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ABSTRACT 

Emerging large-scale scientific applications require to access 
large data objects in high and robust performance. We propose 
RobuSTore, a storage architecture that combines erasure codes 
and speculative access mechanisms for parallel write and read in 
distributed environments. The mechanisms can effectively 
aggregate the bandwidth from a large number of distributed 
disks and statistically tolerate pear-disk performance variation. 
Our simulation results affirm the high and robust performance of 
RobuSTore in both write and read operations compared to 
traditional parallel storage systems. For example, for a 1GB data 
access using 64 disks, RobuSTore achieves average bandwidth 
of 186MBps for write and 400MBps for read, nearly 6x and 15x 
that achieved by a RAID-0 system. The standard deviation of 
access latency is only 0.5 second, about 9% of the write latency 
and 20% of the read latency, and a 5-fold improvement from 
RAID-0. The improvements are achieved at moderate cost: 
about 40% increase in I/O operations and 2x-3x increase in 
storage capacity utilization.  

1. Introduction 
Existing and emerging large-scale scientific applications and 
data-intensive applications require dramatically higher levels of 
performance from distributed storage systems. These 
applications involve accessing to massive data collections with 
objects as large as 10 gigabytes, and sharing of these data 
collections for collaboration amongst hundreds of or thousands 
of widely distributed users. 

Distributed storage systems with both high and robust 
performance are critical to these applications. Throughout, we 
use the term robust to mean low variation in data-access latency. 
High performance is essential for these applications to access 
their large data objects. These objects are in the size of gigabytes 
or even larger, so transfer rates of hundreds of MBps or even 
multiple GBps are required to achieve interactive, real-time data 
accesses. Robust performance is important for both user 
interaction and resource scheduling. Distributed storage systems 

are essential to provide high performance access for hundreds of 
or thousands of distributed users concurrently. 

One major challenge for distributed storage systems is per-disk 
performance heterogeneity and variation. First, different sites 
may have quite different disk types, which may lead to different 
performance. Furthermore, performance may vary by as much as 
100-fold even for the same disk type depending on cache status, 
disk layout, physical contiguity, and disk head seeking distance. 
Finally, since distributed storage systems are usually shared by 
many users, the dynamic competitive workloads lead to dynamic 
network and disk access behaviors. With such high-degree 
heterogeneity and variation, simple parallel storage schemes 
cannot perform well, even with replication. 

We propose new storage architecture RobuSTore, which 
combines erasure coding and speculative accesses together. 
RobuSTore uses erasure codes to add symmetric redundancy for 
striping; with such layouts, clients can use speculative parallel 
access and decoding of the fast-returning blocks to both increase 
performance, and reduce performance dependence on stragglers 
(lower variability).  As a result, RobuSTore can efficiently 
aggregate large number of distributed storage devices to deliver 
robust, high access performance. 

Our main contribution is in three folds. First, we propose the 
RobuSTore idea that combines erasure codes and speculative 
parallel disk access to improve data access performance and to 
reduce disk performance variation; Secondly, we analyze the 
different choices for erasure coding and speculative access, 
providing a guideline for the RobuSTore implementation; 
Finally, we model different parallel storage systems, and 
evaluate them using detailed simulation to prove the significant 
performance advantages of RobuSTore. 

The remainder of the paper is organized as follows.  In Section 
2, we describe the problem and the assumptions. Section 3 
presents the RobuSTore approach and describes the RobuSTore 
design choices. We evaluate the RobuSTore approach in Section 
4.  In Section 5 and 6 we present the related work, summarize 
the paper and discuss the future work.* 
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2. Background 
The problem we are solving is how to achieve robust and high 
storage performance in distributed shared systems for large data 
accesses. High performance means high access bandwidth, or, 
low access latency for a fix-size data object. Robust 
performance means low variation of access latency. 

Our study is based on the following facts: large number of 
distributed clients, high variation of per-disk performance, large 
data objects with rare update operations, abundant storage and 
network resources, and advanced coding theory. 

The first two facts make our problem challenging. To support 
large number of distributed clients, the storage system needs to 
be a large distributed one to allow concurrent high-bandwidth 
accesses. In distributed shared storage systems, per-disk 
performance may have high variation due to the heterogeneity 
and shared accesses. This disqualifies the simple parallel local 
filesystems as the solution. Figure 1 shows an example depicting 
the limitation of simple parallel filesystems. In the example, two 
replicas of an eight-block file are striped across four disks and a 
read operation needs to get at least one copy for each of the 
eight blocks. However, due to the performance variation, the 
parallel read has to wait for the blocks from the slowest disk. 
This leads to both high access latency and high variation of the 
latency. 

 

Figure 1. Conventional Parallel Storage. The four disks have 

different performance, with two replicas of eight blocks. 
 

The other three facts allow us to explore new techniques for the 
solution. Derived from data-intensive scientific applications, our 
workloads are dominated by write-once and read-only accesses 
in the size of gigabytes each. Further, new technologies have 
been improving network bandwidth, CPU speed, and disk 
capacity rapidly, so that we may trade these resources for robust 
and high performance. For example, the low-cost optical 
transmission and Dense Wavelength Division Multiplexing 
(DWDM) technique enables individual fibers to carry 100’s of 
10-Gbps “lambdas”, providing wide-area networks with private 
10Gbps or even 40-Gbps connections [1, 2].  CPU speed 
doubles every 18 months and disk capacity doubles every 12 
months [3]. Finally, the recent research on erasure codes [4, 5] 
suggests that LDPC codes can achieve high coding bandwidth 
and near-optimal coding efficiency. 

Erasure codes are a large set of coding algorithms that use a 
software-based approach to add data redundancy for reliable 
data transfer [4-8]. In general, an erasure code transforms a 
message of K symbols into a message with N (N>K) symbols in 
such a way that the original message can be recovered from a 
subset of those symbols. In coding theory, N is called code word 

length. The ratio of K/N is called the rate of the code, denoted R 
(0<R<1); the ratio of the redundant data is degree of data 

redundancy, denoted as D = N/K –1 = 1/R –1. Special cases are 
the rateless codes, which can transform K-symbol messages into 
a practically infinite number of code symbols. Another 
important attribute is reception overhead, which defines the 
reconstruction efficiency. An erasure code has reception 

overhead of ε if (1+ε)K encoding symbols are required to 
reconstruct the original K symbols. Codes with zero reception 
overhead are called optimal codes; and those with very small 
reception overhead are called near-optimal codes. A code with 
lower reception overhead requires a smaller number of symbols 
for decoding; however, it usually has a higher cost in CPU time, 
as we will show in this paper. 

3. RobuSTore Approach 
In this section, we present the RobuSTore idea of combining 
erasure codes and speculative access and explain why this 
approach is feasible and why it can improve read and write 
performance, both robustness and bandwidth. 

3.1 RobuSTore Idea 
The key idea of RobuSTore is to combine erasure codes and 
speculative access to aggregate a large number of distributed 
storage devices. RobuSTore uses erasure codes to add 
symmetric data redundancy, and stripes the coded data blocks 
across a large number of distributed disks. With such layouts, 
clients can speculatively write and read the coded blocks in 
parallel and complete the access using the fast returned blocks. 

Erasure codes provide high flexibility on data access. First, they 
introduce symmetric data redundancy. An erasure code 
transforms K data blocks into N (N>K) coded blocks. The coded 
blocks contain symmetric data information in such a way that 
the original data can be recovered from a flexible subset of those 
blocks. Some near-optimal erasure codes, such as LT codes [4], 

allow the reconstruction using any (1+ε)K-coded blocks, 
providing significant higher data read flexibility than plain-text 
replication. Another important feature of LT codes is rateless 
encoding. Rateless erasure codes can generate a practically 
infinite number of coded blocks; statistically, any subset of these 
blocks of a certain size will provide the same level of data 
redundancy. 

RobuSTore uses speculative access to exploit the erasure coding 
flexibility. The basic idea of speculative access is to initiate read 
or write requests for more data blocks than needed from a large 
number of disks, to wait for the requests to be processed in 
parallel by the disks, and then to cancel the requests once 
enough blocks have been confirmed as completed. The 
speculative access for writes and reads are slightly different. To 

write a K-block data and use a factor of λ (λ>1) spaces, writing 

clients would first encode the data into N' blocks where N'>λK, 
exploiting the rateless feature of the erasure codes. They would 
then send requests to many disks and transfer coded blocks to 

them in parallel, then cancel the ongoing writing once N=λK 
blocks have been confirmed as written success. To read the data, 



reading clients would request all the blocks from the disks, then 
continue receiving them in parallel until enough blocks have 
been received. Benefiting from the decoding flexibility, clients 
can then reconstruct the original data using the sets of early-
returning blocks. 

At a high level, our approach is trading storage space and 
network bandwidth for low and robust access latency. This is 
valuable because many large-scale applications have relatively 
plentiful storage space and network bandwidth, and low and 
robust access latency is more difficult and more important to 
achieve. 

To give a quantitative sense of how much flexibility erasure 
codes provide, we theoretically analyzed the number of blocks 
required for data reconstruction in both erasure-coded schemes 
and plain-text replicated schemes. We cite the conclusion here 
and present the full analysis in Appendix. Assume we have a K-
block file and use four times its storage space. If using a plain-
text replicated scheme, each block has four copies and at least 
one copy for each block should be retrieved to reconstruct all the 
data completely. The probability of successful reconstruction 
with M random replicated blocks is: 
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In contrast, if we encode the K blocks into 4K blocks using a 
typical LT code in which the average encoded-node degree is 
about five, we can reconstruct the original data from M random 
coded blocks with the following probability: 
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In practice, about 3K blocks are needed in a replicated scheme 
versus about 1.5K blocks in an erasure-coded scheme (see 
Figure 2). 

 

Figure 2. Cumulative Probability of Reassembly of Original 

Blocks. Assume there are N=1024 original blocks and 4096 

coded or replicated blocks. 

 

 

Figure 3. Advantage of Using Erasure Codes and Speculative 

Access. The four disks have different performance; Assume 

eight original blocks are encoded into sixteen coded blocks. 

By combining erasure codes and speculative access, RobuSTore 
can tolerate late-arriving blocks and reduce the dependence of a 
request on any individual disk, and hence achieve robust and 
high performance. Figure 3 provides an example depicting this 
advantage in read access. In the example, an eight-block of data 
is encoded into 16 blocks which are spread across four disks. 
We assume the data reconstruction needs eight coded blocks, 
although the number could be slightly larger if we use near-
optimal erasure codes. Read clients first send requests to all four 
disks for all the blocks. The disks then transfer the data blocks 
back to the clients at different speeds. Once the clients receive 
eight blocks, they cancel the rest of the accesses, reconstruct the 
original data, and complete the access with a high-average 
bandwidth. Furthermore, if any of these first eight blocks are 
lost or delayed due to any reason, the clients only need to 
receive one more block and complete the overall access with 
only slightly longer latency. 

3.2 Accesses in RobuSTore 
We explain the access procedures of write, read, and update in 
RobuSTore briefly. 

Figure 4 depicts the basic write and read processes. The write 
operations are in dark circles. In step 1, clients first access the 
metadata server to open the file, and plan layouts based on disk 
map information and application QoS requirements. The clients 
then encode the data to generate redundant coded blocks, and 
transfer the blocks to the selected servers in parallel to the 
encoding, shown as step 2 and step 3 in the figure. Once enough 
data blocks are committed to the servers, the clients cancel the 
uncompleted write operations, register the data structure with 
the metadata server, and close the file to complete the write 
access.  

 



 
Figure 4. Write and Read Processes in RobuSTore. Dark 

circles: writes; white diamonds: reads. 

 

The right side of Figure 4 depicts the read process. The numbers 
with white squares in the figure show the steps in sequence. 
Similar to the write access process, read accesses start from 
queries to the metadata server, from which clients obtain storage 
server information, data structure and location information, and 
any required locks. To read, the clients request all coded blocks 
from servers and decode the received blocks in parallel.  When 
enough blocks have been received, the decoding finishes and the 
original data are reconstructed. At the same time, outstanding 
requests to the storage servers are cancelled.  Finally, the close 
function notifies the metadata server, releasing read locks and 
bandwidth reservations on the storage servers. 

Update operations are rare in most data-intensive scientific 
applications and are not our focus in this dissertation, a neat 
mechanism is still needed to deal with these operations. In 
RobuSTore, if optimal erasure codes are used, then any minor 
modification may cause the change of almost all the coded 
blocks; however, if near-optimal erasure codes are used, the 
change to one original block only affects a limited number of 
coded blocks. For example, in the bipartite coding graph of LT 
codes with 1024 data blocks and 4096 coded blocks, the average 
degree of data blocks is about 20. In order to change one 
original block, we need to update at most 20 coded blocks, 
which is about 0.5% of the total encoded data. 

The complete update process is as follows. The clients first get 
data location information from the metadata server. They can 
then examine the coding graphs and figure out which coded 
blocks should be updated. Next, they regenerate those coded 
blocks, and spread them out to remote disks (not necessary for 
the disks that store the old coded blocks). Finally, the clients 
notify the metadata server about the updated blocks and notify 
the disks to delete the obsolete coded blocks. 

3.3 RobuSTore Design Choices 
There are many choices for the design, implementation and 
configuration of a RobuSTore system. Different choices have 
significant impact on the system performance. We discuss the 
critical choices for both erasure coding and speculative access. 

3.3.1 Choices of Erasure Codes 
To deliver high and robust performance on thousands of hard 
drives, we need erasure codes with low reception overhead, low 
computation overhead, and long code words. Low reception 
overhead means high coding efficiency, i.e., only a small 

number of coded blocks are enough to reconstruct the original 
data. Low computation overhead allows high bandwidth data 
encoding and decoding so that we can use an ordinary computer 
with moderate-speed CPU as a RobuSTore client. A code with a 
long code word can generate a large number of coded blocks, 
which brings two benefits to RobuSTore. First, it allows 
RobuSTore to stripe the encoded data blocks across many disks 
and to retrieve them from many disks in parallel. Furthermore, 
long code words allow splitting the original data into more 
finely grained blocks, which brings more data access flexibility. 
These three features cannot be optimized at the same time. It is 
therefore important to choose proper coding algorithms and 
proper coding parameters. 

Optimal erasure codes achieve perfect coding efficiency, but 
they have a high CPU overhead when using long code words. A 
rate-R optimal code transforms the original K-block data into 
N=K/R blocks in such a way that any K-coded blocks suffice to 
decode the original data. This optimal coding efficiency implies 
that the information about every original block is mingled into at 
least N–K+1 coded blocks, since otherwise we can find K coded 
blocks that are not sufficient to reconstruct the original data. 
Hence, on encoding, every coded block should be generated by 
computing at least K(N–K+1)/N original blocks on average, and 
on decoding, the reconstruction of every original block will need 
to compute at least K(N–K+1)/N coded blocks on average. 
Considering N=K/R, the encoding time is at least: 
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and the decoding time is at least: 
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Both encoding time and decoding time is quadratic in K (and 
thus also quadratic in N). Hence, the encoding and decoding 
bandwidth is inversely proportional to K. For example, we 
implement an instance of Reed-Solomon codes and test its 
performance of encoding and decoding 16 MB data, which is 
shown in Table 1.  

 

Table 1. Coding Bandwidth of Reed-Solomon Codes. 

 Tested on 2.4GHz Intel Xeon. 

K(# original 
blocks) 

N(# coded 
blocks) 

Enc Bandwidth 
(MBps) 

Dec Bandwidth 
(MBps) 

4 8 112.2 99.5 

8 16 53.3 60.8 

16 32 26.8 31.3 

32 64 13.7 15.9 

 

Near-optimal erasure codes make a good trade-off between 
reception overhead and computation overhead. They require 
only a few more than optimal coded blocks for reconstruction, 
but can usually support long code words with low CPU 
overhead. For example, LT codes [4] use sparse bipartite coding 
graphs in which each coded block is the parity of a few data 
blocks. Assuming the average degree of coded block is de, we 



need de–1 XOR operations to recover each data block. If there 
are K data blocks, a successful decoding requires that each data 
block is covered by at least one of the received coded blocks. 
Since each coded block can only cover about de random data 
blocks, the minimum number of coded blocks required for 
reconstruction is: 

(1+K/(K-1)+K/(K-2)+…+K) / de = KlnK /de 

To achieve good reception overhead, de should be close to lnK. 
In another word, the decoding bandwidth of LT is approximately 
inverse proportional to lnK. 

Among different near-optimal erasure codes, LT codes are most 
suitable for our system for a number of reasons. First, they are 
rateless, which allows redundancy to be decoupled from other 
system-design issues, such as the number of storage servers 
used, and also allows adaptive writing. Second, LT codes use 
only one level of bipartite structure and block-XOR operations, 
so that they can be implemented with high coding throughputs. 
Third, their structure allows the coding process to be overlapped 
with data I/O, effectively eliminating the critical path time of 
coding. 

Considering these factors, we chose LT codes with K=128~1024 
and N=512~4096 in RobuSTore. In our previous work [9], we 
optimized the LT design and tuned the implementation. The 
decoding bandwidth of our LT implementation is about 
400MBps with less than 0.5 reception overhead on one AMD 
Opteron processor. 

 

3.3.2 Choices of Speculative Access 
During the speculative access, RobuSTore trades the abundant 
disk and network resources for better performance. However, it 
is important not to use the resources abusively. We discuss the 
choice of number of disks and the degree of data redundancy. 

The number of disks should be decided by total access 
performance requirement and estimated per-disk bandwidth. 
When we stripe the data to multiple disks, we can write and read 
the disks in parallel to aggregate the performance of multiple 
disks. Therefore, the number of disks should be no less than the 
expected total access bandwidth divided by the average disk 
bandwidth. For example, if the average remote disk bandwidth 
is 20 MBps, we need to access about 64 disks to saturate a client 
network with 10 Gbps (1.2 GBps). 

The choice of data redundancy is a tradeoff between write and 
read performance. Data redundancy affects both the writing 
performance and the reading flexibility. First, higher data 
redundancy means to generate and write more coded blocks into 
the storage system, leading to lower writing performance. On 
the other hand, more coded blocks provide higher flexibility in 
choosing which blocks to read, which allows RobuSTore to 
better adapt to disk performance variation and achieve higher 
read performance.  

A good choice of data redundancy should be barely enough to 
allow each disk to have enough blocks to send during a read 
access. For example, as depicted in Figure 5(a), when we write 
data into many disks, a different number of blocks are written to 
different disks due to disk performance heterogeneity. Assume 
there are H disks (here H=8), and disk i has bandwidth Biw. The 
average writing bandwidth, then, is: 
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If the data redundancy is D, the total number of coded blocks is 
N=(D+1)K. The amount of data written to disk i is then: 
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When clients speculatively read the data blocks, the dynamic 
disk performance might be quite different from what it had been 
when writing the data, as depicted in Figure 5(b). Assume disk i 
has bandwidth Bir, then the average reading bandwidth is:  
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Figure 5. Tolerate Dynamic Disk Performances. 

 

Non-optimal erasure codes have positive reception overhead ε, 

meaning that they require (1+ε)K coded blocks to construct the 
K data blocks. If there are enough blocks on every disk to read, 
the amount of data read from disk i are: 
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To guarantee every disk has enough blocks, the following 
should be satisfied: 
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When the number of disks is large, statistical theory tells that 

r w
B B≅ . Therefore, the required data redundancy is: 
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Bir/Biw is the performance variation of each individual disk.  

The performance variation of hard drives may be up to factors in 
the tens of or even hundreds with the existence of different 
access contentions. This is a strict boundary of D; however, a 
very large D is not required in practice. First, it is rare for the 
disks to be that heavily loaded since we always select the most 
lightly loaded disk upon which to write new data, and can 
usually achieve reasonably high Biw. Second, if only a few disks 
have insufficient number of blocks to read, they will not have a 
significant impact on overall performance. 

In a specific case, if we write same amount of data to each disk, 
i.e., Fw = N/H, then we can get the following using a similar 
analysis process: 

1
(1 ) max( / ) 1
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In the next section, out experiments show that data redundancy 
of two to three is enough to provide the best performance. 

4. Performance Evaluation 
In this chapter, we study the advantages of RobuSTore over 
traditional parallel storage schemes. We evaluate these storage 
systems using detailed software simulation, and simulate the 
systems across a wide range of configurations, including 
different numbers of storage devices, network properties and 
degrees of data redundancy. 

4.1 Experimental Design 
In this section, we describe the storage schemes for comparison, 
simulation design, metrics, workloads, and experiment 
configurations in detail. 

4.1.1 Storage Schemes for Comparison 
We evaluate the RobuSTore scheme by comparing it against 
conventional parallel storage schemes. The conventional 
schemes are RAID-0, RRAID-S, and RRAID-A, which are 
different from RobuSTore in terms of the data layout 
mechanism or access mechanism. 

Data Layout and Redundancy:  Possible data layout 
mechanisms are depicted in Figure 6: (1) split the data into 
blocks, and distribute them to many disks; (2) split the data and 
distribute the blocks with replication; (3) split the data, encode 
the blocks, and distribute these redundant coded blocks to many 
disks.  

 

 
Figure 6. Data Layouts. 8 data blocks; 1x data redundancy 

in replicated and coded layouts. 

 

Access Strategies:  Possible data access strategies are shown in 
Figure 7: (a) speculative access, i.e., request redundant blocks at 
once in the beginning of the access and cancel the requests once 
enough blocks have been received; (b) adaptive access, in which 
the client dynamically requests the unreceived bytes. 

 

 
Figure 7. Access Mechanisms. Disk performance is varied. 

 

We evaluate the following four combined schemes: (1) RAID-0: 
No data redundancy + speculative access; (2) RRAID-S: 
Replication + speculative access; (3) RRAID-A: Replication + 
adaptive access; and (4) RobuSTore: Erasure coding + 
speculative access. 

4.1.2 Simulator Design and Configuration 
We simulate an environment with one client and 128 storage 
servers connected by wide-area networks. 

Each storage server is simulated using one DiskSim [10] 
process.  DiskSim processes are configured to have different 
disk-level block layouts and background workloads such that 
individual disk performance varies from 0.52MBps to 53MBps.  
This represents the performance variability in shared distributed 
storage environments with many sources of variability, as 
discussed in Section 1. 

The virtual client models all other overheads for metadata 
access, server connection, network latency, and block decoding.  
The metadata access and server connection are assumed to take 
constant time; network latency to each server is configured 
constant from 1ms to 100ms.  For block decoding, since it can 
be pipelined with data receiving, extra latency is only incurred 
for decoding the last block; we model it as a constant 5 ms 
overhead. We assume sufficient network bandwidth and CPU 
power. 

In the experiments, we study the four storage schemes (RAID-0, 
RRAID-S, RRAID-A, and RobuSTore) along five system 
parameters: number of disks, data size, block size, network 
latency, and degree of redundancy.  In each experiment, we vary 
only one parameter, and compare to a fixed baseline.  The 
baseline is a typical SAN configuration: to access 1GB data 
from 64 disks, 1ms network round-trip time (RTT), 1MB block 
size and 4x data redundancy, except for RAID-0 which always 
has 1x data redundancy. 



4.1.3 Workloads and Metrics 
Since our focus is on supporting the needs of applications with 
large workloads [11-13], we use synthetic workloads with 
sequences of large-size accesses. In these applications, each data 
object is from 100s of MB to 10s of GB, and with the potential 
to increase to 100s of GB or larger in the future. We study 
access performance for single 128 MB, 256 MB, 512 MB, and 1 
GB accesses. Data objects larger than 1 GB are presumed to be 
accessed by multiple 1 GB accesses. There are both read 
sequences and write sequences accesses and sequences with 
mixed read and write operations.  

Moreover, to simulate disks shared by multiple applications, we 
generate competitive background workloads for each disk. The 
background workload is a sequence of random accesses arriving 
in a certain interval. By varying the interval of the background 
workload, we can simulate different degrees of disk sharing. 

In our experiments, we measure RobuSTore and other 
conventional storage systems in three metrics. 

Variation of Access Latency: A critical RobuSTore goal is 
robust performance, i.e., minimum performance variation. We 
formalize this for access latency by computing the standard 
deviation over a set of one hundred accesses. Naturally, smaller 
standard deviations correspond to higher degrees of robustness.  

Access Bandwidth: While robust performance is the major goal 
of RobuSTore, we must also maintain high access bandwidth for 
the requirement of accessing large datasets. The delivered 
bandwidth for a single read or write is the original data size 
divided by the access latency, including connection, disk, data 
transfer, and coding time. We interpret access bandwidth to be a 
measure of delivered performance corresponding to our goal of 
“high performance”. 

I/O Overhead: The benefits of aggressive access to redundant 
copies can yield performance benefits, but it also increases 
network and disk I/O costs. We measure this increased I/O cost 
using the ratio between the additional bytes sent over networks 
and the original data size: 

      

Bytes sent over networks - Original data size
I/O Overhead = 

Original data size

. 

Note that the bytes sent over networks may be more than the 
bytes read from disks if some bytes are read from the filesystem 
cache. 

We measure both read performance and write performance in 
these three metrics. 

4.2 Experiment Results 
We simulate the four storage schemes over five configuration 
dimensions.  Due to space limitation, we only show the 
comparison in various degrees of data redundancy. We vary data 
redundancy from 0 to 900% (10 times the storage spaces used) 
to simulate its performance impact. Because the RAID-0 scheme 
always has zero redundancy, there is no curve for RAID-0 in the 
following graphs; its performance is represented by the zero-
redundancy point in RRAID-S or RRAID-A. 

First, we show the results of write accesses in Figure 8. In the 
schemes of RAID-0, RRAID-S, and RRAID-A, a write 
operation uniformly writes the same number of blocks to each 

disk, the write bandwidth is very low because it is limited by the 
slowest disk. RobuSTore achieves much higher bandwidth since 
its speculative writing can efficiently utilize the capability of all 
the disks. As shown in Figure 8(a), when the data redundancy is 
300%, the write bandwidth in RobuSTore is about 186 MBps, 
while RRAID-S and RRAID-A only deliver bandwidth of 7.5 
MBps. It is 30 MBps for RAID-0 (with zero redundancy). 

( a ) 

(b ) 
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Figure 8. Write Performance vs. Data Redundancy. RAID-0 

is at the zero-redundancy point. 

 

The standard deviation of write latency is more than 10 times 
better in RobuSTore than in RRAID-S and RRAID-A, as shown 
in Figure 8(b). For example, when the data redundancy is 300%, 
the standard deviation is 0.5 seconds for RobuSTore and 6.4 
seconds for RRAID-S and RRAID-A. 

The I/O overhead in write operations is proportional to data 
redundancy because a write operation needs to write every byte 
of the redundant data. RobuSTore may incur slightly more 
overhead due to the usage of a speculative writing mechanism, 
as shown in Figure 8(c). 
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Figure 9. Read Performance vs. Data Redundancy, with 

Unbalanced Data Striping in RobuSTore. 
 

Next, we study the follow-up read accesses. In RobuSTore, 
speculative writing may cause unbalanced data striping across 
multiple disks. RAID-0, RRAID-S, and RRAID-A have no such 
issue since they always use balanced data striping. 

The simulated results are depicted in Figure 9. Figure 9(a) 
shows that higher data redundancy leads to higher read 
bandwidths in all the storage schemes. RobuSTore delivers must 
higher read bandwidth than RRAID-S and RRAID-A, except 
that RRAID-A with very high redundancy can also deliver 
similar performance. At 3x redundancy, RobuSTore delivers 
about 400MBps bandwidth; while RRAID-S and RRAID-A 
only achieve 117MBps and 228MBps respectively, and RAID-0 
has only 31 MBps. 

Figure 8(b) shows that RobuSTore achieves the lowest standard 
deviation of latency. In RRAID-S and RRAID-A, the variation 
comes from disk speed, intra-disk block ordering (in RRAID-S), 
and inter-disk block mapping. When they use higher data 
redundancy, their robustness will potentially suffer less from 
disk speed variation and inter-disk block mapping, while 

suffering more from intra-disk block ordering. RAID-0 only 
suffers variation from the slowest disk. Due to the combination 
of these factors, RRAID-S and RRAID-A with small 
redundancy have worse robustness than RAID-0, and gradually 
get better as redundancy increases. In RobuSTore, as long as the 
fast disks have enough data blocks, they can hide the slow disks 
effectively. It needs only 1x~2x data redundancy to obtain most 
of this robustness benefit. When data redundancy is more than 
2x, the standard deviation of latency is only about 0.5 seconds, 
or 25% of the average access latency. 

The I/O overhead results are shown in Figure 8(c). RAID-0 has 
no speculative access, so it incurs no additional costs, and has 
zero I/O overhead. RRAID-A costs just a little bit more than 
zero overhead, as it only generates additional accesses when 
they are clearly needed. When data redundancy is increased, 
both RRAID-S and RobuSTore increase the requested data size 
in proportion. For RobuSTore, the access is completed as long 
as a certain number of coded blocks are received, so the final 
I/O overhead is mainly decided by the reception overhead of LT 
Codes. However, in RRAID-S, high data redundancy lets the 
client receive more duplicated data blocks, leading to high I/O 
overhead up to 200%. 

To make the comparison fairer, we also study the RobuSTore 
read access with balanced data striping. In this case, RobuSTore 
uses exact same amount of per-disk spaces with RRAID-S and 
RRAID-A. 

The results are depicted in Figure 10. For RobuSTore, the 
bandwidth increases rapidly and approaches the best 
performance when the redundancy is higher than 200%. 
RRAID-S and RRAID-A benefit less from high redundancy 
because their structured data replication cannot adapt to read 
more blocks from the faster disks as flexibly as in RobuSTore. 
The variation of RobuSTore access latency, as shown in Figure 
10(b), is the least among the four storage schemes. Figure 10(c) 
shows that RobuSTore has about 50% I/O overhead due to the 
requirement of extra blocks for decoding, similar to the results 
in Figure 9. 

4.3 Summary of the Evaluation 
The simulation results show that RobuSTore provides best 
performance in terms of access bandwidth and robustness, and it 
only incurs moderate overheads. For example, to write 1GB data 
with 3x redundancy on 64 disks, RobuSTore achieves 186MBps, 
which is six times of RAID-0 (with zero-redundancy) and 25 
times of RRAID-S/RRAID-A; the standard deviation of latency 
is only 1/13 of RRAID-S/RRAID-A. To read 1GB data from 64 
disks, RobuSTore achieved an average bandwidth of over 400 
MBps, nearly 15x that achieved by a baseline RAID-0 scheme. 
At the same time, RobuSTore achieves standard deviation of 
access latency of only 0.5 seconds, less than 25% of the total 
access latency. The RobuSTore IO overhead is about 50% and 
storage space overhead is 2x–3x. 
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Figure 10. Read Performance vs. Data Redundancy, 

with Balanced Data Striping. 
 

5. Related Work 
There has been a wealth of related work on distributed storage 
and performance aggregation of multiple disks. RAID [14] and 
parallel file systems ([15-18], etc) aggregate multiple disks, 
addressing the performance and capacity limitation of single 
disks or servers.  They assume uniform arrays of storage devices 
in a SAN or LAN environment, without consideration on 
dynamic performance variability in distributed environments. 
Some peer-to-peer file sharing systems ([19-21], etc) improve 
access performance by speculatively fetching from massively 
replicated data copies. However, the massive replication is 
expensive in terms of storage overhead and access scheduling. 
Further, these systems focus on the shared internet where per-
node network bandwidth is as low as 1-10 megabits/s. 

Numerous storage systems [22-26] exploited erasure codes in 
their design. However, most of them are focused on data 
reliability and availability instead of robustness or bandwidth. 

A few recent distributed storage systems focused on 
performance aggregation of heterogeneous disks. Collins and 

Plank [27] studied the usage of Reed-Solomon Codes and LDPC 
Codes to improve the bandwidth of wide-area storage systems.  
However, they assume slow shared networks, bandwidths < 
10MByte/s, and small number of blocks (N≤100), and they 
concludes that Reed-Solomon Codes perform better than or 
equal to LDPC codes.  In contrast, we focus on performance 
robustness as well as bandwidth; we design RobuSTore for high 
bandwidth wide-area networks (>10Gbps), and explore a much 
wider array of design choices in data coding parameters, 
redundancy, layout and access. 

Lumb et al. proposed D-SPTF protocol [28], which can 
dynamically select a replica server to serve each read request. 
Our analysis and evaluation in this paper shows that replication-
based scheme is less effective in adapting to performance 
variation than erasure-code-based scheme. 

Wu et al proposed adaptive resource selection (ARS) heuristic 
algorithm for load balancing the servers [29].  By using 
replicated or erasure-coded data blocks, their design can flexibly 
choose servers to read and write, which most closely resembles 
our work in spirit.  Our paper explores the problem in a number 
of different aspects: we study the advantage of erasure coding 
over replication; we analyze the choice of erasure codes and the 
proper data redundancy; we assume each server can store 
multiple data blocks instead of single block, which provides 
finer-grained load balancing; and our speculative access 
scheduling is slightly more expensive but more flexible than 
ARS scheduling. 

6. Conclusions 
We propose the distributed storage architecture RobuSTore for 
high and robust storage performance in distributed 
environments. Achieving high and robust performance in 
distributed storage systems is an important open research 
challenge. Traditional network filesystems or local parallel 
filesystems cannot satisfy these requirements. The performance 
variation of the individual disks is the major obstacle facing 
current systems. We propose the RobuSTore idea to address this 
issue. RobuSTore combines erasure coding and speculative 
access mechanisms for high and robust storage performance. 
The erasure coding mechanism encodes the original data into 
fragment blocks with symmetric redundancy, allowing flexible 
data striping during write accesses and flexible data 
reconstruction during read accesses. The speculative access 
mechanism fully utilizes the available disk bandwidths to 
read/write redundant fragment blocks from/to heterogeneous 
distributed disks. We then discussed the critical design choices 
for erasure coding and speculative access, which gave guidelines 
for the RobuSTore implementation.  

We compare the performance of RobuSTore with three 
traditional parallel storage schemes and see superior 
performance from RobuSTore in both write and read accesses. 
For example, for a 1GB data access using 64 disks with random 
in-disk data layout, RobuSTore achieves average bandwidth of 
186MBps for write and 400MBps for read, nearly 6x and 15x 
that achieved by a RAID-0 system. The standard deviation of 
access latency is only 0.5 second, about 9% of the write latency 
and 20% of the read latency, and a 5-fold improvement from 
RAID-0. The improvements are achieved at moderate cost: 
about 40% increase in I/O operations and 2x-3x increase in 
storage capacity utilization.  



We would remind the audience about the limitations of 
RobuSTore again. RobuSTore is not a general storage system; 
instead, it is for accessing large data objects on which update 
operations are rare. On homogeneous storage clusters with no 
shared access, RobuSTore is not better than traditional parallel 
file system due to the reception overhead of erasure codes, 
which will reduce the bandwidth for up to 30%. 

While we believe that we have made significant contributions, 
more advances can be made to improve the RobuSTore design 
and performance. First, we need erasure codes algorithms that 
can deliver higher coding bandwidth to match the network 
bandwidth increase. We achieve around 600 MBps decoding 
bandwidth with 50% reception overhead using LT Codes on 2.8 
GHz AMD Opteron Processor. This is about 7 Gbps network 
utilization. Higher coding performance may be achieved by 
more efficient erasure codes, parallel coding algorithms, or 
dedicated coding hardware. Admission control is another topic 
that can complete the RobuSTore design. It is important for QoS 
guarantee and efficient resource sharing. 
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Appendix 
To better understand the advantage of erasure-coded schemes 
over replicated schemes, we analyze the number of blocks 
required for data reconstruction in each scheme. General 
problem description: Assume we have N original blocks, and we 
transfer them into 4N output blocks using either replication or 
erasure coding.  Now randomly permute the 4N blocks.  What is 
the probability that we can reassemble the original blocks using 
the first M output blocks?  

A1. Plain-text Replication 
The problem is equivalent to the following: 

Given: 4N balls with N different colors (four balls per color); 
randomly pick M balls from them 

Want: probability of at least one ball per color. 

Assume the number of M-ball sets to have at least one ball per 
color is FM(N).  Then we have: 

FM(N) = (All sets) – (sets with less than N colors)  

          
1

1

4
( ),     (Let =0 if a<b) 

N

M

i

N N a
F i

M i b

−

=

     
= −     
     

∑  

We will prove the following using induction: 
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First, since there are only 4 balls per color, we have 

FM(N) = 0, if N<M/4, 

which satisfies (A.1). 

Now we assume (A.1) is satisfied for any number less than N, 
then: 
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So (A.1) also fits for N. 

Therefore, the probability of picking M balls to include at least 
one ball per color is: 
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A2. Erasure-Coded Case 
With parameter of C=1.1 and δ=0.5, the average output-node 
degree in the LT coding graph is about 5.  To simplify the 
analysis, we assume that all output nodes have degree 5 and 
their neighbors are independently randomly selected from the N 
original blocks.  The number of blocks to reconstruct the 
original N blocks is about the number of blocks whose 
neighbors include all the N blocks.  So the probability that M 
coded blocks are sufficient is the probability that 5M neighbors 
can cover all the N original blocks.  Using similar induction as 
in above section, we can prove that: 
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