nanosecond error in Ti makes ρi deviate from the true range by .29 meters. For this reason, ρi is
called a pseudorange. There are other factors, such as atmospheric variations in the speed of radio messages,
that complicate these calculations but we will not address them here.

Fortunately, the clocks on all of the satellites are in sync with each other, so the receiver’s clock will be
out of sync with each satellite by the same amount. We let ∆t denote the error in the receiver clock. Then
the error in the pseudorange is b = c∆t m, and each satelite’s pseudorange ρi is off by the same distance b.
If (x, y, z) is the actual position of the receiver, then we put the unknown receiver quantities together in a
vector

~u =


x
y
z
b

 (unknown data about the receiver).
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Our variables are related by fact that the actual distance between the satellite and the receiver plus the
error equals the pseudorange. Thus, for each i,√

(xi − x)2 + (yi − y)2 + (zi − z)2 + b = ρi. (1)

If we bring b to the other side and square both sides, we get

(xi − x)2 + (yi − y)2 + (zi − z)2 = (ρi − b)2. (2)

We’d like to solve this equation for the four unknowns x, y, z, b. If there are four satellites, then there will
be four equations and four unknowns, and we should be able to find these values. However, this equation
is nonlinear. It is possible to solve these using methods from calculus. In particular, Newton’s method can
iteratively approximate a solution.

2 A Least-Squares Solution

We want to turn it into a linear algebra problem. Here is a clever method due to Bancroft [1] that does
some algbraic manipulations to reduce the equations to a least-squares problem. Multiplying things out in
equation (2), we get

x2
i − 2xix+ x2 + y2

i − 2yiy + y2 + z2
i − 2ziz + z2 = ρ2

i − 2ρib+ b2. (3)

Now rearrange terms to get

(x2
i + y2

i + z2
i − ρ2

i )− 2(xix+ yiy + ziz − ρib) + (x2 + y2 + z2 − b2) = 0. (4)

Motivated by the form of the values within the parentheses, we define a modified dot product, called a
Lorentz inner product,

〈~u, ~v〉 = u1v1 + u2v2 + u3v3 − u4v4.

Then our equation becomes
〈~si,~si〉 − 2〈~si, ~u〉+ 〈~u, ~u〉 = 0, (5)

or equivalently
1
2
〈~si,~si〉 − 〈~si, ~u〉+

1
2
〈~u, ~u〉 = 0, (6)

and this holds for each of the satellites.
In order to simultaneously analyze the equations for each satellite we organize our data as follows

B =


x1 y1 z1 −ρ1

x2 y2 z2 −ρ2

x3 y3 z3 −ρ3

x4 y4 z4 −ρ4

...
...

...
...

 , ~a =
1
2


〈~s1,~s1〉
〈~s2,~s2〉
〈~s3,~s3〉
〈~s4,~s4〉

...

 , ~e =


1
1
1
1
...

 , and Λ =
1
2
〈~u, ~u〉. (∗)

If we have n satellites, then B is an n× 4 matrix, ~a and ~e are n× 1 vectors, and Λ is a scalar. We now can
simultaneously write our n equations from (6) as

~a−B~u + Λ~e = 0

or
B~u = (~a + Λ~e)

If we have more than 4 satellites, then a least-squares solution, solves the normal equation,

BTB~u = BT(~a + Λ~e).
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Such a solution is of the form

~u∗ = B+(~a + Λ~e), where B+ = (BTB)−1BT. (7)

However, our solution ~u∗ involves Λ which involves our unknown ~u. This is a problem that we cleverly work
around with some algebraic manipulations. Substituting ~u∗ into the definition (∗) of the scalar Λ and using
the linearity of the Lorentz innerproduct gives

Λ =
1
2
〈
B+(~a + Λ~e),B+(~a + Λ~e)

〉
=

1
2
〈
B+~a,B+~a

〉
+ Λ

〈
B+~a,B+~e

〉
+

1
2

Λ2
〈
B+~e,B+~e

〉
which can be rewritten as

Λ2
〈
B+~e,B+~e

〉
+ Λ2(

〈
B+~a,B+~e

〉
− 1) +

〈
B+~a,B+~a

〉
= 0. (Q)

This is a quadratic equation in Λ with coefficients 〈B+~e,B+~e〉, 2(〈B+~a,B+~e〉 − 1), and 〈B+~a,B+~a〉. All
three of these values can be computed (they do not involve any of our unknowns), so we can solve for two
possible values of Λ using the quadratic equation (yes, the one from high school). If we get the two solutions
to this equation Λ1 and Λ2, then we can solve for two possible solutions ~u∗1 and ~u∗2 in equation (7). One of
these solutions will make sense, it will be on the surface of earth (which has a radius of approximately 6378
km), and one will not.

To summarize, here is the Bancroft Algorithm for finding ~u∗:

1. Organize your data into B, ~a, and ~e.

2. Solve the quadratic equation (Q) for Λ1 and Λ2.

3. Solve for the least-squares solutions ~u∗1 and ~u∗2, and pick the one that makes sense.
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4 Your Assignment

Your assignment is to demonstrate the Bancroft Algorithm in a Mathematica Notebook. Your solution
should come with documentation that explains both how to use the computer code and how it works. It also
should explain what we mean by a “least-squares” solution. Assume that your audience knows the language
of matrices and vectors but does not know about least-squares solutions. You will be evaluated both on your
ability to implement the algebra and on your writing.

DUE: Friday, November 8, by 3:30 p.m.

GROUPS:

1. Jacob Luby, Marc de Kruijf, Adugna Tolosa

2. Arjun Bhattacherjee, Martin Lacayo-Emery, Michael Decker

3. Paulo Casaes, Devin Reyes, Camilo Paris

4. Jemimah Hendry, Duoduo Cai, Daniel Sword

5. Bibek Pandey, Mariya Sadakova, Artemis Hadjivarnava

6. John Michet, Heather Lendway, Swapnil Prabha

7. Vincent Sseremba, Jan Humaj, Tak Iwanaga

8. Karla Hillstrom, Huseyin Ozhan, Larry Lo

5 Sample Data

Here is some actual satellite data to from 6 satellites for you to use. Geocentric coordinates are given in
meters and time is given in nanoseconds.

i (Satellite number) xk (meters) yk (meters) zk (meters) Ti − ti (nanoseconds)
1 14177553.47 −18814768.09 12243866.38 70446329.64
2 15097199.81 −4636088.67 21326706.55 75142197.81
3 23460342.33 −9433518.58 8174941.25 78968497.20
4 −8206488.95 −18217989.14 17605231.99 69887173.01
5 1399988.07 −17563734.90 19705591.18 67231182.38
6 6995655.48 −23537808.26 −9927906.48 80796265.09

Speed of light:

c = 299792458 m/s
= 0.299792458 m/nsec.

Radius of the earth

r = 6378 km
= 6378000 m
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