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ABSTRACT 
A semantic graph is a network of heterogeneous nodes and links 
annotated with a domain ontology. In intelligence analysis, 
investigators use semantic graphs to organize concepts and 
relationships as graph nodes and links in hopes of discovering key 
trends, patterns, and insights. However, as new information 
continues to arrive from a multitude of sources, the size and 
complexity of the semantic graphs will soon overwhelm an 
investigator’s cognitive capacity to carry out significant analyses. 
We introduce a powerful visual analytics framework designed to 
enhance investigators’ natural analytical capabilities to 
comprehend and analyze large semantic graphs. The paper 
describes the overall framework design, presents major 
development accomplishments to date, and discusses future 
directions of a new visual analytics system known as Have Green. 
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1 INTRODUCTION 
A semantic graph is a network of heterogeneous nodes and links 
annotated with a domain ontology. The ontology of a semantic 
graph is a description or specification of the concepts and 
relationships that exist within the semantic graph [18]. In 
intelligence analysis, semantic graphs are generated and applied in 
a visual analysis approach known as link analysis [27]. Through 
link analysis, investigators draw, lay out, and link people, facts, 
locations, events, objects, and data in hopes of discovering key 
trends, patterns, and insights. 

Link analysis has been applied in a number of high-profile 
cases recently, including the search for the District of Columbia 
snipers [26] and the search for Saddam Hussein during the U.S. 
invasion of Iraq [21]. Many of the link analysis graphs we 
encounter have properties of small world graphs [22], [33], [34], 
[35], which generally have high degrees of clustering and small 
average path lengths relative to their number of nodes. Small 
world graphs are commonly associated with social networks, 
neural networks, power grids, and internet traffic. 

In today’s intelligence environment, however, investigators are 
bombarded by massive amounts of information from a multitude 
of sources. The vast amounts of information being fed into 
semantic graphs may easily overwhelm an investigator’s cognitive 
capacity. The diversity of this information—which usually 
contains formatted and unformatted text, image, video and audio 
recordings, and various other databases—also demands new 
technology to fuse the information together for meaningful 
analyses. Perhaps the biggest challenge is to deal with the 
information quality issues of the underlying graphs. One quality 

of these semantic graphs is that they all contain uncertainties—
particular objects and relationships may be missing from the 
graph or their existence may be suspect or hypothetical. All these 
require a new generation of analytical tools to effectively 
understand the semantic graphs. 

This paper introduces a new visual analytics framework— 
known as Have Green—that interactively analyzes semantic 
graphs with up to one million nodes. Under the new design 
framework, we are developing new technologies and tools to 
produce a visual analytics environment that is scalable, ingests 
both repository graph and graph streams, guarantees interactive 
responses for query and visualization, runs on multiple 
computation and display platforms, and most importantly, 
provides a human computer discourse with walk-in usability for 
information analytics.  

Figure 1 shows the role of Have Green in an interactive graph 
exploration environment. Have Green fuses the information 
coming from both the semantic graph repository and the 
knowledge base before new knowledge is reported. The ultimate 
goal of Have Green is to produce a working system that enhances 
investigators’ natural analytical capabilities to create, 
comprehend, and analyze large semantic graphs—allowing 
investigators to effectively and efficiently perform in an 
information world that grows more complex daily.  

Figure 1: The role of Have Green in an interactive graph 
exploration environment. 

2 RELATED WORK 
Different aspects of graph analyses have been studied extensively 
by diverse communities from multiple disciplines. We highlight 
some of their work that shares similarities with our approaches. 

2.1 Graph Drawing 
The graph drawing community has led the studies in most of the 
graph drawing and layout issues for decades. The two textbooks 
by Di Battista et al. [8] and Sugiyama [29] summarize most of the 
major graph drawing algorithms and their applications. The 
proceedings of the annual Graph Drawing Symposia [9], now in 
its fourteenth year, and the Journal of Graph Algorithms and 
Applications [13] provide a wealth of information on the cutting-
edge technology. The community is also responsible for a series 
of powerful public domain tools and libraries, including Graphviz 
[10], JUNG [14], Pajek [23], and Tulip [30]. 
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2.2 Graph Visualization 
Visualizing graphs and hierarchies have been a major study topic 
within the data visualization community since its conception in 
early 90s. The two textbooks by Card et al. [3] and Chen [4] cover 
much of the major research and applications surrounding graph 
and hierarchical visualization. The survey paper by Herman et al. 
[11] represents the most complete literature review up to 2000. 
The annual IEEE Symposium on Information Visualization [12] 
continues to produce new results on various topics of graph 
visualization. 

A major difference between the graph visualization and graph 
drawing communities is that the former almost always involves 
some sort of interaction, whereas the latter focuses heavily on 
algorithmic developments. The latest challenge, however, is to 
integrate the best of the two communities and form a new 
environment of graph analytics.  

2.3 Social Network and Small World Analysis 
As defined in Wikipedia [31], a social network is a “social 
structure made of nodes which are generally individuals or 
organizations” that “are connected through various social 
familiarities ranging from casual acquaintance to close familial 
bonds.” Within a social network, people exhibit particular social 
qualities based on their associations and relationships with other 
people. For instance, a person who acts as a connection point 
among multiple social subnetworks is in a position of influence 
because he or she has close access to many other people. In 
another example, new ideas and opportunities are more likely to 
emerge in loosely coupled groups of people with weak 
associations than tight-knit groups with strong associations 
because loosely-coupled groups tend to have wider diversities of 
knowledge and experiences than tightly-knit groups. 

Social networks capture and convey social and organizational 
behaviors and phenomena in a graphical form [32]. Social 
network graphs or diagrams typically follow a small-world 
paradigm [22], [33], [34], [35] in that they have high degrees of 
clustering and small average path lengths relative to their number 
of nodes. The small-world nature of social networks reflects the 
concept that people generally organize and link to one another 
through short chains of associations or acquaintances. Beyond 
social networks, small-world networks also occur in many other 
real-world models such as gene regulatory networks and internet 
network traffic. They are considered a class of random graphs that 
have been extensively studied in network theory. 

2.4 Bio-Molecular Analysis 
In biology, different kinds of data and systems may naturally be 
represented as semantic graphs including metabolic pathways, 
signaling pathways, gene regulatory networks, protein interaction 
networks, chemical structure graphs, taxonomies, ontologies, and 
partonomies. Much of this graph data is stored and managed in 
public graph databases such as Stanford Research Institute 
EcoCyc [17], Samuel Lunenfeld Research Institute BIND 
(Biomolecular Interaction Network Database) [2], University of 
California at Los Angeles DIP (Database of Interacting Proteins) 
[42], and Kanehisa Laboratory KEGG (Kyoto Encyclopedia of 
Genes and Genomes) [16]. 

Using graph databases, bioinformaticists are generally able to 
identify and display graphical representations of biological 
pathways based on a selection of genes, proteins, species, 
orthologs, and other biological entities. Visualization tools such as 
the Institute for Systems Biology Cytoscape [25] and Tom Sawyer 
Software [24] are also available to display biological pathways 
given a graph specification. Bioinformaticists are generally unable 
to query against graph databases and visualizations using 

substructures or patterns within a graph. Furthermore, graph-
based results from databases and visualization tools are generally 
static in the sense that the bioinformaticist may not interact with 
or manipulate the graphs to understand and explore them. The 
graphs are simply returned to the bioinformaticist for his or her 
own personal interpretation. 

2.5 The Have Green Tools 
We have recently presented a series of working prototypes 
designed under the framework of Have Green. They include 
Greenland [37], GreenSketch [39], and GreenArrow [40] to 
generate, navigate, and visualize large semantic graphs. Case 
studies based on these technologies have also been used to query 
graph topology [39] and analyze social networks [41]. More 
details are given in Section 6 of this paper. 

3 SEMANTIC GRAPHS 
We start the paper with the definition of a semantic graph, which 
is a network of heterogeneous nodes and links annotated with a 
domain ontology. In our discussion, an ontology of a semantic 
graph can be considered as a database schema of a relational 
databases. Figure 2 shows an example of a very simple semantic 
graph about the relationships among a dozen names with an 
annotation that lists out some of the potential metadata that may 
tie to any nodes or links of the semantic graph.  

Figure 2: An example of a very simple semantic graph with an 
annotation that shows potential metadata tied to a graph entity. 

In reality, a semantic graph can contain billions of nodes and 
links in the graph repository for querying. This kind of graph 
information is usually noisy and loaded with unknown and/or 
incomplete information. The degree of trustworthiness of any 
piece of knowledge varies as time goes by as more information 
arrives to prove or disprove the knowledge. 

We can learn a lot from a semantic graph like the one shown in 
Figure 2. The hierarchy on the left might represent a leader and 
his followers in a crime. The connections among adjacent nodes 
on the right might indicate internal communications occurring 
among a second group of suspects. These two groups might be 
tied together by a so-called liaison node in the middle. In 
intelligence analysis, an analyst might want to identify and 
suppress a liaison node to disrupt collaboration between two 
groups or to stop a particular scenario from happening. Likewise, 
a chemistry researcher might wish to remove a liaison node to 
stop a chemical reaction from occurring. 

4 HAVE GREEN 
Intelligence analysts develop and interact with many kinds of 
graph and network-based structures and representations in their 
work and research. Yet, even with this natural emphasis on 
graphs, analysts have very limited capacity to conduct network 
analysis on the tremendous amount of graphical data available to 
them.  
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Current semantic graph and network analysis tools for 
intelligence analysis generally aid in the construction and viewing 
of static graph representations but provide minimal support in the 
interpretation and analysis of such graphs. On the other hand, a 
variety of graph-based analytical tools and algorithms are 
available for defining basic graph representations and conducting 
general graph operations and queries, but these capabilities exist 
at a level of abstraction that is inaccessible and incomprehensible 
to analysts. The aim of the Have Green visual analytics 
framework is to fill this theoretical and developmental void by 
creating an analytical environment in which analysts may conduct 
network analysis in terms, concepts, and a language that is 
intuitive and meaningful to them. 

Have Green is the codename that collectively represents a suite 
of visual analytics technologies developed recently at PNNL to 
support the analytical goal of large semantic graphs. Have Green 
is not merely a set of disparate graph analysis tools but rather a 
comprehensive, interactive graph exploration environment that 
provides advanced visual capabilities for querying, navigating, 
and visualizing large semantic graphs. Figure 3 depicts a system 
overview of Have Green and its major components. 

4.1 Framework Overview 
As more graph data from different sources is fed into a semantic 
graph, the attributes and relationships in the graph grow 
increasingly complex, and the ability of the analyst to comprehend 
the graph data degrades. Consequently, analysts need the ability to 
extract specific features or views from a complex, multi-
dimensional semantic graph. For instance, an analyst may want to 
extract slices from a complex semantic graph to examine specific 
classes of objects and relationships such as a timeline of events, 
organizational hierarchy of people, communication lines among a 
group of suspects, or the physical exchange of some material or 
chemical. In this way, the analyst makes sense of a complex 
situation by digesting and examining specific dimensions of the 
situation and then integrating across perspectives to capture and 
realize a fuller picture. 

To facilitate the above kind of multi-perspective analysis, Have 
Green must be able to generate internal models from semantic 
graphs that will afford different kinds of analyses. These internal 
models must then be presented to the analysts in human usable 
forms. To accomplish this, Have Green must engage in a 
computational discourse between the semantic graphs and the 
visual analytics framework and an analytical discourse between 
the visual analytics framework and the analyst (see Figure 3). In 

both discourses, graphs should be integrated with other forms of 
domain knowledge to facilitate more comprehensive analyses. 

4.2 Graph Ingest 
Have Green is capable of ingesting both static semantic graphs 
that appear as single files and dynamic transient graph streams 
that arrive continuously and unpredictably without regular 
patterns. Both of them post direct challenges to our promise of an 
interactive visual analytic tool.  

4.2.1 Very Large Static Semantic Graphs 
We have so far encountered no problems to ingest a plain graph 
with up to a million nodes in interactive time. We have, however, 
seen major issues when we attempt to ingest both the graphs and 
their metadata together, and do so in interactive time. 

We are in the process of developing new approaches to rapidly 
scan these metadata, bring down their resolutions, and only 
maintain coarse versions of these metadata in memory. In many 
cases, only the signatures [38] of the metadata will be kept with 
the graph after the ingest step. These very small but information-
rich data signatures become our key to meeting the interactive 
response time challenge. 

4.2.2 Time Varying Transient Graph Streams 
Graph streams analytics not only inherit most of the problems and 
issues of traditional data streams [28] defined by the databases 
community, but their visual-requirement also creates a few new 
issues when we design Have Green. One major challenge is to 
maintain the shape of the graph visualization when new streams 
arrive and are integrated.  

Di Battista et al. [8] suggest multiple algorithms that support 
different types of constraints, which can be used to address some 
of our problems. Additionally, we have previously investigated 
some of the similar issues on text- and sensor-streams [36] and 
developed a multidimensional scaling [6] (MDS) -based solution. 
Because there is equivalence between the “stress” function used in 
the non-metric MDS algorithm developed by Kruskal [19] and the 
“force-directed” function used in the graph layout algorithm 
developed independently by Kamada and Kawai [15], we expect 
to come up with a new solution similar to our work in [36].  

Figure 3: A framework overview of Have Green. 4.3 Computation Discourse 
In computational discourse, Have Green retrieves semantic graphs 
from repositories, and transforms and projects them into internal 
abstract models. These internal models are applied by analysts to 
perform different kinds of analyses. 

4.3.1 Transformation 
Data transformations allow analysts to convert data and its 
associated data model to equivalent representations so as to 
highlight specific features of the data with minimal loss of 
information. For instance, semantic graphs often import from and 
export to table or spreadsheet views. Graphs and spreadsheets 
may generally consist of the same information, but different 
aspects of the information are highlighted. Graphs tend to 
emphasize relationships while tables emphasize the entities. 

In another transformation example, the edges of a semantic 
graph may be translated onto an adjacency matrix where the row 
and column numbers of a matrix element map to the two nodes in 
the corresponding semantic graph that are connected by the 
associated edge. The adjacency matrix is a traditional, equivalent 
representation of a semantic graph that captures the same 
information, but emphasizes different attributes or features. For 
example, the sparsity of a graph is better illustrated through an 
adjacency matrix than a graph representation. Furthermore, graphs 
and adjacency matrices are amenable to different kinds of 
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analyses. For example, graphs are amenable to social and other 
types of network analyses while adjacency matrices are amenable 
to linear algebraic and eigenstructure analysis. 

4.3.2 Projection 
Projections map data into alternative data models where the 
underlying meaning and context of the data shifts. For example, 
the nodes of a semantic graph may be projected onto a scatterplot, 
where the distance between any two nodes corresponds to their 
similarity based on some attribute or feature (e.g., topology, label 
semantics, time of occurrence). For the original graph, the spatial 
distance between two nodes carry no inherent meaning, but with 
the scatterplot, new meaning is introduced and associated with the 
spatial measure. The general effect of the projection is to make an 
abstract concept such as topology more interpretable by projecting 
it upon features that may better sensed and experienced. 

With projections, analysts need to comprehend what underlying 
measures mean, but not necessarily the algorithm or mechanism 
used to generate the projection. Regarding the scatterplot above, 
for example, an analyst will accept that the distance between two 
nodes accurately reflects the nodes’ similarity if the correlation 
conforms to the analyst’s general observations and experiences. 
Analysts need not be aware of how the scatterplot projection is 
generated to have confidence in its fidelity and accuracy. 

For example, bioinformaticists have accepted and are 
extensively applying BLAST (Basic Local Alignment Search 
Tool) [1] to search for similar nucleotide or protein sequences. 
Though very few bioinformaticists are familiar with the complex, 
statistical code that computes the similarity, the bioinformatics 
community has accepted and embraced BLAST as an essential 
and valid analysis tool. 

4.4 Analytical Discourse 
In facilitating analytical discourse, we wish to allow analysts to 
interact with semantic graphs in ways that are natural and 
intuitive. In previous studies [5], we have examined how analysts 
deploy and apply different kinds of semantic graphs (hand-drawn 
or computer generated) in intelligence analysis. Analysts use 
graphs to capture concepts, search relationships and connections, 
survey the full context of a situation, and identify critical patterns 
and trends. To best facilitate semantic graph exploration, the 
interaction and dialogue between analysts and graphs should be 
supportive and consistent with the above kinds of tasks. 

In analytical discourse, three general visual capabilities are 
essential for exploring and working with graphs. These are: 

• Querying – searching a semantic graph for particular 
nodes, links, or subgraphs based on labels, properties or 
metadata, and/or topology 

• Navigation – moving across a semantic graph at the 
same resolution, or up and down through different 
resolutions 

• Visualization – presenting a semantic graph through 
different views and perspectives to highlight critical 
concepts and insights 

4.4.1 Query 
In a directed query, an analyst searches for specific entities, 
subjects, people, locations, and/or objects in the search. 
Additionally, the analyst may search for specific relationships 
such as the exchange of money or contraband, or organizational 
and familial relationships. The query is conducted along a specific 
topic, theme, or association that is central to the investigation. 

In other cases, the analyst may not necessarily have a specific 
topic, theme, or association in mind. Rather, the focus of the 
investigation is to identify patterns or trends in the graph data. For 

example, with computer network data, an analyst may wish to 
locate computer nodes with high or anomalous activity to identify 
potential sources of an intrusion or denial of service attack. In 
such a case, the analyst does not begin the investigation with an 
initial identifying node, but rather looks towards the graph for 
patterns or features that stand out. 

Queries do not necessarily need to always be initiated by the 
analyst. Intelligent systems may be developed to semi-
automatically detect relevant graph patterns and present them to 
the analyst. A desirable interface would support both user query 
and system guided modes that effectively support a “give and 
take” exchange or discourse between the analyst and the visual 
analytics framework. This kind of interactive system is often 
referred to as a “mixed initiative” system, where either the user or 
the system may initiate interaction. 

4.4.2 Navigation 
The user and system-initiated visual queries described above 
combine to promote a general navigation strategy that analysts 
often employ. In our study of analysts conducting link analysis, 
we found that analysts will often look over the full structure of a 
semantic graph and mentally partition the graph into natural 
clusters of high activity or dense subgraphs. Analysts then drill 
down into specific clusters in hopes of characterizing the general 
topics and organizations of those clusters. For example, an analyst 
might find a particular cluster to represent the hierarchy of an 
organization or group such as Al Qaeda, or the presence of a 
biological agent such as Anthrax in a number of terrorist 
incidences or at different geographic locations. Once a set of 
clusters have been characterized, the analyst may then pull his 
focus back out to the larger view to examine how the different 
topics and organizations interact and relate to one another. The 
analyst might consider a link between two terrorist groups to 
identify a potential collaboration between groups or a link 
between a terrorist group and a biological agent to identify the 
terrorist group’s biological weapon of choice, which then 
becomes a defining characteristic of that terrorist group. 

In general, the analyst follows an iterative investigation path 
that continually switches from looking at the general structure of 
the graph to examining local graph content. For large, complex 
graphs, the overall number of clusters in the graph may become 
prohibitively large as analysts lose their ability to track and 
manage the full set of clusters. A more useful navigation approach 
might be to present the graph at multiple levels of resolution. In 
this approach, the analyst may need to drill down several levels of 
resolution before reaching a singular working concept that may be 
analyzed in the context of other local concepts. In such cases, the 
analyst will often recursively drill down into more specific and 
detailed concepts and then successively assemble concepts into 
contexts on the way up. 

4.4.3 Visualization 
Analysts are accustomed to traditional views of semantic graphs 
as nodes and edges. The key property or characteristic of semantic 
graphs are the relationships among objects they convey. Analysts 
review semantic graphs to inspect object interactions and 
organizations such as transactions, processes, groups, 
compositions, and infrastructures. 

Apart from relationships, analysts may wish to investigate data 
in other forms and models. In some cases, analysts may wish to 
examine just entities or just relationships. For example, an analyst 
may wish to organize people into different organizations or 
groups based on membership or other criteria, or examine the full 
set of transactions from a particular bank in chronological order. 
Given these needs, a table may be more appropriate as an end-user 
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representation than a graph since it highlights different aspects of 
the data such as classification and order. 

As previously described, an objective of Have Green is to 
provide multiple perspectives of the same data such that it may be 
explored and analyzed in comprehensive and integrative ways. 
Analysts want to identify critical patterns and insights in the data, 
which may be best accomplished by allowing analysts to visually 
view and manipulate the data along different dimensions and 
perspectives. 

4.5 External Knowledge Base 
Semantic graphs represent one particular type of data that needs to 
be integrated with other domain knowledge, which may appear in 
various forms such as hypotheses, documents, ontologies, 
dictionaries, and relational databases. As shown in Figure 3, this 
additional domain knowledge needs to be integrated with graphs 
through both computational and analytical discourse. 

4.6 Report 
The Report component in Figure 3 covers the general 
requirements of organizing the analytical results, presenting them 
to the investigators, and later sharing them with a wider audience. 
In addition to the traditional concept of a report that neatly lays 
out the information on screens or printouts, we develop the 
concept of a dynamic report that allows the audience to participate 
in the analyses with the evidence included in the report. 

A major challenge for Have Green is to automatically generate 
reports with different degrees of details customized for different 
audiences in real time. In the finest scale, a report will include all 
the pieces of evidence stored in their original formats that 
contribute to the conclusions. For example, a Have Green report 
may contain, among other things, a portion or partition of a 
semantic graph, segments of certain surveillance videos, a video 
facial recognition software, a database of driver license photos, 
and a visualization that ties everything together with a conclusion. 

Software is included in some of the reports because their 
audiences may need to, for example, adjust the parameters of the 
recognition program and review the evidence from a different 
perspective. Sensitive information may require passwords to gain 
access. The dynamic report itself is indeed a storytelling 
mechanism that allows its audience to follow through the 
evidence and review the results. It can also be treated as a 
collaboration medium that is equipped with required tools and 
local databases for further analyses.  

5 IMPLEMENTATION DETAILS AND ISSUES 
The design requirement of Have Green is enormous but 
manageable. We champion software reusability and practice 
modular design throughout the development stage.  

After the Have Green architecture is formally established, 
individual components are implemented separately so that we can 
pinpoint our design weaknesses in the earliest stage. Each 
component system undergoes multiple usability studies with 
subjects recruited at the lab. Evaluation results collected from the 
studies and post-study interviews are used to further revise our 
designs. These individual components eventually become the 
building blocks of Have Green. 

With the exception of the LAPACK [20] library that is used to 
compute Eigenvectors of the graph matrices, all the system code 
is developed locally in compiled Java and C++ codes. 

6 MAJOR ACCOMPLISHMENTS TO DATE 
As previously described, Have Green assembles and integrates 
capabilities from a series of working prototypes. Each of these 
prototypes delivers unique and critical capabilities that support 

key aspects of both computational and analytical discourse. To 
date, we have developed four major system prototypes (Greenland 
[37], GreenSketch [39], GreenArrow [40], and GreenMonster) to 
support Have Green components in Figure 3. While they are 
designed with a single functionality in mind, all of them come 
with input/output functions and a high degree of interactive 
features so that we can execute and evaluate them independently. 
With the exception of GreenMonster, which is an ongoing 
development, the usability study results of individual prototypes 
are included in the corresponding papers. 

6.1 Greenland 
Greenland [37] allows analysts to navigate and explore large 
semantic graphs. It provides a traditional directed graph view that 
may be panned, zoomed, modified, and linked to metadata. 
Furthermore, the directed graph may be projected onto a 
scatterplot that will permit analysts to examine similarities and 
distinctions among selected nodes and subgraphs – allowing 
analysts to identify similar structures or patterns in the graph that 
may not be visible to the naked eye. 

Greenland is our first prototype intended to navigate large 
semantic graphs using the concept of a data signature [38]. A data 
signature, in this case, is a multidimensional vector that captures 
the local topology information surrounding each graph node. The 
goal is to describe and represent different topological structures as 
numerical vectors and then use these vectors for different 
analytical purposes. 

For example, we suggested in [37] that the signature of a d-
degree undirected graph node can be defined as a vector (n1, n2 … 
nd) where ni is the number of the nodes at distance i from the node. 
Based on this definition, Greenland first extracts signature vectors 
from a sparse graph and then projects the vectors onto a low-
dimensional scatterplot through the use of multidimensional 
scaling (MDS) [6]. The resultant scatterplot, which reflects the 
similarities of the vectors, allows users to examine the graph 
structures and their corresponding real-life interpretations through 
repeated use of brushing and linking [6] between the two 
visualizations. Figure 4a shows a snapshot of Greenland with a 
small world network. Figures 4b-4d demonstrate the linking and 
brushing process between a graph and a MDS scatterplot 
generated using the signatures extracted from the graph. 

6.2 GreenSketch 
While Greenland provides a way to browse a large graph and look 
for clues, GreenSketch [39] provides a graphical interface needed 
to support the query component of Have Green. By sketching 
lines, curves, and patterns on an interactive adjacency matrix, 
analysts may easily create different kinds of rich and expressive 
graphs that convey real-life patterns and scenarios. Rather than 
building a graph node-by-node and edge-by-edge, the graph is 
generated and transformed through the adjacency matrix. The 
constructed graph may then be applied as a prototypical pattern 
for which to be queried in larger graphs of known or emerging 
facts and situations.  

GreenSketch is indeed an interactive graph generator originally 
designed to facilitate the creation of descriptive graphs required 
for multiple analytics tasks. The human-centric design approach 
of GreenSketch enables analysts to master the creation process 
without specific training or prior knowledge of graph model 
theory. The customized user interface encourages analysts to gain 
insight into the connection between the compact matrix 
representation and the topology of a graph layout when they 
sketch their graphs. Both the human-enforced and machine-
generated randomness supported by GreenSketch provide the 
flexibility needed to address the uncertainty factor in many 
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Figure 4:a) Greenland visualizes a small world network with major hierarchies highlighted by the red rectangles. b) A portion of the graph in 
a). c) A scatterplot generated by scaling the signatures in b). d) Brushing and linking between the scatterplot and the graph. 

analytical tasks. Figure 5 depicts two GreenSketch examples of 
creating graph queries by sketching.  

In [39], we demonstrate GreenSketch as a query language tool 
to study structural features hidden behind a semantic graph. Graph 
entities that share similarities with the query are correctly 
identified and extracted from a large semantic graph. More 
elaborate implementation is under development to support more 
complicated queries. 

6.3 GreenArrow  
A hallmark signature of a semantic graph is the rich semantics of 
its individual nodes and links. Node and edge labels may convey a 

tremendous amount of information and context, where they may 
include graph metadata that ranges from a short phrase to a full 
sentence to an entire paragraph and beyond. Yet supporting such 
richness and detail in graph labels require new visualization 
approaches that would allow analysts to better view and 
comprehend the fuller and more saturated information. To this 
end, we have developed a practical visualization prototype, known 
as GreenArrow [40], to visualize semantic graphs with extended 
nodes and link labels.  

Our solution is different from all the existing approaches that 
almost always rely on intensive computational effort to optimize 
the label placement problem. Instead, labels are programmatically 
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and visually integrated into the edges and nodes of the graph 
where they are presented in static, interactive, and dynamic modes 
without the requirement for tackling the intractability issues. This 
allows us to reallocate the computational resources for dynamic 
presentation of real-time information. Figure 6 shows an example 
of a social network among a group of people. 

Our results indicate that our lightweight solution executes faster 
and requires less drawing space than most of the traditional 
techniques. It also performs better in our user-evaluation studies 
in both static and dynamic modes as reported in [40]. 

6.4 GreenMonster 
GreenMonster is our latest Have Green addition that addresses the 
scalability issue of our large semantic graphs. The requirement is 
to provide a capability to visualize semantic graphs with up to one 
million nodes adaptively and interactively on both desktop 
computers and PDAs. While GreenMonster belongs to the 
projection component in Figure 3, it also supports the 
visualization component that is under our design’s analytical 

discourse hierarchy. GreenMonster is currently undergoing 
evaluation. 

Figure 5: GreenSketch generates two small world graphs in the white board by sketching on the corresponding (black) matrix windows.

7 THE NEXT STEPS  
The essence of science and intelligence analysis is the discovery 
of new facts, concepts, and insights. Through richness of 
information, semantic graphs provide a fertile media from which 
to engage in knowledge discovery. Yet, as we have described in 
this paper, large semantic graphs have confounding attributes such 
as complexity, size, and uncertainty that blurs the analyst’s vision 
and prohibits him or her from finding those proverbial needles in 
the semantic haystack. 

Have Green was designed to facilitate knowledge discovery by 
providing analysts enabling methods and tools to query, navigate, 
and visualize large semantic graphs. It is a graph analytics 
platform or environment rather than a finished product. New 
technology and working prototypes will continue to be included in 
the framework. More than a suite of tools, however, Have Green 
provides analysts different models and views of graphs (e.g., 

Figure 6: A screen snapshot of the GreenArrow visualization.
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scatterplots, adjacency matrixes, data signatures). Through such 
alternative models, Have Green allows analysts to examine graphs 
from different angles and perspectives. An intriguing quality of 
many of the Have Green tools is that they allow analysts to view, 
comprehend, search, and manipulate semantic graphs without 
requiring analysts to see and work with traditional graph 
structures. In continually adding to the Have Green platform, our 
goal is to allow analysts to forever extract richer information from 
large semantic graphs through both richer analysis tools and richer 
interactions with those semantic graphs. 

8 CONCLUSIONS  
We discuss major challenges of developing a semantic graph 
analytics system and present a working visual analytics 
framework—known as Have Green—that addresses many of 
these challenges. The paper explains the rationale behind our 
design, showcases four major working prototypes, and suggests 
upcoming efforts to develop the rest of the Have Green 
components.  
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