Typology in the service of classification

Johanna Nichols, UC Berkeley

Alternative approaches to language classification
Stanford, July 17-19, 2007

Typology = comparative grammar that deals with types.
Language classification deals with individuals.

How can typology contribute to classification and subgrouping?

> Typology = comparative grammar that deals with types. Language classification deals with individuals.

How can typology contribute to classification and subgrouping?

As heuristic, evaluation measure, and sometimes even firm identification of descent relationships.

But ... much purely linguistic work needs to be done first.

Typology = comparative grammar that deals with types. Language classification deals with individuals.

How can typology contribute to classification and subgrouping?

As heuristic, evaluation measure, and sometimes even firm identification of descent relationships.

But ... much purely linguistic work needs to be done first.
Description
Data gathering
Implicational correlations, independence of typological features
Genealogical stability, diffusibility
Classification and dating

Genealogical classification by typological characters

Genealogical classification by semi-typological characters

Typology as evaluation metric

Typology and stability of lexical items

What typology can and cannot do

Genealogical classification by typological characters

Genealogical classification by typological characters

The individual-identifying statistical threshold:

$1 / 7000$ or 0.000143
(since there are about 7000 languages on earth)

plus a conventional level of statistical significance:

0.05	$1 / 350,000$	or 0.0000029	or $3 / 1,000,000$
0.01	$1 / 700,000$		0.0000014

Genealogical classification by typological characters

This threshold can be met with shared morphological paradigms:
(1) Germanic suppletive paradigm for 'good' : 'better':

English good	better
German gut	besser
Swedish god	bättre

(2) Gender-number suffixes in Afroasiatic determiners (Greenberg 1960). Analysis (a) treats gender as neutralized in the plural; (b) treats it as syncretized.

	(a)	Sg.	Pl.	(b)	Sg.	Pl.
Masc.	$-n$			$-n$	$-n$	
Fem.		$\}-n$		$-t$	$-n$	

Genealogical classification by typological characters

Is it possible to define a set of typological characters such that some combinations of their values meet the threshold?

Genealogical classification by typological characters

Is it possible to define a set of typological characters such that some combinations of their values meet the threshold?

Theoretically, yes, but ...

- Expected frequencies are defined on the actual frequencies in the world's languages, and this could be a fluke. (Maslova 2000, Nichols 2002)
- Enough of the world's language stocks are isolates or young families that samples are exhaustive rather than representative, so randomization cannot generalize beyond the sample population to anything like "possible human language". (Janssen et al. 2006)
- Sample size (~ 300 stocks, some geographically non-independent, many underdescribed) is too small for accurate non-randomized significance testing (especially for low-frequency characters, which should be the best diagnostics).

Genealogical classification by typological characters

Can we at least use typological characters as heuristics? as confirmation?

Genealogical classification by typological characters

Can we at least use typological characters as heuristics? as confirmation?

Theoretically, yes, but first we need:

- A good sense of which characters are most and least susceptible to inheritance, spontaneous change (language-internal replacement), diffusion, perseverance in substratum; and how fast they change.
- A polished classification of all languages (stock, subgrouping)
- Reasonably accurate ages for language families (stocks, all subgroups)
- Comprehensive descriptions (grammar, dictionary, corpus) for many languages

Using semi-typological characters to approach the individual-identifying threshold

Using semi-typological characters to approach the individual-identifying threshold

Personal pronoun consonantism (1sg, 2sg):
m-T type: English me, thee, Latin acc. me, te, Georgian $m e$, shen, etc.
(found in 9 Eurasian stocks)
$n-m$ type: Wintu (Penutian, California) ni, mi; Mapudungun (isolate, Chile) poss. ñi, mi; etc.
(found in c. 21 American stocks)
(Nichols \& Peterson 1996, 2005; Nichols 2001)

Languages with M-T personal pronoun paradigms

Languages with N -M personal pronoun paradigms

Using semi-typological characters to approach the individual-identifying threshold

The geographical distributions show that:

- Both $m-T$ and $n-m$ systems occur occasionally by chance
- There are two large, high-density clusters
- These clusters must each result from some historical event, connection, relationship, etc.
- We can't determine what that historical situation was: descent? areality? spread of a sound-symbolic canon?

Using semi-typological characters to approach the individual-identifying threshold

Cognate (and putative cognate) roots as types

Using semi-typological characters to approach the individual-identifying threshold

Cognate (and putative cognate) roots as types

Two-consonant root:
C_{1} and C_{2} (in that order)
Each C is resemblant (not defined by regular correspondences or identity)
Phonotactics (positioning of vowels, if any) irrelevant

So these represent the same CC root:
qof, geb, akpu, xpi
plus: hemi, ogw
(similar consonants)
(generic consonants)

Using semi-typological characters to approach the individual-identifying threshold

Other sources of freedom:

Semantics: same sense; a few senses' leeway; several senses' leeway

Form: strict parse; selective parse Selective: $k e p, \underline{k e d e p}$, dekp, pek (all K-P)

Using semi-typological characters to approach the individual-identifying threshold

Calculation of probability: This is a search with several degrees of freedom.

Cumulative probability $=q_{1}+q_{2}+\ldots+q_{i+1}$
where $q_{j}=p\left(1-q_{i}\right)$
$p=$ event probability
$q=$ cumulative probability;
$q_{i}=$ cumulative probability after the i-th trial

Using semi-typological characters to approach the individual-identifying threshold

Example:
Identical (particular) consonant: $\quad \mathrm{p}=0.05$
(Average consonant inventory is about 20.)
Similar consonant: 3 distinctive features' leeway or about
$1 / 7$ of consonant inventory: $p=0.14$
Generic consonant: 5 distinctive features' leeway or about $1 / 4$ of consonant inventory: $p=0.23$

Similar CC root: $p=0.02$
Generic CC root: $p=0.05$

The number of resemblant two-consonant roots required in a binary comparison, with varying degrees of phonological and semantic leeway. Similar calculations for one-consonant roots. ($\mathrm{p}_{2}=$ probability of two-consonant root; $\mathrm{n}=$ number of trials; entries are minimum numbers of words required to reach significance at <0.05.)
1 sense:
$\mathrm{n}=\quad 100 \quad 200 \quad 1000$

3 senses: $\quad 5$ senses:

$$
\mathrm{n}=\begin{array}{lll}
100 & 200 & 1000
\end{array}
$$

$\begin{aligned} & \text { Similar } \\ & "+\text { select } \end{aligned}$	p_{2}				p_{2}				p_{2}			
	0.02	5	8	28	0.06	10	19	73	0.10	15	28	117
	0.04	7	14	51	0.12	18	33	138	0.18	25	46	201
Generic	0.05	9	16	63	0.14	20	37	159	0.23	30	57	253
" + select	0.09	14	26	106	0.25	32	61	273	0.38	47	88	406

One-consonant roots:

Generic	0.14	20	37	159	0.37	45	86	396	0.54	64	120	567
$"+$ select	0.27	34	65	294	0.54	64	120	567	0.72	80	155	744

The number of resemblant two-consonant roots required in a binary comparison, with varying degrees of phonological and semantic leeway. Similar calculations for one-consonant roots. ($\mathrm{p}_{2}=$ probability of two-consonant root; $\mathrm{n}=$ number of trials; entries are minimum numbers of words required to reach significance at <0.05.)

$$
\text { Red }=\text { best model of actual long-range comparisons. }
$$

1 sense:
$\mathrm{n}=\quad 100 \quad 200 \quad 1000$

3 senses:
$100 \quad 200 \quad 1000$
5 senses:
$100 \quad 200 \quad 1000$
p_{2}

$\begin{aligned} & \text { Similar } \\ & "+\text { select } \end{aligned}$	p_{2}				p_{2}				p_{2}			
	0.02	5	8	28	0.06	10	19	73	0.10	15	28	117
	0.04	7	14	51	0.12	18	33	138	0.18	25	46	201
Generic	0.05	9	16	63	0.14	20	37	159	0.23	30	57	253
" + select	0.09	14	26	106	0.25	32	61	273	0.38	47	88	406

One-consonant roots:

Generic	0.14	20	37	159	0.37	45	86	396	0.54	64	120	567
$"+$ select	0.27	34	65	294	0.54	64	120	567	0.72	80	155	744

An example of long-range comparison:

Nikolayev \& Starostin's North Caucasian Etymological Dictionary

Nakh-Daghestanian (East Caucasian) root: (C)V(R)C
(C1 can be head gender marker)
West Caucasian root:
$\mathrm{C}^{*}=$ possibly complex

Matching strategy: Multiple selective parse
Match C1 or C2 of EC to any component of C*
If C 1 of either language is unmatched it can be considered a gender prefix
Senses: Usually over 5 reported.

3600 reported cognates, 1800 of which have both WC and EC reflexes

No. trials: Wordlist = all available dictionaries for c. 40 languages.

An example of long-range comparison:
 Nikolayev \& Starostin's North Caucasian Etymological Dictionary

Model this search as a binary ND-WC comparison with these parameters:
Consonants: 1 similar (0.14), 1 arbitrary (0.5), total 0.07 for CC root
(Though in fact the possibility of calling C1 a gender marker makes this de facto not a root consonant, i.e. these are one-consonant roots.)
Selective parse (in addition to the arbitrary C1)
5 senses
Cumulative probability 0.35
Trials: ??? -- Estimate as 7200, twice the number of reported cognates

Successes: 1800 (cognates with WC representatives)

Needed: 2588 (a minimum, as the model above is very conservative)

Another example:

Ruhlen, PNAS 1998, Yeniseian - Na-Dene

Putative cognate sets for Proto-Yeniseian and Na-Dene from Ruhlen 1998, classified by phonological structure. All = Na-Dene forms from one or more of Haida, Tlingit, Eyak, Athabaskan. Pr-Ath. = Na-Dene forms from only ProtoAthabaskan.

	All	Pr-Ath. only
2 consonants, strict parse	16	11
2 consonants, selective parse	9	9
1 consonant, strict parse	6	5
1 consonant, selective parse	4	2
0 consonants	1	1
Total	36	28
Total using selective parse	$14(39 \%)$	11 (39\%)
Total with 2 consonants	25	20

Another example:

Ruhlen, PNAS 1998, Yeniseian - Na-Dene

Parameters of Yeniseian-Athabaskan search:

- 3 senses (most sets contain 2 or 3 different glosses)
- Generic consonants
- 2 consonants (2-cons. sets extracted from the larger corpus)
- Selective parse (used especially for glottal stop, 39% of sets)
- 200-word Proto-Yeniseian wordlist

Found Needed
Total sets 28
Total using selective parse 11 (39\%)
Total with 2 generic consonants 20 37
(needed for selective parse) 61

Another example:

Ruhlen, PNAS 1998, Yeniseian - Na-Dene

Parameters of Yeniseian-Athabaskan search:

- 3 senses (most sets contain 2 or 3 different glosses)
- Generic consonants
- 2 consonants (2-cons. sets extracted from the larger corpus)
- Selective parse (used especially for glottal stop, 39% of sets)
- 200-word Proto-Yeniseian wordlist

Additional complicating factor: both compared wordlists are reconstructed protolanguages.

Found Needed
Total sets 28
Total using selective parse
Total with 2 generic consonants (needed for selective parse)37
$20 \quad 37$

Using semi-typological characters to approach the individual-identifying threshold

Typology as evaluation criterion:

Most long-range comparisons have far fewer proposed cognates than needed.
Most have generous degrees of freedom (phonological, semantic, phonotactic).
Multilateral comparison also has many degrees of freedom in the choice of languages.
Most (all?) offer only lexical evidence in support of relatedness.

Using semi-typological characters to approach the individual-identifying threshold

Same evaluation applied to paradigms:

Algic pronominal affixes. $\mathrm{I}, \mathrm{II}=$ Wiyot allomorph sets.

	Proto-	Wiyot		Yurok
	Algonquian	1	II	
$1{ }^{\text {st }}$ person	* ne-	du(\div)-	d- < *n-	\div ne-
$2{ }^{\text {nd }}$	* ke-	khu(\div)-	kh-	k'e-
$3{ }^{\text {rd }}$	* we-	$\mathrm{u}(\div)$	w-	\div we- / \div u-
Indefinite	* me-		b- < *m-	me-

Probability, calculated as 4 identical consonants in a 4-member paradigm:
0.000000024
(2 / 100,000,000)

Same, similar consonants:
(2 / 1,000,000)

Using semi-typological characters to approach the individual-identifying threshold

Germanic good : better

$$
\begin{array}{cll}
\begin{array}{l}
\text { English } \\
\text { German } \\
\text { Swedish }
\end{array} \begin{array}{l}
\text { good } \\
\text { gut } \\
\text { god }
\end{array} & \begin{array}{l}
\text { better } \\
\text { besser } \\
\text { bättre }
\end{array} \\
\text { good: } \mathrm{g}=0.05 \text { or } 0.14 & \text { bett-: } & \mathrm{b}=0.05 \text { or } 0.14 \\
\mathrm{~V}=0.5 & & \mathrm{~V}=0.5 \\
\mathrm{~d}=0.05 \text { or } 0.14 & & \mathrm{t}=0.05 \text { or } 0.14 \\
\text { positive }=0.5 & & \text { comparative/superlative }=0.5
\end{array}
$$

Overall probability if taken as 4 identical consonants:

$$
0.00000039 \quad(4 / 10,000,000)
$$

If taken as 4 similar consonants ($p=0.14$ each):
0.000024
(2 / 100,000)

If taken as two similar two-consonant roots:
0.000096
(9.6 / 100,000 or about 1/10,000)

Using semi-typological characters to approach the individual-identifying threshold

Gender-number suffixes in Afroasiatic determiners (Greenberg 1960). Analysis (a) treats gender as neutralized in the plural; (b) treats it as syncretized.
(a) Sg. Pl.

Masc.
-n
\}-n
Fem.
-t
(b) $\quad \mathrm{Sg} . \quad \mathrm{Pl}$.
-n -n
-t -n

Probability calculated with specific consonants $(p=0.05)$:
(a)

$$
\begin{align*}
& p=0.0000045 \tag{b}\\
& (4.5 / 1,000,000)
\end{align*}
$$

$p=0.0000020$
(2 / 1,000,000)

Probability calculated with similar consonants $(p=0.14)$:
$p=0.000099$
(9.9 / 100,000)
(b)
$p=0.000043$
(4 / 100,000)

Using semi-typological characters to approach the individual-identifying threshold

Insufficient evidence: n : m personal pronoun systems in the Americas
(n in 1sg, m in 2sg, same paradigmatic positions)

Calculated as 2 identical consonants in a 2-member paradigm: $0.000625 \quad(6$ in 10,000)

Same, as 2 identical consonants in particular places in a 6-member paradigm:
(7 in 100,000)

Wordlist items in typological perspective

The genealogical stability of words depends on the lexical type of the language.

Wordlist items in typological perspective

The genealogical stability of words depends on the lexical type of the language.

Stance verbs: most stable where the static form is basic; less stable where the dynamic form is basic; least stable where the transitive form is basic.
stand: static 'stand, be in standing position' dynamic 'stand up, get into standing position' transitive 'have/make/let stand, stand someone'
'stand' in selected IE branches. (Red: innovations.) (Nichols 2006a, b)

Branch Language		Static	Dynamic	Transitive		
Indo-Iranian	Sanskrit	stha:-	stha:-	stha:-p-aya		
	Ossetic	læwwyn	styni	læwwyn kænyn		
Slavic	Proto-Slavic	sto-j-<e-	sta(n)-	stav-i-		
	Russian	stojat'	vstat' / vstavat'	stavit' / postavit'		
	Polish	sta\|c stoj-e	(po)wsta\|c/(po)wsta	va\|c stawia	c/ postawi	c
	BCS	stajati stoj-im	(u)stati/ustajati	staviti (da stoji)		
	Bulgarian	stoja	stana;	izpravjam;		
			izpravjam se			
Italic	Latin	sto	consurgo,	pono 'put'		
			adsurgo, etc.	statuo 'put, stand'		
	Romanian	sta	se scula (în picioare)	scula (în picioare)		
			se ridica (în picioare)	ridica 'lift, raise'		
				pune (pe picioare) 'put'		
	Italian	stare in piedi	alzarsi (in piedi)	mettere in piedi		
				alzare 'lift, raise'		
	French	être debout	se mettre debout	mettre debout		
			se lever	lever 'lift, raise'		
	Spanish	estar de pie	ponerse de pie	poner de pie		
			levantarse	levantar 'lift, raise'		

'stand' in Nakh-Daghestanian languages.

Following Kibrik \& Kodzasov 1988, 1990 gender affix is marked with "=". Blue $=$ archaisms (ancient ND roots).

Branch	Language	Static	Dynamic	Transitive
Nakh	Ingush	laatt	ott	otta-=u
Andic	Karata	hercch'e =igh-	hercch'	$\mathrm{b}=$ itl-
Lak		$=\mathrm{a}=\mathrm{c}^{\prime}$	=iz	=izan =an
Lezgian	Lezgi	aqqwaz-	qqaragh- (aqqwaz-)	qqaragh-ar- (aqqwaz-ar-)
			=XXa	ba=XXas a=b=as
	Archi	=o=ci	tto:=Xun,	
	Xinalug	tto:=Xun	ttoch	ttoch=Vk

The dynamic form is generally basic, and is innovative in most languages.
Transitive forms are usually derived from dynamic forms.

Wordlist items in typological perspective

Conclusions:

Diachronic stability is not a fixed property of particular lexical glosses.
Typology can identify the lexical factors that make particular sets of lexical items more or less stable.

What strictly typological characters *can* do

What strictly typological characters *can* do

Identify possible and probable sister families.
e.g. Yeniseian and Athabaskan-Eyak-Tlingit
(Vajda 2005, 2006, in press, in prep.)

What strictly typological characters *can* do

Identify unsuspected large areas
Continents as areas: Dryer 1989
Transcontinental macroareas:
Circum-Pacific
Pacific Rim
Silk Road
Caucasus-Himalayas
(Nichols 1994, 1997, Nichols \& Peterson 1996, Bickel
\& Nichols 2005, 2006, in prep.)
AUTOTYP: http://www.uni-leipzig.de/~autotyp/)

Number of overt possessive classes

What strictly typological characters *can* do

Remove supposed areas
e.g. Eurasia (chiefly northern): not really an area; just skewing within families which have spread widely for economic reasons.

A standard genealogical sample overrepresents these families, all of which are internally quite uniform.

Bickel in press, Bickel \& Nichols 2005, 2006

AUTOTYP: http://www.uni-leipzig.de/~autotyp/

Dominant alignment $(\mathrm{N}=205)$

What strictly typological characters *can* do

Point to probable earlier areal connections
Ket and southern Eurasia (Vajda n.d., Nichols in press) Indo-European and northern Eurasia (Nichols in press) Munda and Himalayas (Bickel 2005)

What strictly typological characters *can* do

These macroareal connections are older than the oldest known stocks, but typological comparison cannot tell us whether their genesis was genealogical or areal.

Conclusions

Conclusions

Standard comparative-historical method identifies and describes particular individuals (language families). Excellent resolution up to the stock level.

Conclusions

Standard comparative-historical method identifies and describes particular individuals (language families). Excellent resolution up to the stock level.

Typology can go much farther back in time, but for purposes of discriminating genealogical from other relatedness it has weak resolution at all time depths.

Conclusions

Standard comparative-historical method identifies and describes particular individuals (language families). Excellent resolution up to the stock level.

Typology can go much farther back in time, but for purposes of discriminating genealogical from other relatedness it has weak resolution at all time depths.
The weak resolution is not inherent; it is due to our primitive understanding of different kinds of diachronic stability, interdependence of characters, rates of change, etc. and our incomplete classification and dating of families.
There is much linguistic work to do before we will have a good set of comparanda.

Conclusions

Standard comparative-historical method identifies and describes particular individuals (language families). Excellent resolution up to the stock level.

Typology can go much farther back in time, but for purposes of discriminating genealogical from other relatedness it has weak resolution at all time depths.
The weak resolution is not inherent; it is due to our primitive understanding of different kinds of diachronic stability, interdependence of characters, rates of change, etc. and our incomplete classification and dating of families.
There is much linguistic work to do before we will have a good set of comparanda.

We can't hope to push the limits of the comparative method back very far. At all times, whatever the state of knowledge, the oldest detectable historical connections will always be ambiguous: genealogical? areal? both? other?

References

Bickel, Balthasar. In press. A refined sampling procedure for genealogical control. Sprachtypologie und Universalienforschung.
Bickel, Balthasar, and Nichols, Johanna. 2003. Typological enclaves. Paper presented at 5th biannual conference, Association for Linguistic Typology, Cagliari, Sardinia.
Bickel, Balthasar, and Nichols, Johanna. 2005. Inclusive/exclusive as person vs. number categories worldwide. In Clusivity, ed. Elena Filimonova, 4770. Amsterdam/Philadelphia: Benjamins.

Bickel, Balthasar, and Nichols, Johanna. 2006. Oceania, the Pacific Rim, and the theory of linguistic areas. BLS 32.
Dryer, Matthew. 1989. Large linguistic areas and language sampling. Studies in Language 13:257-292.
Greenberg, Joseph H. 1960. An Afro-Asiatic pattern of gender and number agreement. Journal of the American Oriental Society 80:317-321.
Janssen, Dirk P., Bickel, Balthasar, and Zuniga, Fernando. 2006. Randomization tests in language typology. Linguistic Typology 10:419-440.
Kibrik, A. E., and Kodzasov, S. V. 1988. Sopostavitel'noe izuchenie dagestanskix jazykov: Glagol. Moscow: Moscow University.
Kibrik, A. E., and Kodzasov, S. V. 1990. Sopostavitel'noe izuchenie dagestanskix jazykov: Imja. Fonetika. Moscow: Moscow University.
Maslova, Elena. 2000. A dynamic approach to the verification of distributional universals. Linguistic Typology 4:307-333.
Nichols, Johanna. 1997. Modeling ancient population structures and movement in linguistics. Annual Review of Anthropology 26:359-384.
Nichols, Johanna. 1997. Sprung from two common sources: Sahul as a linguistic area. In Archaeology and Linguistics: Aboriginal Australia in Global perspective, eds. Patrick McConvell and Nicholas Evans, 135-168. Melbourne: Oxford University Press.
Nichols, Johanna. 2001. Why "me" and "thee"? In Historical Linguistics 1999, ed. Laurel J. Brinton, 253-276. Amsterdam-Philadelphia: Benjamins.
Nichols, Johanna. 2002. Monogenesis or polygenesis? Typological perspective on language origins. Plenary lecture presented at LSA Annual Meeting, San Francisco.
Nichols, Johanna. 2005. The origin of the Chechen and Ingush: A study in alpine linguistic and ethnic geography [2004]. Anthropological Linguistics 46:129-155.
Nichols, Johanna. 2005. Quasi-cognates and lexical type shifts: Rigorous distance measures for long-range comparison. In Phylogenetic Methods and the Prehistory of Languages, eds. James Clackson, Peter Forster and Colin Renfrew, 57-65. Cambridge: McDonald Institute for Archaeological Research.
Nichols, Johanna. 2006. Stance verbs and the sociolinguistics of the Slavic expansion. Paper presented at Slavic Linguistics Society inaugural meeting, Bloomington.
Nichols, Johanna. 2007. A typological geography for Indo-European.
Nichols, Johanna, and Peterson, David A. 1996. The Amerind personal pronouns. Language 72:336-371.
Nichols, Johanna, and Peterson, David A. 2005. Personal pronouns: M-T and N-M patterns. In World Atlas of Language Structures, eds. Martin Haspelmath, Matthew Dryer, Bernard Comrie and David Gil, 544-551. Oxford: Oxford University Press.
Nikolayev, S. L., and Starostin, S. A. 1994. A North Caucasian Etymological Dictionary. Moscow: Asterisk.
Vajda, Edward. 2003. Ket verb structure in typological perspective. Language Typology and Universals 56:55-92.
Vajda, Edward. 2005; 2006; in press

