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What are Calabi-Yau varieties?

Complex Kahler manifolds with a
vanishing first Chern class

In other words, they have trivial
canonical bundle. Canonical bundle:
top exterior power of the cotangent
bundle (also known as invertible
bundle).

Reasons why physicists are interested
in C-Y varieties are because Kahler
manifolds admit a Kahler metric and
they have nowhere vanishing volume
fﬁrm. So we can do integration on
them.

May not necessary be differential
manifolds, so the key to studying C-Y
varieties is by algebraic geometry,
rather than differential geometry.

Nice results in derived categories and
a concept of duality in string theory. A manifold with Hermitian metric is called an

almost Hermitian manifold. A Kahler manifold
is a manifold with a Hermitian metric satisfying
an integrability condition.
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What are orbifold singularities and
why do they occur?

* Orbifold singularity is the simplest * Example: consider the real line
singularity arising on a Calabi-Yau R.Then R™R/{x1]

: : : : This looks like a positive real
manifold. An orbifold is a quotient axis together with the origin, so

of a smooth Calabi-Yau manifold it's not a smooth one-
by a discrete group action with dimensional manifold.
fixed points. * This is generically a 2:1 map at
. - every point except at the origin.
For a f!nlte §ubgroup Gn of SL(n,C), At the origin, the map is 1:1
an orbifold is locally ("/G map, so the quotient space has
: j a singularity at the origin. So a
&\ AN singularity formed from a
Al P, quotient by a group action is a
S A q:} N

fixed point in the original space.

*---\..i_:_\_
esds,

Orbifold space is a highly curved 6-dim space in which strings move. The diagram
above is a closed, 2-dim surface which has been stretched out to form 3 sharp points,
which are the conical isolated singularities. The orbifold is flat everywhere except

at the singularities; the curvature there is infinite.
See Scientific American: http://www.damtp.cam.ac.uk/user/mbg15/superstrings/superstrings.html
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How do we resolve an orbifold

singularity?

We resolute singularities

because smooth manifolds are
“nicer” to work with, e.g., they
have well-defined notion of

dimension, cohomology and
derived categories, etc.

Example: Consider the zero
set of xy=0 in the affine two-
dim space. We have a
singularity at the origin. To
desingularize, consider the
singular curve in 3-dimensional
affine space where the curve is
sitting in the x-y plane. We

After singularity resolution

“remove” the origin, pull the
two lines apart, and then go
back and fill in the holes.
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(x, 0, 0)

The line defined by x=0 has

been

"lifted" from the line y=0.



A crepant resolution (X, p) of C"/G is
a nonsingular complex manifold X of
dimension n with a proper
biholomorphic map p: X=> C'/G that
induces a biholomorphism between
dense open sets.

The space X is a crepant resolution of
CAn/G if the canonical bundles are
isomorphic; i.e., p*( K , )is
isomorphicto k,. € IG _ _ _ _
Choose crepant resolutions of A six real dimensional Calabi-
singularities to obtain a Calabi-Yau Yau manifold

structure on X.

We’'ll see that the amount of information
we obtain from the resolution will
depend on the dimension n of the
orbifold.

The mathematics behind the resolution
is found in “Platonic solids, binary
polyhedral groups, Kleinian singularities
and Lie algebras of type A, D, E” by
Joris van Hoboken.
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McKay Correspondence

* Thereis a 1-1 correspondence
between irreducible
representations of G and
vertices of an extended Dynkin
diagram of type ADE.

* The topology of the crepant
resolution is described
completely by the finite group
G, the Dynkin diagram, and
the Cartan matrix. .

* The extended Dynkin diagram E; .
of type ADE are the Dynkin

diagrams corresponding to the
Lie algebras of types Eg

A,_,,D, ,E E;, and E,.
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Simple Lie groups and simple singularities classified in the same
way by Dynkin diagrams

Platonic solids €< - binary polyhedral groups <-> Kleinian
(simple) singularities €<-> Dynkin diagrams < -> representations
of binary poly groups <-> Lie algebras of type A, D, E

Reference for more details: Joris van Hoboken’s thesis

For k =2
R — «——e——  degenerate Cyclic subgroup of order k
Dis2 o . ‘ <2,2,k> Generalized quaterions Q_k
. of order 4k
<2,3,3> 2 Alt_4 binary Tetrahedral group
Eg - * * * * of order 24
E <2,3,4> 2 Symm_4 binary Octahedron
7 * ° °
group of order 48
Eg . . | . ) . . <2,3,5> 2 Alt_5 binary Icosahedron group
of order 120

where <a, b, c>:=<x,y,z:x"a=y"M=27c=xyz>

Singularity for the < 2, 3, 5 > case is x"2 + y*3 + z"5 = 0 but not true in general.
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Case when n=2

A unique crepant resolution always exists for surface singularities.

Felix Klein (1884) first classified the quotient singularities /G for a finite subgroup
G of SL(2,C). Known as Kleinian or Du Val singularities or rational double points.

A unique crepant resolution exists for the 5 families of finite subgroups of SL(2,C):
cyclic subgroups of order k, binary dihedral groups of order 4k, binary tetrahedral

g;oups of order 24, binary octahedral group of order 48, binary icosahedral group

of order 120.

How do we prove that only 5 finite subgroups exist in SL(2, C)? Natural embedding
of binary polyhedral groups in SL(2, C) or its compact version SU(2,C), a double
cover of SO(3, R).

Reference: Joris van Hoboken’s thesis
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Case when n=3

A crepant resolution always exists but it is not unique as they are
related by flops.

Blichfeldt (1917) classified the 10 families of finite subgroups of
SL(3, C).

S. S. Roan (1996) considered cases and used analysis to construct
a crepant resolution of ¢’/G  with given stringy Euler and Betti
numbers. So the resolution has the same Euler and Betti numbers
as the ones of the orbifold.

Nakamura (1995) conjectured that Hilb(C"3) being fixed by G is a
crepant resolution of C’/G based on his computations for n=2. He
later proved when n=3 for abelian groups.

Bridgeland, King and Reid (1999) proved the conjecture for n=3 for
all finite groups using derived category techniques.

Craw and Ishii (2002) proved that all the crepant resolutions arise
as moduli spaces in the case when G is abelian.
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Further Investigation

* When n=3, no information about the multiplicative structures in
cohomology or K-theory.

* Consider cases when n>3. Crepant resolutions exist under
special/particular conditions.

* In higher dimensional cases (n>3), many singularities are
found to be terminal, i.e., crepant resolutions do not exist.
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