
� �������	�
��
� ���	������
���� ����� ��
���� �	�	��������� �!��"#�	�
�	� $%��"&���!"&$'
�(�
��
"&���	()� �*
�$%$��+��,-"&�
.��"#�	���

/1032547698;:=<?>�@BA�CED�A

FHGJILKNMOKNP9K�QJR?ITSVUWP9KNRXI+YZ[K\PJQJR?I�]#^?M_R?G`KNM_acbdPJR?I
e`f#gJhNi P9KNRjQJRBk;lcU h K h R?I
m9npo&o`qsr1t P h R?IHuvI\P h uxwVy`RXK\KNR{zx| h UWGJ^?R~}

� ^XK iW�Jh R�� q&q&e

FHS�Z;]J����� q&e �W� n

METHOD AND SOFTWARE FOR FAST CONSTRUCTION
OF PRINCIPAL MANIFOLDS APPROXIMATIONS

Andrey Zinovyev

Institut des Hautes Études Scientifiques (IHES), Bures-sur-Yvette, France
zinovyev@ihes.fr

Abstract

We propose a new algorithm for fast construction of grid approximations of principal manifolds
with given topology. One advantage of the method is a new form of the functional to be minimized,
which becomes quadratic at the step of refinement of the vertexes positions. This allows very
effective implementations of the algorithm; the computational complexity grows linearly with the
number of points with relatively small constant factor. Another advantage is that the same
algorithmic kernel is applied to construct principal manifolds of different dimensions and
topologies. We demonstrate how flexibility of the approach allows easily numerous adaptive
strategies like principal graph constructing, etc. The algorithm is implemented as a C++ package.
We describe the approach and provide several examples with speed performance characteristics.

Introduction

Principal manifolds were introduced by Hastie and Stueltze in 1989 as lines or surfaces passing
through “the middle” of the data distribution [Hastie and Stuetzle, 1989]. This intuitive notion,
corresponding to the human brain generalization ability, was supported by a mathematical notion of
self-consistency: every point of the principal manifold is a conditional mean of all points that are
projected into this point. Since in case of datasets only one or zero data points are projected in a
typical point of the principal manifold, one has to introduce smoothers that become an essential part
of the principal manifolds construction algorithms.

Since the pioneer work of Hastie, many modifications and alternative definitions of the principal
manifolds appeared in the literature. Theoretically, existence of self-consistent principal manifold is
not guaranteed for any probability distribution, and because of this many alternative definitions
were introduced [Kegl, 1999], allowing constructing principal curves (manifolds), given that the
distribution of points has several finite first moments. One of the most computationally effective
and robust algorithmic kernel for principal curves construction, called Polygonal algorithm, was
proposed in [Kegl et al., 1999]. Also a variant of strategy for constructing principal graphs was
formulated in [Kegl et Krzyzak, 2002] in the context of the skeletonization of hand-written digits.
Another interesting approach we would like to mention is constructing principal manifold in a
piece-wise manner by fitting unconnected line segments [Verbeek et al., 2000].

Probably, the most of scientific and industrial applications of principal manifolds ideology were
implemented using the SOM approach, coming from the theory of neural networks [Kohonen,
1982]. These applications are too numerous to be mentioned here. We only mention that the SOM
strategy, indeed, can provide principal manifolds approximations (for example, see [Ritter et
al.,1992; Mulier and Cherkassky, 1995]) and is computationally effective. The disadvantage of the
approach is that it is entirely based on heuristics; also it was shown that in the SOM strategy there
does not exist any objective function that is minimized by the training process [Erwin et al., 1992].
Our goal in this paper is to introduce a computationally effective way of principal manifolds
construction. Our approach is similar to the work of Kegl, taking some features from the SOM
approach as well. We use grid approximations to the principal manifold. The topology of the
manifold can be fixed, or one can use principal graphs construction strategy, similar to the methods
developed in [Kegl, 1999].

One difference of our approach from that one of Kegl is introducing two new smoothness penalty
terms, which are quadratic at the vertexes optimization step. This allows using standard
minimization of quadratic functionals (i.e., solving a system of linear algebraic equations with a
sparse matrix), which is considerably more computationally effective than gradient optimization of
more complicated function, introduced by Kegl. Moreover, quadratic functionals can be minimized
by every space coordinate independently, giving possibility to use parallel minimization that is
expected to be particularly effective in case of multidimensional data.

Other feature of our approach is a universal and flexible way to describe the grid. The grid
approximation to the principal manifold is defined as a connected graph of nodes placed in data
space and having some “natural” nodes placement in a low-dimensional space. Then the same
algorithmic kernel is used to optimize this graph with respect to the dataset. Thus, the same
algorithm, given an initial definition of the grid, provides construction of principal manifolds with
different dimensions and topologies.

Our algorithm is implemented as a C++ package elmap available at
http://www.ihes.fr/~zinovyev/vidaexpert/elmap and as a stand-alone application VidaExpert for
multidimensional data visualization, available at
http://www.ihes.fr/~zinovyev/vidaexpert/vidaexpert.htm. Applications of the approach to the data
visualization were described in [Gorban and Zinovyev, 2001; Gorban et al., 2001, 2003].

General schema of the method

Lets define elastic net as a connected unordered graph G(Y,E), where Y = {y(i), i=1..p} denotes
collection of graph nodes, and E={E(i), i=1..s} is the collection of graph edges. Let’s combine some
of the adjacent edges in pairs R(i) = {E(i),E(k)} and denote by R={R(i), i=1..r} the collection of
elementary ribs.

Every edge E(i) has the beginning node E(i)(0) and the ending node E(i)(1). Elementary rib is a pair of
adjacent edges. It has beginning node R(i)(1), ending node R(i)(2) and the central node R(i)(0) (see
Fig. 1).

Introducing edges is simply introducing connectivity on the graph; this connectivity defines a
topology of principal manifold to be constructed, as well as its dimensionality. Ribs together with
edges are used to define smoothness penalty function, in such a way defining a “natural” form of
the grid.

Figure 2 illustrates some examples of the grids practically used. The first is a simple polyline, the
second is planar rectangular grid, third is planar hexagonal grid, forth – non-planar graph with
nodes arranged on the sphere (spherical grid), then a non-planar cubical grid, torus and hemisphere.
Elementary ribs at these graphs are adjacent edges intersecting with a blunt angle.

We underline here that the grids presented on fig.2 have different internal dimensionality and
topology. This topology is optimized in data space with respect to the data point positions.

Formulating optimization criterium, we use widely used mean squared point-to-node distance as a
main term, and two penalty terms, which are useful to interpret in terms of physical elastic
properties of the grid.

On the graph G we define the energy function U that summarizes energies of every node, edge and
rib:

U = U(Y) + U(E) + U(R). (1)

Let’s divide the data points into subcollections K(i), i = 1…p, each of them contains data points for
which the node y(i) is the closest one:

http://www.ihes.fr/~zinovyev/vidaexpert/elmap

},,1,:{)()()()()(pmyxyxxK mjijj
i l=−≤−= .

Also let us suppose that every point has a weight wj. Let’s define

2)()(

1

)(

)()(

)(

1 ij
p

i Kx
j

x
j

Y yxw
w

U
ij

j

−= ∑ ∑
∑ = ∈

, (2)

2)()(

1

)()0()1(ii
s

i
i

E EEU −=∑
=

λ , (3)

∑
=

−+=
r

i

iii
i

R RRRU
1

2)()()()()0(2)2()1(µ . (4)

The U(Y) term is the usual average weighted square of distances between y(i) and data points in K(i);
U(E) is the analogue of summary energy of elastic stretching and U(R) is the analogue of summary
energy of elastic deformation of the net. We can imagine that every node is connected by elastic
bonds to the closest data points and simultaneously to the adjacent nodes (see Fig. 3).

Values λi and µj are coefficient of stretching elasticity of every edge E(i) and coefficient of bending
elasticity of every rib R(j). In simple case we have

)(...21 ss λλλλ ==== ,)(...21 rr µµµµ ==== .

To obtain λ(s) and µ(r) dependences we simplify the task and consider the case of evenly stretched
and evenly bended net. It is easy to show that if in this case one makes U(R), U(E) independent on the
grid “resolution”, then

 d
d

s
−

=
2

0λλ , d
d

r
−

=
2

0µµ (5)

where d is the “internal dimension” of the grid (d = 1 in the case of polyline, d = 2 in case of
hexagonal, rectangular and spherical grids, d = 3 in case of cubical grid and so on).

Elastic net approximates the cloud of data points and has regular properties. Minimization of term
U(Y) provides approximation, using of U(E) penalizes the total length (or “square”, “volume”, etc.) of
the grid and U(R) is a smoother term, preventing grid from folding and “twisting”.

To perform the vertexes optimization step we must derive system of algebraic linear equations to be
solved. To start let’s consider the situation when we already separated our collection of data points
in K(i), i = 1…p.

Let’s denote





≠
=

=∆
,,0

,1
),(

yx
yx

yx

)),2(()),1(()()()()(jijiij yEyEE ∆−∆≡∆ ,

)),1((2)),2(()),3(()()()()()()(jijijiij yRyRyRR ∆−∆+∆≡∆ .

Then differentiation gives









−=

∂
∂

∑
∑ ∈)()(

)(

)()(
)(

)(1
2
1

ji

i
Kx

i
i

j
j

x
i

j

Y

xwyn
wy

U

,
2
1

1

)(

1 1

)(
)(

)(

∑∑ ∑
== =

=∆∆=
∂
∂ p

k
jk

k
p

k

s

i

ikij
i

k
j

E

eyEEy
y
U λ

,
2
1

1

)(

11

)(
)(

)(

jk

p

k

k
r

i

ikij
i

p

k

k
j

R

ryRRy
y
U

∑∑∑
===

=∆∆=
∂
∂ µ

where ∑
∈

=
)()(

ji Kx

ij wn , ∑
=

∆∆=
s

i

ikij
ijk EEe

1
λ , ∑

=
∆∆=

r

i

ikij
ijk RRr

1
µ . As a result we obtain

01
2
1

)(

)()(

)(

1

)(
)(=−

















++=
∂
∂

∑
∑

∑
∑ ∈= j

i

ii
Kx

i
i

x
i

p

k
jkjk

x
i

jkjk
j xw

w
re

w
n

y
y
D δ

, j = 1… p ,

and the system of p linear equations to find new positions of nodes in multidimensional space {yi,
i=1…p}:

∑ ∑
∑= ∈

=
p

k Kx

i
i

x
i

k
jk

j
i

i

xw
w

ya
1

)()(

)(

)(

1 , where

jkjk

x
i

jkj
jk re

w
n

a
i

++=
∑

)(

δ
, j = 1… p , (6)









≠
=

=
ji
ji

jk ,0
,1

δ .

The values of ejk and rjk depend only on the structure of the grid. If the structure does not change
then they are constant. Thus only the diagonal elements of the matrix (6) depend on data set. We
must underline that the a matrix has sparse structure for a typical grid used in practice. In the
Appendix we define this structure, giving an algorithm for calculating only non-zero elements of
the matrix.

To minimize the energy of graph U we use usual expectation-minimization:

1. Initialize the grid of nodes in data space.

2. Given nodes placement, separate collection of data points to subcollections K(i), i = 1…p.

3. Given this separation, minimize graph energy U and calculate new positions of nodes.

4. Go to step 2.

It is evident that this algorithm converges to a final placement of nodes of the grid (energy U is a
non-decreasing value, and the number of divisions of data points into K(i) is finite). Moreover,
theoretically the number of iterations of the algorithm before converging is finite. In practice this
number may be too large; therefore we interrupt the process of minimization if change of U
becomes less than a small value ε or after a fixed number of iterations.

Optimization strategies

As usual, the algorithm provided in the end of the previous section leads only to the local minimum
of the functional. Obtaining a solution close to the global minimum can be non-trivial, especially in
case when the initial position of the grid is very different from the expected (or unknown) optimal
solution. In many practical situations the “annealing” strategy can be used to robustly obtain
solutions with low energy levels. In our case this strategy is using “rigid” grids (small length, small
bending) with big λ, µ coefficients at the beginning of the learning process and finishing with small
λ, µ values (see Fig. 4). Thus, the training goes in several epochs, each epoch with its own grid
rigidness. The process of “annealing” promises that the resulting grid will realize the global
minimum of energy U or rather close configuration.

Nevertheless, for some artificial distributions (like standard spiral point distribution, used as a test
in many papers on principal curves construction) “annealing”, starting from any linear configuration
of nodes does not lead to the expected solution. In this case, adaptive strategies, like “growing
curve” (analogue of what was used by Kegl in his polygonal algorithm [Kegl et al., 1999]) or
“growing surface” can be used to obtain suitable configuration of nodes. This configuration does
not have to be optimal, in the adaptation process one can still use the grids more rigid than it is
needed for good approximation (thus, providing more robust way to do this), finishing the
optimization at the next stage with a softer grid (see spiral example in the examples section).

Adaptive strategies

The method described above allows to construct different adaptive strategies easily by playing with

• individual λi and µj weights;

• grid connection topology;

• number of nodes
This is a way to extend the approach significantly making it suitable for practical applications. The
elmap package with implementation of the method described above supports several adaptive
strategies that will be described in this section.

First of all let us define a basic operation on the grid, which allows inserting new nodes. Let us
denote by N, S, R the sets of all nodes, edges and ribs respectively. Let us denote by C(i) set of all
nodes which are connected to the ith node by edge. If one has to insert a new node in the middle of
an edge I, connecting two nodes k and l, then the following operations have to be accomplished:

1) Delete from R those ribs which contain node k or node l ;
2) Delete the edge I from S;

3) Put a new node m in N;

4) Put in S two new edges connecting k and m, m and l;

5) Put in R new ribs, connecting m, k and all i∈C(k), and m, l and all i∈C(l).
On the step 4, 5 one has to assign new weights to the edges and ribs. This choice depend on the task
to be solved. If one constructs “growing” grid, then these weights must be chosen the same as they
were at the deleted ones. If one constructs refinement of already constructed grid, one must choose
these weights to be twice bigger than they were at the deleted ones.

The grow-type strategy is applicable mainly to the grids with planar topology (linear, rectangular,
cubic grids). It consists in iterative determining those grid part, which have the largest “load” and
doubling the number of nodes in this part of the grid. The load can be defined in different ways.

One natural way is to calculate number of points that are projected in the nodes. For linear grids the
grow-type strategy consists in

1) Initializing grid; it must contain at least two nodes and one edge;

2) Determining the edge which has the largest load, by summing the number of data points (or
the sum of their weights) projected to the both ends of every edge;

3) Inserting a new node in the middle of the edge, following the operations described above;

4) Optimizing positions of nodes.

One stops this process usually when a certain number of nodes in the grid is reached (see, for
example, Kegl et al., 2000), which is connected with the total number of points. In the elmap
package this is an explicit parameter of the method, allowing user to implement his own stopping
criterium. Because of this stopping condition the computational complexity is not proportional to
the number of objects and, for example, grows like n5/3 in the case of Polygonal Line algorithm.
Another form of stopping condition is when the MSE does not change more than for a small
number ε after several insertion/optimization operations.

The break-type adaptive strategy changes individual ribs weights in order to adopt the grid to those
regions of data space where the “curvature” of data distribution has a break or is very different from
the average. It is particular useful in contour extraction applications of principal curves (see fig. 7).
For this purpose the following steps are performed:

1) Collect statistics for the distances from every node i to the mean point of the datapoints that

are projected into this node: ∑
∑ ∈

−=
j

i

i
Kx

i
i

x
i

jj xw
w

yr
)(

)(

)(1 .

2) Calculate mean and standard deviation for some power of r : αrm = , ασ rs = ; α>1 is a
parameter and in our experiments is chosen to be 4.

3) Determine those nodes for which rj > m+βs, where β>0 is another parameter, equals to 2 in
our experiments.

4) For every node k determined at the previous step one finds those ribs that have k as their

central point and change their weight for αµµ
j

old
j

new
j r

m⋅=)()(.

5) Optimize the nodes positions.

6) Repeat this process certain number of times.

Principal graph strategy, implemented in the elmap package allows performing clustering of
curvilinear data features along principal curves. Two example applications of this approach are
satellite image analysis [Banfield and Raftery, 1992] or hand-written symbols skeletonization [Kegl
and Krzyzak, 2002] (see also fig. 8,9). First, notice that the grid we constructed does not have to be
a connected graph. The system matrix (6) is not singular if for every connected component of the
graph there are data points that are projected onto one of its nodes. This allows using the same
algorithmic kernel to optimize nodes positions of unconnected graph. Notice also that if the sets of
edges and ribs are empty, then this algorithm acts exactly like standard K-means clustering.

To construct a contour skeleton, we apply a variant of local linear principal components analysis
first, then connect local components into several connected parts and optimize the nodes positions
after. This procedure shows to be robust and efficient in applications to clustering along curvilinear
features and it was implemented as a part of elmap package. The following steps are performed:

1) Make a “grid” from a number of unconnected nodes (sets of edges and ribs are empty at this
stage). Optimize the nodes positions (i.e., do K-means clustering). The number of nodes is chosen
to be a certain proportion of the number of data points. In our experiments we used 5% of the total
number of data points. At every iteration of K-means algorithm, those nodes which are “empty”
(there is no any datapoint for which the node is the closest one) change their position randomly.
After certain number of K-means iterations, empty nodes (or nodes with only one datapoint as well)
are removed from the set of all nodes.

2) For every node of the grid in position yi, local first principal direction is calculated. By local
we mean that the principal direction is calculated inside the cluster of datapoints corresponding to
the node i. Then this node is substituted by two new nodes in positions y(new1)= yi+αsn, y (new2)= yi –
αsn, where n is unit vector in the principal direction, s is the standard deviation of data points
belonging to the node i, α is a parameter, which can be taken to be 1. These two nodes are
connected by an edge (see fig. 9b).

3) A collection of edges and ribs is generated, following this simple rule: every node is
connected to a node which is the closest to this node but not already connected at the step 2, and
every such connection generates two ribs, consisting of a new edge and one of the edges made at
the step 2.

4) Weights of the ribs are calculated. A rib is assigned a weight equal to |cos(α)|, where α is an
intersection angle of two edges this rib contains, if α ≥ 90°. Otherwise it is zero (or, equally, the rib
is eliminated).

5) The nodes positions are optimized.

One possible way to improve the resulting graph further is to apply graph simplification rules,
analogously to how it was done in [Kegl et. al, 2002].

The adaptive strategies: “grow”, “break” and the principal graphs can be combined and applied one
after the other. For example, principal graph strategy can be followed by break-type weight
adaptation or by grow-type grid adaptation.

Projecting

In the process of the grid construction we use projection of data into the closest node. This allows to
gain in the speed at the data projection step without loosing too much if the grid resolution is good
enough. Nevertheless, for presentation of datapoints or for data compression another projectors can
be applied. The natural way to do it is to introduce a set of simplexes on the grid (line segments for
one-dimensional grids, triangles for two-dimensional, tetrahedron for the 3D grids). Then one
performs orthogonal projection onto this set. In order to not calculate all distances to the all
simplexes, one can apply a simplified version of the projector: find the closest node of the grid and
then consider only those simplexes that contain this node. This type of projection is used in the
elmap package and demonstrated by the example on fig.10.
Since the grid has penalty on it’s length (square, volume), the result of the optimization procedure is
a bounded manifold, embedded in the cloud of data points. Because of this, if the penalty
coefficient is big, many points can have projection on the boundary of the manifold. This can be
undesirable, for example, in data visualization applications. To avoid this effect, we introduced in
the elmap package possibility to make a linear extrapolation of the bounded rectangular manifold
(extending it by continuity in different directions). Other, more complicated extrapolations can be
performed as well, like using Carleman’s formulas (see [Gorban et al, 2002;Aizenberg, 1993]).

Examples

On the figure 5 we present two examples of 2D-datasets provided by Kegl at
http://www.iro.umontreal.ca/~kegl/research/pcurves/implementations/Samples/.

The first dataset called spiral is one of the standard in the principal curves literature ways to show
that one’s approach has better performance than the initial algorithm provided of Hastie and
Stuelze. As we already mentioned, this is a bad case for optimization strategies, which start from
linear distribution of nodes and try to optimize all the nodes together in one loop. But the adaptive
“growing curve” strategy, though being by order of magnitude slower than the “annealing”, finds
the solution quite stably, with exception for the region in the neighborhood of zero, where the spiral
has very different (comparing to the average) curvature.

Second dataset, called large is a simple case, despite the fact that it has comparatively large sample
size (10000 points). The nature of this simplicity is in that the initial first principal component based
approximation is already effective; the distribution is in fact quasilinear, since the principal curve
can be unambiguously orthogonally projected onto a line. On fig.5b it is shown that the generating
curve, which was used to generate this dataset, has been discovered almost perfectly and in very
short time. To give the idea of speed, we mention that in case of the simplest optimization (one
epoch with fixed grid rigidness, which is suitable in case of a good initial approximation) the
algorithm we described gives the principal curve, approximated by 100 nodes in less than 0.5
seconds on a computer with Athlon 1800 MHz processor. Application of annealing strategy with 4
epochs gives principal curve approximately in 1.5 seconds on the same computer.

Third example illustrates modeling of surfaces in 3D. The interesting challenge is to model
molecular surfaces of complex biological molecules like proteins using principal manifold
approach. We extracted Van-der-Waals molecular surface, using slightly modified Rasmol [Sayle
and Bissell, 1992] source code (available from authors by request) for a simple fragment of DNA.
The topology of the surface is expected to be spherical. We must notice that since it is impossible to
make the lengths of all edges equal for the sphere-like grid, in the elmap package some corrections
are performed for edge and rib weights during the grid initialization (shorter edges are given with
larger weights proportionally and the same for the ribs). As a result one gets smooth principal
manifold with a spherical topology approximating rather complicated set of points. This allows also
to introduce a global spherical coordinate system on the molecular surface. The advantage of the
method is its ability to deal with not only star-like shapes as spherical harmonic functions approach
does (see, for example, [Cai et al., 2002]) but also to model complex forms with cavities as well as
non-spherical forms. The result of applying principal manifolds construction by elmap package is
shown on fig.6.

The forth example is to demonstrate extracting of curvilinear features from images with elmap
package. Figures 8 and 9 demonstrate how “principal graph” strategy is used for clustering
datapoints along curvilinear features or for skeletonization of hand-written symbols.

Our final, fifth example, illustrates application of the principal manifold method in
multidimensional data visualization and dimension reduction. As in the case of molecular surface
modeling, we take an example of a dataset from bioinformatics. The genome of C.eleganse (small
worm with only one-hundred cells) contains approximately 17000 genes, each of them can be
characterized by it’s codon usage (there are 64 codons, i.e. triplets of 4 genetic letters, this gives 64-
dimensional vector of their frequencies), dinucleotide and nucleotide usage (this gives additional 20
dimensions). The resulting dataset has 17083 points with 84 dimensions. PCA view of the dataset is
shown at fig.10a. To make noise-filtering, the dataset was projected first into 25-dimensional space
spanned by the first 25 principal vectors. In this space, using our elmap package, we constructed a
two dimensional principal surface, approximated by 1296 nodes. The datapoints were projected
onto the manifold using projecting in the closest point of the manifold (as proposed above). Using
3-epoch optimization strategy, provided in the sample initialization file for the elmap package, it

takes 300 seconds to do this on a computer with Athlon 1800 MHz processor. The initial MSE,
obtained by a principal plane approximation was 4.59. The resulting manifold provides MSE about
3.60; what is at 22% better than approximation by the principal plane (this value is relatively big,
having in mind that we approximate 25-dimensional dataset). The resulting projection image is
shown on the fig. 10b. Changing point forms/sizes we marked two signals that are clearly seen on
this plot. More detailed analysis shows that indeed these two groups of points (genes) have very
special position in dataspace (i.e., codons and dinucleotide compositions) with respect to the main
cluster of data. The principal manifold we constructed can be utilized for displaying different
functions defined in the dataspace. On fig.10c visualization of a simple non-parametric estimation
of the density distribution is shown. One can see that in general the non-linear manifold captures
more essential features of the dataset than the PCA plot.

Method implementation

In the implementation of the algorithm we used SparseLib [Dongarra et al., 1994] library together
with IML++ library to store the matrix and to solve the system of linear equations. We used BLAS
kernel provided by the authors of SparseLib without any platform-specific optimization. This
combination showed rather good performance characteristics, still being easily portable, i.e. written,
using ANSI standards.

Discussion

We introduced a new algorithmic kernel for calculating grid approximations for principal manifolds
of different topologies and dimensions. The main advantages of the method are speed and good
performance. The optimization criterium we formulated has particular simple form and natural
physical interpretation. Together with usual mean square node-to-point distance term our minimized
functional contains two penalizing terms: U(E) and U(R) , both quadratic with respect to the grid
nodes positions. As one can see from (3) and (4) they are similar to the sum of squared grid
approximations of the first and second derivatives, in the directions, guided by natural choice of
ribs 1. The U(E) term penalizes the total length (or square, volume) of the principal manifold and,
indirectly, makes the grid regular by penalizing non-equidistant distribution of nodes along the grid.
The U(R) term is a smoothening factor, chosen to be quadratic instead of using cosinus function as in
the algorithm of Kegl [Kegl et. al, 1999].

Good characteristics of the method such as its universality, low computational complexity and
inherited parallelism open new fields to the applications of principal manifolds, especially for the
analysis of huge datasets with hundreds of thousands of points with dimensionality of order of
hundreds. The algorithm we described with its C++ implementation provide a way to construct a
principal manifolds for these datasets approximated by number of nodes of order of 10000 in a
reasonable time.

Appendix. Constructing the sparse matrix

The matrix (6) has p2 number of elements (p – number of grid nodes), but for typical grids only kp
of them are non-zero, where k << p. Here we provide a simple procedure to fill only non-zero
elements of the matrix, thus, define its sparse structure.

For the ejk matrix:

1 Of course, the differences must be divided by node-to-node distances in order to be true derivative approximations,
but in this case the quadratic structure of the term would be violated. We suppose that the grid is regular with almost
equal node-to-node distances, then the dependence of coefficients λi, µj on the total number of nodes contains this
factor.

1) all ejk values are initialized by zero;

2) if for an edge Ei with weight λi, the beginning node is yk1and the ending node is yk2, then we
update the ejk values:

i
kkkk ee λ+= 1111 , i

kkkk ee λ+= 2222 ,

i
kkkk ee λ−= 2121 , i

kkkk ee λ−= 1212 .

3) Steps 1-2 are repeated for every edge.

For the rjk matrix:

1) all rjk values are initialized by zeros;

2) if for an edge Ri with weight µi, the beginning node is yk1, the middle node is yk2 and the
ending node is yk3, then we update the rjk values:

i
kkkk rr µ+= 1111 , i

kkkk rr µ42222 += , i
kkkk rr µ+= 3333

i
kkkk rr µ22121 −= , i

kkkk rr µ21212 −= ,

i
kkkk rr µ23232 −= , i

kkkk rr µ22323 −= ,

i
kkkk rr µ+= 3131 , i

kkkk rr µ+= 1313 .

3) Steps 1-2 are repeated for every edge.

References

Aizenberg, L. Carleman's Formulas in Complex Analysis: Theory and Applications.
Mathematics and Its Applications; 244. Kluwer, 1993.

Banfield J. D., Raftery A.E. Ice floe identification in satellite images using mathematical
morphology and clustering about principal curves. Journal of the American Statistical Association
87, N 417, pp. 7-16, 1992.

Cai W., Shao X., Maigret B. Protein-ligand recognition using spherical harmonic molecular
surfaces: towards a fast and efficient filter for large virtual throughput screening. J. Mol. Graph.
Model. 2002 Jan; 20(4): 313-28.

Dongarra J., Lumsdaine A., Pozo R., Remington K. A Sparse Matrix Library in C++ for High
Performance Architectures. Proceedings of the Second Object Oriented Numerics Conference, pp.
214-218, 1994.

Erwin E., Obermayer K., Schulten K. Self-organizing maps: ordering, convergence properties
and energy functions. Biological Cybernetics, 67:47–55, 1992.

Gorban A.N., Pitenko A.A., Zinov'ev A.Y., Wunsch D.C. Vizualization of any data using elastic
map method. 2001. Smart Engineering System Design 11, p. 363-368.

Gorban A.N., Rossiev A., Makarenko N., Kuandykov Y., Dergachev V. Recovering data gaps
through neural network methods. International Journal of Geomagnetism and Aeronomy, 2002, V 3,
N. 2.

Gorban A.N., Zinovyev A. Yu. Method of Elastic Maps and its Applications in Data
Visualization and Data Modeling. International Journal of Computing Anticipatory Systems,
CHAOS. 2001. V 12. PP. 353-369.

Gorban A.N., Zinovyev A., Wunsch D.C. Application of the method of elastic maps in analysis
of genetic texts. 2003, in press.

 Gorban A.N., Zinovyev A.Yu. Visualization of data by method of elastic maps and its
applications in genomics, economics and sociology. Preprint of Institut des Hautes Etudes
Scientiques. 2001. M/01/36. http://www.ihes.fr/PREPRINTS/M01/Resu/resu-M01-36.html

Hastie T. Principal curves and surfaces. PhD Thesis. Stanford University, 1984.
Hastie T., Stuetzle W. Principal curves. Journal of the American Statistical Association 84, N

406. pp. 502-516, 1989.
Kegl B. Principal curves: learning, design, and applications, Ph. D. Thesis, Concordia

University, Canada, 1999.
Kegl B., Krzyzak A. Piecewise linear skeletonization using principal curves. IEEE Transactions

on Pattern Analysis and Machine Intelligence 24, N 1, pp. 59-74, 2002.
Kegl B., Krzyzak A., Linder T., Zeger K. A polygonal line algorithm for constructing principal

curves. Neural Information Processing Systems 1998. MIT Press, 1999, pp. 501-507.
Kegl B., Krzyzak A., Linder T., Zeger K. Learning and design of principal curves. IEEE

Transactions on Pattern Analysis and Machine Intelligence 22, N 3, pp. 281-297, 2000.
LeBlanc M., Tibshirani R. Adaptive principal surfaces. Journal of the American Statistical

Association 89, pp. 53-64, 1994.
Mulier F., Cherkassky V. Self-organization as an iterative kernel smoothing process. Neural

Computation, 7:1165–1177, 1995.
Ritter H., Martinetz T., Schulten K.. Neural Computation and Self-Organizing Maps: An

Introduction. Addison-Wesley, Reading, Massachusetts, 1992.
Sayle R., Bissell A. RasMol: A Program for Fast Realistic Rendering of Molecular Structures

with Shadows. 1992. In Proceedings of the 10th Eurographics UK'92 Conference, University of
Edinburgh, Scotland.

Stanford D., Raftery A.E. Principal curve clustering with noise. IEEE Transactions on Pattern
Analysis and Machine Intelligence 22, N 6, pp.601-609, 2000.

Verbeek J.J., Vlassis N., Krose B. A k-segments algorithm for finding principal curves. A
technical report. http://citeseer.nj.nec.com/article/verbeek00ksegments.html.

http://www.cs.cmu.edu/Groups/NIPS/
http://citeseer.nj.nec.com/article/verbeek00ksegments.html

Figure 1. Node, edge and rib

Figure 2. Elastic nets used in practice

y(i) E(i)(0) E(i)(1) R(i)(1) R(i)(0) R(i)(2)

Figure 3. Energy of elastic net

λ0, µ0 ≈ 103 λ0, µ0 ≈ 102 λ0, µ0 ≈ 101 λ0, µ0 ≈ 10-1

Figure 4, Training elastic net in several epochs

Data
points Graph

nodes

U(Y)

U(E), U(R)

a) spiral

b) large

Data
Gen.curve
Grid

Figure 5. Two-dimensional examples of principal curves construction

Figure 6. Construction of principal surface with spherical topology for a distribution
of points on Van der Waals molecular surface of a biological molecule.

a) b) c)

d) e)

f) g)

Figure 7. Contours extraction with closed principal curve.
a) initial countour; b) blurred contour; c) Floyd-Steinberg error diffusion color image binarization; d,f)

fitting closed principal curve with constant “elasticity”, regions of higher curvature can not be fitted
equally well; e,g) fitting closed principal curve with adaptive elasticity (“break” adaptation dtrategy).

a)

b) c)

d) e)

Figure 8. Non-linear features extraction using principal curves
a) initial image;

b) calculation of local principal components;
c) connecting the graph;

d,e) graph vertices optimization with principal components algorithm.

a) b)

c) d)

Figure 9. Skeletonization using principal curves.
a) initial image;

b) calculation of local principal components;
c) connecting the graph;

d) graph vertices optimization with principal components algorithm.

a)

 b) c)

Figure 10. Visualization of a big dataset in 84-dimensional space.
a) PCA view;

b) projection onto the manifold constructed;
two strong signals are marked by changing point sizes/forms;

c) principal manifold as a screen for displaying points density distribution.

