

Virtual Memory Page Replacement Algorithms

Terrance McCraw

CS384 – Operating Systems

Milwaukee School of Engineering

mccrawt@msoe.edu

Abstract
Virtual memory has become a necessity over the years as the cost of

secondary memory decreases, and the memory demands of software

increase. To balance the use of primary memory among processes,

sophisticated algorithms are necessary to manage the replacement of virtual

pages. This paper outlines the pros and cons of a variety of solutions,

including both static demand based and dynamic prefetch replacement

algorithms. Ultimately, the effectiveness of any algorithm is dependent upon

the application and hardware support available, although some generalization

about performance can be made.

Virtual Memory Introduction
Virtual memory is a catch-all phrase for the abstraction of physical memory

via a virtual address space. In all cases a virtual memory manager is

responsible for maintaining this virtual address translation; generally

speaking the definition also includes the responsibility of operating a large

virtual address range within a smaller available physical memory. This

process involves the transfer of blocks of memory from a secondary source

(usually a slower hard-disk) to the primary memory whenever necessary for

program execution. It is the virtual memory manager’s responsibility to

provide a level of abstraction for programs, allowing them to operate

seamlessly without any “knowledge” of the underlying system. If

implemented properly, software can be written for these systems using a

relatively large virtual address range, while running on a small amount of

physical memory with little reduction in speed.

Segmentation and Paging
At its very roots virtual addressing is applied one of two ways: either via

segmentation or paging. Segmentation involves the relocation of variable

sized segments into the physical address space. Generally these segments

are contiguous units, and are referred to in programs by their segment

number and an offset to the requested data. Although a segmentation

approach can be more powerful to a programmer in terms of control over the

memory, it can also become a burden, as suggested by [1]. Efficient

segmentation relies on programs that are very thoughtfully written for their

target system. Even assuming best case scenarios, segmentation can lead to

problems, however.

As described by [2], external fragmentation is the term coined for

pieces of memory between segments, which may collectively provide a useful

amount of memory, but are rendered useless by their non-contiguous nature.

Since segmentation relies on memory that is located in single large blocks, it

is very possible that enough free space is available to load a new module, but

cannot be utilized. Segmentation may also suffer from internal

fragmentation if segments are not variable-sized, where memory above the

segment is not used by the program but is still “reserved” for it.

 Contrarily, paging provides a somewhat easier interface for programs,

in that its operation tends to be more automatic and thus transparent. Each

unit of transfer, referred to as a page, is of a fixed size and swapped by the

virtual memory manager outside of the program’s control. Instead of

utilizing a segment/offset addressing approach, as seen in segmentation,

paging uses a linear sequence of virtual addresses which are mapped to

physical memory as necessary, evidenced in [1,3]. Due to this addressing

approach, a single program may refer to a series of many non-contiguous

segments. Although some internal fragmentation may still exist due to the

fixed size of the pages, the approach virtually eliminates external

fragmentation. According to [3], the advantages of paging over

segmentation generally outweigh their disadvantages.

Implementation Feasibility
Virtual memory is good in theory, but for its operation to be practical it must

be properly implemented. Algorithms responsible for replacing pages in

physical memory from the secondary source are primarily responsible for the

speed and efficiency of the final system. To operate effectively, the loading

of extraneous information must be minimized or completely eliminated, lest

the manager’s use of the resources become wasteful. Further information on

efficient swap methods can be found in [4]. More importantly, information

that is swapped out of the physical memory must be chosen carefully. If a

page has been removed from memory to make way for another requested

page, but then is immediately requested once again, we say the replacement

is thrashing. Thrashing page replacement has the potential to bring virtual

memory to an immediate slowdown suggests [5], since it causes the

manager to make redundant memory reads and writes, while relying heavily

on the speed of the secondary storage device.

 Thankfully most thrashing can be avoided naturally, as a program’s

scope of operation tends to remain relatively small throughout its lifetime.

This idea, the principal of locality, states that program code and data

references will most likely not be contiguous, but will reliably cluster in

predictable areas. Without the clustering behavior of pages, “predictive non-

thrashing algorithms could not function”, states [3]. Aware of these

principals, we can begin evaluating the variety of page replacement

algorithms.

Demand/Prefetch Fetching Policies
Upon initial operation [1] suggests we can assume that the paging

mechanism will have no prior knowledge of the page reference stream, or the

order pages will be requested in. This causes many systems to employ a

demand fetch approach, where a page fault notification is the first indication

that a page must be moved into the physical memory. Prefetch, or dynamic

page replacement is also possible, and will be examined after static

algorithms.

 All paging algorithms function on three basic policies: a fetch policy, a

replacement policy, and a placement policy. In the case of static paging, [1]

describes the process with a shortcut: the page that has been removed is

always replaced by the incoming page; this means that the placement policy

is always fixed. Since we are also assuming demand paging, the fetch policy

is also a constant; the page fetched is that which has been requested by a

page fault. This leaves only the examination of replacement methods.

Static Page Replacement Algorithms
Optimal Replacement Theory

In a best case scenario the only pages replaced are those that will either

never be needed again, or have the longest number of page requests before

they are referenced. This “perfect” scenario is usually used only as a

benchmark by which other algorithms can be judged, and is referred to as

either Belady’s Optimal Algorithm, as described by [1,5] or Perfect Prediction

(PP), as seen in [7]. Such a feat cannot be accomplished without full prior

knowledge of the reference stream, or a record of past behavior that is

incredibly consistent. Although usually a pipe dream for system designers,

[1] suggests it can be seen in very rare cases, such as large weather

prediction programs that carry out the same operations on consistently sized

data.

Random Replacement

On the flip-side of complete optimization is the most basic approach to page

replacement: simply choosing the victim, or page to be removed, at random.

Each page frame involved has an equal chance of being chosen, without

taking into consideration the reference stream or locality principals. Due to

its random nature, the behavior of this algorithm is quite obviously, random

and unreliable. With most reference streams this method produces an

unacceptable number of page faults, as well as victim pages being thrashed

unnecessarily. As commented on by [7], better performance can almost

always be achieved by employing a different algorithm. Most systems

stopped experimenting with this method as early as the 1960’s [1].

First-In, First-Out (FIFO)

First-in, first-out is as easy to implement as Random Replacement, and

although its performance is equally unreliable or worse, claims [7], its

behavior does follow a predictable pattern. Rather than choosing a victim

page at random, the oldest page (or first-in) is the first to be removed.

Conceptually [4] compares FIFO to a limited size queue, with items being

added to the queue at the tail. When the queue fills (all of the physical

memory has been allocated), the first page to enter is pushed out of head of

the queue. Similar to Random Replacement, FIFO blatantly ignores trends,

and although it produces less page faults, still does not take advantage of

locality trends unless by coincidence as pages move along the queue [1].

 A modification to FIFO that makes its operation much more useful is

First-In Not-Used First-Out (FINUFO). The only modification here is that a

single bit is used to identify whether or not a page has been referenced

during its time in the FIFO queue. This utility, or referenced bit, is then used

to determine if a page is identified as a victim. If, since it has been fetched,

the page has been referenced at least once, its bit becomes set. When a

page must be swapped out, the first to enter the queue whose bit has not

been set is removed; if every active page has been referenced, a likely

occurrence taking locality into consideration, all of the bits are reset. In a

worst-case scenario this could cause minor and temporary thrashing, but is

generally very effective given its low cost [7]. Further information on

reference bits and their application to other algorithms can be found in [2].

Least Recently Used (LRU)

We have seen that an algorithm must use some kind of behavior prediction if

it is to be efficient [3]. One of the most basic page replacement approaches

uses the usage of a page as an indication of its “worth” when searching for a

victim page: the Least Recently Used (LRU) Algorithm. LRU was designed to

take advantage of “normal” program operation, which generally consists of a

series of loops with calls to rarely executed code [1]. In terms of the virtual

addressing and pages, this means that the majority of code executed will be

held in a small number of pages; essentially the algorithm takes advantage

of the locality principal.

 As per the previous description of locality, LRU assumes that a page

recently referenced will most likely be referenced again soon. To measure

the “time” elapsed since a page has been a part of the reference stream, a

backward distance is stored [2]. This distance must always be greater than

zero, the point for the current position in the reference stream, and can be

defined as infinite in the case of a page that has never been referenced.

Thus, the victim page is defined as the one with the maximum backward

distance; if two or more points meet this condition, a page is chosen

arbitrarily. This process is described in detail with numerical examples in [1].

Actual implementation of the backward distance number can vary, and

does play an important role in the speed and efficiency of this algorithm.

This can be done by sorting page references in order of their age into a

stack, allowing quick identification of victims [2]. However the overhead

associated with sorting does not generally justify the speed of identification,

unless specific hardware exists to perform this operation. Many operating

systems do not assume this hardware exists (such as UNIX), and instead

increment an age counter for every active page during the page stream

progression, as described by [7]. When a page is referenced once again, or

is brought in due to a page fault, its value is simply set to zero. Since

storage for the backward age is limited, a maximum value may also be

defined; generally any page that has reached this age becomes a valid target

for replacement [4]. As with any algorithm, modifications can be made to

increase performance when additional hardware resources are available.

Additional information about more complex LRU algorithms can found in

[11].

Least Frequently Used (LFU)

Often confused with LRU, Least Frequently Used (LFU) selects a page for

replacement if it has not been used often in the past. Instead of using a

single age as in the case of LRU, LFU defines a frequency of use associated

with each page. This frequency is calculated throughout the reference

stream, and its value can be calculated in a variety of ways.

The most common frequency implementation begins at the beginning

of the page reference stream, and continues to calculate the frequency over

an ever-increasing interval. Although this is the most accurate

representation of the actual frequency of use, it does have some serious

drawbacks. Primarily, reactions to locality changes will be extremely slow

[1]. Assuming that a program either changes its set of active pages, or

terminates and is replaced by a completely different program, the frequency

count will cause pages in the new locality to be immediately replaced since

their frequency is much less than the pages associated with the previous

program. Since the context has changed, and the pages swapped out will

most likely be needed again soon (due to the new program’s principal of

locality), a period of thrashing will likely occur.

 If the beginning of the reference stream is used, initialization code of a

program can also have a profound influence, as described by [1]. The pages

associated with initial code can influence the page replacement policy long

after the main body of the program has begun execution. One way to

remedy this is to use a popular variant of LFU, which uses frequency counts

of a page since it was last loaded rather than since the beginning of the page

reference stream. Each time a page is loaded, its frequency counter is reset

rather than being allowed to increase indefinitely throughout the execution of

the program. Although this policy will for the most part prevent “old” pages

from having a huge influence in the future of the stream, it will still tend to

respond slowly to locality changes [1].

Stack Algorithms
One would naturally expect the behavior of static paging algorithms to be

linear; after all, they are static in nature. Instinct tells us that by increasing

the available physical memory for storing pages, and thus decreasing the

needed number of page replacements, that the performance of the algorithm

would increase. However, with most simple algorithms this is not necessarily

the case. In fact, by increasing the available physical memory, some

algorithms such as FIFO can decrease in page fault performance seemingly at

random, as evidenced by [1]. This occurrence is referred to as Belady’s

Anomaly, and is a primary factor in considering the practicality of any static

algorithm [1,2,5].

 The predictable change in performance with an increase in physical

memory is obviously not something to be taken for granted. It can be

proven, however, that if any algorithm with allocation of size m has pages

that are guaranteed to be a subset of the allocation m + 1, it will not be

subject to Belady’s Anomaly; this is what is referred to as the inclusion

property [1,2]. Static algorithms that meet this requirement are called Stack

Algorithms, named rightly so for the process of stacking subsets of pages as

available allocations increase.

 Not only are Stack Algorithms more useful, since they are guaranteed

not to degrade in performance as available resources increase, their page

faulting behavior is also easy to predict:

“For example, one can calculate the cost of page fetches with a single

pass over the reference stream for a stack algorithm, since it is

possible to predict the number of page faults by analyzing the memory

state. Also, the memory state can be used to predict performance

improvement obtained by increasing a process’s memory allocation for

stack algorithms. This performance improvement is not possible for

other algorithms.” [1]

Examples of Stack Algorithms include LRU and LFU, which are among the

minority of algorithms not subject to Belady’s Anomaly.

Dynamic Page Replacement Algorithms
All of the static page replacement algorithms considered have one thing in

common: they assumed that each program is allocated a fixed amount of

memory when it begins execution, and does not request further memory

during its lifetime. Although static algorithms will work in this scenario, they

are hardly optimized to handle the common occurrence of adjusting to page

allocation changes. This can lead to problems when a program rapidly

switches between needing relatively large and relatively small page sets or

localities [1].

 Depending on the size of the memory requirements of a program, the

number of page faults may increase or decrease rapidly; for Stack

Algorithms, we know that as the memory size is decreased, the number of

page faults will increase. Other static algorithms may become completely

unpredictable. Generally speaking, any program can have its number of

page faults statistically analyzed for a variety of memory allocations. At

some point the rate of increase of the page faults (derivative of the curve)

will peak; this point is sometimes referred to as the hysteresis point [1]. If

the memory allocated to the program is less than the hysteresis point, the

program is likely to thrash its page replacement. Past the point, there is

generally little noticeable change in the fault rate, making the hysteresis the

target page allocation [1,6].

 Since a full analysis is rarely available to a virtual memory controller,

and that program behavior is quite dynamic, finding the optimal page

allocation can be incredibly difficult. A variety of methods must be employed

to develop replacement algorithms that work hand-in-hand with the locality

changes present in complex programs. Dynamic paging algorithms

accomplish this by attempting to predict program memory requirements,

while adjusting available pages based on reoccurring trends. This policy of

controlling available pages is also referred to as “prefetch” paging, and is

contrary to the idea of demand paging [5].

Although localities (within the scope of a set of operations) may

change, states [4], it is likely that within the global locality (encompassing

the smaller clusters), locality sets will be repeated. This idea of a “working

set” of localities is mentioned in [1-6,8], and is the basis for most modern

operating systems’ replacement algorithms [8].

Working Set Algorithms
Working Set Replacement (WSR)

Mathematically speaking Working Set Replacement (WSR) algorithms can

either be very simple or extremely complex. Essentially, the most basic

algorithms assume that each program will use only a limited number of its

pages during a certain interval of time. During this interval, the program is

allowed to freely page fault and add pages, growing until the time has

expired [1]. When the interval has expired, the virtual memory manager

removes all page references unused during the previous interval. We refer to

the set of pages used by a program during its previous interval as its working

set [2,6]. For this to work reliably with minimal thrashing, the time elapsed

may be dynamically adjusted to provide maximal correspondence with

locality changes. These adjustments can be made a variety of ways, but are

usually determined as a function of the rate of page faults occurring within

the program, as touched upon in [1].

Page-Fault Frequency (PFF)

Working set algorithms do not always use a specific time interval to

determine the active set. Various page fault frequency (PFF) algorithms can

also be used to monitor the rate at which a program incurs faults [7]. This is

very similar to modifying the time interval but is not subject to a minimal

time for change to occur; page allocation or release may occur rapidly during

periods of locality transition, rather than attempting to suddenly minimize

the time interval for evaluation to accomplish the same goal. It is these

types of dynamic changes that can add complexity to the working set

implementation.

 PFF does have its limitations depending on the application, however.

An example program, given by [7], may require unrelated references to a

database, causing a large fault frequency. In this scenario, the program

would not benefit from keeping the old references in memory. Rapid

changes in the fault frequency due to this type of access would result in

either wasted page allocation or rapid thrashing with this algorithm, both

detracting from its usefulness. More often than not these types of unrelated

memory references are an uncommon occurrence, however.

Clocked LRU Approximation / WSClock

There are other working set methods that closely approximate static

methods, only on a global scale. One such algorithm is the Clocked LRU

Approximation. Clock algorithms generally operate by envisioning the page

frames arranged circularly, such as on a clock face [6]. Frames are

considered for replacement by a pointer moving clockwise along the virtual

clock face; at this point that particular frame is evaluated on some criteria,

and the page is either replaced or the pointer moves on.

 To simulate LRU with the clocked method, the page table entry’s valid

bit is used by the system as a software settable reference bit, as described

previously. It also relies on the ability to have the hardware check a

software based valid bit instead of its default in the page table. A system

clock routine periodically runs through each program’s page table, resetting

the valid bits. If a page is referenced, a page fault will occur, and the

hardware will reference the software valid bit, discovering that the page is in

memory. If it is, the page fault hander will set the page table entry’s valid

bit and continue the process. When the clock process is allowed to run

again, if it finds an invalid page with its software bit set and its page table

entry’s valid bit not set, the operating system knows that the page has not

been referenced; it can be assumed that this page is no longer a part of the

working set and can be removed [6,7]. The set of algorithms that the

Clocked LRU belongs to are called WSClock, meaning working set clock.

Although WSClock generally behaves similar to LRU, its actual performance

can differ based on timing parameters and selection criteria [1].

Replacement Algorithm Evaluation
Methodology of Evaluation

It quickly becomes obvious when evaluating algorithms that a common

benchmark is difficult to identify; although standards such as Belady’s

Optimal Algorithm or Perfect Prediction can be used as performance

benchmarks across static and dynamic algorithms, they are certainly not the

end-all of judgment. One of the largest concerns when comparing algorithms

is not only their speed, but the relative cost in resources necessary to

accomplish them. Depending on the implementation, many algorithms may

not even be feasible due to hardware restrictions, or be subject to

performance decreases due to limited hardware support [4]. Other design

considerations, such as the size of pages present on the system can also

affect algorithm performance. Statistical evidence of the huge effect on

performance due to page size can be found in [9].

 For any comparison to be feasible a few generalities must be made.

We can assume that a sufficient architecture for implementing virtual

memory does exist, such as a virtual memory manager, and that a single

page replacement generally takes some fixed average time. In reality, page

reads from a secondary memory may vary widely due to the storage medium

or system-wide demand for access to that device, alluded to by the relatively

slow performance of secondary devices in [10].

Static Algorithm Comparisons

Despite any necessary hardware requirements Static Algorithms are subject

to one critical criterion described previously: they are subject to inclusion and

are thus a Stack Algorithm. Methods that do not belong to the Stack

distinction, identified by [1] as Random Replacement and FIFO, can be put to

little use unless their reactions are known for a specific subset of hardware

that will not provide additional resources beyond the test conditions.

Unfortunately randomized conditions result in predictable outcomes only if it

truly does not matter which pages are removed, which is almost never the

case.

 Although not the most effective algorithm in applications with a variety

of operations, FIFO may perform well with relatively little cost if operation is

very consistent. Note that this can only be established by experimental

findings; FIFO performing well is dependent on consistent operation.

Consistent operation is not necessarily indicative of FIFO being

advantageous, however. In general any situation that employs FIFO

successfully would still be better with a modified version, such as FINUFO.

FINUFO provides a low cost solution much like FIFO, but performs almost as

well as more complex algorithms, such as LRU [7]. This approach does

require minimal additional hardware support.

 In terms of approaching Belady’s Optimal Algorithm, LRU performance

is one of the most effective in the Static Algorithm subset.

“… LRU has become the most widely used of the static replacement

algorithms because it is a reasonable predictor for program behavior

and produces good performance on a wide variety of page reference

streams.” [1]

In addition to the LRU Algorithm’s excellent performance, it also falls into the

Stack Algorithm category, making its performance quite predictable and

suitable for use on scalable systems. However for LRU to work correctly, it

requires additional hardware support in the form of a time field for each

active page. Without a portion of hardware devoted to updating the time, an

interrupt would have to be used to run a manual routine. This approach, as

described by [2], suffers from a memory reference time increase by a factor

of ten or more, “hence slowing every user process by a factor of ten”.

 LFU presents the same general advantages as LRU, such as being a

Stack Algorithm, and additionally provides a more accurate means of

determining which pages in memory are useful. LFU does suffer from

pitfalls, however, and has a difficult time adjusting to locality changes as

previously mentioned, which may be common in large systems [1]. Although

it would seem that this would make LFU ideal for more specialized

applications, it comes at the cost of needing even more complex hardware

than LRU, to perform the frequency calculations necessary. Although both

are excellent algorithms, they are rarely seen without some approximations

due to their hardware demands [2,7].

Dynamic Algorithm Comparisons

Algorithms based upon prefetching pages can be judged with some of the

same standards as demand based Static Algorithms. Performance wise

algorithms based on the working set principal may very greatly. Aside from

the overhead involved with switching localities on a global scale, working set

approaches can use a variety of methods to choose their victim pages, much

the same as Static Algorithms. Thus, working set approaches can generally

be gauged not by their criterion for local page replacement, but by their

conditions for working page set replacement.

Selection of intervals for WSR can be a costly process, but usually

requires only a minimal amount of timing hardware and the ability to monitor

page faults. More elaborate WSR solutions using PFF become increasingly

costly as their ability to accurately measure page fault rate changes, as

described in [6]. As with Static Algorithms, approximations such as Clocked

LRU can provide nearly the same level of performance with significantly less

hardware cost. Generally this type of an approach is preferred over the

direct implementation.

 Conclusions
An investigation of virtual memory proves that its concept is not only

feasible, but extremely useful and a necessity in ever-growing computer

systems where high speed primary memory is limited. Although not the only

factor to be considered in the effectiveness of a virtual memory controller,

replacement algorithms play one of the most vital roles in the overall

performance of such a system, attempting to minimize redundant access to

slower secondary storage. Since a program’s page reference stream is

almost never known, algorithms that take into consideration past trends are

a necessity for good performance.

Although it is apparent that Dynamic Algorithms are more versatile in

their ability to deal with locality changes and the natural occurrence of

working page set changes, their complexity makes them a reality only for

large-scale systems. When working with smaller systems, approximations of

Static Algorithms such as Least Recently Used (LRU) or Least Frequently

Used (LFU) tend to yield the best performance while dealing with limited

hardware support for additional functions; direct application of these

algorithms generally requires too much hardware overhead to be practical.

Aside from performance, it is the predicable nature of Stack Algorithms that

make these choices ideal, allowing the designer to ensure increased

performance with an increase in page allocation.

Even larger systems which make use of working set principals can

benefit from the trade off between approximation and full implementation.

Ultimately, selecting a page replacement algorithm is not subject to any

specific rule set, but is a combination of speed (comparison to Belady’s

Optimal Algorithm), predictability (Stack Algorithm qualifications), and

hardware cost. Experimental determinations must be made for the target

applications and hardware before an accurate decision can be made; in some

instances the generally less-efficient algorithm will outperform a more

complex implementation, simply due to an uncommon page reference stream

or lack of computational overhead. It is therefore vital that a designer be

conscious of the available implementations, and has sufficient data for a

specific application, before deciding on a page replacement algorithm.

References

[1] G. Nutt, Operating Systems, A Modern Perspective, 2nd ed., Reading,

Mass.: Addison Wesley Longman, 2000.

[2] A. Silberschatz, P. Galvin, G. Gagne, Operating Systems Concepts, 6th

ed., Danvers, Mass.: John Wiley and Sons, 2003.

[3] W. Stallings, Operating Systems, Internals and Design Principals, 3rd

ed., Upper Saddle River, N.J.: Prentice-Hall, 1998.

[4] C. Crowley, Operating Systems, A Design Oriented Approach, 1st ed.,

Chicago: Irwin, a Times Mirror Higher Education Group, 1997.

[5] D. Tsichritzis and P. Bernstein, Operating Systems, 1st ed., London:

Academic Press, 1974.

[6] M. Maekawa and A. Oldehoeft, Operating Systems, Advanced

Concepts, 1st ed., Menlo Park, Ca.: The Benjamin/Cummings

Publishing Co., 1987.

[7] J. Feldman, Computer Architecture, A Designer's Text Based on a

Generic RISC Architecture, 1st ed., New York: McGraw-Hill, 1994.

[8] G. Glass and P. Cao, “Adaptive Page Replacement Based on Memory

Reference Behavior,” Proc. Int’l Conf. (ACM SIGMETRICS 97),

University of Wisconsin-Madison, 1997.

[9] D. Hatfield, "Experiments on Page Size, Program Access Patterns, and

Virtual Memory Performance," IBM Journal of Research and

Development, no. 26 Aug., pp. 58-66, 1972.

[10] P. Denning, "Virtual Memory," ACM Computing Surveys, vol. 28, no. 1

Mar., 1996.

