
General Railgun Function 
An electromagnetic rail gun uses a large Lorentz force to fire a projectile.  

The classic configuration uses two conducting rails with armature that fits 
between and closes the circuit between the two rails.  A large current is sent 
through the rails from one side creating a magnetic field that is perpendicular to 
the current in the armature and forces the armature to move down the rails away 
from whichever end the current is being applied.  Since the force pushing apart 
the rails is large as well, they must be built so as to withstand the force 
developed during firing. 

 
In order to enhance the magnetic field developed across the armature 

several additions can be made to augment the classic configuration.  A core with 
high magnetic permeability may be used to increase the magnetic field density, 
although this may not be helpful if the railgun operates well past the saturation 
point of the material.  A strong permanent magnet circuit may be used to provide 
a magnetic field separate from that provided by the railgun, again that may not 
help much if the railgun operates with a higher magnetic field than the permanent 
magnets.  Additional rails that do not make contact with the armature may be 
placed near the main rails in order to increase the magnetic field density.  Any of 
these options could also be implemented with a completely separate 
synchronized circuit. 
 

The armature can also be the projectile, or the armature can act only as a 
sabot or pusher for a projectile.  The armature can be solid or plasma.  The 
plasma being supplied by a thin conductive metal that is heated rapidly by the 
current through it. If a plasma armature is used the rails, and the structure 
holding the rails together must provide a completely sealed barrel that closely fits 
the projectile so that the plasma does not blow past the projectile. 

 
The power supply to fire railgun must provide a very large current of short 

duration.  It must also operate at a high enough voltage to drive the required 
current and to squelch any back emf from the armature.  DC supplies such as 
lead-acid supplies can deliver several thousand Amperes for short duration, but 
are not practical for a large weapon since a large amount are needed to provide 
the requisite voltage and current.  capacitors and compulsators can store very 
large amounts of energy and are capable of delivering hundreds of kilo-amperes.  
Capacitors store energy via an electric field; compulsators store energy 
mechanically in a flywheel.  Compulsator stands for Compensated Pulsed 
Alternator; a compulsator uses a very low inductance generator to allow for rapid 
current rise and a high energy density flywheel to store energy.  A compulsator 
can store enough energy to fire a railgun several consecutive times where a 
capacitor bank usually uses all of its energy on each shot and needs to be 
recharged after each shot.  Compulsators generally can store more energy per 
unit volume than capacitors. 

 



For any railgun the currents required will place large amounts of 
mechanical stress on the current carrying parts.  The rails current carrying bars 
and connectors must be stiff and fastened into place.  If the railgun uses a 
plasma armature the armature/projectile will need to fit tightly into the barrel and 
the barrel will need to be sealed to keep the plasma from escaping.  For a solid 
armature the surface area in contact with the rails will need to be maximized and 
good contact maintained, this is necessary to reduce arcing, spot welding and to 
allow for high current flow.   The armature rail interface should be designed to 
minimize gouging, and if any gouging is to occur it is clearly more desirable to 
have the damage on the armature instead of the rails.  So the rails should be as 
hard as feasible and the armature as soft as possible.  Many materials and 
construction techniques have been tried to make long lasting rails.  This is still an 
area of significant research.    

 
When the railgun is fired the armature/projectile should be injected at a 

high velocity to overcome that static friction of the barrel and to prevent spot 
welding.  A fast injection also will spread out the heat generated across a greater 
area again helping to prolong rail life.  Unless the magnetic field is supplied 
externally the armature should have a sufficient length of current carrying rail 
behind before it contacts the rails it in order to allow strong a magnetic field to be 
created.  Even so it may be desirable to augment the magnetic field where the 
armature first makes contact since the current will not immediately begin to 
accelerate the armature. 
 

Railgun Force and Magnetic Field Analysis 
 
The general Lorentz force law describes the force on a moving charge in 
magnetic and electric fields. 
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where 
 
is the force acting on q [N/C] 
E
r

is the electric field intensity [N/m] 
B
r

 is the magnetic field intensity [T] 
v is the charge velocity [m/s] 
q is the charge [C] 
 
In a rail gun the moving charge consist of a large electric current in a conducting 
armature, the force to accelerate the projectile is given by the second term in (1).  
Since current is defined as a movement of charge per second, a current over a 
length l is equivalent to charge movement at a given velocity. 
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Expressing the cross product in (3) using the angle theta between the current 
and magnetic field gives (4) 
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If the magnetic field is assumed to be perpendicular to the current then (4) 
reduces to 
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Where B  is the magnitude of the magnetic flux density. 
 
A rail gun can provide the current and magnetic flux using a conceptually simple 
circuit. 
 

 
 
FIGURE 1.  The basic railgun concept, two parallel rails and a sliding armature.  The current in 
the rails and armature creates the magnetic field indicated and a the desired force on the 
Projectile/Armature. 
 
For a given current the force along the armature varies along its length, and the 
magnetic field varies according to the length of the rails. 
 
The φ directed magnetic field of an infinitely long wire is 
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where 
 

0μ  is the permeability constant 
ρ  is the radial distance from the wire 
 
The contribution from a single very long, thin rail would be ½ that of an infinitely 
long wire 
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The rails that create the magnetic field may not be well approximated by 
assuming they are infinitely long.  An expression for the magnetic field at a radial 
distance from the end of a wire can be found using the Biot-Savart law. 
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where  
J
r

 is the current density [A/m2] 
R  is the distance to the point of the contributed magnetic field 
 
if it is assumed that the cross section of the wire is negligible compared to the 
area to be integrated over then dlidvJ ⋅='  and (8) reduces to 
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For the purposes of the following integration it assumed that the rails are very 
thin.The rails have length L, the magnetic field at a distance d from the end of 
one rail is then 
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the distance from a segment of wire to the point P can be expressed as 
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the quantity ( )θsin  can be expressed as 
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the integral then becomes  
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When L becomes much greater than d the equation reduces to (7). 
 
Since the rails of a practical railgun cannot be infinitely long and a signifacant 
magnetic field is desireable it is useful to know how long the rails must be to 
reasonable approximate infinite rails.  Expressing L as a multiple of d, dxL ⋅= , 
setting d equal to 1 and dividing (13) by (7) gives a function describing the 
fraction of magnetic field compared to a wire of infinite length from the beginning 
of the rail. 
The fraction of magnetic field produced by finite length wires compared to infinite 
legnth wires as a function of the ratio x of wire length to the point where the 
magnetic field is measured. 
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The relation shows that when the wire three times longer than the distance to the 
point at which a given magnetic results, the field density is 95% of that of an ideal 
infinite wire.  Equation (14) assumes a very thin wire, this is not the case in a rail 
gun, the dimensions of the projectile are of the same order of the rails carrying 
the current.  However, this relation does give some idea of the length of rail 
necessary to set up a satisfactory magnetic field. 
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FIGURE 2.  The fraction of an ideal magnetic field created by finite rails in terms of the wire 
length in multiples of the distance to the point the magnetic field is calculated. 
 
Assuming that the rails are constructed such that the magnetic field created 
closely approximates that of thin wires that extend to infinity, equations (5) and 
(7) can be combined into an expression for the force on the projectile in terms of 
current and length. 
 
The magnetic field contribution from the first wire being equivalent to equation (5) 
and given a rail separation of width w the expression of the magnetic field 
contribution from the second wire is 
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The total magnetic field at a point along the armature is then 
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Since the armature is in direct contact with the rails the magnetic field from the 
above equation would approach infinity at the points where the armature contacts 
the rails.  So despite the fact (16) assumes a thin long wire the radius of that wire 
must be taken into account to prevent spurious results for magnetic field strength 
at the ends of the armature.  Taking into account the radius R of the rails gives 
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Inserting (17) into (5), keeping in mind the current and magnetic field are 
perpendicular thought the armature gives the differential force 
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These equation show that the greatest force on the armature occurs at the point 
where the armature is closest to (touching) the rails.  As the radius becomes 
smaller with respect the rail separation the disparity in force from the center of 
the armature compared the force at the ends of the armature becomes larger.  
Since the smallest force on the armature occurs at the center of the armature 
and largest force occurs at either end setting the distance rho in (18) to 0 and 
dividing by (18) with � set to w/2 will give the ratio of force on the end of the 
armature to the force on the middle of the armature. 
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Setting w in equation (19) equal to 1 allows for a graph of the force ratio as a 
function of wire radius in multiples of w. 
 

 



 
FIGURE 3.  The force disparity between the ends and center of an armature as a function of the 
ratio between the rail radius and distance between rails. 
 
Integrating (18) over the the gap between rails gives an expression for the total force on the 
armature. 
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Equation (20) describes the force exerted on the projectile a function of current, 
rail separation and rail radius.  To get to this point I have assumed round wire-
like rails of radius R, and I have assumed that the distance from the rails along 
rail separation w is large compared to the dimensions of the rail.  The second 
assumption is clearly incorrect for points very close to rails, and if the rails are 
similar in size to the separation between them then the assumption is false at all 
points across the rail separation w.  I have also assumed the rails are long 
enough such that the magnetic field across the armature is the same as if the 
rails stretched out from the projectile in infinite length. Figure 2 shows that this is 
a good approximation if the rails are several times longer than the rail separation.  
Another assumption is that the projectile is very thin.  Yet another is uniform 
current density. 
 
In order to get a better equation for the force exerted on the projectile the Biot-
Savart law, equation (8) would need to be applied precisely to the rail forms.  The 
average magnetic field across the armature would require integrating the 
equation across the rail separation w.  Since the Biot-Savart law is a volume 
integral, the total equation would be quadruple integral.  Doing this would 
eliminate the assumptions of half-infinite rail length, round rails, and the poor 
assumption that the points along w very far way from the rail compared to the 
dimensions of the rail.  An analytical solution could be obtained for different types 
of rails, but a very complicated shape could result in an integral results in a long 
ugly result, or one that can only be solved numerically.  Taking away the 
assumptions of uniform current density and a thin projectile pretty much forces 
one into finite element analysis and other numerical techniques to analyze 
railguns. 
 
However, despite its limitations equation (20) is useful.  It gives approximate 
currents needed to produce a given force.  More importantly it gives some 
pointers as to how to design a railgun.  It shows that the force can be made much 
greater using magnetically permeable materials.  In the range of currents and 
magnetic fields found in railguns, µ is not constant.  It decreases significantly at 
very high fields, limiting the usefulness of permeable material.  Another limiting 
factor of using permeable material is energy loss due to magnetization, and eddy 
current losses.  Equation (20) also shows that the rail separation w should be 
maximized, although this value is set by the choice of caliber.  The final important 
observation from the equation is that the rail radius R should be minimized. For 



rectangular rails this means they should not be very tall or wide compared to the 
barrel.  This makes sense, since the current obviously needs to be concentrated 
near the barrel in order to created the largest magnetic field possible through the 
armature.  The conclusions regarding rail separation and rail dimension have 
been confirmed by researchers using Finite-Element Methods [2]. 
 
Dividing the force of equation (20) by the iw will give an expression for the 
average magnetic field according to equation (5). 
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Rearranging (5) and replacing l with w since w is the armature length in our 
equations gives 
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Equation (20) and (21) allow for calculations to estimate the magnitude of 
currents and magnetic fields needed to fire a projectile from a simple railgun. 
 

Back EMF from railgun projectile. 
 
The voltage of course needs to be sufficient to drive the required current through 
whatever resistance the rails, armature and connections provide.  Apart from this 
the voltage must also be large enough to overcome the back EMF from the 
projectile.   
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When the rails are relatively long the magnetic flux being created behind the 
projectile is constant and rate of change of area is the product of the armature 
length and its velocity.  The line integral on the left hand side of (22) can be 
assumed to include the armature and differential area behind it, and the right 
hand side is simply the rate of flux change in the area behind the projectile.  
Equation (22) then becomes. 
 
(23) wvBE ⋅⋅−=  
 
where 
 
B is the average magnetic flux density [T] 
v is the velocity of the armature [m/s] 
w is the armature width [m] 



E is the back EMF developed across the armature [V] 
 
The back EMF will oppose the established current, but given estimates of the 
expected magnetic field strength from (22), the expected velocity and the width of 
the armature a voltage source can be chosen so that the railgun can fire at the 
desired velocity. 
 

Mechanical Energy Storage and Compulsators. 
 
A compulsator stores its energy in a flywheel connected directly to the alternator. 
 
Assuming the flywheel is a solid homogeneous cylinder of material, it rotational 
inertia is 
 

2

2
1 MRI =  

 
The rotational kinetic energy is 
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the mass of the cylinder is 
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Combining these equations into an expression for kinetic energy gives 
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Expressing this as energy stored per unit mass gives 
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This shows that a rotor of high speed and large radius is desirable in order to 
store the largest amount of energy possible.  Depending upon the material 
chosen there is a limit as to how fast the rotor can be spun.  Each material has a 
maximum peripheral velocity at which the centrifugal forces overcome the tensile 
strength of the material.  The peripheral velocity is v=r�. 
 
The maximum peripheral velocity is given by 
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Since v=r�.  The maximum velocity equation can be inserted into the energy 
stored per unit mass to give a maximum energy stored per unit volume. 
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This shows that a high tensile strength to density ratio is desirable in an energy 
storage rotor material. 
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