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An instructive version of this well-known problem is the case of a current that is zero tot,0 and
varies asat for t.0. A generally excellent discussion of this case by Abbott and Griffiths features,
however, a singularity in the fields at any point at the moment they first become nonzero. This
singularity can be avoided by careful approximation, derived here using expressions for
time-dependent fields rather than potentials. The result is that while the fields assume a quasistatic
character for long times after the current has started to flow, they include a small amount of radiation
at short times. Such an effect was observed in a simple experiment involving a kitchen appliance.
© 1997 American Association of Physics Teachers.
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I. INTRODUCTION

Electric fields outside a long solenoid with a changi
current were first detected experimentally by Oliver Lodge
1889.1 Recent articles in the Journal on this topic inclu
Refs. 2–7. Lodge presented a quasistatic derivation of
effect based on the integral form of Faraday’s law:

Em f52prE52
ḞB

c
~1!

in Gaussian units for a loop of radiusr about an infinite
solenoid of radiusa along thez axis that carries currentI
5at per unit length. Then Ampe`re’s law was used to deduc
the instantaneous magnetic field inside the solenoid asBz

54pI /c, and the magnetic field outside the solenoid w
neglected in the evaluation of the magnetic fluxFB . The
resulting fields outside the solenoid are

E52
2pa2a

c2r
, B'0. ~2!

However, Lodge was very clear that an electric field o
side the solenoid is to be expected because the numbe
magnetic field lines outside the magnet vary with time.
deed~he argued!, magnetic field lines form closed loops on
part of which lie within the solenoid. So when the number
field lines through the core of the solenoid changes th
must be a corresponding number of lines crossing any c
centric cylinder external to the~long! solenoid. Then, ac-
cording to Faraday, the movement of the magnetic field li
across the exterior cylinder will generate anEm f, and con-
sequently an electric field, around the cylinder. For all th
there must be a small magnetic field outside the solenoi

It has been noted5 that the example of a linearly risin
current which has persisted forever in an infinite solenoid
a special case in that Maxwell’s equations are satisfied b
electric field as calculated above and a magnetic field tha
zero outside the solenoid. This pedagogic quandry is rea
ably avoided by noting that any real current began from z
at some finite time in the past.6

Thus a more meaningful example is that the curren
nonzero only fort.0. This case was treated by Abbott an
Griffiths,2 who used the retarded potentials to deduce
following expressions for the fieldsE and B at the point
(r ,0,0) in cylindrical coordinates (r ,u,z) outside a solenoid
with linearly rising current,I 5at per unit length:
1176 Am. J. Phys.65 ~12!, December 1997
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Eu52
2pa2a

c2r

ct

z0
, Bz52

2pa2a

c2z0
. ~3!

Here, z05A(ct)22r 2 is the position along the axis of th
solenoid~measured from the point on the axis closest to
observer! such that the distance to the observer isct. See
Fig. 1. It is easy to verify by direct differentiation that the
results satisfy Maxwell’s equations. For large timesEu from
Eq. ~3! becomes the same as that found in Eq.~2!, while Bz

tends to zero. Forct just slightly greater thanr , however,
Eu'Bz and these can be interpreted as radiation fields.

However, the fields~3! are arbitrarily large at timest suf-
ficiently close to but larger thanr /c. Yet it is clear that for a
small enough time difference betweenct and r the solenoid
current appears to the observer as that due only to the po
of the surface nearest the observer. In this limit the effect
current is at right angles to the axis of the solenoid and
magnitude is arbitrarily small~the time being arbitrarily
close to zero at the source!. This problem was also treated i
the paper of Abbott and Griffiths, where the correspond
radiation fields were found to be arbitrarily small, in agre
ment with reasonable expectation.

In this article I show how more careful approximation
the calculation of the fields of the solenoid forct just greater
thanr leads to arbitrarily small, not arbitrarily large, value
However, like Abbott and Griffiths, I assume an explic
form for the time dependence of the current. The calculat
proves to be most delicate for times of the ordera/c after the
current begins to flow, wherea is the radius of the solenoid
It remains doubtful whether the assumed time dependenc
the current is a realistic approximation for times less th
l /c, wherel is the length of the solenoid andl @a. Depar-
tures of the current distribution at early times from the id
alized form assumed here will more likely increase the
diation than decrease it; compare with problems 14.12
14.13 of the textbook of Jackson.8 Hence the experimenta
detection of radiation during the turn-on of an electric mot
as reported in the final section of this article, suggests
the simplified model used here does contain much of
essential physics.

II. THE VECTOR POTENTIAL

It is instructive to begin by considering the retarded vec
potential for the solenoid~even though I will not carry this
calculation to completion!:
1176© 1997 American Association of Physics Teachers
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A~x,t !5
1

c E j ~x8,t85t2R/c!

R
dx8, ~4!

where R5uRu and R5x2x8. In the present example th
current densityj is confined to the surface of the solenoid
radiusa and has valueat û per unit length along the sole
noid. The unit vectorû can be re-expressed as

û52 x̂ sin u1 ŷ cosu, ~5!

in terms of the unit vectors of a rectangular coordinate s
tem.

The observer is outside the solenoid at (x,y,z)5(r ,0,0)
with r .a. A typical point on the surface of the solenoid h
cylindrical coordinates (a,u,z) with corresponding Cartesia
coordinates (a cosu, a sinu, z). Hence the vectorR has
(x,y,z) components

R5~r 2a cosu,2a sin u,2z!, ~6!

and

R5Az21r 21a222ar cosu. ~7!

The current is nonzero only fort8.0, i.e., only forct.R.
For a given angleu on the solenoid there is a distancezmax

such that this condition is satisfied for alluzu,zmax.
The subtlety in the calculation is that the conditiont8.0

is not maintained foru over the full range of 2p whenct is
close toR. But at eachz there is a valueumax such that the
condition holds foruuu,umax.

Then Eq.~4! can be written as

A~r ,0,0,t !5
1

c E
2umax

umax
aduE

2zmax

zmax
dz

3
a~ t2R/c!~2 x̂ sin u1 ŷ cosu!

R
. ~8!

Fig. 1. The fields of a solenoid of radiusa concentric with thez axis are
observed at the point (r ,0,0) in a cylindrical coordinate system. At timet
the observer receives radiation emitted att50 from pointsz1 andz2 on the
near and far side of the solenoid, respectively, both of which are distancct
from the observer. The point on the axis at distancect from the observer is
labeledz0 .
1177 Am. J. Phys., Vol. 65, No. 12, December 1997
-

The x component of the integrand is odd in sinu and so
vanishes on integration. Only componentAy survives:

Ay5
aa

c E
2umax

umax
cosu duE

2zmax

zmax
dzS t

R
2

1

cD . ~9!

At this point, it is tempting to make an approximation th
proves not to be valid. Wheneverumax5p ~which it is unless
ct is very close toR! the integral of the term cosu/c van-
ishes. Thus, if we ignore the~hopefully! small contribution
from the second term in the integrand from the region wh
umax,p, we could write

Ay'
aat

c E
2umax

umax
cosu duE

2zmax

zmax dz

R
[

aat

c
f ~r ,t !,

~10!

where f (r ,t) is the result of the remaining integration.
Before proceeding with the above approach~which leads

to the results of Abbott and Griffiths! it is useful to develop
a second method of calculation to aid in evaluating the m
its of the proposed approximation.

III. DIRECT CALCULATION OF THE FIELDS

Expressions for the fieldsE and B in terms of time-
dependent sources can be deduced by taking derivative
the retarded potentials. In this Journal these expressions
often been attributed to Jefimenko,9 although they appeare
earlier in the textbook of Panofsky and Phillips.10,11 These
expressions are

E5E @r#n̂

R2 dx81
1

c E @ ṙ#n̂

R
dx82

1

c2 E @ j̇ #
R

dx8,

~11!

where j̇5] j /]t, n̂5R/R and

B5
1

c E @ j #3n̂

R2 dx81
1

c2 E @ j̇ #3n̂

R
dx8. ~12!

Quantities in brackets,@ #, are to be evaluated at the retard
time t85t2R/c.

Assuming the wire of the solenoid remains neutral, t
current densityr is zero ~along with its time derivative!.
Hence the electric field can be written as

E52
aa

c2 E
2umax

umax
duE

2zmax

zmax
dz

2 x̂ sin u1 ŷ cosu

R
. ~13!

As before, thex component vanishes leaving

Ey52
aa

c2 E
2umax

umax
cosu duE

2zmax

zmax dz

R
52

aa

c2 f ~r ,t !,

~14!

where f is the same function introduced in Eq.~10!. No
approximation has been made in deriving Eq.~14! ~other
than the use of Maxwell’s equations and a specified curr
distribution!.

Of course, the electric field should be derivable from t
vector potential viaE52(1/c)]A/]t, which according to
Eq. ~10! implies

Ey52
aa

c2 S f ~r ,t !1t
] f ~r ,t !

]t D . ~15!
1177Kirk T. McDonald



to

o
t

u-
o

n
id

l
ac

F
.

in

a-
se
he

as

ia-

s

-
ax-
ns

en
le-

e

A comparison of Eqs.~14! and ~15! indicates that if the
approximation in Eq.~10! were valid, then] f /]t50, and so
the electric field should be constant in time.

Apparently, the approximation used in deriving Eq.~10! is
not completely correct.

Either we should return to Eq.~9! or continue on from Eq.
~14!, neither of which contain approximations. It appears
be more straightforward to continue with Eq.~14!. Thus we
have an example of how, in practice, direct evaluation
time-dependent fields can be as simple as or simpler than
use of retarded potentials.

IV. THE ELECTRIC FIELD

To continue the evaluation of the integral in Eq.~14! we
anticipate that we will obtain results only forr @a, i.e., for
observers far from the solenoid.

By the symmetry of the problem, the electric field circ
lates about the solenoid and we interpret our calculation
Ey at (r ,0,0) as beingEu at any (r ,u,z).

It is useful to introduce two additional distances,z1 and
z2 , corresponding to the smallest value ofz at whichumax

50 and the largest value ofz for which umax5p, respec-
tively. See Fig. 1. That is,

z65A~ct!22~r 7a!2'Az0
262ar, ~16!

recalling thatz05A(ct)22r 2, and where the approximatio
neglects terms of ordera2. Radiation that leaves the soleno
at t50 from points (r ,u,z)5(a,0,z1) and (a,p,z2) arrives
at the observer (r ,0,0) at timet. Equivalently, both source
points are at distancect from the observer.

For uzu,z2 the angular integral in Eq.~14! extends over
2p, corresponding toumax5p. So we can split the integra
into two ranges and reverse the order of integration in e
to obtain

Eu52
4aa

c2 E
0

z2

dzE
0

p

du
cosu

R

2
4aa

c2 E
z2

z1

dzE
0

umax
du

cosu

R
. ~17!

In the approximationr @a, we have from Eq.~7!

1

R
'

1

~r 21z2!1/2 S 11
ar cosu

r 21z2 D . ~18!

Using this in Eq.~17! and performing theu integrations we
find

Eu'2
2pa2ar

c2 E
0

z2 dz

~r 21z2!3/22
4aa

c2

3E
z2

z1

dzF sin umax

~r 21z2!1/21
ar

~r 21z2!3/2

3S umax

2
1

sin 2umax

4 D G . ~19!

The first integral is standard but the second is awkward.
the latter, we replacez by umax as the variable of integration
First, note that forz2,uzu,z1 ,

~ct!25z21r 21a222ar cosumax, ~20!
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so that

cosumax'
~ct!22r 22z2

2ar
5

z0
22z2

2ar
'

z0~z02z!

ar
. ~21!

Recalling Eq.~16!, we see that the second approximation
Eq. ~21! holds only for

z0*A2ar. ~22!

This approximation is distinct from our earlier approxim
tion that r @a. We will have to examine separately the ca
z0,A2ar, which corresponds to the early times where t
method of Abbott and Griffiths produced a singularity.

A. z0>A2ar

In this realm we have from Eq.~21!

sin umaxdumax'
z0dz

ar
. ~23!

With this, Eq.~19! becomes

Eu'2
2pa2a

c2

z2

rct
2

4a2a

c2

r

z0
E

0

p

dumax

sin2 umax

~r 21z2!1/2,

~24!

where we have dropped terms of ordera3. In the remaining
integral the factorAr 21z2 is close toct. Similarly, z2'z0

for z0.A2ar. With these approximations we have

Eu'2
2pa2a

c2 S z0

rct
1

r

z0ctD52
2pa2a

c2

ct

rz0
. ~25!

The result of the present approximations is the same
that found by Abbott and Griffiths@Eq. ~3!#. Thus after some
effort we understand that their results hold only forz0

.A2ar. This corresponds to times long enough that rad
tion has been received from the far side of the solenoid.

If we applied the approximations of Abbott and Griffith2

to the direct calculation ofEu , then we would obtain only
the first term of Eq.~24!, but withz2 being calledz0 . This is
quite different from Eq.~25! ~and together with the corre
sponding result for the magnetic field does not satisfy M
well’s equations!, showing again that these approximatio
are not fully consistent.

It remains to make a calculation of the early times wh
radiation can be received only from the portions of the so
noid corresponding toumax,p.

B. z0<A2ar

From Eq.~16! we deduce thatz2 is defined only forz0

.A2ar. Hence forz0,A2ar Eq. ~19! can be written as

Eu'2
4aa

c2 E
0

z1

dz
sin umax

~r 21z2!1/2

'2
4aa

c2

1

r E
0

z1

dz sin umax, ~26!

where for z0,A2ar it proves preferable to approximat
Ar 21z2 by r rather thanct. From Eqs.~16! and~20! we see
that sinumax5A(z1

2 2z2)/2ar. Hence
1178Kirk T. McDonald
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Eu'2
4aa

c2

1

rA2ar
E

0

z1

dzAz1
2 2z2

52
2pa2a

c2

z1
2

~2ar !3/2, ~27!

for early times whenz0,A2ar and correspondingly, 0
,z15A(ct)22(r 2a)2,2Aar. The approximate solution
~25! and~27! do not quite match atz05A2ar when the field
is near its maximum, but are good for times earlier or la
than this.

V. THE MAGNETIC FIELD

We use Eq.~12! to evaluate the magnetic field. Recallin
that j5at û, we have@ j #5a(t2R/c) û and @ j̇ #5aû, so

B5
at

c E û3n̂

R2 dx8. ~28!

From Eqs.~5! and ~6! we have

û3n̂5
1

R
@z cosu x̂1z sin u ŷ1~a2r cosu!ẑ#. ~29!

Thus the integrands of thex andy components ofB are odd
in z and so these components vanish on integration.
remaining component is

Bz5
at

c E dzE adu
a2r cosu

R3

'
aat

c E dz

~r 21z2!3/2

3E duS 2r cosu1a2
3ar2 cos2 u

r 21z2 D , ~30!

using approximation~18!.
Again, we split the integration overz into the intervals

@0,z2# and @z2 ,z1#. On performing theu integration and
neglecting terms ina3 we find

Bz'
4pa2at

c E
0

z2 dz

~r 21z2!3/2 S 12
3

2

r 2

r 21z2D
2

4a2a

c2

r

~ct!2 E
z2

z1

sin umax dz, ~31!

where on the interval@z2 ,z1# we approximater 21z2

'(ct)2.
As for the electric field, we evaluate the integrals se

rately for z0 less than and greater thanA2ar.

A. z0>A2ar

In this region,z2 is greater than zero and the first integr
of Eq. ~31! can be found in tables. For the second integral
again change variables with the aid of Eq.~23!, after which
the integration is elementary. This leads to

Bz'2
2pa2a

c2 S z2~r 1a!2

r 2~ct!2 1
r 2

z0~ct!2D . ~32!

In the first term we may setz2'z0 andr 1a'r , leading to
1179 Am. J. Phys., Vol. 65, No. 12, December 1997
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Bz'2
2pa2a

c2

1

z0
. ~33!

This is also the result of Abbott and Griffiths.

B. z0<A2ar

In this region,z2 is not defined, so only the second int
gral of Eq.~31! contributes. In that we approximate the fa
tor 1/(ct)2 as 1/r 2 and proceed as for the electric field:

Bz'2
4aa

c2

1

r E
0

z1

sin umax dz

'2
2pa2a

c2

z1
2

~2ar !3/25Eu . ~34!

As expected, the electric and magnetic radiation fields
early times have equal magnitudes, are mutually orthogo
and are orthogonal to the line of sight to the closest point
the solenoid.

The radiation from the far side of the solenoid tends
cancel that from the near side. As time advances thez coor-
dinate from which radiation is received becomes more ne
the same at all azimuths around the solenoid and the can
lation becomes more perfect. The fields rise from zero u
they reach a maximum near timet5(r 1a)/c, correspond-
ing to z05A2ar when radiation has first been received fro
the far side of the solenoid. The radiation fields die out ra
idly thereafter. The small remaining time-dependent m
netic field is, however, sufficient to induce locally an elect
field of the instantaneous quasistatic value~2!. There is no
need to invoke action at a distance, as might be required
view that emphasizes only the quasistatic limit.

VI. RADIATED POWER

The power radiated per unit length by the solenoid at ti
t0 measured at the solenoid can be found from the Poyn
vector,S5(c/4p)E3B, by integrating it over a large cylin-
der of radiusr at time t5t01r /c:2

P~ t0!5 lim
r→`

2prS~ t01r /c!. ~35!

In this, ct5ct01r , so z05A(ct)22r 2'A2rct0 and z1

'A2r (ct01a). The fields found above are written sep
rately forz0 less than or greater thanA2ar, corresponding to
t0 less than or greater thana/c, the time it takes radiation to
move across the radius of the solenoid. A subtlety: by de
ing the timet0 at the solenoid ast05t2r /c in terms of time
t at a distant observer, the radiation begins att052a/c,
since it first arrives at the observer att5(r 2a)/c.

Inserting Eqs.~3! and ~34! into ~35! we find

P~ t0!'
p2a3a2

c3 H S 11
ct0
a D 2

, 2
a

c
,t0,

a

c

a

ct0
, t0.

a

c

. ~36!

The total energy radiated up to timet0.a/c is then

U rad'
p2a4a2

c4 S 8

3
1 ln

ct0
a D . ~37!
1179Kirk T. McDonald
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It is interesting to compare this to the energy lost to Jo
heating. If the solenoid coil has thicknessb and resistivityr,
then the resistance of lengthl of the solenoid is R
52par/bl. That is, the resistance varies inversely w
length, regarding the turns of the coil in parallel. The curr
in length l at time t0 is I 5at0l , so the rate of Joule heatin
is

I 2R5
2para2t0

2l

b
, ~38!

which is proportional to lengthl . The total energy dissipate
in heat per unit length up to timet0 is then

UJoule5
2para2t0

3

3b
5

2cr

3pb

p2a4a2

c4 S ct0
a D 3

, ~39!

ignoring the tiny contribution from2a/c,t0,0. In a typi-
cal metal r'1026 V cm, while 1V51/30c in Gaussian
units. Thus the factor 2cr/3pb is about 1026/45pb for b in
centimeters. A typical diameter of the coil wire isb
'1/4.5p cm, so the factor is about 1027. Comparing Eqs.
~37! and~39! we see that the total energy lost to radiation
greater than that lost to heat until

S ct0
a D 3

'107S 8

3
1 ln

ct0
a D , ~40!

corresponding tot0'450a/c. For a solenoid with radiusa of
1 cm this transition time is only about 15 ns. This result te
us that the initial current in a solenoid need be linear w
time only for a few nanoseconds for the analysis of t
article to be a good approximation to the transient elec
magnetic effects. The currents in anL-R circuit are linear up
to times of orderL/R, so the present analysis could be a
plicable to many practical cases.

VII. DISCUSSION

The major qualitative result of the present analysis is
same as that of Abbott and Griffiths:2 the fields outside a
solenoid include electromagnetic radiation for a short ti
after the current starts to flow. Is this radiation in fact dete
able?

Heald3 notes that establishing a field inside a solenoid~or
toroid! via an external power source requires lines of
Poynting vector to point from the power source into the
lenoid. It could be that the corresponding flow of pow
through the electromagnetic field masks the transient ra
tion effect discussed above. However, for a linearly ris
current the energy stored in the solenoid varies quadratic
with time, so the Poynting flux considered by Heald i
creases with time and is therefore reasonably distinct fr
the transient radiation effect considered here. Of course,
Poynting flux from the power source will have a turn-o
transient that, in general, will have the character of radiati
It remains that not all the energy delivered from the pow
source ends up stored in the~quasi!static field of the sole-
noid; some energy escapes in the form of radiation.

In a different approach to the startup of the field of
1180 Am. J. Phys., Vol. 65, No. 12, December 1997
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solenoid, Protheroe and Koks7 considered a double-woun
solenoid with a small gap between the two windings. T
model has the merit of being calculable in detail. For eq
and opposite currents in the two windings the fields ex
only between the windings. The transient fields propag
parallel to the axis of the solenoid from the end where
power source is located. The velocity of propagation is fou
to bec/(2pan)!c, wheren is the number of windings pe
unit length anda is the solenoid radius. In this model the
are no radiation fields~as well as no quasistatic field insid
the inner solenoid!. The authors argue that this result can
extended to a typical solenoid to which the power source
connected by a pair of leads that do not run close to
surface of the solenoid. I do not find this conclusion to
convincing. Rather, I find the argument of Heald3 to be more
representative of the general case; most of the energy
typical solenoid enters at right angles to the axis rather t
along the axis.

In view of these ambiguities it is useful to follow th
example of Lodge and perform an experiment. Most of
have heard a noise pulse on a radio when some nearby
pliance with an electric motor is switched off~due to the
inductive spark!. Is there also a noise pulse when the mo
~a crude approximation to an infinite solenoid! first turns on?
Indeed, when starting my electric can opener~model 752R,
Rival Mfg. Co., St. Dalia, MO 65301! near a battery-
powered radio tuned between stations a noise pulse ca
heard over the radio both when the device is turned on
off. There is essentially no noise during the steady opera
of the can opener. I infer that the can opener indeed em
transient radiation when it is switched on, thereby confirm
the spirit of the main argument of this article. Thus the top
of this article is another example of physics in the kitche
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