Oct 1, 1982
Dear Stephanie,

In the first part of this letter — mailed 9 days ago — I stopped in
the middle of emphasizing the big role of differential equations in formulat-
ing physical laws. The example I chose was that of the so called “simple
harmonic motion” of a weight hanging from a spring. A somewhat sim-
pler and earlier example is the theory of falling bodies and projectiles of
Galileo. Of course Galileo did not use differential equations and did not
have to because in his case the physical law can be stated and analyzed
using less sophisticated tools. However it is interesting to see that his whole
theory is a consequence of the differential equations % = —32, % =0,
where z(t) and y(t) are the x and y coordinates of a freely moving body in
space as a function of the time. In this case the differential equation can

be solved by ordinary integration. The first reads %(%) = —32. Hence
fl—? = —32t + C1, where C] is an unknown constant. Integrating again we

find that y(t) = —16t> + C1t + Cy where Cy is another unknown constant.
Similarly we find that x(t) = Cst + Cst. Thus once we know the four
constants C7,Cy, C3,Cy we know the whole trajectory of our body. These
however,can be determined from the position of the body at t = 0. Let
zo = z(0),y0 = y(0),v§ = ‘fl—f(O),vg = %(0). Then letting ¢t = 0 in the
formula for z(t) we get o = Cjy, and letting ¢ = 0 in the formula for y(¢)
we get yo = Cy. Similarly the formula 2/(t) = C3 gives us v§ = C3 and the
formula y/(t) = —32t + C; gives us v§ = Cy. In other words

x(t) = tvf + xo
y(t) = —16t% + vit + yo

and we have explicit formula for the entire motion once we know the posi-

tion and velocity components at ¢t = 0. This is the sense in which the whole
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thing is contained entirely in the differential equations Py _ -32, G
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Newton was concerned with the motion of a planet about the sun and

(assuming the sun to be fixed at (0,0,0)) his fundamental differential equa-
tions for the coordinates x(t),y(t), z(t) of a planet are
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where G and M are certain constants. These are much harder than those
considered above but Newton managed to deal with them and find a general
formula for x(t),y(t), z(t) with given initial position and velocity. In partic-
ular he was able to show that whenever the speeds are not too great then the
planet moves in an ellipse with the sun at one focus. The argument is a bit
lengthy and I won’t give it but it is well within your capacity to understand.
Maybe they gave it to you in physics last year. Newton went further though
and wrote down the differential equations of motion of the whole solar system
which results from the attraction of the planets for each other as well as for
the sun. In this case we need 3n+3 equations and there are 3n+3 functions to
determine x1(t),y1(t), 21(t), ..., Zn(t), yn(t), 2n(t), x(t), y(t), 2(t). Here y;(t)
is the y coordinate of the j-th planet, and x(t) is the x coordinate of the
sun and similarly for the others. A typical one of the 3n 4+ 3 equations is
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These equations are very hard to solve and no one has ever done it —
even in the case n = 2 so that there are 3 bodies — the sun and two planets
(or the sun, earth and moon). Nevertheless the differential equations com-
pletely determine the motion (once the initial conditions are given) and one
can learn a great deal about the motion by studying the differential equa-
tion and proving theorems about their solutions even though one cannot
find explicit formulae.

So much for the seventeenth century. What happened in the eighteenth?
A very large part falls under one of the following three headings

1. Studies of planetary motion — especially the sun, earth and moon
(the so called linear problem) using Newton’s differential equations.

2. Extension of Newton’s laws to continuous matter as opposed to “par-
ticles” of matter — especially the laws of fluid motion.



3. Developments in number theory including the proofs of many of Fer-
mat’s statements.

The chief mathematicians of the century were Euler (1707-1783), D’Alam-
bert (1717-1783), Bernoulli (1700-1782), Lagrange (1736-1812) and Laplace
(1749-1827). Euler and Lagrange worked on all three subjects. The others
confined themselves to (1) and (2).
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I will say no more about (1) at this point, except to say that many
difficult theorems were proved and that finding such continues to the present
day. It was an important advance when G. W. Hill (1838-1914) pointed out
the importance of spending less time seeking explicit solutions and more time
studying the qualitative properties of the solutions by abstract methods.
This idea greatly influenced the work of Henri Poincare (1854-1912), one of
the great mathematicians of all times and Poincare in turn influenced G. D.
Birkhoff (1884-1944) who devoted much of his very distinguished career to
furthering the work of Poincare on the subject. Birkhoff’s work led to the
new subject of ergodic theory in 1931 which also has important connection
with probability. From an abstract point of view ergodic theory is a sort of
mixture of group theory and measure theory but I should not try to explain
further until you know what group theory and measure theory are. It is one
of my main interests and perhaps the chief interest of Professor Kakutani
at Yale.
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Among the chief followers of G. D. Birkhoff in celestial mechanics are A.
N. Kolmogorov and V. I. Arnold of Russia, J. Moser of Zurich (for many
years at the Courant Institute in New York ) and Stephen Smale of Berkley.
Another who died recently is C. L. Siegel at Gottingen who was the teacher
of Moser.

Getting back to the 18th century let us look at (2). In planetary motion
one thinks of the planets as points and is interested only in their position.
In so called continuum mechanics one takes a piece of matter and studies
the relative motion of its parts. In dealing with liquids and gasses one
speaks of fluid mechanics and in dealing with solids one speaks of elasticity



and plasticity. The main 18th century progress was in formulating the laws
of fluid mechanics and here an important new tool was introduced — the
notion of a partial differential equation. This is just what you might guess;
an equation asserting certain relations between the partial derivatives of one
or more functions of several variables. Consider for example the motion of
a stretched plucked string as on a violin. At any given moment of time
the displacement of the string from its rest position will be described by a
function f of one variable which at the distance x from one end specifies the
displacement f(z) at that distance.
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Since this changes with time the displacement is a function f(x,t) of the
two variables x and t. The physics of vibrating string (as long as the vibra-
tions are small) is completely described by the partial differential equation
%'é = ;15 %J; where v is a constant depending on the density and stretchabil-
ity of the string. Shortly after Ann dropped Math last year she encouraged
me to teach her some by letter and I wrote several letters (at least two)
showing how what she had just learned could be used to make sense of the
partial differential equations of physics, including this one. Ask her to show
them to you if you want really to see how solving such equations is vital for
physics. At any rate the study of partial differential equations soon became
a very important part of mathematics and continues so to the present day.
Little progress was made until the early nineteenth century when “harmonic
analysis” came to the rescue — more of this below.

The actual partial differential equations of fluid mechanics are a little
complicated and I won’t write them down for you. (Note that a string can
be considered as a one dimensional fluid). Instead let me pass to 3). What
happened under 3) was first that many of Fermat’s statements were proved
by Euler and Lagrange and more importantly that a systematic theory began
to emerge. Lagrange in particular solved the following problems. Given
arbitrary whole numbers A, B, C, D, E, F find:

a) all pairs z,y of rational numbers such that

A2z® + Bay+Cy* + D+ Ey+F =0

b)all pairs z,y of integers x,y such that



Az? + Bry+Cy*+ Dz + Ey+F =0

Of course there may be none at all and part of the problem is to determine
in which cases there are no solutions. Although these problems are easy to
state and their solutions are beautiful they are not easy to find and I do
not suggest that you try to find them. However you should be able to do
the first step in a) which is to show that by a simple change of variables
likez=X4a,y=Y +Borz =252 and y = 2L problem a) can be

vX+0 YY +46
reduced to one of the following two special cases:

1. 22— By*>=C
2. 2)zy=0C

Of course (2) is easily solved but (1) is still difficult. You also might find
it amusing to try to prove a very important and original discovery made by
Euler; namely that for any s > 1 the sum of the infinite series

can be factored as the infinite product

() () ()

where the numbers that appear in the product are the primes 2, 3, 5, 7, 11,
13, 17, 19, 23 etc. Hint: first use the theory of geometric series to replace
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This is quite easy — at least on a formal level. Somewhat harder but perhaps
within your powers is the following deduction that Euler made from his
identity
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diverges. You probably know the proof that ) "—7° ~ diverges. The problem
is to show that the series still diverges if you leave out everything but the
primes — by using Euler’s identity to relate the two sums.



Many of the things that Euler and Lagrange discovered about number
theory make more sense when you bring group theory into the picture. In-
deed all the basic concepts of modern algebra — groups, rings and fields
may be and largely were motivated by the needs of number theory. More-
over Lagrange made the first step in this direction in a paper written around
1770. In order to proceed much further with my story I need to talk about
groups so let me tell you about them. Maybe you have already studied them
but just in case I will start from the beginning.

Let G be any set. Let there be given a rule for “multiplying” two mem-
bers of GG together to get another member. We suppose that this rule satisfies
the following three axioms.

1. z(yz) = (xy)z for all x,y and z in G.

2. There is an element e in G (called the identity), such that ez = ze for
all z in G.

3. For each x in G there is a y in G such that zy = yx = e. (y is called
the inverse of z).

We remark that it is easy to prove (try it) that e is unique — there cannot be
two identities and also that x can have only one inverse. The inverse of x is
usually denoted by z~!. Note also that we do not assume that zy = yz. By
definition a group is any set GG together with a “multiplication” satisfying
(1),(2),(3). In some groups it is true that xy = yx for all  and y. These
are called commutative groups.

Ezxample 1 - G is the set of all real numbers and the “multiplication” is
addition. In this case e = 0 and ™! = —z. This group is commutative.

Ezample 2 - G is the set of all positive real numbers and the “multipli-
cation” is the ordinary multiplication. Here e = 1 and 2! = % This group
also is commutative.

FEzample 8 G is the group of all 2 x 2 matrices with real coefficients and
determinant # 0. Multiplication is ordinary matrix multiplication and is not
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commutative. e is < 0 1 > and < : Z > is the usual matrix inverse.

Definition - a finite group with n elements is said to be cyclic if there is
some element in it, call it a such that the elements e,a,a?,...,a" ! are all
different. Clearly a™ must be e. We say that a generates the group.



Problem - Prove that for every n = 1, 2,... there exists a cyclic group
with n elements.

Definition - The groups G1 and G are isomorphic if there exists a one-to-
one function ® with domain G and range G such that ®(zy) = ®(z)P(y)
for all x and y. ® is then called an isomorphism of G; and Gs. It is easy to
prove the following (Try it):

1. If ® is an isomorphism of G; and Gg then ®~! is an isomorphism of
G2 and Gl.

2. Ple)=e
3. B(e) = (B(x))"!

Ezample: The function g(x) = log(z) is an isomorphism of Example 2
at the top of the page and Example 1.

Problem - Prove that two finite cyclic groups with the same number of
elements are isomorphic, i.e. to within isomorphism there is one and only
one cyclic group of each finite order n.

The simplest way to define new cyclic groups is by using the direct product
notion.

Def - Let G1 and G2 be any two groups. Let G; X G2 denote the set
of all pairs x,y with z € Gy, y € Gs. Define multiplication by the rule
(z,y)(2',y") = (x2’,yy’). Tt is easy to show that this multiplication makes
G1 x Gy into a group. It is called the direct product of G and Gs.

Problem (Easy) Show that the direct product of two cyclic groups of
order 2 is not cyclic.

Problem (Slightly harder) Show that the direct product of two cyclic
groups of the same order is not cyclic.

Problem - Show that every group with four elements is either isomorphic
to a cyclic group of order four or is the direct product of two cyclic groups
of order two.

Problem (not too easy) Let G be any finite group and let H be any
“subgroup” i.e. any subset such that zy, 2! and y~! are in H whenever z



and y are, i.e. that H itself is a group. Show that the number of elements
in H must be a divisor of the number of elements in G.

This theorem has a corllary that every group whose number of elements is
a prime must be cyclic.

I fear I won’t have time to finish what I had in mind before I see you
Friday or Saturday. Maybe you need time to absorb the group theory any-
way. Later in a final installment I will explain what harmonic analysis is,
how it relates to group theory and how it helps to solve both partial differ-
ential equations and Diophantine equations of number theory thus bringing
together the two 17th century sources. I also want to say a few words about
the basic things one must learn before specializing.

With best wishes, Sincerely yours,
G. W. Mackey



