
RobuSTore: A Distributed Storage Architecture
with Robust and High Performance

Huaxia Xia*

Department of Computer Science and Engineering
University of California, San Diego

9500 Gilman Dr.
La Jolla, CA 92093, USA

hxia@ucsd.edu

Andrew A. Chien
Department of Computer Science and Engineering

University of California, San Diego
9500 Gilman Dr.

La Jolla, CA 92093, USA

achien@ucsd.edu

ABSTRACT

Emerging large-scale scientific applications require to access
large data objects in high and robust performance. We propose
RobuSTore, a storage architecture that combines erasure codes
and speculative access mechanisms for parallel write and read in
distributed environments. The mechanisms can effectively
aggregate the bandwidth from a large number of distributed
disks and statistically tolerate pear-disk performance variation.
Our simulation results affirm the high and robust performance of
RobuSTore in both write and read operations compared to
traditional parallel storage systems. For example, for a 1GB data
access using 64 disks, RobuSTore achieves average bandwidth
of 186MBps for write and 400MBps for read, nearly 6x and 15x
that achieved by a RAID-0 system. The standard deviation of
access latency is only 0.5 second, about 9% of the write latency
and 20% of the read latency, and a 5-fold improvement from
RAID-0. The improvements are achieved at moderate cost:
about 40% increase in I/O operations and 2x-3x increase in
storage capacity utilization.

1. Introduction
Existing and emerging large-scale scientific applications and
data-intensive applications require dramatically higher levels of
performance from distributed storage systems. These
applications involve accessing to massive data collections with
objects as large as 10 gigabytes, and sharing of these data
collections for collaboration amongst hundreds of or thousands
of widely distributed users.

Distributed storage systems with both high and robust
performance are critical to these applications. Throughout, we
use the term robust to mean low variation in data-access latency.
High performance is essential for these applications to access
their large data objects. These objects are in the size of gigabytes
or even larger, so transfer rates of hundreds of MBps or even
multiple GBps are required to achieve interactive, real-time data
accesses. Robust performance is important for both user
interaction and resource scheduling. Distributed storage systems

are essential to provide high performance access for hundreds of
or thousands of distributed users concurrently.

One major challenge for distributed storage systems is per-disk
performance heterogeneity and variation. First, different sites
may have quite different disk types, which may lead to different
performance. Furthermore, performance may vary by as much as
100-fold even for the same disk type depending on cache status,
disk layout, physical contiguity, and disk head seeking distance.
Finally, since distributed storage systems are usually shared by
many users, the dynamic competitive workloads lead to dynamic
network and disk access behaviors. With such high-degree
heterogeneity and variation, simple parallel storage schemes
cannot perform well, even with replication.

We propose new storage architecture RobuSTore, which
combines erasure coding and speculative accesses together.
RobuSTore uses erasure codes to add symmetric redundancy for
striping; with such layouts, clients can use speculative parallel
access and decoding of the fast-returning blocks to both increase
performance, and reduce performance dependence on stragglers
(lower variability). As a result, RobuSTore can efficiently
aggregate large number of distributed storage devices to deliver
robust, high access performance.

Our main contribution is in three folds. First, we propose the
RobuSTore idea that combines erasure codes and speculative
parallel disk access to improve data access performance and to
reduce disk performance variation; Secondly, we analyze the
different choices for erasure coding and speculative access,
providing a guideline for the RobuSTore implementation;
Finally, we model different parallel storage systems, and
evaluate them using detailed simulation to prove the significant
performance advantages of RobuSTore.

The remainder of the paper is organized as follows. In Section
2, we describe the problem and the assumptions. Section 3
presents the RobuSTore approach and describes the RobuSTore
design choices. We evaluate the RobuSTore approach in Section
4. In Section 5 and 6 we present the related work, summarize
the paper and discuss the future work.*

* Huaxia Xia is now affiliated with Google Inc., 1600 Amphitheatre
Pkwy, Mountain View, CA 94043, USA. Email correspondence:
huaxia@google.com.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage, and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
SC07 November 10-16, 2007, Reno, Nevada, USA
(c) 2007 ACM 978-1-59593-764-3/07/0011…$5.00

2. Background
The problem we are solving is how to achieve robust and high
storage performance in distributed shared systems for large data
accesses. High performance means high access bandwidth, or,
low access latency for a fix-size data object. Robust
performance means low variation of access latency.

Our study is based on the following facts: large number of
distributed clients, high variation of per-disk performance, large
data objects with rare update operations, abundant storage and
network resources, and advanced coding theory.

The first two facts make our problem challenging. To support
large number of distributed clients, the storage system needs to
be a large distributed one to allow concurrent high-bandwidth
accesses. In distributed shared storage systems, per-disk
performance may have high variation due to the heterogeneity
and shared accesses. This disqualifies the simple parallel local
filesystems as the solution. Figure 1 shows an example depicting
the limitation of simple parallel filesystems. In the example, two
replicas of an eight-block file are striped across four disks and a
read operation needs to get at least one copy for each of the
eight blocks. However, due to the performance variation, the
parallel read has to wait for the blocks from the slowest disk.
This leads to both high access latency and high variation of the
latency.

Figure 1. Conventional Parallel Storage. The four disks have

different performance, with two replicas of eight blocks.

The other three facts allow us to explore new techniques for the
solution. Derived from data-intensive scientific applications, our
workloads are dominated by write-once and read-only accesses
in the size of gigabytes each. Further, new technologies have
been improving network bandwidth, CPU speed, and disk
capacity rapidly, so that we may trade these resources for robust
and high performance. For example, the low-cost optical
transmission and Dense Wavelength Division Multiplexing
(DWDM) technique enables individual fibers to carry 100’s of
10-Gbps “lambdas”, providing wide-area networks with private
10Gbps or even 40-Gbps connections [1, 2]. CPU speed
doubles every 18 months and disk capacity doubles every 12
months [3]. Finally, the recent research on erasure codes [4, 5]
suggests that LDPC codes can achieve high coding bandwidth
and near-optimal coding efficiency.

Erasure codes are a large set of coding algorithms that use a
software-based approach to add data redundancy for reliable
data transfer [4-8]. In general, an erasure code transforms a
message of K symbols into a message with N (N>K) symbols in
such a way that the original message can be recovered from a
subset of those symbols. In coding theory, N is called code word

length. The ratio of K/N is called the rate of the code, denoted R
(0<R<1); the ratio of the redundant data is degree of data

redundancy, denoted as D = N/K –1 = 1/R –1. Special cases are
the rateless codes, which can transform K-symbol messages into
a practically infinite number of code symbols. Another
important attribute is reception overhead, which defines the
reconstruction efficiency. An erasure code has reception

overhead of ε if (1+ε)K encoding symbols are required to
reconstruct the original K symbols. Codes with zero reception
overhead are called optimal codes; and those with very small
reception overhead are called near-optimal codes. A code with
lower reception overhead requires a smaller number of symbols
for decoding; however, it usually has a higher cost in CPU time,
as we will show in this paper.

3. RobuSTore Approach
In this section, we present the RobuSTore idea of combining
erasure codes and speculative access and explain why this
approach is feasible and why it can improve read and write
performance, both robustness and bandwidth.

3.1 RobuSTore Idea
The key idea of RobuSTore is to combine erasure codes and
speculative access to aggregate a large number of distributed
storage devices. RobuSTore uses erasure codes to add
symmetric data redundancy, and stripes the coded data blocks
across a large number of distributed disks. With such layouts,
clients can speculatively write and read the coded blocks in
parallel and complete the access using the fast returned blocks.

Erasure codes provide high flexibility on data access. First, they
introduce symmetric data redundancy. An erasure code
transforms K data blocks into N (N>K) coded blocks. The coded
blocks contain symmetric data information in such a way that
the original data can be recovered from a flexible subset of those
blocks. Some near-optimal erasure codes, such as LT codes [4],

allow the reconstruction using any (1+ε)K-coded blocks,
providing significant higher data read flexibility than plain-text
replication. Another important feature of LT codes is rateless
encoding. Rateless erasure codes can generate a practically
infinite number of coded blocks; statistically, any subset of these
blocks of a certain size will provide the same level of data
redundancy.

RobuSTore uses speculative access to exploit the erasure coding
flexibility. The basic idea of speculative access is to initiate read
or write requests for more data blocks than needed from a large
number of disks, to wait for the requests to be processed in
parallel by the disks, and then to cancel the requests once
enough blocks have been confirmed as completed. The
speculative access for writes and reads are slightly different. To

write a K-block data and use a factor of λ (λ>1) spaces, writing

clients would first encode the data into N' blocks where N'>λK,
exploiting the rateless feature of the erasure codes. They would
then send requests to many disks and transfer coded blocks to

them in parallel, then cancel the ongoing writing once N=λK
blocks have been confirmed as written success. To read the data,

reading clients would request all the blocks from the disks, then
continue receiving them in parallel until enough blocks have
been received. Benefiting from the decoding flexibility, clients
can then reconstruct the original data using the sets of early-
returning blocks.

At a high level, our approach is trading storage space and
network bandwidth for low and robust access latency. This is
valuable because many large-scale applications have relatively
plentiful storage space and network bandwidth, and low and
robust access latency is more difficult and more important to
achieve.

To give a quantitative sense of how much flexibility erasure
codes provide, we theoretically analyzed the number of blocks
required for data reconstruction in both erasure-coded schemes
and plain-text replicated schemes. We cite the conclusion here
and present the full analysis in Appendix. Assume we have a K-
block file and use four times its storage space. If using a plain-
text replicated scheme, each block has four copies and at least
one copy for each block should be retrieved to reconstruct all the
data completely. The probability of successful reconstruction
with M random replicated blocks is:

∑
=

−

−

















−








=

N

i

iN

i

K

i

K

M

K
MP

1

1

)1(
4

)(

In contrast, if we encode the K blocks into 4K blocks using a
typical LT code in which the average encoded-node degree is
about five, we can reconstruct the original data from M random
coded blocks with the following probability:

5

1

() (1) ()
K

K i M

c

i

K i
P M

i K

−

=

 
= −  

 
∑

In practice, about 3K blocks are needed in a replicated scheme
versus about 1.5K blocks in an erasure-coded scheme (see
Figure 2).

Figure 2. Cumulative Probability of Reassembly of Original

Blocks. Assume there are N=1024 original blocks and 4096

coded or replicated blocks.

Figure 3. Advantage of Using Erasure Codes and Speculative

Access. The four disks have different performance; Assume

eight original blocks are encoded into sixteen coded blocks.

By combining erasure codes and speculative access, RobuSTore
can tolerate late-arriving blocks and reduce the dependence of a
request on any individual disk, and hence achieve robust and
high performance. Figure 3 provides an example depicting this
advantage in read access. In the example, an eight-block of data
is encoded into 16 blocks which are spread across four disks.
We assume the data reconstruction needs eight coded blocks,
although the number could be slightly larger if we use near-
optimal erasure codes. Read clients first send requests to all four
disks for all the blocks. The disks then transfer the data blocks
back to the clients at different speeds. Once the clients receive
eight blocks, they cancel the rest of the accesses, reconstruct the
original data, and complete the access with a high-average
bandwidth. Furthermore, if any of these first eight blocks are
lost or delayed due to any reason, the clients only need to
receive one more block and complete the overall access with
only slightly longer latency.

3.2 Accesses in RobuSTore
We explain the access procedures of write, read, and update in
RobuSTore briefly.

Figure 4 depicts the basic write and read processes. The write
operations are in dark circles. In step 1, clients first access the
metadata server to open the file, and plan layouts based on disk
map information and application QoS requirements. The clients
then encode the data to generate redundant coded blocks, and
transfer the blocks to the selected servers in parallel to the
encoding, shown as step 2 and step 3 in the figure. Once enough
data blocks are committed to the servers, the clients cancel the
uncompleted write operations, register the data structure with
the metadata server, and close the file to complete the write
access.

Figure 4. Write and Read Processes in RobuSTore. Dark

circles: writes; white diamonds: reads.

The right side of Figure 4 depicts the read process. The numbers
with white squares in the figure show the steps in sequence.
Similar to the write access process, read accesses start from
queries to the metadata server, from which clients obtain storage
server information, data structure and location information, and
any required locks. To read, the clients request all coded blocks
from servers and decode the received blocks in parallel. When
enough blocks have been received, the decoding finishes and the
original data are reconstructed. At the same time, outstanding
requests to the storage servers are cancelled. Finally, the close
function notifies the metadata server, releasing read locks and
bandwidth reservations on the storage servers.

Update operations are rare in most data-intensive scientific
applications and are not our focus in this dissertation, a neat
mechanism is still needed to deal with these operations. In
RobuSTore, if optimal erasure codes are used, then any minor
modification may cause the change of almost all the coded
blocks; however, if near-optimal erasure codes are used, the
change to one original block only affects a limited number of
coded blocks. For example, in the bipartite coding graph of LT
codes with 1024 data blocks and 4096 coded blocks, the average
degree of data blocks is about 20. In order to change one
original block, we need to update at most 20 coded blocks,
which is about 0.5% of the total encoded data.

The complete update process is as follows. The clients first get
data location information from the metadata server. They can
then examine the coding graphs and figure out which coded
blocks should be updated. Next, they regenerate those coded
blocks, and spread them out to remote disks (not necessary for
the disks that store the old coded blocks). Finally, the clients
notify the metadata server about the updated blocks and notify
the disks to delete the obsolete coded blocks.

3.3 RobuSTore Design Choices
There are many choices for the design, implementation and
configuration of a RobuSTore system. Different choices have
significant impact on the system performance. We discuss the
critical choices for both erasure coding and speculative access.

3.3.1 Choices of Erasure Codes
To deliver high and robust performance on thousands of hard
drives, we need erasure codes with low reception overhead, low
computation overhead, and long code words. Low reception
overhead means high coding efficiency, i.e., only a small

number of coded blocks are enough to reconstruct the original
data. Low computation overhead allows high bandwidth data
encoding and decoding so that we can use an ordinary computer
with moderate-speed CPU as a RobuSTore client. A code with a
long code word can generate a large number of coded blocks,
which brings two benefits to RobuSTore. First, it allows
RobuSTore to stripe the encoded data blocks across many disks
and to retrieve them from many disks in parallel. Furthermore,
long code words allow splitting the original data into more
finely grained blocks, which brings more data access flexibility.
These three features cannot be optimized at the same time. It is
therefore important to choose proper coding algorithms and
proper coding parameters.

Optimal erasure codes achieve perfect coding efficiency, but
they have a high CPU overhead when using long code words. A
rate-R optimal code transforms the original K-block data into
N=K/R blocks in such a way that any K-coded blocks suffice to
decode the original data. This optimal coding efficiency implies
that the information about every original block is mingled into at
least N–K+1 coded blocks, since otherwise we can find K coded
blocks that are not sufficient to reconstruct the original data.
Hence, on encoding, every coded block should be generated by
computing at least K(N–K+1)/N original blocks on average, and
on decoding, the reconstruction of every original block will need
to compute at least K(N–K+1)/N coded blocks on average.
Considering N=K/R, the encoding time is at least:

21
() / ()

R
N K N K N K N K K

R

−
− = − =i

and the decoding time is at least:

2() / () (1)K K N K N R K N K R K− = − = −i i

Both encoding time and decoding time is quadratic in K (and
thus also quadratic in N). Hence, the encoding and decoding
bandwidth is inversely proportional to K. For example, we
implement an instance of Reed-Solomon codes and test its
performance of encoding and decoding 16 MB data, which is
shown in Table 1.

Table 1. Coding Bandwidth of Reed-Solomon Codes.

 Tested on 2.4GHz Intel Xeon.

K(# original
blocks)

N(# coded
blocks)

Enc Bandwidth
(MBps)

Dec Bandwidth
(MBps)

4 8 112.2 99.5

8 16 53.3 60.8

16 32 26.8 31.3

32 64 13.7 15.9

Near-optimal erasure codes make a good trade-off between
reception overhead and computation overhead. They require
only a few more than optimal coded blocks for reconstruction,
but can usually support long code words with low CPU
overhead. For example, LT codes [4] use sparse bipartite coding
graphs in which each coded block is the parity of a few data
blocks. Assuming the average degree of coded block is de, we

need de–1 XOR operations to recover each data block. If there
are K data blocks, a successful decoding requires that each data
block is covered by at least one of the received coded blocks.
Since each coded block can only cover about de random data
blocks, the minimum number of coded blocks required for
reconstruction is:

(1+K/(K-1)+K/(K-2)+…+K) / de = KlnK /de

To achieve good reception overhead, de should be close to lnK.
In another word, the decoding bandwidth of LT is approximately
inverse proportional to lnK.

Among different near-optimal erasure codes, LT codes are most
suitable for our system for a number of reasons. First, they are
rateless, which allows redundancy to be decoupled from other
system-design issues, such as the number of storage servers
used, and also allows adaptive writing. Second, LT codes use
only one level of bipartite structure and block-XOR operations,
so that they can be implemented with high coding throughputs.
Third, their structure allows the coding process to be overlapped
with data I/O, effectively eliminating the critical path time of
coding.

Considering these factors, we chose LT codes with K=128~1024
and N=512~4096 in RobuSTore. In our previous work [9], we
optimized the LT design and tuned the implementation. The
decoding bandwidth of our LT implementation is about
400MBps with less than 0.5 reception overhead on one AMD
Opteron processor.

3.3.2 Choices of Speculative Access
During the speculative access, RobuSTore trades the abundant
disk and network resources for better performance. However, it
is important not to use the resources abusively. We discuss the
choice of number of disks and the degree of data redundancy.

The number of disks should be decided by total access
performance requirement and estimated per-disk bandwidth.
When we stripe the data to multiple disks, we can write and read
the disks in parallel to aggregate the performance of multiple
disks. Therefore, the number of disks should be no less than the
expected total access bandwidth divided by the average disk
bandwidth. For example, if the average remote disk bandwidth
is 20 MBps, we need to access about 64 disks to saturate a client
network with 10 Gbps (1.2 GBps).

The choice of data redundancy is a tradeoff between write and
read performance. Data redundancy affects both the writing
performance and the reading flexibility. First, higher data
redundancy means to generate and write more coded blocks into
the storage system, leading to lower writing performance. On
the other hand, more coded blocks provide higher flexibility in
choosing which blocks to read, which allows RobuSTore to
better adapt to disk performance variation and achieve higher
read performance.

A good choice of data redundancy should be barely enough to
allow each disk to have enough blocks to send during a read
access. For example, as depicted in Figure 5(a), when we write
data into many disks, a different number of blocks are written to
different disks due to disk performance heterogeneity. Assume
there are H disks (here H=8), and disk i has bandwidth Biw. The
average writing bandwidth, then, is:

1

H

iw

i
w

B

B
H

==

∑
.

If the data redundancy is D, the total number of coded blocks is
N=(D+1)K. The amount of data written to disk i is then:

iw
iw iw iw

w w

N BN
F B T B

H B H B

⋅
= ⋅ = ⋅ =

⋅ ⋅

.

When clients speculatively read the data blocks, the dynamic
disk performance might be quite different from what it had been
when writing the data, as depicted in Figure 5(b). Assume disk i
has bandwidth Bir, then the average reading bandwidth is:

1

H

ir

i

r

B

B
H

=
=

∑
.

Figure 5. Tolerate Dynamic Disk Performances.

Non-optimal erasure codes have positive reception overhead ε,

meaning that they require (1+ε)K coded blocks to construct the
K data blocks. If there are enough blocks on every disk to read,
the amount of data read from disk i are:

(1)(1) ir
ir ir ir

r r

K BK
F B T B

H B H B

εε + ⋅+
= ⋅ = ⋅ =

⋅ ⋅

To guarantee every disk has enough blocks, the following
should be satisfied:

, [1,]

(1)
, [1,]

1 (1) 1, [1,]

ir iw

ir iw

r w

w ir

r iw

F F i H

K B N B
i H

H B H B

B BN
D i H

K B B

ε

ε

≤ ∀ ∈

+ ⋅ ⋅
⇔ ≤ ∀ ∈

⋅ ⋅

⋅
⇔ = − ≥ + ⋅ − ∀ ∈

⋅

When the number of disks is large, statistical theory tells that

r w
B B≅ . Therefore, the required data redundancy is:

1
(1) max 1ir

i H
iw

B
D

B
ε

≤ ≤

= + ⋅ − .

Bir/Biw is the performance variation of each individual disk.

The performance variation of hard drives may be up to factors in
the tens of or even hundreds with the existence of different
access contentions. This is a strict boundary of D; however, a
very large D is not required in practice. First, it is rare for the
disks to be that heavily loaded since we always select the most
lightly loaded disk upon which to write new data, and can
usually achieve reasonably high Biw. Second, if only a few disks
have insufficient number of blocks to read, they will not have a
significant impact on overall performance.

In a specific case, if we write same amount of data to each disk,
i.e., Fw = N/H, then we can get the following using a similar
analysis process:

1
(1) max(/) 1

ir ir
i H

D B Bε
≤ ≤

= + ⋅ − .

In the next section, out experiments show that data redundancy
of two to three is enough to provide the best performance.

4. Performance Evaluation
In this chapter, we study the advantages of RobuSTore over
traditional parallel storage schemes. We evaluate these storage
systems using detailed software simulation, and simulate the
systems across a wide range of configurations, including
different numbers of storage devices, network properties and
degrees of data redundancy.

4.1 Experimental Design
In this section, we describe the storage schemes for comparison,
simulation design, metrics, workloads, and experiment
configurations in detail.

4.1.1 Storage Schemes for Comparison
We evaluate the RobuSTore scheme by comparing it against
conventional parallel storage schemes. The conventional
schemes are RAID-0, RRAID-S, and RRAID-A, which are
different from RobuSTore in terms of the data layout
mechanism or access mechanism.

Data Layout and Redundancy: Possible data layout
mechanisms are depicted in Figure 6: (1) split the data into
blocks, and distribute them to many disks; (2) split the data and
distribute the blocks with replication; (3) split the data, encode
the blocks, and distribute these redundant coded blocks to many
disks.

Figure 6. Data Layouts. 8 data blocks; 1x data redundancy

in replicated and coded layouts.

Access Strategies: Possible data access strategies are shown in
Figure 7: (a) speculative access, i.e., request redundant blocks at
once in the beginning of the access and cancel the requests once
enough blocks have been received; (b) adaptive access, in which
the client dynamically requests the unreceived bytes.

Figure 7. Access Mechanisms. Disk performance is varied.

We evaluate the following four combined schemes: (1) RAID-0:
No data redundancy + speculative access; (2) RRAID-S:
Replication + speculative access; (3) RRAID-A: Replication +
adaptive access; and (4) RobuSTore: Erasure coding +
speculative access.

4.1.2 Simulator Design and Configuration
We simulate an environment with one client and 128 storage
servers connected by wide-area networks.

Each storage server is simulated using one DiskSim [10]
process. DiskSim processes are configured to have different
disk-level block layouts and background workloads such that
individual disk performance varies from 0.52MBps to 53MBps.
This represents the performance variability in shared distributed
storage environments with many sources of variability, as
discussed in Section 1.

The virtual client models all other overheads for metadata
access, server connection, network latency, and block decoding.
The metadata access and server connection are assumed to take
constant time; network latency to each server is configured
constant from 1ms to 100ms. For block decoding, since it can
be pipelined with data receiving, extra latency is only incurred
for decoding the last block; we model it as a constant 5 ms
overhead. We assume sufficient network bandwidth and CPU
power.

In the experiments, we study the four storage schemes (RAID-0,
RRAID-S, RRAID-A, and RobuSTore) along five system
parameters: number of disks, data size, block size, network
latency, and degree of redundancy. In each experiment, we vary
only one parameter, and compare to a fixed baseline. The
baseline is a typical SAN configuration: to access 1GB data
from 64 disks, 1ms network round-trip time (RTT), 1MB block
size and 4x data redundancy, except for RAID-0 which always
has 1x data redundancy.

4.1.3 Workloads and Metrics
Since our focus is on supporting the needs of applications with
large workloads [11-13], we use synthetic workloads with
sequences of large-size accesses. In these applications, each data
object is from 100s of MB to 10s of GB, and with the potential
to increase to 100s of GB or larger in the future. We study
access performance for single 128 MB, 256 MB, 512 MB, and 1
GB accesses. Data objects larger than 1 GB are presumed to be
accessed by multiple 1 GB accesses. There are both read
sequences and write sequences accesses and sequences with
mixed read and write operations.

Moreover, to simulate disks shared by multiple applications, we
generate competitive background workloads for each disk. The
background workload is a sequence of random accesses arriving
in a certain interval. By varying the interval of the background
workload, we can simulate different degrees of disk sharing.

In our experiments, we measure RobuSTore and other
conventional storage systems in three metrics.

Variation of Access Latency: A critical RobuSTore goal is
robust performance, i.e., minimum performance variation. We
formalize this for access latency by computing the standard
deviation over a set of one hundred accesses. Naturally, smaller
standard deviations correspond to higher degrees of robustness.

Access Bandwidth: While robust performance is the major goal
of RobuSTore, we must also maintain high access bandwidth for
the requirement of accessing large datasets. The delivered
bandwidth for a single read or write is the original data size
divided by the access latency, including connection, disk, data
transfer, and coding time. We interpret access bandwidth to be a
measure of delivered performance corresponding to our goal of
“high performance”.

I/O Overhead: The benefits of aggressive access to redundant
copies can yield performance benefits, but it also increases
network and disk I/O costs. We measure this increased I/O cost
using the ratio between the additional bytes sent over networks
and the original data size:

Bytes sent over networks - Original data size
I/O Overhead =

Original data size

.

Note that the bytes sent over networks may be more than the
bytes read from disks if some bytes are read from the filesystem
cache.

We measure both read performance and write performance in
these three metrics.

4.2 Experiment Results
We simulate the four storage schemes over five configuration
dimensions. Due to space limitation, we only show the
comparison in various degrees of data redundancy. We vary data
redundancy from 0 to 900% (10 times the storage spaces used)
to simulate its performance impact. Because the RAID-0 scheme
always has zero redundancy, there is no curve for RAID-0 in the
following graphs; its performance is represented by the zero-
redundancy point in RRAID-S or RRAID-A.

First, we show the results of write accesses in Figure 8. In the
schemes of RAID-0, RRAID-S, and RRAID-A, a write
operation uniformly writes the same number of blocks to each

disk, the write bandwidth is very low because it is limited by the
slowest disk. RobuSTore achieves much higher bandwidth since
its speculative writing can efficiently utilize the capability of all
the disks. As shown in Figure 8(a), when the data redundancy is
300%, the write bandwidth in RobuSTore is about 186 MBps,
while RRAID-S and RRAID-A only deliver bandwidth of 7.5
MBps. It is 30 MBps for RAID-0 (with zero redundancy).

(a)

(b)

(c)

Figure 8. Write Performance vs. Data Redundancy. RAID-0

is at the zero-redundancy point.

The standard deviation of write latency is more than 10 times
better in RobuSTore than in RRAID-S and RRAID-A, as shown
in Figure 8(b). For example, when the data redundancy is 300%,
the standard deviation is 0.5 seconds for RobuSTore and 6.4
seconds for RRAID-S and RRAID-A.

The I/O overhead in write operations is proportional to data
redundancy because a write operation needs to write every byte
of the redundant data. RobuSTore may incur slightly more
overhead due to the usage of a speculative writing mechanism,
as shown in Figure 8(c).

(a)

(b)

(c)

Figure 9. Read Performance vs. Data Redundancy, with

Unbalanced Data Striping in RobuSTore.

Next, we study the follow-up read accesses. In RobuSTore,
speculative writing may cause unbalanced data striping across
multiple disks. RAID-0, RRAID-S, and RRAID-A have no such
issue since they always use balanced data striping.

The simulated results are depicted in Figure 9. Figure 9(a)
shows that higher data redundancy leads to higher read
bandwidths in all the storage schemes. RobuSTore delivers must
higher read bandwidth than RRAID-S and RRAID-A, except
that RRAID-A with very high redundancy can also deliver
similar performance. At 3x redundancy, RobuSTore delivers
about 400MBps bandwidth; while RRAID-S and RRAID-A
only achieve 117MBps and 228MBps respectively, and RAID-0
has only 31 MBps.

Figure 8(b) shows that RobuSTore achieves the lowest standard
deviation of latency. In RRAID-S and RRAID-A, the variation
comes from disk speed, intra-disk block ordering (in RRAID-S),
and inter-disk block mapping. When they use higher data
redundancy, their robustness will potentially suffer less from
disk speed variation and inter-disk block mapping, while

suffering more from intra-disk block ordering. RAID-0 only
suffers variation from the slowest disk. Due to the combination
of these factors, RRAID-S and RRAID-A with small
redundancy have worse robustness than RAID-0, and gradually
get better as redundancy increases. In RobuSTore, as long as the
fast disks have enough data blocks, they can hide the slow disks
effectively. It needs only 1x~2x data redundancy to obtain most
of this robustness benefit. When data redundancy is more than
2x, the standard deviation of latency is only about 0.5 seconds,
or 25% of the average access latency.

The I/O overhead results are shown in Figure 8(c). RAID-0 has
no speculative access, so it incurs no additional costs, and has
zero I/O overhead. RRAID-A costs just a little bit more than
zero overhead, as it only generates additional accesses when
they are clearly needed. When data redundancy is increased,
both RRAID-S and RobuSTore increase the requested data size
in proportion. For RobuSTore, the access is completed as long
as a certain number of coded blocks are received, so the final
I/O overhead is mainly decided by the reception overhead of LT
Codes. However, in RRAID-S, high data redundancy lets the
client receive more duplicated data blocks, leading to high I/O
overhead up to 200%.

To make the comparison fairer, we also study the RobuSTore
read access with balanced data striping. In this case, RobuSTore
uses exact same amount of per-disk spaces with RRAID-S and
RRAID-A.

The results are depicted in Figure 10. For RobuSTore, the
bandwidth increases rapidly and approaches the best
performance when the redundancy is higher than 200%.
RRAID-S and RRAID-A benefit less from high redundancy
because their structured data replication cannot adapt to read
more blocks from the faster disks as flexibly as in RobuSTore.
The variation of RobuSTore access latency, as shown in Figure
10(b), is the least among the four storage schemes. Figure 10(c)
shows that RobuSTore has about 50% I/O overhead due to the
requirement of extra blocks for decoding, similar to the results
in Figure 9.

4.3 Summary of the Evaluation
The simulation results show that RobuSTore provides best
performance in terms of access bandwidth and robustness, and it
only incurs moderate overheads. For example, to write 1GB data
with 3x redundancy on 64 disks, RobuSTore achieves 186MBps,
which is six times of RAID-0 (with zero-redundancy) and 25
times of RRAID-S/RRAID-A; the standard deviation of latency
is only 1/13 of RRAID-S/RRAID-A. To read 1GB data from 64
disks, RobuSTore achieved an average bandwidth of over 400
MBps, nearly 15x that achieved by a baseline RAID-0 scheme.
At the same time, RobuSTore achieves standard deviation of
access latency of only 0.5 seconds, less than 25% of the total
access latency. The RobuSTore IO overhead is about 50% and
storage space overhead is 2x–3x.

(a)

(b)

(c)

Figure 10. Read Performance vs. Data Redundancy,

with Balanced Data Striping.

5. Related Work
There has been a wealth of related work on distributed storage
and performance aggregation of multiple disks. RAID [14] and
parallel file systems ([15-18], etc) aggregate multiple disks,
addressing the performance and capacity limitation of single
disks or servers. They assume uniform arrays of storage devices
in a SAN or LAN environment, without consideration on
dynamic performance variability in distributed environments.
Some peer-to-peer file sharing systems ([19-21], etc) improve
access performance by speculatively fetching from massively
replicated data copies. However, the massive replication is
expensive in terms of storage overhead and access scheduling.
Further, these systems focus on the shared internet where per-
node network bandwidth is as low as 1-10 megabits/s.

Numerous storage systems [22-26] exploited erasure codes in
their design. However, most of them are focused on data
reliability and availability instead of robustness or bandwidth.

A few recent distributed storage systems focused on
performance aggregation of heterogeneous disks. Collins and

Plank [27] studied the usage of Reed-Solomon Codes and LDPC
Codes to improve the bandwidth of wide-area storage systems.
However, they assume slow shared networks, bandwidths <
10MByte/s, and small number of blocks (N≤100), and they
concludes that Reed-Solomon Codes perform better than or
equal to LDPC codes. In contrast, we focus on performance
robustness as well as bandwidth; we design RobuSTore for high
bandwidth wide-area networks (>10Gbps), and explore a much
wider array of design choices in data coding parameters,
redundancy, layout and access.

Lumb et al. proposed D-SPTF protocol [28], which can
dynamically select a replica server to serve each read request.
Our analysis and evaluation in this paper shows that replication-
based scheme is less effective in adapting to performance
variation than erasure-code-based scheme.

Wu et al proposed adaptive resource selection (ARS) heuristic
algorithm for load balancing the servers [29]. By using
replicated or erasure-coded data blocks, their design can flexibly
choose servers to read and write, which most closely resembles
our work in spirit. Our paper explores the problem in a number
of different aspects: we study the advantage of erasure coding
over replication; we analyze the choice of erasure codes and the
proper data redundancy; we assume each server can store
multiple data blocks instead of single block, which provides
finer-grained load balancing; and our speculative access
scheduling is slightly more expensive but more flexible than
ARS scheduling.

6. Conclusions
We propose the distributed storage architecture RobuSTore for
high and robust storage performance in distributed
environments. Achieving high and robust performance in
distributed storage systems is an important open research
challenge. Traditional network filesystems or local parallel
filesystems cannot satisfy these requirements. The performance
variation of the individual disks is the major obstacle facing
current systems. We propose the RobuSTore idea to address this
issue. RobuSTore combines erasure coding and speculative
access mechanisms for high and robust storage performance.
The erasure coding mechanism encodes the original data into
fragment blocks with symmetric redundancy, allowing flexible
data striping during write accesses and flexible data
reconstruction during read accesses. The speculative access
mechanism fully utilizes the available disk bandwidths to
read/write redundant fragment blocks from/to heterogeneous
distributed disks. We then discussed the critical design choices
for erasure coding and speculative access, which gave guidelines
for the RobuSTore implementation.

We compare the performance of RobuSTore with three
traditional parallel storage schemes and see superior
performance from RobuSTore in both write and read accesses.
For example, for a 1GB data access using 64 disks with random
in-disk data layout, RobuSTore achieves average bandwidth of
186MBps for write and 400MBps for read, nearly 6x and 15x
that achieved by a RAID-0 system. The standard deviation of
access latency is only 0.5 second, about 9% of the write latency
and 20% of the read latency, and a 5-fold improvement from
RAID-0. The improvements are achieved at moderate cost:
about 40% increase in I/O operations and 2x-3x increase in
storage capacity utilization.

We would remind the audience about the limitations of
RobuSTore again. RobuSTore is not a general storage system;
instead, it is for accessing large data objects on which update
operations are rare. On homogeneous storage clusters with no
shared access, RobuSTore is not better than traditional parallel
file system due to the reception overhead of erasure codes,
which will reduce the bandwidth for up to 30%.

While we believe that we have made significant contributions,
more advances can be made to improve the RobuSTore design
and performance. First, we need erasure codes algorithms that
can deliver higher coding bandwidth to match the network
bandwidth increase. We achieve around 600 MBps decoding
bandwidth with 50% reception overhead using LT Codes on 2.8
GHz AMD Opteron Processor. This is about 7 Gbps network
utilization. Higher coding performance may be achieved by
more efficient erasure codes, parallel coding algorithms, or
dedicated coding hardware. Admission control is another topic
that can complete the RobuSTore design. It is important for QoS
guarantee and efficient resource sharing.

7. Acknowledgements
Supported in part by the National Science Foundation under
awards NSF EIA-99-75020 Grads and NSF Cooperative
Agreement ANI-0225642 (OptIPuter), NSF CCR-0331645
(VGrADS), NSF NGS-0305390, and NSF Research
Infrastructure Grant EIA-0303622. Support from Hewlett-
Packard, BigBangwidth, Microsoft, and Intel is also gratefully
acknowledged.

8. References
1. Smarr, L.L., et al., The OptIPuter. Communications

of the ACM, 2003. 46(11): p. 58-67.
2. iGrid2005. San Diego, CA, Sep 26-30, 2005;

http://www.igrid2005.org.
3. Grochowski, E. and R.D. Halem, Technological

impact of magnetic hard disk drives on storage

systems. IBM Systems Journal, 2003. 42(2): p. 338-
346.

4. Luby, M. LT Codes. in Proc. IEEE Symp. On

Foundations of Computer Science 2002. 2002.
5. Shokrollahi, A., Raptor codes. 2003, Digital Fountain

and EPFL.
6. Plank, J.S., A Tutorial on Reed-Solomon Coding for

Fault-Tolerance in RAID-like Systems. Software --
Practice & Experience, 1997. 27(9): p. 995-1012.

7. Reed, I. and G. Solomon, Polynomial codes over

certain finite fields. Journal of the Society for
Industrial and Applied Mathematics, 1960. 8(2): p.
300--304.

8. Gallager, R.G., Low Density Parity-Check Codes.
1963, Cambridge, MA: MIT Press.

9. Uyeda, F., H. Xia, and A. Chien, Evaluation of a

High Performance Erasure Code Implementation.
2004, UCSD.

10. Bucy, J.S. and G.R. Ganger, The DiskSim Simulation

Environment Version 3.0 Reference Manual. 2003,
Carnegie Mellon University.

11. Biomedical Informatics Research Network (BIRN).
http://www.nbirn.net.

12. GriPhyN: Grid Physics Network.
http://www.griphyn.org.

13. The EarthScope Project. http://www.earthscope.org.
14. Patterson, D.A., G.A. Gibson, and R.H. Katz. A Case

for Redundant Arrays of Inexpensive Disks (RAID).
in International Conference on Management of Data

(SIGMOD). 1988.
15. Carns, P.H., et al. PVFS: A Parallel File System For

Linux Clusters. in 4th Annual Linux Showcase and

Conference. 2000. Atlanta, GA.
16. Schmuck, F. and R. Haskin. GPFS: A Shared-Disk

File System for Large Computing Clusters. in
USENIX Conference on File and Storage

Technologies (FAST). 2002. Monterey, CA.
17. System, C.F., Lustre: A Scalable, High-Performance

File System. 2002, Lustre File System v1.0
Architecture White Paper from clusterfs.org.

18. Nagle, D., D. Serenyi, and A. Matthews. The

Panasas ActiveScale Storage Cluster –Delivering

Scalable High Bandwidth Storage. in ACM/IEEE

Conference on Supercomputing, 2004 (SC'04). 2004.
Pittsburgh, PA.

19. Kazaa. http://www.kazaa.com.
20. BitTorrent. http://www.bittorrent.com.
21. Corbett, P.F. and D.G. Feitelson, The Vesta parallel

file system. ACM Transactions on Computer
Systems, 1996. 14: p. 225--264.

22. Abd-El-Malek, M., et al. Fault-Scalable Byzantine

Fault-Tolerant Services. in Symposium on Operating

Systems Principles. 2005. Brighton, UK.
23. Kubiatowicz, J., D. Bindel, and e. al. OceanStore: An

Architecture for Global-Scale Persistent Storage. in
the Ninth international Conference on Architectural

Support for Programming Languages and Operating

Systems (ASPLOS). 2000. Cambridge, MA.
24. Bhagwan, R., et al. Total recall: System support for

automated availability management. in the First

ACM/Usenix Symposium on Networked Systems

Design and Implementation (NSDI). 2004. San
Francisco, CA.

25. Weatherspoon, H. and J.D. Kubiatowicz. Erasure

Coding vs. Replication: A Quantitative Comparison.
in the First International Workshop on Peer-to-Peer

Systems (IPTPS). 2002. Cambridge, MA.
26. Aguilera, M.K., R. Janakiraman, and L. Xu. Using

Erasure Codes Efficiently for Storage in a

Distributed System. in DSN 2005: The International

Conference on Dependable Systems and Networks.
2005. Yokohama, Japan.

27. Collins, R.L. and J.S. Plank. Assessing the

performance of Erasure Codes in the Wide Area. in
DSN-2005: The International Conference on

Dependable Systems and Networks. 2005.
Yokohama, Japan.

28. Lumb, C.R., R. Golding, and G.R. Ganger, D-SPTF:

decentralized request distribution in brick-based

storage systems, in 11th International Conference on

Architectural Support for Programming Languages

and Operating Systems. 2004: Boston, MA.
29. Wu, C. and R. Burns, Improving I/O Performance of

Clustered Storage Systems by Adaptive Request

Distribution, in The 15th IEEE International

Symposium on High Performance Distributed

Computing (HPDC-15). 2006: Paris.

Appendix
To better understand the advantage of erasure-coded schemes
over replicated schemes, we analyze the number of blocks
required for data reconstruction in each scheme. General
problem description: Assume we have N original blocks, and we
transfer them into 4N output blocks using either replication or
erasure coding. Now randomly permute the 4N blocks. What is
the probability that we can reassemble the original blocks using
the first M output blocks?

A1. Plain-text Replication
The problem is equivalent to the following:

Given: 4N balls with N different colors (four balls per color);
randomly pick M balls from them

Want: probability of at least one ball per color.

Assume the number of M-ball sets to have at least one ball per
color is FM(N). Then we have:

FM(N) = (All sets) – (sets with less than N colors)

1

1

4
(), (Let =0 if a<b)

N

M

i

N N a
F i

M i b

−

=

     
= −     
     

∑

We will prove the following using induction:

(A.1)

1

4
() (1)

N
N i

M

i

N i
F N

i M

−

=

  
= −   

  
∑

First, since there are only 4 balls per color, we have

FM(N) = 0, if N<M/4,

which satisfies (A.1).

Now we assume (A.1) is satisfied for any number less than N,
then:

1

1

1

1 1

1

1 1

1

4
() ()

4 4
(1)

4 4
(1)

4 4! !
(1)

!()! !()!

N

M M

i

N i
i j

i j

N i
i j

i j

N
i j

i j

N N
F N F i

M i

N N i j

M i j M

N N i j

M i j M

N jN i

M Mi N i j i j

−

=

−

−

= =

−

−

= =

−

−

=

   
= −   
   

      
= − −      
      

     
= − −     
     

   
= − − ⋅   

− −   

∑

∑ ∑

∑∑
1

1

1 1

1

11

1 0

4 4! ()!
(1)

!()! ()!()!

4 4! ()!
(1) (let k=i-j)

!()! ()! !

4 4!
((1))

!()!

N

j

N N
i j

j i j

N jN
k

j k

N j

j

N jN N j

M Mj N j N i i j

N jN N j

M Mj N j N j k k

N jN

M Mj N j

−

=

− −

−

= =

− −−

= =

−

=

   −
= − −   

− − −   

   −
= − −   

− − −   

   
= − − −   

−   

∑∑

∑ ∑

∑ ∑
1

1

1

4
(1)

N

N
N j

j

N j

j M

−

−

=

  
= −   

  

∑

∑

So (A.1) also fits for N.

Therefore, the probability of picking M balls to include at least
one ball per color is:

1

4

()
() (1)

4 4

N
N iM

i

N i

i MF N
P M

N N

M M

−

=

   
   
   

= = −
   
   
   

∑

A2. Erasure-Coded Case
With parameter of C=1.1 and δ=0.5, the average output-node
degree in the LT coding graph is about 5. To simplify the
analysis, we assume that all output nodes have degree 5 and
their neighbors are independently randomly selected from the N
original blocks. The number of blocks to reconstruct the
original N blocks is about the number of blocks whose
neighbors include all the N blocks. So the probability that M
coded blocks are sufficient is the probability that 5M neighbors
can cover all the N original blocks. Using similar induction as
in above section, we can prove that:

5

1

() (1) ()
N

N i M

c

i

N i
P M

i N

−

=

 
= −  

 
∑

