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Lecture 6

Relevant sections in text: §1.4

Complete set of commuting observables

Only in the simplest physical systems will the measurement of a single observable
suffice to determine the state vector of the system. Of course, the spin 1/2 system has
this property: if you measure any component of the spin the state vector is fixed (up to
an irrelevant phase factor*). More complicated systems need more observables to char-
acterize the state. For example, recall that the energy levels of a hydrogen atom can be
uniquely specified by the energy, orbital angular momentum magnitude, one component
of the angular momentum and the electron spin state. Other choices are possible. After
measuring an observable and getting a particular outcome – an eigenvalue – the state of
the system is the corresponding eigenvector. It may happen that more than one state
vector is associated with that measurement outcome. Mathematically, the eigenvalue is
degenerate. To pin down the state uniquely, other observables must be measured. Evi-
dently, if we have a set of observables whose measurement uniquely determines the state
(vector – up to a phase), then that state vector must be a simultaneous eigenvector of all
the observables in question. If we demand that the possible outcomes of measurements of
this set of observables defines a basis for the Hilbert space, then the observables must be
compatible, i.e., their operator represntatives must all commute. Such a set of variables
is called a complete set of commuting observables (CSCO). For a hydrogen atom, modeled
as an electron in a Coulomb potential, the energy, orbital angular momentum magnitude,
one component of the orbital angular momentum and one component of the electron spin
constitute a CSCO. For a single spin 1/2 system, any component of spin defines a CSCO.
Evidently, a CSCO is not unique.

Given a CSCO, A,B, . . . we can label the elements of the ON basis it determines by the
eigenvalues of the CSCO, |a, b, . . .〉. These are states in which the elements of the CSCO
are known with certainty to have the values a, b, . . .. The vectors satisfy

〈a, b, . . . |a′, b′, . . .〉 = δaa′δbb′ . . . .

Incompatible observables. The uncertainty principle.

Incompatible observables are represented by operators which do not commute. As we
have seen, incompatible observables are such that there exist states where both observables

* Two states that differ by a phase factor (eia) will give the same expectation value to all
observables – exercise. This means that all probability distributions are insensitive to the
phase factors, and hence all physical predictions are as well.
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cannot be determined with certainty. We will now make this more precise and give a
very general version of the celebrated uncertainty principle — probably better called the
uncertainty theorem.

Given an observable A and a state |ψ〉, we define the dispersion of A in the state |ψ〉
to be

〈(∆A)2〉 := 〈(A− 〈A〉)2〉 = 〈ψ|A2|ψ〉 − 〈ψ|A|ψ〉2 = 〈A2〉 − 〈A〉2.

The dispersion (also called the variance) is a non-negative real number which characterizes
the statistical uncertainty of the observable A in the state |ψ〉. To see that the dispersion
is indeed non-negative, note that the expectation value of the square of any Hermitian
operator C is a positive number:

〈ψ|C2|ψ〉 = 〈ψ|C†C|ψ〉;

the right hand side is just the length-squared of the vector C|ψ〉, which must be non-
negative. Setting C = A − 〈A〉I, and noting that 〈A〉 must be a real number (exercise),
we conclude that 〈(∆A)2〉 ≥ 0.

Note the dispersion vanishes if and only if the state |ψ〉 is an eigenvector of A. You
can easily verify the “if” part. Let me show you the “only if” part. Write

〈(∆A)2〉 = 〈ψ|(A− 〈A〉I)2|ψ〉
= 〈ψ|(A− 〈A〉I)†(A− 〈A〉I)|ψ〉
= ||(A− 〈A〉I)|ψ〉||2.

The norm of a vector vanishes if and only if the vector is the zero vector, so if the dispersion
vanishes we have

(A− 〈A〉I)|ψ〉 = 0,

which is the eigenvector condition (exercise).

Using the Schwarz inequality the following relation between the dispersions of 2 oberv-
ables can be established (see your text for the proof):

〈∆A2〉〈∆B2〉 ≥ 1
4
|〈[A,B]〉|2.

This is the general form of the uncertainty relation. In a given state it relates the product
of the statistical uncertainty of a pair of observables to the expectation value of the com-
mutator of the observables. If the commutator vanishes, or if its expectation value does
in the given state, then the uncertainty relation has no content. Otherwise, it provides
information about the effect of the incompatibility of the observables. In general, this
“effect” depends upon the state that is chosen. You can see this from the fact that the
expectation values occurring in the inequality above are defined by a given state. This is
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important to keep in mind. In certain cases (e.g., the position-momentum relation, to be
studied later) the uncertainty relation turns out to be state independent and hence it is
much more dramatic — and famous.

For a spin 1/2 system it is straightforward to compute the uncertainty relation for
various observables. To do it, you need the following commutation relations (which you
derive in your homework):

[Sx, Sy] = ih̄Sz, [Sy, Sz] = ih̄Sx, [Sz, Sx] = ih̄Sy.

Let let |ψ〉 = a|+〉+ b|−〉, |a|2 + |b|2 = 1 (which is a general state vector). We consider the
uncertainty relation for Sx and Sz. We have (exercise)

〈∆Sz〉2〈∆Sx〉2 ≥ h̄4[Im(ab∗)]2.

Of course, if a or b vanish the state is an eigenstate of Sz and the uncertainty relation
has no import. Otherwise, though, you can see how the lower limit for the product of
uncertainties varies with the choice of state. For example, if a = 1/

√
2 and b = i

√
2 (so

that the state is an eigenstate of Sy) we have

〈∆Sz〉2〈∆Sx〉2 ≥ h̄4

4
.
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