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ABSTRACT

To complement hydrodynamic studies of the tidal disruption of the star by a massive black hole, we present the
study of stellar luminosity and its variations produced by the strong gravitational field of the black hole during a
close encounter. By simulating the relativistically moving star and its emitted light and taking into account general
relativistic effects on particle and light trajectories, our results show that the black hole’s gravity alone induces
apparent stellar luminosity variations on typical timescales of a few rg /c [=(5 s)mbh / (10

6 M�)] to a few 100 rg /c
[�(10 minutes)mbh / (10

6 M�)], where rg ¼ Gmbh /c
2. We discern different cases with respect to the strength of

tidal interaction and focus on two: (1) a star encountering a giant black hole traces spacetime almost as a point
particle, so the apparent luminosity variations are dominated by clearly recognizable general relativistic effects, and
(2) in a close encounter of a star with a black hole of similar size, the stellar debris is spread around the black hole by
processes in which hydrodynamics plays an important role. We discuss limitations and results of our approach.

Subject headinggs: black hole physics — hydrodynamics

1. INTRODUCTION

Motivation for our work comes from the presence of massive
black holes in galactic nuclei and from the possibility that such
black holes accrete material from their surroundings. It was
estimated (Gurzadyan & Ozernoy 1981; Rees 1990; Magorrian
& Tremaine 1999; Syer & Ulmer 1999) that central black holes
may capture stars from inner galactic regions at the rate from
10�3 to 10�7 stars per galaxy per year. Such events would be
particularly interesting in the Galactic center, where the ob-
served X-ray flare (Baganoff et al. 2001) and measured motion
of stars, down to only 17 lt-hr from the center (Schödel et al.
2002), provide strong evidence that the central concentration of
about 3 ; 106 M� is indeed a black hole. In recent years UVand
X-ray flares have been observed in the nuclei of NGC 4552,
NGC 5905, RX J1242.6�1119, RX J1624.9+7554, and others,
for which it was concluded that tidal disruption of a star by a
massive black hole provides the best explanation (Renzini et al.
1995; Komossa & Bade 1999; Grupe et al. 1999; Gezari et al.
2003).

The interaction of a star with a black hole has been studied
previously by other authors (Rees 1988; Carter & Luminet
1985; Luminet & Marck 1985) with a number of detailed hy-
drodynamic simulations (Laguna et al. 1993; Khokhlov et al.
1993a, 1993b; Kochanek 1994; Fulbright et al. 1995; Marck
et al. 1996; Diener et al. 1997; Loeb & Ulmer 1997; Ayal et al.
2000; Ivanov & Novikov 2001; Ivanov et al. 2003) with em-
phasis on stellar structure during the encounter with the black
hole and long-term evolution of stellar debris. Nevertheless, none
of these studied the luminosity variations occurring to the star in
the vicinity of the black hole. In order to be complete, such a study
should include stellar hydrodynamics in full general relativity,
modeling of radiation processes in the disrupted star, and rela-
tivistic effects on the emitted light. Because of the complexity of

the subject, we do not attempt to study all these effects in full here,
but we wish to complement hydrodynamic studies by previously
mentioned authors. Therefore, we limit our attention in this paper
to effects on a star’s luminosity induced solely by the gravity of the
black hole, as we expect that relativistic effects alone might pro-
duce interesting luminosity phenomena. We simulate the disrup-
tion and the appearance of the star during a close encounter as it
would be seen by a distant observer and make a comparison of
some results in our model with those obtained by hydrodynamic
simulations.
The model of the star used in our simulations depends on the

expected strength of the tidal interactions between the star and
black hole. Tidal disruption of the star with massM� and radius
R� occurs only if the star approaches the black hole to within its
Roche radius:

rR ¼
�
mbh

M�

�1=3

R�; ð1Þ

which, expressed in units of the black hole’s gravitational ra-
dius rg ¼ Gmbh /c

2, reads

RR ¼ rR

2rg
¼ 25

�
��
��

�1=3�
106 M�
mbh

�2=3

; ð2Þ

where �� and �� are the average densities of the Sun and the
star, respectively. It is convenient to introduce the dimension-
less Roche radius penetration factor � ¼ rR /rp, where rp is the
periastron distance of the star with respect to the black hole. The
Roche penetration factor of a black hole grazing orbit is obvi-
ously �gr ¼ rR / (2rg þ R�) ¼ RR / (1þ R� /2rg). It is shown in
the Appendix that this penetration factor crucially determines
the strength of tidal interaction, i.e., the amount of work the
tidal forces do on the star. We show (eq. [A23]) that tidal work
can be approximated by

Wtide � G
mbhM�R

2
�

r 3p
"2(� ) ¼ M�c

2 rg

rp

R2
�

r 2p
"2(� ); ð3Þ
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where "(� ) can be thought of as an effective eccentricity of the
star at the periastron. If the Roche radius penetration factor is
large, " may grow to values of the order of 1, bringing Wtide to
values comparable to a sizeable fraction of M�c2. Thus, the
tidal interaction becomes overwhelmingly strong for large �.
Such an extreme scenario occurs for grazing interactions only
if the size of the star is comparable to that of the black hole
(see the Appendix). We classify grazing tidal interactions as
follows:

1. mbh /M�T1. TheRoche radius is smaller than the radius of
the star; it follows that the Roche penetration factor is less than1.
As a consequence, "2T1 and the star as a whole does not suffer
large perturbations, even if the black hole pierces the star and
accretes a small part of its mass along the way.

2. mbh /M� � 1. The Roche radius more or less equals the
radius of the star (eq. [1]), and so, unless the star is very unusual,
R� 3 rg, the value of the Roche penetration factor is �gr � 1. For
such a �gr, "(� ¼ 1) � 1 (cf. the Appendix), and equation (3)
predicts that the tidal energy is of the order of 10�5 M�c

2, which is
a typical internal energy of a solar-type star. Thus, the tidal energy
is just about large enough to completely distort the star; the in-
teraction may trigger violent hydrodynamic phenomena, possibly
even a supernova. The most important phenomena governing the
appearance of the star during such an encounter are hydrodynamic
in nature, since the strong gravity region around the black hole has
a much shorter range than is the size of the perturbed star. Hydro-
dynamics governs the appearance of the phenomenon, and there-
fore, such an event does not directly reflect general relativistic
effects in a strong-gravity environment.

3. mbh /M� � (c/ve)
2, where ve ¼ (2GM� /R�)

1=2 is the es-
cape velocity from the star. The black hole radius is comparable
to the size of the star; if the star is not very unusual, its escape
velocity is much less than c, so according to equation (1) the
Roche radius is much greater thanR� and consequently �gr 3 1.
In this case the tidal energy exceeds the internal energy by sev-
eral orders of magnitude. A total and complete tidal disruption
takes place outside the black hole but in the region sufficiently
close to the black hole for relativistic effects to play the major
role in the dynamics of the disruption (x 3).

4. (c/ve)
2 < mbh /M� < (c/ve)3. The black hole radius is larger

than that of the star but still smaller than the Roche radius; �gr
decreases with increasing mass of the black hole. The tidal en-
ergy before reaching the horizon is still comparable to the in-
ternal energy of the star. The release of tidal energy may well be
sufficient to produce high-energy shocks, boosting stellar lumi-
nosity by many orders of magnitude. Yet, shocks moving with a
few Mach are still much slower than the near speed of light the
star is moving at now. The star remains small with respect to the
black hole along its way to the black hole. Such a stellar capture
will thus very closely trace relativistic effects in the spacetime,
as it will be seen as a flashing point particle on its way to doom.

5. mbh /M� > (c/ve)
3. The black hole is very much larger in

size than the star (mbh > 108 M� for a solar-type star); the
Roche radius lies beyond the black hole’s horizon, so it follows
equation (2) that the star is tidally disrupted only after crossing
the horizon (rR < 2rg). Hence, the point-particle approxima-
tion for the falling star is very good in the whole region outside
the black hole. Since there is no agent to heat the star up, it is
less likely for such an event to be noticed (x 2).

Here we discuss only the last three cases, since we find them
interesting as a tool to study the strong gravity regions in the
universe, as well as in view of supermassive black holes in
galactic nuclei.

2. STAR ENCOUNTERING A mbh > 108 M� BLACK HOLE

We expect that the capture of a star by a giant black hole
would most likely occur when a star in the cluster surrounding
the giant black hole would be perturbed to a low angular veloc-
ity orbit with respect to the black hole. Therefore, the charac-
teristic velocity of such encounters will most likely be that of
the parabolic infall. During such an infall the star cannot be sig-
nificantly disrupted while outside the horizon, so with respect to
a much larger black hole it can be treated as a point source of
light whose appearance with respect to the far observer will be
modulated by the Doppler shift, aberration bending, and grav-
itational redshift. Two numerical codes were developed to cal-
culate the apparent luminosity changes of the source falling in
both Schwarzschild-type and Kerr-type black holes. During the
encounter of the star with a giant black hole, the star is simu-
lated as a point source emitting monochromatic light of fre-
quency �0 and intensity L0, both constant in the frame comoving
with the source. As the source is moving along a parabolic or-
bit with a given orbital angular momentum, we trace light rays
from subsequent points of the source’s trajectory (separated by
�t ¼ 1rg /c in coordinate time) to the distant observers and cal-
culate the apparent luminosity with respect to them as a func-
tion of time. We would like to note that these results are directly
applicable also to luminosity and spectrum changes produced
by orbiting blobs of material in accretion disks around black
holes.

Results for both types of black holes show (Gomboc et al.
1999) two characteristic timescales of luminosity changes, both
determined by the gravity of the black hole. The first one dis-
plays the basic quasi period in luminosity and redshift changes
as the star spirals toward the black hole. The quasi period very
closely matches the orbital period of the source at the innermost
stable orbit (50rg /c for a Schwarzschild black hole). The num-
ber of quasi periods observed depends on the fine tuning of the
angular momentum to the critical value. In the Schwarzschild
case the critical angular momentum is l /M�rg c ¼ l̃ ¼ 4 and
the number of quasi periods can be approximated as Np ¼ 0:5�
0:5 log (4� l̃ ) for 3:9 < l̃ < 4. The quasi periods in the Kerr
case differ for prograde and retrograde orbits: for a maximal
Kerr black hole (with rotation parameter a ¼ 0:998rg) and a star
on a prograde orbit with angular momentum close to critical
l̃þ ¼ 2 1þ 1� að½ /rgÞ1

=2�, the quasi period is �13rg /c, while
for a star on a retrograde orbit with l̃ close to critical l̃� ¼
�2 1þ 1þ að½ /rgÞ1

=2�, the quasi period is �80rg /c, both con-
sistent with orbital periods at critical radii.

The second timescale is considerably faster (of the order of
1rg /c) and belongs to the rate of change of relativistic beaming
direction with respect to the observer. For the black hole with
mass mbh ¼ 108 M�, the corresponding timescales are �10 hr
and �10 minutes, and for an extreme case of mbh ¼ 1010 M�,
the time intervals are on the order of months and �10 hr. Since
the luminosity and spectrum changes are caused by relativistic
beaming and gravitational lensing, they are most evident to ob-
servers in the orbital plane of the star. The observers perpen-
dicular to this plane see the source as slowly fading and then,
as the source approaches the horizon, suddenly disappearing
on a timescale of the order of �10rg /c. Comparing results for
Schwarzschild and Kerr black holes, we find that luminosity
curves (Fig. 1) are qualitatively similar, but timescales generally
shorten for Kerr prograde orbits and become longer for Kerr
retrograde orbits. Results show that within 5� of the orbital plane
one can expect luminosity to rise by a factor of a few ; 10, while
the maximum Doppler plus redshift factor (�obs /�0) is 1.8 for
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the Schwarzschild case and 2.2 for the maximal Kerr black hole
case.

3. STAR ENCOUNTERING A mbh � 105–106 M�
BLACK HOLE

3.1. Approximations, Model, and Comparison
with Hydrodynamic Results

The capture of a star by a black hole of comparable size is a
phenomenon in which a black hole’s gravity plays the domi-

nating role both on the propagation of light as well as on the
propagation of matter belonging to the star. This property of the
phenomenon is forcefully stressed by the fact that the tidal en-
ergy is many orders of magnitude larger than its gravitational
binding energy and becomes a sizeable fraction ofM�c

2 (eq. [3]).
Therefore, we build our approach on the work of Luminet &
Marck (1985), who showed that in the vicinity of the black hole,
‘‘particles of the star undergo a phase of approximate free fall in
the external gravitational field, since the tidal contribution grows
much larger than pressure and self gravitating terms.’’ Therefore,

Fig. 1.—Luminosity and frequency shift during the infall of a solar-type star into a giant black holembh > 108 M�. (a) Infall with orbital angular momentum l̃ close
to the critical l̃ ¼ 4 value into the Schwarzschild black hole, as observed perpendicular to the orbital plane. (b) Same event observed in the orbital plane. (c) Infall of
the star on a prograde orbit with l̃ close to the critical l̃þ value into the Kerr black hole, as observed in the orbital plane. (d ) Infall of the star on a retrograde orbit with
l̃ close to the critical l̃� value into the Kerr black hole, as observed in the orbital plane. The color code in the frequency diagram corresponds to spectrum intensity
(in units of the initial intensity of the primary image).
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we use a simple model, whereby the star is considered as undis-
turbed by the black hole (i.e., spherically symmetric) until it
reaches the Roche radius. After crossing it, the black hole’s grav-
ity takes over and the self-gravity and internal pressure are com-
pletely switched off.

In addition, we neglect hydrodynamic effects. This approx-
imation is justified if the proper time elapsed between the Roche
radius crossing and total disruption is short compared to the
dynamic timescale �d of the star. For an estimate of the two
timescales, we take

�d ¼
G%�
3�

� ��1=2

; ð4Þ

�R �
ffiffiffi
2

p

3c
rgR3=2

R ¼ 6�G%�ð Þ�1=2; ð5Þ

where �R is estimated as the proper time elapsed during a radial
parabolic infall from the Roche radius to the horizon.3 Specifi-
cally, for a solar-type star we obtain �R�13 minutes, which is an
order ofmagnitude less than the dynamic timescale �d � 3 hr. The
ratio of the two times indicates that the amount of energy ex-
changed may not be quite negligible but is small enough that it
may be neglected in the first approximation. Further justifica-
tion for such an approximation comes from results of hydrody-
namic evolution calculated byKochanek (1994) and Laguna et al.
(1993). Laguna et al. noted that ‘‘the qualitative features of the
debris—including its crescent-like shape—can be reproduced by
neglecting the hydrodynamic interactions and self-gravity of the
star,’’ since the formation of the crescent is due to ‘‘geodesic mo-
tion of the fluid elements of the star in a Schwarzschild space-
timewhich includes the relativistic-induced precession of the orbit
about the black hole.’’ This confirms previously mentioned find-
ings by Luminet & Marck (1985) that a black hole’s gravity
dominates in close encounters. Therefore, we argue that by ne-
glecting hydrodynamic effects, we obtain in close encounters ap-
proximately the correct shape of stellar debris.

Hence, our numerical model starts with a spherically sym-
metric star of radius R� and mass M� consisting of N equally

massive constituents (mi ¼ M� /N , N � 106) distributed ran-
domly but in such a way that, on average, their density distri-
bution follows that of a star, which is approximated by the
polytrope model with n ¼ 1:5. All constituents of the star start
with the (same) velocity, corresponding to the parabolic veloc-
ity of the star’s center of mass, which is placed at a distanceRR

from the black hole. Subsequently, the positions of free-falling
stellar constituents are calculated at later discrete times (ti) ac-
cording to general relativistic equations of motion.

To test the errors induced by these approximations, we study
encounters of a solar mass, solar radius star with a 106M� black
hole and compare our results on central density in the star
(average density inside 0:01R�) with those obtained by Laguna
et al. (1993), Fulbright et al. (1995), Khokhlov et al. (1993b),
and Ivanov & Novikov (2001). Figure 2 shows the central den-
sity as a function of time with respect to the time of periastron
passage as obtained by our model and by hydrodynamic sim-
ulations. The qualitative agreement between these results jus-
tifies the neglect of internal pressure in calculating the dynamics
of disruption. The major difference seems to be in the precise
timing of tidal compression: in our model the strongest com-
pression occurs very close to periastron, in agreement with the
results of Luminet &Marck (1985), while inmost hydrodynamics
simulations the central density peaks approximately 15 20ð Þrg /c
after the periastron passage.

Our results on the shape of stellar debris during the close
encounter also agree with results of Laguna et al. (1993), al-
though at later times our crescent becomes considerably longer.

3.2. On the Luminosity of the Star during the Tidal Disruption

Weconsider the tidal disruption to be the phenomenon inwhich
the work done on the star by tidal forces is comparable or greater
than its initial internal energy. The tidal disruption is thus a violent
nonstationary process that takes place in the vicinity of the black
hole on a timescale that is considerably shorter than the stellar dy-
namic timescale (measured in proper time of the falling star). As
the star is deformed into a long thread, the giant tidal wave de-
posits great amounts of energy that soon pushes gases into an
outward-moving shock wave more or less perpendicular to the
threadlike axis of the star. Thus, during the disruption process sev-
eral mechanisms play an important role: shocks, adiabatic expan-
sion, and cooling of disruptedmaterial, possible explosions due to
tidal squeezings as predicted by Carter & Luminet (1982, 1985),

Fig. 2.—Central density in the star as a function of time during a close encounter for polytrope n ¼ 1:5: � ¼ 5 (l̃ ¼ 5), � ¼ 10 (l̃ ¼ 4:08), and n ¼ 2, � ¼ 0:1
[� ¼ (M� /mbh)

1=2(rp /R�)3
=2]. Solid curves are from our simulations, dashed are from Laguna et al. (1993), dotted from Fulbright et al. (1995), dot-dashed from Ivanov

& Novikov (2001), and short-dashed from Khokhlov et al. (1993b). Time is measured from the periastron passage.

3 Of course, �R is defined only for rR > 2rg , when tidal disruption takes place
outside the horizon of the black hole. For nonzero angular momentum orbits, �R
is slightly but not crucially longer.
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radiation driven expansion, etc. These effects have no doubt im-
portant influence on the cooling and luminosity of the disrupted
star, but we wish to stress that, as shown by Luminet & Marck
(1985), gravity in general overwhelms other forces during the
close encounter. So, since gravity of the black hole swings the star
around on a timescale that is much shorter than any other time-
scale thatmay play a role, we believe that, as a first step to estimate
the luminosity variations of the tidally disrupted star, wemay use a
simple model, which must in the first place correctly take into
account the effects of the dominating strong gravitational field of
the black hole. As the disruption progresses and the hot stellar
inner layers become exposed both by gravity and by shockwaves,
the luminosity is bound to rise because of the higher effective
temperature and because of the higher effective area seen. The
overall rise in luminosity depends on other partially competing
mechanisms involved: while the expansion and cooling would
tend to reduce it, it must nevertheless rise dramatically because of
enormous work being done by tidal forces that drive shock heat-
ing and supernova-like explosions. The precise role of thesemech-
anisms and their influence on stellar structure and evolution need
detailed analysis but is beyond the scope of this paper.

Here we wish to take a step toward the complete solution by
including in full only the most important ingredient defining the
shortest timescales: the effects of a black hole’s gravity on the
apparent variability of stellar luminosity. The standard stellar
atmosphere model (Bowers & Deeming 1984; Carroll & Ostlie
1996; Swihart 1971) is not applicable in calculating the effec-
tive temperature of any surface element, since, because of the
highly dynamic structure, the fine details of atmospheric den-
sity, temperature, and pressure profiles are not available; even
more, we cannot predict in advance which part of the star is
going to, at some future time, belong to the atmosphere. So we
are forced to apply a Monte Carlo model throughout the star by
which the unperturbed star is modeled as a spherical cloud
consisting of a large number (N ) of identical constituents dis-
tributed randomly but in such a way that their average density
follows that of an n ¼ 1:5 polytropic model (cf. x 3.1). The
constituents are optically thick and have an assigned tempera-
ture according to their position in the cloud, which again fol-
lows the temperature profile of the n ¼ 1:5 polytropic stellar
model. The model photospheric temperature and model lumi-

nosity are calculated as the sum of spectral contributions from
those cloud constituents that are seen by the observer, i.e., by
those that are not obscured by constituents in overlaying layers.
For the purpose of obscuration, all the constituents are con-
sidered to have the same cross section �, so that � ¼ 4�R2

� /N
0,

where the parameter N 0 is the number of constituents belonging
to the ‘‘atmosphere’’ of the star. It is clear that, since for sta-
tistical reasonsN 0 must be at least a few tens, andN is limited by
the computer power to a few million, the ratio N 0 /N is much
greater than the ratio Matm /M� in a real star. One could argue
that the atmosphere could be made less massive by representing
it with a larger number of less massive constituents. However,
in the case of total tidal disruption the interior is mixed into the
atmosphere during the late stages of disruption, and the so-
introduced uneven opacity of stellar constituents would further
complicate the interpretation of results. Thus, we cannot af-
ford to make models with sufficiently opaque atmospheres, and
as a result, our initial model photospheric temperatures are too
high. We note, however, that the model photospheric depth
is a function of N 0 /N , so by changing N, we probe the stel-
lar atmosphere to different depths. In such a way an extrapo-
lation to realistic opacities is possible. The consistency of
such an extrapolation is checked on the initial spherically
symmetric stellar model, in which the Monte Carlo results can
be directly compared with the theoretical atmospheric model.
An example of such a comparison is shown in Figure 3. It is
clear that the depth of our model photospheres is some orders
of magnitude too high, yet it is possible to extrapolate model
photospheres to depths of realistic stellar atmospheres, since
the temperature is a monotonic smooth function of depth. For
evolved stages of tidal disruption there is no underlying theo-
retical model, so we rely on extrapolated results of the Monte
Carlo model.
As the star moves along the orbit, images of the star with

respect to the far observer are formed as follows. Photon tra-
jectories and the time of flight between each stellar constituent
and the observer are calculated with a technique described in
Čadež et al. (2003), Gomboc (2001), Brajnik (1999), and Čadež
& Gomboc (1996). Only two trajectories connecting two space
points are considered, the shortest one and the one passing the
black hole on the other side, while those winding around the

Fig. 3.—Left: Model atmosphere depth in the initial (spherically symmetric) star: polytrope temperature profile (line) and photospheric temperatures and corre-
sponding depths for different N in our model (symbols). Right: Photospheric temperature as a function of time during total tidal disruption given by our model for
different N.
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black hole by more than 2� are neglected. (It has been shown
before [Čadež &Gomboc 1996] that light following trajectories
with higher winding numbers contributes less and less to the
apparent luminosity.) The beam contributions are sorted into
pixels with an area corresponding to the size of � and tagged
according to the arrival time. The intensity corresponding to a
given pixel is then defined as the intensity corresponding to the
ray with the shortest travel time. Since light from deeper layers
takes longer to reach the observer, this takes care of the ob-
scuration of deep layers. The intensity of a contributing beam is
calculated assuming that the corresponding stellar constituent
emits in its own rest frame as a blackbody at its temperature.
The apparent luminosity and effective temperature of the star as
a function of time (with respect to the chosen observer) are

calculated and successive stellar images, formed in this way, are
pasted into a movie.4

We divide our model into three parts. First we estimate the
relativistic effects alone by simulating the luminosity variations
of an isothermal star [i.e., a star with T (r; t) ¼ const:]. In the
next step, we consider the star with a polytrope n ¼ 1:5 tem-
perature profile and estimate the luminosity variations due to
the exposure of inner hot regions of the star. We first consider a
simple case, in which the temperature of all stellar constituents
is constant in time (no cooling or heating), and afterward add a
rough estimation of the effect of cooling of the exposed stellar
parts on the stellar luminosity.

Fig. 4.—Isothermal star with R� ¼ 2rg during the encounter with the critical l̃ ¼ 4 value. The top panels are for the observer perpendicular to the orbital plane and the
bottom panels are for the observer in the orbital plane. Pictures show the stellar appearance at time intervals of 50rg /c, with color corresponding to the apparent
temperature: gravitational redshift close to the black hole and Doppler shift of receding material stretch the observed frequency of photons (and therefore the observed
temperature of the stellar surface) toward zero (red ), while the Doppler shift of approaching material increases the observed temperature (blue, corresponding to the
value of twice the temperature in the system comoving with the star). Graphs show the apparent luminosity at different stages of the encounter (in units of the stellar
luminosity before the encounter) and for different orbital angular momenta l̃ ¼ 0, 4, 5, and 7.

4 Movies can be obtained at http://www.fmf.uni-lj.si /~gomboc.
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3.2.1. Effects of a Black Hole’s Gravity

To isolate the effect of gravity, we first compute luminosity
variations of an isothermal star. The ensuing luminosity variations
can be ascribed to Doppler boosting and aberration of light, grav-
itational lensing and redshift (similar to that for a pointlike source
in x 2), and the elongation of the star due to relativistic precession
and due to tidal squeezing. Figure 4 shows the obtained lumi-
nosity variations as a function of time for encounters with l̃ ¼ 0
(radial infall), l̃ ¼ 4 (critical), l̃ ¼ 5 (rp ¼ 10rg), and l̃ ¼ 7 (rp ¼
22:3rg) as seen perpendicular to and in the orbital plane.

Results show that the maximal rise in luminosity occurs in
the case of the critical encounter (l̃ ¼ 4), in which the overall
luminosity rise due to the elongation of the star is of a factor of
about 20 (as seen by the observer perpendicular to the orbital
plane; Fig. 4, top), while gravitational lensing and Doppler

boosting enhance it up to about 40 times the initial luminosity
(Fig. 4, bottom). Observers close to the orbital plane see the
most extreme variations: dimming of the receding star, its re-
brightening as it emerges from behind the black hole, and var-
iations on short timescales of about 10rg /c, which are due to
lensing effects. Since the star and the black hole are comparable
in size, the probability that they are aligned with respect to the
observer is high. When lensing takes place, the relevant part of
the star is imaged into an Einstein disk and the apparent lumi-
nosity increases manifold (Fig. 4c).

3.2.2. Constant Temperature Debris

Next, we consider the star with an n ¼ 1:5 polytrope tem-
perature profile, and we assume that the temperature of stellar
debris does not change with time. The model is obviously much

Fig. 5.—Star with R� ¼ 2rg and l̃ ¼ 4 during the encounter assuming no temperature change of the debris. Pictures show the stellar appearance at time intervals of
50rg /c (except c and c

0, see graph) with color corresponding to the apparent temperature according to the color code: blue, temperature zero; white, 0.5Tc or higher. Inset
graph shows the apparent luminosity at different stages of the encounter (in units of the initial luminosity far from the black hole) and for different orbital angular
momenta l̃ ¼ 0, 4, 5, and 7. The top panels are for the observer perpendicular to the orbital plane, and the bottom panels are for the observer in the orbital plane.
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too crude to rely upon its results regarding the spectral char-
acteristics or even the absolute value of the emitted luminosity.
The crude argument why this model may bear some resem-
blance to the true light curve is that a shockwave released by the
unbalance of gravity carries internal energy to the surface in
such a way that the energy influx from the interior temporarily
compensates the radiation loss.

The simulation shows that, as the inner hot layers of the star are
exposed during the disruption, they contribute to the substantial
rise in stellar luminosity, depending on the orbital angular mo-
mentum of the star (Fig. 5). The star on a low angularmomentum
orbit is completely captured by the black hole and produces only
a short [�(1 10)rg /c] flare before disappearing behind the hori-
zon. On the other hand, the star with high angular momentum ex-
periences only a slight distortion during the distant flyby, with a
resulting temporary [�(10 100)rg /c] slight increase in luminosity.

The most dramatic effect occurs when the star is on the critical
angular momentum orbit (l̃ ¼ 4). During such an encounter half
of the stellar constituents are swallowed by the black hole and the
other half escape. During this process, the star is totally tidally dis-
rupted in such a way that the higher angular momentummaterial
rapidly lags behind the stellar debris with lower angular momen-
tum, which produces a long, thin spiral (Fig. 5). Outer layers of
the star are stripped off in a time of the order of 100rg /c, the depth
to the hot inner core decreasing together with self-gravity. In our
crude model this is seen as decreasing optical thickness and the
exposure of the hot inner core; the luminosity rises steeply. The
spectrum of the debris is dominated by the emission of the in-
nermost exposed layers, and as long as shock waves are building
up, i.e., until cooling sets in, these lead to X-rays.

Some luminosity peaks arise from the effect of tidal com-
pression in the direction perpendicular to the orbital plane of the
star, which in our model for a short time exposes the interior of

the star. Such peaks are evident in Figure 5 (top, c and c 0), and
these two compressions are in agreement with multiple tidal
squeezings predicted by Luminet & Marck (1985) and con-
firmed by Laguna et al. (1993). In our model they produce lumi-
nosity peaks lasting �5rg /c. As mentioned earlier, Carter &
Luminet (1982, 1985) predict that a thermonuclear explosion
may occur at this moment.

The scale of the luminosity rise in Figure 5 is rather uncertain
due to the neglect of hydrodynamic effects5 and also due to our
poor atmospheric model (x 3.2). For the critical tidal disruption
of the Sun, the extrapolation of our model would suggest the
total luminosity to rise to about 1013 L� (mostly in X-rays),
which accentuates the extent of tidal disruption but also sends
a warning that by that time our constant internal energy model
assumption ceases to be valid. As suggested in x 3.2, we cal-
culated a range of models with N between 103 and 106 and ex-
trapolated the results to realistic atmospheric depths. These
numerical results suggest that, at least for the critical disruption,
the average temperature and size of the final crescent to which
the star is deformed is roughly independent of N. Thus, we
tested the idea that tidal disruption exposes or mixes up by
shearing the envelope of the star to a certain depth Rc, which we
define as the depth in the undisturbed star down to which the
average T 4 is equal to the average T 4 of the final crescent. In this
way we estimate (independent of N) that for critical l̃ ¼ 4 and
n ¼ 1:5, Rc is about 0:25R�, while for n ¼ 5 we get Rc ¼ 0:1R�.
For a close flyby with l̃ ¼ 5, Rc is about 0:7R� and 0:5R� for n ¼
1:5 and 5, respectively. We may also, as an example, estimate

Fig. 6.—Effect of the cooling of the debris on the luminosity variations: solid line, no cooling; dotted, cooling by blackbody radiation; dashed lines, exponential
cooling with decaying time 10rg /c (long-dashed ) and 1rg /c (short-dashed ). Results are for the star on the l̃ ¼ 4 (left) and l̃ ¼ 5 (right) orbits as observed perpendicular to
the orbital plane.

5 For simplicity, we assume that all the tidal energy is transformed into the
kinetic energy of the tidalwave; the portion of kinetic energy thatmay go into heat
is neglected, and therefore, we expect that the actual available luminous energy
during such a tidal disruption may be higher than the one given by our models.
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the luminosity of a solar-type star during the bright critical stage
of total disruption on a 106 M� black hole as follows: the steep
luminosity rise (cf. Fig. 5) has a timescale between 30rg /c and
100rg /c, which is about 2.5–8 minutes. Assuming that the ini-
tial thermal energy contained in the exposed layers (�1048 ergs)
is radiated away on this timescale, the critical luminosity would
be of the order of (5 15) ; 1011 L�.

After the debris is spread and starts moving away from the
black hole, the physics of tidal disruption is no longer dominated
by the black hole’s gravity. The physical conditions in stellar
debris, the physics of radiation processes, magnetohydrody-
namics, take over, and the ensuing processes go beyond the
simulation presented here.

3.2.3. Cooling of Stellar Debris

In general, the temperature inside the star may change due to
various mechanisms already mentioned. To get an idea of how
they might affect the light curve, we again model the cooling in
two very approximative ways:

1. exponential cooling of exposed stellar layers with differ-
ent characteristic times: � ¼ 1rg /c and 10rg /c,

2. cooling of exposed stellar layers due to their own black-
body radiation in the 4� solid angle.

Results presented in Figure 6 show that if the cooling were
very efficient, with timescales of 1rg /c, the luminosity rise
would be quite short and modest.

4. CONCLUSION

A stellar encounter with a massive black hole can be a very
energetic event, with energy released and luminosity variations
depending primarily on the relative size of the star compared to
the black hole.We note that the tidal interaction energy may rise
to as high as 10% of the total mass-energy of the captured star,
which is available when the star is comparable in size to the size
of the black hole. This size ratio is also critical to the nature of
the disruption.

In this work we focused on gravitational phenomena and
showed that:

1. A critical capture of a ‘‘pointlike star’’ is characterized by a
series of quasi-periodic apparent luminosity peaks with the quasi

period 50rg/c for a Schwarzschild black hole and 13rg /c and
80rg /c for an extreme Kerr co- and counterrotating case, re-
spectively (Fig. 1). This translates into 6:9 hrð Þmbh / 10

8 M�ð Þ,
1:8 hrð Þmbh / 10

8 M�ð Þ, and 11:1 hrð Þmbh / 10
8 M�ð Þ, respec-

tively. If a pointlike star were a planet falling toward a 3:6 ;
106 M� black hole in the Galactic center, respective quasi periods
would be 15, 3.9, and 24 minutes.
2. The sharpness, the amplitude of quasi-periodic peaks, and

the amplitude of the Doppler factor are more pronounced for ob-
servers in the orbital plane as compared to those perpendicular
to this plane. The highest value for the Doppler factor is 1.8 for
the Schwarzschild and 2.2 for the extreme Kerr black hole.
3. The number of quasi-periodic peaks (Np) depends on the

closeness of the orbital angularmomentum ( l̃ ) to the critical value
l̃ ¼ 4 and can be approximated as Np ¼ 0:5� 0:5 log (4� l̃ ).
4. An extended star may be approximated as a collection of

point particles when heading toward the complete tidal disrup-
tion. The shape and the density of the debris calculated in this
approximation compare well with more sophisticated hydro-
dynamic calculations (cf. x 3).
5. Model light curves for critical tidal disruption of a star of

the same size as that of the black hole (Figs. 4, 5, and 6) cal-
culated for different heuristic models show similar temporal
characteristics that display very rapid (on a timescale of the
order of 10rg /c) luminosity variations by a few or even many
orders of magnitude, while the quasi periodicity is no longer
pronounced in such a process. Light curves describing a critical
capture are very rough and cannot be momentarily calibrated in
flux. They are presented as they produce the extremely short
timescale phenomena characteristic of the strength of a black
hole’s gravitational field. We also believe that the main char-
acteristics of tidal disruption as expressed by this rather crude
model will be recognizable also inmore elaborate future models
of tidal disruption.
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which helped us improve the text. We acknowledge the finan-
cial support of the Slovenian Ministry of Science, Education
and Sport. A. G. also acknowledges the receipt of the Marie
Curie Fellowship from the European Commission.

APPENDIX

THE VIRIAL THEOREM AND TIDAL ENERGY

In order to estimate the amount of heat and kinetic energy deposited to the star by the tidal wave, it is useful to follow the steps of the
derivation of the virial theorem. Consider the some 1057 nuclei and electrons making up the star as representative point particles
making up the ideal gas of the star. Each of the particles with mass mi (where i ¼ 1: : :1057) moves according to Newton’s law (we
follow the more transparent classical derivation, which is sufficient for order-of-magnitude arguments):

mi r̈i ¼
X
j 6¼i

F c
ij þ

X
j6¼i

G
mimj

rj � ri
�� ��3 rj � ri

� �
� G

mbhmi

r 3i
ri: ðA1Þ

The black hole has been placed at the origin from where the position vectors ri are reconed. The vector F
c
ij models the force taking

place during particle collisions. It obeys (the strong version of ) Newton’s third law, and since in the ideal gas approximation
collisional forces act only at a point, the energy connected with the potential of these forces can be neglected. The second term on the
right describes the gravitational interaction among the constituents of the star, and the last term represents the gravitational force of the
black hole. It is convenient to define the center-of-mass position vector R ¼ (

P
i miri)/M�, so ri ¼ Rþ r0i and

P
i mir

0
i ¼ 0. Summing

equation (A1) over all i, one obtains the center-of-mass equation of motion in the form

M�R̈ ¼ �G
mbhM�
R3

R� 5Gmbh

R =Q =R

R7
Rþ 2Gmbh

Q =R

R5
þO(1=R5); ðA2Þ
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where Q is the quadrupole moment tensor of the mass distribution with respect to the center of mass of the star defined in the usual
way as

Q ¼ 1

2

X
i

mi 3riri � I r 2i
� �

: ðA3Þ

Terms of O(1/R5) and higher will henceforth be neglected. If the star is deformed in a prolate ellipsoid with the long axis in the
direction n̂, Q can be written in the form

Q ¼ 3qn̂n̂� qI; ðA4Þ

with q being positive and proportional to the eccentricity of the ellipsoid. Here riri stands for the dyadic product of the respective
vectors, and I is the identity matrix.

The angular momentum of the star (l ), which is a conserved quantity, can be split into the orbital (lo ¼ MR< Ṙ) and spin part
(ls ¼

P
i mir

0
i < ṙ0i ). The time derivative of the orbital part follows from equation (A2), and when equation (A4) applies, it can be

written as

l̇o ¼ 6G
mbhq

R5
R< n̂ð Þ R = n̂ð Þ: ðA5Þ

The sum of scalar products of equation (A1) by ṙi gives the energy conservation law. We split the kinetic energy of the star into the
center-of-mass part (M�Ṙ

2)/2 and the internal kinetic energy part6 Wint ¼
P

i½(mi ṙ
2
i )/2�. Using equation (A2) and neglecting the

collisional interaction energy, we obtain the conserved energy E in the following form:

E ¼ 1

2
M�Ṙ

2 � G
mbhM�

R
� G

mbhR =Q =R

R5
þWint þWG; ðA6Þ

where WG is the self-gravitational energy of the star [WG ¼ (�1/2)
P

i

P
j6¼iG(mimj/jrj � rij)].

Finally, we obtain the equivalent of the virial theorem by multiplying equation (A1) by r0i and summing over all i. The result can be
rearranged into the transparent form

Wint þ
1

2
WG ¼ �G

mbhR =Q =R

R5
þ 1

4
J̈; ðA7Þ

where J ¼
P

i mir
02
i . For a star in hydrostatic equilibrium, the right side vanishes and the total energy of the starWtot ¼ Wint þWG ¼

�Wint. If the star is not in hydrostatic equilibrium, the right side of equation (A7) can be considered as the energy imbalance; if it is
more thanWint, it is sufficient to completely disrupt the star on a timescale �d . An exact evaluation of this energy imbalance is beyond
reach in this simple analysis; however, a simplified model offers some clues.

Consider an idealized case of an ‘‘incompressible star’’ flying about a massive black hole. From the point of view of the star, gravity
is exerting a tidal force, squeezing it in the plane defined by the temporary radius vector and the orbital angular momentum and
elongating it perpendicular to this plane. The tidal force acts to accelerate the surface of the star with respect to the center of mass, but it
must also act against rising pressure and internal gravity. Thus, roughly speaking, the tidal force does work in pumping kinetic energy
into the tidal wave but also in loading the gravitational potential energy that acts as the spring energy driving oscillation modes of the
star. Consider small tidal distortions. In this case quadrupole deformations are dominant, so the deformation field (U ) of the in-
compressible star can be described as a linear combination of five degenerate quadrupole modes:

U ¼
X5
k¼1

ak UUk : ðA8Þ

Here UUk are modal base vector fields that can be expressed as gradients of quadratic polynomials in coordinates x0, y0, z0, obtained by
multiplying spherical functions Y2m(�

0; 	0) by r 02 and identifying x0 ¼ r 0 sin �0 cos 	0, y0 ¼ r 0sin�0sin	0, z0 ¼ r 0cos�0, and ak(t) are
modal amplitudes. In the coordinate system in which the z0 axis is normal to the orbital plane and x0 points from the periastron to the
black hole, only three amplitudes are excited and the corresponding modal base fields are

UU5 ¼ �
ffiffiffiffiffiffi
5

4�

r
�x;�y; 2zð Þ; UU1 ¼ �

ffiffiffiffiffiffi
15

4�

r
x;�y; 0ð Þ; UU2 ¼ �

ffiffiffiffiffiffi
15

4�

r
y; x; 0ð Þ: ðA9Þ

6 Note that Wint comprises both the kinetic energy of thermal motion and the kinetic energy of bulk motion in the tidal wave.
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These deformations lead to the following quadrupole moments:

Q ¼ 1

4�

a21 þ a22 � 2
ffiffiffi
3

p
a1a5 � a25;�2

ffiffiffi
3

p
a2a5; 0

�2
ffiffiffi
3

p
a2a5; a

2
1 þ a22 þ 2

ffiffiffi
3

p
a1a5 � a25; 0

0; 0;�2 a21 þ a22 � a25
� �

2
64

3
75: ðA10Þ

As long as tidal modes can be considered roughly independent, their dynamics can be derived from the Lagrange function L ¼ T � U
with the kinetic energy (T )

T ¼
X5
k¼1

X5
l¼1

Z
�ȧk ȧl UUk = UU l dV

0 ¼ 3

4�
M�R

2
�
X5
i¼1

ȧi
2 ðA11Þ

and the potential energy (U, the deviation of self-gravity from the equilibrium value in undeformed state)

U ¼ 3

4�
M�R

2
�
X5
i¼1

!2
q a

2
i ; ðA12Þ

where !q is the resonant frequency of quadrupole modes. For a star consisting of a self-gravitating incompressible fluid, we obtain

!2
q ¼ 64

5
GM�=R

3
�: ðA13Þ

Generalized forces exciting these modes are (Goldstein 1981)

Fk ¼
Z
�G

mbh

R3
UUk = I� 3

R

R

R

R

� �
= r0 dV 0: ðA14Þ

Let us calculate these forces in the specific case when one can assume that R tð Þ represents a parabolic orbit. We express the com-
ponents of R as

R(t) ¼ R(t) cos  (t); sin  (t); 0½ �; ðA15Þ

where

R(t) ¼ rp=sin
2 1

2
 (t); ðA16Þ

and  (t) is the true anomaly obeying the Kepler equationffiffiffiffiffiffiffiffiffiffiffiffi
Gmbh

2r 3p

s
t¼�cot

1

2
 1þ 1

3
cot2

1

2
 

� �
: ðA17Þ

With this, and using equation (A9), the integrals in equation (A14) can be evaluated to obtain the nonvanishing generalized forces

F1(t)

F2(t)

F5(t)

2
64

3
75¼ �3G

mbh

16r 3p

ffiffiffiffiffiffi
3

5�

r
M�R

2
� sin

6 1

2
 

cos 2 

sin 2 

�1=
ffiffiffi
3

p

2
64

3
75: ðA18Þ

Finally, we write down the Euler-Lagrange equations of motion [ dð /dtÞ@L /@ȧk � @L/@ak ¼ Qk] for modal amplitudes. After
introducing the characteristic time tf ¼ ð2r 3p /GmbhÞ1

=2
and the dimensionless time � ¼ t / tf , they can be cast into the dimensionless

form

d 2ai

d�2
þ (!qtf )

2ai ¼ fi(�); ðA19Þ

where the dimensionless forces fi(�) are functions of  (�) only:

f1

f2

f5

0
B@

1
CA¼ � 1

4

ffiffiffiffiffiffi
3�

5

r
sin6

1

2
 

cos 2 

sin 2 

�1=
ffiffiffi
3

p

0
B@

1
CA: ðA20Þ
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Thus, the only trace of parameters of the tidally interacting system is left in the factor !qtf , which is 2� times the ratio of the
characteristic flyby time around the black hole and the period of quadrupole modes. It is useful to note that, using equations (1) and
(A13), this product can be written as

!qtf ¼ 8
ffiffiffiffiffiffiffiffi
2=5

p
rp=rR
� �3=2¼ 8

ffiffiffiffiffiffiffiffi
2=5

p
1=�ð Þ3=2; ðA21Þ

i.e., it is inversely proportional to the power of the Roche radius penetration depth. In the case of a distant flyby !qtf 3 1, so it follows
from equation (A19) that ai ¼ fi(!qtf )

�2 / mbh=��r
3
p, which is the familiar result often used with Earth tides. Note, however, that for

deep penetrations of the Roche radius !qtf � 1, and thus the (dimensionless) generalized forces fi(t) become large at frequencies that
are resonant with !q.

We calculate the total work done by tidal forces on the system of normal modes during the whole flyby process by noting that it can
formally be expressed as the change of the Hamiltonian H(t) ¼ T þ U during the process (neglecting damping of normal modes).
Initially, the quadrupole system starts in the undisrupted state with H(t ! �1) ¼ 0, and it ends in a state of excited quadrupole
modes7 with Wtide ¼ H(t ! 1) (i.e., for t3 tf ):

Wtide ¼
3

4�
M�R

2
�
X5
i¼1

lim
t!1

ȧ2
i þ !2

q a
2
i

� �
¼

X5
i¼1

Z 1

�1
Fi(t)ȧi dt: ðA22Þ

Solving equation (A19) with the retarded Green’s function, this can be written in the form

Wtide ¼
3

4
G
mbhM�R

2
�

r 3p

X5
i¼1

f̂i(!qtf )
��� ���2; ðA23Þ

where

f̂i(�) ¼
1ffiffiffiffiffiffi
2�

p
Z 1

�1
f (�)e i�� d�: ðA24Þ

We note that Wtide can be written in the form Gmbhq̃/r
3
p, where q̃ ¼ M�R

2
�"

2 and according to equation (A23),

"2 ¼ 3

4

X5
i¼1

f̂i(!qtf )
��� ���2 ðA25Þ

can be thought of as an effective eccentricity of the star at the periastron. Figure 7 shows that " can reach values of the order of 1 if a
flyby is comparable to the dynamic timescale of the star. Note however that for deep Roche-radius penetrations our first-order
perturbation model no longer applies; closer analysis shows that the model is applicable for !qtf > 1, i.e., for �P3 (eq. [A21]).8

7 This is assuming that the tidal kick did not break up the star by imparting to the surface layers a velocity that is higher than the escape velocity.
8 We note that for 1P�P3 the tidal energy is proportional to � 2, since "2 / 1/�. This is in agreement with the result of Lacy et al. (1982) and Carter & Luminet

(1983).

Fig. 7.—Effective eccentricity "2 as a function of the Roche penetration parameter. The lower three curves represent contributions from the three excited modes (1, 2, 5).
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Now we are in the position to estimate the high value of the right side of equation (A7) for this simple parabolic infall of an
incompressible star. The left side starts at zero, when the star is still far from the black hole. As time goes on, the internal kinetic and
potential energy change with the energy of the tidal modes, so the left side is greatest when all the tidal energy is in the kinetic energy
of the wave. Thus, the maximum value, which is also the maximum value of the right side, equals Wtide.

Even if the above analysis is valid, strictly speaking, for an incompressible star and in the approximation of independent (small
amplitude) tidal modes, it does suggest the qualitative conclusion that the tidal interaction depends crucially on the ratio period of
the fundamental mode versus typical flyby time (!qtf ) and does become resonant if the flyby time is less than the period of the
fundamental mode. The energy deposited into the star by the tidal interaction can be of the order of G(mbhM�R

2
�=r

3
p)¼ M�c

2rgR
2
� /r

3
p ,

which may surpass the absolute value of the internal gravitational energy of the star by many orders of magnitude if rp, R�, and rg
happen to be of the same order.
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