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Abstract  
Virtual memory has become a necessity over the years as the cost of 

secondary memory decreases, and the memory demands of software 

increase.  To balance the use of primary memory among processes, 

sophisticated algorithms are necessary to manage the replacement of virtual 

pages.  This paper outlines the pros and cons of a variety of solutions, 

including both static demand based and dynamic prefetch replacement 

algorithms.  Ultimately, the effectiveness of any algorithm is dependent upon 

the application and hardware support available, although some generalization 

about performance can be made. 

 

Virtual Memory Introduction 
Virtual memory is a catch-all phrase for the abstraction of physical memory 

via a virtual address space.  In all cases a virtual memory manager is 

responsible for maintaining this virtual address translation; generally 

speaking the definition also includes the responsibility of operating a large 

virtual address range within a smaller available physical memory.  This 

process involves the transfer of blocks of memory from a secondary source 

(usually a slower hard-disk) to the primary memory whenever necessary for 

program execution.  It is the virtual memory manager’s responsibility to 



 
 
 
provide a level of abstraction for programs, allowing them to operate 

seamlessly without any “knowledge” of the underlying system.  If 

implemented properly, software can be written for these systems using a 

relatively large virtual address range, while running on a small amount of 

physical memory with little reduction in speed. 

 

Segmentation and Paging 
At its very roots virtual addressing is applied one of two ways: either via 

segmentation or paging.  Segmentation involves the relocation of variable 

sized segments into the physical address space.  Generally these segments 

are contiguous units, and are referred to in programs by their segment 

number and an offset to the requested data.  Although a segmentation 

approach can be more powerful to a programmer in terms of control over the 

memory, it can also become a burden, as suggested by [1].  Efficient 

segmentation relies on programs that are very thoughtfully written for their 

target system.  Even assuming best case scenarios, segmentation can lead to 

problems, however. 

As described by [2], external fragmentation is the term coined for 

pieces of memory between segments, which may collectively provide a useful 

amount of memory, but are rendered useless by their non-contiguous nature.  

Since segmentation relies on memory that is located in single large blocks, it 

is very possible that enough free space is available to load a new module, but 

cannot be utilized.  Segmentation may also suffer from internal 



 
 
 
fragmentation if segments are not variable-sized, where memory above the 

segment is not used by the program but is still “reserved” for it. 

 Contrarily, paging provides a somewhat easier interface for programs, 

in that its operation tends to be more automatic and thus transparent.  Each 

unit of transfer, referred to as a page, is of a fixed size and swapped by the 

virtual memory manager outside of the program’s control.  Instead of 

utilizing a segment/offset addressing approach, as seen in segmentation, 

paging uses a linear sequence of virtual addresses which are mapped to 

physical memory as necessary, evidenced in [1,3].  Due to this addressing 

approach, a single program may refer to a series of many non-contiguous 

segments.  Although some internal fragmentation may still exist due to the 

fixed size of the pages, the approach virtually eliminates external 

fragmentation.  According to [3], the advantages of paging over 

segmentation generally outweigh their disadvantages. 

 

Implementation Feasibility 
Virtual memory is good in theory, but for its operation to be practical it must 

be properly implemented.  Algorithms responsible for replacing pages in 

physical memory from the secondary source are primarily responsible for the 

speed and efficiency of the final system.  To operate effectively, the loading 

of extraneous information must be minimized or completely eliminated, lest 

the manager’s use of the resources become wasteful.  Further information on 

efficient swap methods can be found in [4].  More importantly, information 

that is swapped out of the physical memory must be chosen carefully.  If a 



 
 
 
page has been removed from memory to make way for another requested 

page, but then is immediately requested once again, we say the replacement 

is thrashing.  Thrashing page replacement has the potential to bring virtual 

memory to an immediate slowdown suggests [5], since it causes the 

manager to make redundant memory reads and writes, while relying heavily 

on the speed of the secondary storage device. 

 Thankfully most thrashing can be avoided naturally, as a program’s 

scope of operation tends to remain relatively small throughout its lifetime.  

This idea, the principal of locality, states that program code and data 

references will most likely not be contiguous, but will reliably cluster in 

predictable areas.  Without the clustering behavior of pages, “predictive non-

thrashing algorithms could not function”, states [3].  Aware of these 

principals, we can begin evaluating the variety of page replacement 

algorithms. 

 

Demand/Prefetch Fetching Policies 
Upon initial operation [1] suggests we can assume that the paging 

mechanism will have no prior knowledge of the page reference stream, or the 

order pages will be requested in.  This causes many systems to employ a 

demand fetch approach, where a page fault notification is the first indication 

that a page must be moved into the physical memory.  Prefetch, or dynamic 

page replacement is also possible, and will be examined after static 

algorithms. 



 
 
 
 All paging algorithms function on three basic policies: a fetch policy, a 

replacement policy, and a placement policy.  In the case of static paging, [1] 

describes the process with a shortcut: the page that has been removed is 

always replaced by the incoming page; this means that the placement policy 

is always fixed.  Since we are also assuming demand paging, the fetch policy 

is also a constant; the page fetched is that which has been requested by a 

page fault.  This leaves only the examination of replacement methods. 

 

Static Page Replacement Algorithms 
Optimal Replacement Theory 

In a best case scenario the only pages replaced are those that will either 

never be needed again, or have the longest number of page requests before 

they are referenced.  This “perfect” scenario is usually used only as a 

benchmark by which other algorithms can be judged, and is referred to as 

either Belady’s Optimal Algorithm, as described by [1,5] or Perfect Prediction 

(PP), as seen in [7].  Such a feat cannot be accomplished without full prior 

knowledge of the reference stream, or a record of past behavior that is 

incredibly consistent.  Although usually a pipe dream for system designers, 

[1] suggests it can be seen in very rare cases, such as large weather 

prediction programs that carry out the same operations on consistently sized 

data. 

 

 

 



 
 
 
Random Replacement 

On the flip-side of complete optimization is the most basic approach to page 

replacement: simply choosing the victim, or page to be removed, at random.  

Each page frame involved has an equal chance of being chosen, without 

taking into consideration the reference stream or locality principals.  Due to 

its random nature, the behavior of this algorithm is quite obviously, random 

and unreliable.  With most reference streams this method produces an 

unacceptable number of page faults, as well as victim pages being thrashed 

unnecessarily.  As commented on by [7], better performance can almost 

always be achieved by employing a different algorithm.  Most systems 

stopped experimenting with this method as early as the 1960’s [1]. 

 

First-In, First-Out (FIFO) 

First-in, first-out is as easy to implement as Random Replacement, and 

although its performance is equally unreliable or worse, claims [7], its 

behavior does follow a predictable pattern.  Rather than choosing a victim 

page at random, the oldest page (or first-in) is the first to be removed.  

Conceptually [4] compares FIFO to a limited size queue, with items being 

added to the queue at the tail.  When the queue fills (all of the physical 

memory has been allocated), the first page to enter is pushed out of head of 

the queue.  Similar to Random Replacement, FIFO blatantly ignores trends, 

and although it produces less page faults, still does not take advantage of 

locality trends unless by coincidence as pages move along the queue [1]. 



 
 
 
 A modification to FIFO that makes its operation much more useful is 

First-In Not-Used First-Out (FINUFO).  The only modification here is that a 

single bit is used to identify whether or not a page has been referenced 

during its time in the FIFO queue.  This utility, or referenced bit, is then used 

to determine if a page is identified as a victim.  If, since it has been fetched, 

the page has been referenced at least once, its bit becomes set.  When a 

page must be swapped out, the first to enter the queue whose bit has not 

been set is removed; if every active page has been referenced, a likely 

occurrence taking locality into consideration, all of the bits are reset.  In a 

worst-case scenario this could cause minor and temporary thrashing, but is 

generally very effective given its low cost [7].  Further information on 

reference bits and their application to other algorithms can be found in [2]. 

 

Least Recently Used (LRU) 

We have seen that an algorithm must use some kind of behavior prediction if 

it is to be efficient [3].  One of the most basic page replacement approaches 

uses the usage of a page as an indication of its “worth” when searching for a 

victim page: the Least Recently Used (LRU) Algorithm.  LRU was designed to 

take advantage of “normal” program operation, which generally consists of a 

series of loops with calls to rarely executed code [1].  In terms of the virtual 

addressing and pages, this means that the majority of code executed will be 

held in a small number of pages; essentially the algorithm takes advantage 

of the locality principal. 



 
 
 
 As per the previous description of locality, LRU assumes that a page 

recently referenced will most likely be referenced again soon.  To measure 

the “time” elapsed since a page has been a part of the reference stream, a 

backward distance is stored [2].  This distance must always be greater than 

zero, the point for the current position in the reference stream, and can be 

defined as infinite in the case of a page that has never been referenced.  

Thus, the victim page is defined as the one with the maximum backward 

distance; if two or more points meet this condition, a page is chosen 

arbitrarily.  This process is described in detail with numerical examples in [1]. 

Actual implementation of the backward distance number can vary, and 

does play an important role in the speed and efficiency of this algorithm.  

This can be done by sorting page references in order of their age into a 

stack, allowing quick identification of victims [2].  However the overhead 

associated with sorting does not generally justify the speed of identification, 

unless specific hardware exists to perform this operation.  Many operating 

systems do not assume this hardware exists (such as UNIX), and instead 

increment an age counter for every active page during the page stream 

progression, as described by [7].  When a page is referenced once again, or 

is brought in due to a page fault, its value is simply set to zero.  Since 

storage for the backward age is limited, a maximum value may also be 

defined; generally any page that has reached this age becomes a valid target 

for replacement [4].  As with any algorithm, modifications can be made to 

increase performance when additional hardware resources are available.  



 
 
 
Additional information about more complex LRU algorithms can found in 

[11]. 

 

Least Frequently Used (LFU) 

Often confused with LRU, Least Frequently Used (LFU) selects a page for 

replacement if it has not been used often in the past.  Instead of using a 

single age as in the case of LRU, LFU defines a frequency of use associated 

with each page.  This frequency is calculated throughout the reference 

stream, and its value can be calculated in a variety of ways.   

The most common frequency implementation begins at the beginning 

of the page reference stream, and continues to calculate the frequency over 

an ever-increasing interval.  Although this is the most accurate 

representation of the actual frequency of use, it does have some serious 

drawbacks.  Primarily, reactions to locality changes will be extremely slow 

[1].  Assuming that a program either changes its set of active pages, or 

terminates and is replaced by a completely different program, the frequency 

count will cause pages in the new locality to be immediately replaced since 

their frequency is much less than the pages associated with the previous 

program.  Since the context has changed, and the pages swapped out will 

most likely be needed again soon (due to the new program’s principal of 

locality), a period of thrashing will likely occur. 

 If the beginning of the reference stream is used, initialization code of a 

program can also have a profound influence, as described by [1].  The pages 

associated with initial code can influence the page replacement policy long 



 
 
 
after the main body of the program has begun execution.  One way to 

remedy this is to use a popular variant of LFU, which uses frequency counts 

of a page since it was last loaded rather than since the beginning of the page 

reference stream.  Each time a page is loaded, its frequency counter is reset 

rather than being allowed to increase indefinitely throughout the execution of 

the program.  Although this policy will for the most part prevent “old” pages 

from having a huge influence in the future of the stream, it will still tend to 

respond slowly to locality changes [1]. 

 

Stack Algorithms 
One would naturally expect the behavior of static paging algorithms to be 

linear; after all, they are static in nature.  Instinct tells us that by increasing 

the available physical memory for storing pages, and thus decreasing the 

needed number of page replacements, that the performance of the algorithm 

would increase.  However, with most simple algorithms this is not necessarily 

the case.  In fact, by increasing the available physical memory, some 

algorithms such as FIFO can decrease in page fault performance seemingly at 

random, as evidenced by [1].  This occurrence is referred to as Belady’s 

Anomaly, and is a primary factor in considering the practicality of any static 

algorithm [1,2,5]. 

 The predictable change in performance with an increase in physical 

memory is obviously not something to be taken for granted.  It can be 

proven, however, that if any algorithm with allocation of size m has pages 

that are guaranteed to be a subset of the allocation m + 1, it will not be 



 
 
 
subject to Belady’s Anomaly; this is what is referred to as the inclusion 

property [1,2].  Static algorithms that meet this requirement are called Stack 

Algorithms, named rightly so for the process of stacking subsets of pages as 

available allocations increase. 

 Not only are Stack Algorithms more useful, since they are guaranteed 

not to degrade in performance as available resources increase, their page 

faulting behavior is also easy to predict: 

 

“For example, one can calculate the cost of page fetches with a single 

pass over the reference stream for a stack algorithm, since it is 

possible to predict the number of page faults by analyzing the memory 

state.  Also, the memory state can be used to predict performance 

improvement obtained by increasing a process’s memory allocation for 

stack algorithms.  This performance improvement is not possible for 

other algorithms.” [1] 

 

Examples of Stack Algorithms include LRU and LFU, which are among the 

minority of algorithms not subject to Belady’s Anomaly. 

 

Dynamic Page Replacement Algorithms 
All of the static page replacement algorithms considered have one thing in 

common: they assumed that each program is allocated a fixed amount of 

memory when it begins execution, and does not request further memory 

during its lifetime.  Although static algorithms will work in this scenario, they 



 
 
 
are hardly optimized to handle the common occurrence of adjusting to page 

allocation changes.  This can lead to problems when a program rapidly 

switches between needing relatively large and relatively small page sets or 

localities [1]. 

 Depending on the size of the memory requirements of a program, the 

number of page faults may increase or decrease rapidly; for Stack 

Algorithms, we know that as the memory size is decreased, the number of 

page faults will increase.  Other static algorithms may become completely 

unpredictable.  Generally speaking, any program can have its number of 

page faults statistically analyzed for a variety of memory allocations.  At 

some point the rate of increase of the page faults (derivative of the curve) 

will peak; this point is sometimes referred to as the hysteresis point [1].  If 

the memory allocated to the program is less than the hysteresis point, the 

program is likely to thrash its page replacement.  Past the point, there is 

generally little noticeable change in the fault rate, making the hysteresis the 

target page allocation [1,6]. 

 Since a full analysis is rarely available to a virtual memory controller, 

and that program behavior is quite dynamic, finding the optimal page 

allocation can be incredibly difficult.  A variety of methods must be employed 

to develop replacement algorithms that work hand-in-hand with the locality 

changes present in complex programs.  Dynamic paging algorithms 

accomplish this by attempting to predict program memory requirements, 

while adjusting available pages based on reoccurring trends.  This policy of 



 
 
 
controlling available pages is also referred to as “prefetch” paging, and is 

contrary to the idea of demand paging [5]. 

Although localities (within the scope of a set of operations) may 

change, states [4], it is likely that within the global locality (encompassing 

the smaller clusters), locality sets will be repeated.  This idea of a “working 

set” of localities is mentioned in [1-6,8], and is the basis for most modern 

operating systems’ replacement algorithms [8]. 

 

Working Set Algorithms 
Working Set Replacement (WSR) 

Mathematically speaking Working Set Replacement (WSR) algorithms can 

either be very simple or extremely complex.  Essentially, the most basic 

algorithms assume that each program will use only a limited number of its 

pages during a certain interval of time.  During this interval, the program is 

allowed to freely page fault and add pages, growing until the time has 

expired [1].  When the interval has expired, the virtual memory manager 

removes all page references unused during the previous interval.  We refer to 

the set of pages used by a program during its previous interval as its working 

set [2,6].  For this to work reliably with minimal thrashing, the time elapsed 

may be dynamically adjusted to provide maximal correspondence with 

locality changes.  These adjustments can be made a variety of ways, but are 

usually determined as a function of the rate of page faults occurring within 

the program, as touched upon in [1]. 

 



 
 
 
Page-Fault Frequency (PFF) 

Working set algorithms do not always use a specific time interval to 

determine the active set.  Various page fault frequency (PFF) algorithms can 

also be used to monitor the rate at which a program incurs faults [7].  This is 

very similar to modifying the time interval but is not subject to a minimal 

time for change to occur; page allocation or release may occur rapidly during 

periods of locality transition, rather than attempting to suddenly minimize 

the time interval for evaluation to accomplish the same goal.  It is these 

types of dynamic changes that can add complexity to the working set 

implementation. 

 PFF does have its limitations depending on the application, however.  

An example program, given by [7], may require unrelated references to a 

database, causing a large fault frequency.  In this scenario, the program 

would not benefit from keeping the old references in memory.  Rapid 

changes in the fault frequency due to this type of access would result in 

either wasted page allocation or rapid thrashing with this algorithm, both 

detracting from its usefulness.  More often than not these types of unrelated 

memory references are an uncommon occurrence, however. 

 

Clocked LRU Approximation / WSClock 

There are other working set methods that closely approximate static 

methods, only on a global scale.  One such algorithm is the Clocked LRU 

Approximation.  Clock algorithms generally operate by envisioning the page 

frames arranged circularly, such as on a clock face [6].  Frames are 



 
 
 
considered for replacement by a pointer moving clockwise along the virtual 

clock face; at this point that particular frame is evaluated on some criteria, 

and the page is either replaced or the pointer moves on. 

 To simulate LRU with the clocked method, the page table entry’s valid 

bit is used by the system as a software settable reference bit, as described 

previously.  It also relies on the ability to have the hardware check a 

software based valid bit instead of its default in the page table.  A system 

clock routine periodically runs through each program’s page table, resetting 

the valid bits.  If a page is referenced, a page fault will occur, and the 

hardware will reference the software valid bit, discovering that the page is in 

memory.  If it is, the page fault hander will set the page table entry’s valid 

bit and continue the process.  When the clock process is allowed to run 

again, if it finds an invalid page with its software bit set and its page table 

entry’s valid bit not set, the operating system knows that the page has not 

been referenced; it can be assumed that this page is no longer a part of the 

working set and can be removed [6,7].  The set of algorithms that the 

Clocked LRU belongs to are called WSClock, meaning working set clock.  

Although WSClock generally behaves similar to LRU, its actual performance 

can differ based on timing parameters and selection criteria [1]. 

 

Replacement Algorithm Evaluation 
Methodology of Evaluation 

It quickly becomes obvious when evaluating algorithms that a common 

benchmark is difficult to identify; although standards such as Belady’s 



 
 
 
Optimal Algorithm or Perfect Prediction can be used as performance 

benchmarks across static and dynamic algorithms, they are certainly not the 

end-all of judgment.  One of the largest concerns when comparing algorithms 

is not only their speed, but the relative cost in resources necessary to 

accomplish them.  Depending on the implementation, many algorithms may 

not even be feasible due to hardware restrictions, or be subject to 

performance decreases due to limited hardware support [4].  Other design 

considerations, such as the size of pages present on the system can also 

affect algorithm performance.  Statistical evidence of the huge effect on 

performance due to page size can be found in [9]. 

 For any comparison to be feasible a few generalities must be made.  

We can assume that a sufficient architecture for implementing virtual 

memory does exist, such as a virtual memory manager, and that a single 

page replacement generally takes some fixed average time.  In reality, page 

reads from a secondary memory may vary widely due to the storage medium 

or system-wide demand for access to that device, alluded to by the relatively 

slow performance of secondary devices in [10]. 

 

Static Algorithm Comparisons 

Despite any necessary hardware requirements Static Algorithms are subject 

to one critical criterion described previously: they are subject to inclusion and 

are thus a Stack Algorithm.  Methods that do not belong to the Stack 

distinction, identified by [1] as Random Replacement and FIFO, can be put to 

little use unless their reactions are known for a specific subset of hardware 



 
 
 
that will not provide additional resources beyond the test conditions.  

Unfortunately randomized conditions result in predictable outcomes only if it 

truly does not matter which pages are removed, which is almost never the 

case. 

 Although not the most effective algorithm in applications with a variety 

of operations, FIFO may perform well with relatively little cost if operation is 

very consistent.  Note that this can only be established by experimental 

findings; FIFO performing well is dependent on consistent operation.  

Consistent operation is not necessarily indicative of FIFO being 

advantageous, however.  In general any situation that employs FIFO 

successfully would still be better with a modified version, such as FINUFO.  

FINUFO provides a low cost solution much like FIFO, but performs almost as 

well as more complex algorithms, such as LRU [7].  This approach does 

require minimal additional hardware support. 

 In terms of approaching Belady’s Optimal Algorithm, LRU performance 

is one of the most effective in the Static Algorithm subset.   

 

“… LRU has become the most widely used of the static replacement 

algorithms because it is a reasonable predictor for program behavior 

and produces good performance on a wide variety of page reference 

streams.” [1] 

 

In addition to the LRU Algorithm’s excellent performance, it also falls into the 

Stack Algorithm category, making its performance quite predictable and 



 
 
 
suitable for use on scalable systems.  However for LRU to work correctly, it 

requires additional hardware support in the form of a time field for each 

active page.  Without a portion of hardware devoted to updating the time, an 

interrupt would have to be used to run a manual routine.  This approach, as 

described by [2], suffers from a memory reference time increase by a factor 

of ten or more, “hence slowing every user process by a factor of ten”. 

 LFU presents the same general advantages as LRU, such as being a 

Stack Algorithm, and additionally provides a more accurate means of 

determining which pages in memory are useful.  LFU does suffer from 

pitfalls, however, and has a difficult time adjusting to locality changes as 

previously mentioned, which may be common in large systems [1].  Although 

it would seem that this would make LFU ideal for more specialized 

applications, it comes at the cost of needing even more complex hardware 

than LRU, to perform the frequency calculations necessary.  Although both 

are excellent algorithms, they are rarely seen without some approximations 

due to their hardware demands [2,7]. 

 

Dynamic Algorithm Comparisons 

Algorithms based upon prefetching pages can be judged with some of the 

same standards as demand based Static Algorithms.  Performance wise 

algorithms based on the working set principal may very greatly.  Aside from 

the overhead involved with switching localities on a global scale, working set 

approaches can use a variety of methods to choose their victim pages, much 

the same as Static Algorithms.  Thus, working set approaches can generally 



 
 
 
be gauged not by their criterion for local page replacement, but by their 

conditions for working page set replacement. 

Selection of intervals for WSR can be a costly process, but usually 

requires only a minimal amount of timing hardware and the ability to monitor 

page faults.  More elaborate WSR solutions using PFF become increasingly 

costly as their ability to accurately measure page fault rate changes, as 

described in [6].  As with Static Algorithms, approximations such as Clocked 

LRU can provide nearly the same level of performance with significantly less 

hardware cost.  Generally this type of an approach is preferred over the 

direct implementation. 

 

 Conclusions 
An investigation of virtual memory proves that its concept is not only 

feasible, but extremely useful and a necessity in ever-growing computer 

systems where high speed primary memory is limited.  Although not the only 

factor to be considered in the effectiveness of a virtual memory controller, 

replacement algorithms play one of the most vital roles in the overall 

performance of such a system, attempting to minimize redundant access to 

slower secondary storage.  Since a program’s page reference stream is 

almost never known, algorithms that take into consideration past trends are 

a necessity for good performance. 

Although it is apparent that Dynamic Algorithms are more versatile in 

their ability to deal with locality changes and the natural occurrence of 

working page set changes, their complexity makes them a reality only for 



 
 
 
large-scale systems.  When working with smaller systems, approximations of 

Static Algorithms such as Least Recently Used (LRU) or Least Frequently 

Used (LFU) tend to yield the best performance while dealing with limited 

hardware support for additional functions; direct application of these 

algorithms generally requires too much hardware overhead to be practical.  

Aside from performance, it is the predicable nature of Stack Algorithms that 

make these choices ideal, allowing the designer to ensure increased 

performance with an increase in page allocation. 

Even larger systems which make use of working set principals can 

benefit from the trade off between approximation and full implementation.  

Ultimately, selecting a page replacement algorithm is not subject to any 

specific rule set, but is a combination of speed (comparison to Belady’s 

Optimal Algorithm), predictability (Stack Algorithm qualifications), and 

hardware cost.  Experimental determinations must be made for the target 

applications and hardware before an accurate decision can be made; in some 

instances the generally less-efficient algorithm will outperform a more 

complex implementation, simply due to an uncommon page reference stream 

or lack of computational overhead.  It is therefore vital that a designer be 

conscious of the available implementations, and has sufficient data for a 

specific application, before deciding on a page replacement algorithm. 

 

 

 

 



 
 
 
References 
 

[1]  G. Nutt, Operating Systems, A Modern Perspective, 2nd ed., Reading, 

Mass.: Addison Wesley Longman, 2000. 

[2]  A. Silberschatz, P. Galvin, G. Gagne, Operating Systems Concepts, 6th 

ed., Danvers, Mass.: John Wiley and Sons, 2003. 

[3]  W. Stallings, Operating Systems, Internals and Design Principals, 3rd 

ed., Upper Saddle River, N.J.: Prentice-Hall, 1998. 

[4]  C. Crowley, Operating Systems, A Design Oriented Approach, 1st ed., 

Chicago: Irwin, a Times Mirror Higher Education Group, 1997. 

[5]  D. Tsichritzis and P. Bernstein, Operating Systems, 1st ed., London: 

Academic Press, 1974. 

[6]  M. Maekawa and A. Oldehoeft, Operating Systems, Advanced 

Concepts, 1st ed., Menlo Park, Ca.: The Benjamin/Cummings 

Publishing Co., 1987. 

[7]  J. Feldman, Computer Architecture, A Designer's Text Based on a 

Generic RISC Architecture, 1st ed., New York: McGraw-Hill, 1994. 

[8] G. Glass and P. Cao, “Adaptive Page Replacement Based on Memory 

Reference Behavior,” Proc. Int’l Conf. (ACM SIGMETRICS 97), 

University of Wisconsin-Madison, 1997. 

[9]  D. Hatfield, "Experiments on Page Size, Program Access Patterns, and 

Virtual Memory Performance," IBM Journal of Research and 

Development, no. 26 Aug., pp. 58-66, 1972. 



 
 
 
[10]  P. Denning, "Virtual Memory," ACM Computing Surveys, vol. 28, no. 1 

Mar., 1996. 


