
Attacks Against OLSR: Distributed Key
Management for Security

Cédric Adjih, Daniele Raffo, Paul Mühlethaler
INRIA, Domaine de Voluceau, France1

Abstract— In Mobile Ad Hoc Networks (MANETs), mobile
nodes use wireless devices to create spontaneously a larger
network, larger than radio range, in which communication with
each other is made possible by the means of routing. One routing
protocol for such MANET networks is OLSR, on which this
article focuses. We examine the security issues, and describe an
architecture including multiple securing mechanisms. The attacks
prevented by this architecture, along with details about protocols,
algorithms, mechanisms and implementation details are given.

I. INTRODUCTION

Security in wireless ad-hoc networks is a requirement for
many applications However, due to their wireless and dis-
tributed nature, ad-hoc networks have to rely on communi-
cation with (potentially out of sight) peers, and a number of
attacks are possible.

This article is presenting a study of security issues related to
integrity of an ad hoc network, and an architecture of security
which is partly implemented. We only consider the use of
the OLSR routing protocol [1]. Security of OLSR is not a
new topic ; in previous works, studies of security issues in
an OLSR Networks have been conducted [3]–[5], and several
proposals for securing OLSR exist, including [3], [4], [6]–[8].

II. OVERVIEW

In this document, the starting point of the security ar-
chitecture is the analysis of an attack tree of the routing
protocol OLSR. The figure 1 represents such an attack tree. An

Fig. 1. OLSR Attack Tree (OR-tree)

attack tree is a formal way to investigate security (see [12]).
Details of the attacks on the figure are found in [5] and [4];
confidentiality attacks (data and routing) are not considered;

1This work was partly funded by DGA/CELAR.

the colored squares correspond to the end attacks that should
be prevented.

Our goal is to give a sketch of an overall balanced security
solution, attempting to identify each attack, and searching for
defenses. Many of the individual elements and mechanisms
were already addressed in previous work

Before addressing attacks of figure 1, a remark is that in
most security architectures, authentication is an essential and
necessary component for avoiding threats. Our architecture
is no exception, and indeed uses authentication, provided by
cryptologic methods. Then network can then be divided in two
parts: authenticated nodes, and unauthenticated nodes.

The main principles of the architecture are:

• For authenticated nodes: trust but verify. By default,
the behavior of authenticated nodes is assumed correct.
However it is assumed that one participant may start to act
adversarily (in the following, an adversarial authenticated
node is denoted compromised node), thus the policy is to
perform ongoing checks.

• For unauthenticated nodes: protection. The aim is to
prevent them to disrupt the network.

It is further described in this article ; the rest of the article
is structured as follows: section III, presents the architecture
built on the previous principles and uses a solution-oriented
approach, which aims at preventing attacks from the tree on
figure 1. In contrast, the complementary section IV, uses
a problem-oriented approach, and gives a taxonomy with
a detailed description of each problem (attack). The other
sections describe components of the architecture: distributed
key management in section V, study of cryptosystems in sec-
tion VI, wormhole prevention in section VII, and timestamps
in section VIII.

III. ARCHITECTURE FOR SECURING OLSR

A. Overview of Authentication Architecture

In the architecture, asymmetric (public key) cryptology is
used. This is a requirement for the policy “trust but ver-
ify”, since with respect to authenticated nodes, a necessary
complement of “verification” is the step the traceability and
accountability: when a trusted node misbehaves, being able to
identify it among other nodes, is a necessity and a deterrent.

With traditional asymmetric cryptology, an issue is that
public keys need to be distributed, hence a PKI infrastructure is
needed. Some efficient proposals and implementations already
exist for OLSR, such as [8], where a distributed certificate

authority is introduced in the network: threshold cryptography
is used so that a node in the network only need to connect the
closest k authorities (and allowing also server redundancy).

In the architecture, choice was made that some Authenti-
cation Authority would exist, but would not be necessarily
present in the ad-hoc network. Hence a participant willing to
join the network would first communicate with the Authen-
tication Authority to exchange security parameters, such as
public or private keys or certificates. Later it would enter in the
network: with “identity-based” cryptography it would not need
to diffuse its public keys ; however for performance reasons,
choice was made that a node may use traditional asymmetric
cryptography, and then an important point of the architecture
is this distribution of the public key itself. The authentication
architecture is further detailed in section V.

B. Preventing attacks from authenticated nodes

On fig. 1, the attacks specific from the authenticated nodes
are the following: generation of incorrect control messages
(see section IV-A), not forwarding data packets, not forward-
ing control messages (see section IV-B).

The prevention of incorrect control messages, was addressed
in [10], by noting that since all OLSR information is about
links, it is sufficient that both sides of a link sign an advertised
link ; alternatively, in [2], each node originates link state
messages, hence a remote node, can check whether consistent
link state messages from both sides of any link were received.
In both cases, one unique compromised node is unable to inject
invalid topology in control messages. If several compromised
nodes collaborate, they can inject artificial topology between
each other, but not, however, between uncompromised nodes.

The other two attacks are compromised nodes that do not
forward data or control messages (dropping them). Detecting
this misbehavior is a difficult problem, and is the target of
further work: a first step, by counting packets sent and received
(at two hops distance), was introducted in [4]. It prevents
one unique compromised node to drop packets ; ensuring that
correct packets are received may be done as in section VII,
and preventing attacks by several compromised nodes was
researched in [14], [15].

C. Preventing attacks from unauthenticated nodes

With respect to unauthenticated nodes, the three attacks
listed are: wormhole attacks (see section IV-B.3), replay at-
tacks (see section IV-B.2) and preventing packet transmission.

About the attacks preventing packet transmission, at the
physical and MAC level: defense against them is left as
external methods; for instance jamming is typically addressed
by the search of jamming devices.

The replay attack: it is the retransmission of some older
control messages. It is prevented by the use of timestamps,
see section VIII.

The wormhole attack is the one with the most potential
consequences. A wormhole attack [5], [11] has the effect of
creating artificially a link by repeating packets from one place
of the network to another, inducing incorrect topology. This is

effectively an attack when data packets, or control messages
are dropped on this artificial link, entirely or selectively.

A defense for packet dropping is to use a variant of the
counting techniques employed in [4]. Both ends of a link
can discover that a message was sent but not received by
techniques in sec. VII. If this occurs too frequently, any of the
sides may decide that the link is compromised, and cease to
advertise or use it. Another defense is to consider transmission
and reception times based on precise clocks [9]: the difference
should be close to the transmission delay.

Another attack which may be create by a wormhole attack,
is a manufacturing of an impossible control message order,
causing MPR flooding to drop them (“inducing incorrect
message forwarding”), see section IV-B.4. This is a topic for
further investigation.

D. Implementation of the Architecture

Part of the mechanisms presented previously have been,
or are being implemented. The implementation is based on
OOLSR [17]. An important parameter is that of course, re-
cent equipment is targeted (e.g., with noticeable processing
power); however one of our implementation targets is low-
consumption, low-resource routers used in the demonstrator
built at CELAR [16] (based on 486-133 Mhz microproces-
sors). This has implications.

The following table, reiterates the previously analyzed at-
tacks and defenses, and indicates degree of implementation.

Attack Defense
Unauthenticated nodes
in the network

authentication, and key distribu-
tion, implemented

Not forwarding data
packets

subject of further research with
techniques from section VII
and/or also [4], [14]

Not forwarding control
messages

(same as above)

Generation of incorrect
messages

see [10] (or the approach of [2])

Jamming not addressed
Replay attack timestamps, section VIII, imple-

mented
Wormhole attack section VII, to be implemented

IV. ATTACKS ON THE OLSR PROTOCOL

This section gives further details and illustrations of attacks
of the OLSR protocol (it originates from [3], see also [5]).
While these vulnerabilities are specific to OLSR, they can be
seen as instances of what other link state routing protocols,
such as OSPF [35], are subject to.

A. Incorrect Control Message Generation

One way in which a node can misbehave is generating
control messages which are incorrect according to OLSR.

1) Incorrect HELLO Message Generation: As an instance
of identity spoofing, a misbehaving node X may send HELLO
messages on behalf of node C (Figure 2). Subsequently,
nodes A and B may announce reachability to C through their
HELLO and TC messages. Furthermore, node X may choose

MPRs from among its neighbors, signaling this selection while
pretending to have the identity of node C. Therefore, the
chosen MPRs will advertise in their TC messages that they
provide a “last hop” to C. Conflicting routes to node C, with
possible connectivity loss, may result from this.

B

XA

C

Fig. 2. Node X sends HELLO messages pretending to be C.

We call link spoofing the signalisation of an incorrect set
of links in a control message. A misbehaving node X may
perform link spoofing in its HELLO messages advertising a
link with non-neighbor node A, as in Figure 3. One of the
consequences is that C will have an incorrect MPR set, and
messages originating from E and relayed through the MPR
mechanism will not reach node A.

B

X

D E

A

C

Fig. 3. Node X sends HELLOs advertising a fake link with A.

Node X can also misbehave by signaling an incomplete set
of neighbors.

2) Incorrect TC Message Generation: TC messages with a
spoofed originator address cause incorrect neighbor relation-
ship to be advertised in the network. For instance, node X

sends a TC message on behalf of node C, advertising A as
a neighbor (Figure 4). Node D, upon reception of the TC
message, will falsely conclude that C and A are neighbors.
For this attack to be successful, the TC message must bear an
ANSN (Advertised Neighbor Sequence Number) greater than
the highest ANSN value referenced to C, as contained in any
tuple of D’s Topology Set; otherwise D will discard the TC
message, according to the protocol.

XA

CD

Fig. 4. Node X sends TC messages pretending to be C.

TC messages with spoofed links have the same effect,
and can perturb severely the network topology as stored by
legitimate nodes.

3) Incorrect MID/HNA Message Generation: A misbe-
having node X can generate wrong MID/HNA messages,
declaring interfaces that are not their own, or spoofing the
originator address of the message so that it apparently declares
interfaces that are not their own. In this case, nodes will have
problems reaching these interfaces.

4) ANSN Attack: The misbehaving node may listen to a TC
message from node A and record the ANSN of the message;
then it sends a TC with a spoofed originator address of node
A, and an ANSN much greater than the value recorded.
According to the protocol specifications, nodes will ignore
further TC messages from A as old information, because they
bear a smaller ANSN. We call this an ANSN attack.

This attack can be spotted as the spoofed TC bears an
ANSN much higher than that of the latest genuine TC message
received from A, however the attack may be performed
repeatedly.

B. Incorrect Control Message Relaying

If control messages are not properly relayed, network mal-
functions are possible.

1) Blackhole Attack: An attacker can drop received routing
messages, instead of relaying them as the protocol requires, in
order to reduce the quantity of routing information available
to the other nodes. This is called blackhole attack by Hu et al.
[32], and is a “passive” and a simple way to perform a Denial
of Service.

If a node fails to relay TC messages, the network may ex-
perience connectivity problems. In networks where no redun-
dancy exists (e.g. in a “strip” network), connectivity loss will
surely result, while other topologies may provide redundant
connectivity.

If MID and HNA messages are not properly resent, ad-
ditional information regarding multiple nodes interfaces and
connections with external networks may be lost.

2) Replay Attack: As topology changes, old control mes-
sages, while valid in the past, describe a topology configura-
tion not existing anymore. An attacker can perform a replay
attack by recording old valid control messages and resending
them, to make other nodes update their routing tables with
stale routes. This attack is successful even if control messages
bear a non-timestamped digital signature.

A TC message cannot be replayed “as is” or it will not be
accepted, because of the ANSN. Therefore the attacker needs
to increase the ANSN of the TC message, causing indirectly
an ANSN attack.

3) Wormhole Attack: The wormhole attack [33] is quite
severe, and consists in recording traffic from one region of
the network and replaying it “as is” in a different region. An
extraneous A−B link can be artificially created by an intruder
node X by wormholing control messages between A and B

(Figure 5). A longer wormhole can also be created by two
colluding intruders X and X ′ (Figure 6). The created link is
at the mercy of the attacker.

To successfully exploit the wormhole, the attacker must
wait until A and B have exchanged sufficient HELLO

A
B

X

Fig. 5. A wormhole created by node X .

A

X

B

X’

Fig. 6. A wormhole created by colluding nodes X and X ′.

messages (through the wormhole) to establish a symmetric
link. Until that moment, other tunneled control messages
would be rejected, because the OLSR protocol specifies that
TC/MID/HNA messages be not processed if the relayer node
(the “last hop”) is not a symmetric neighbor. However, once
created, the A − B link is at the mercy of the attacker.

4) MPR-Flooding Attack: The “first transmit rule”, de-
scribed in the OLSR specifications, states that a node receiving
a message in MPR flooding checks if the sender is its MPR
selector. If so, the node retransmits the message. If the sender
is not a MPR selector of the node, the latter will never
retransmit anymore the message.

It could be exploited to impede the correct relaying of
control messages and we call the related misbehavior a MPR
attack. Consider the following scenario (Figure 7): node A

sends a message to its neighbors B and X , where B is MPR
of A, and X is not a MPR. The misbehaving node X does
not select properly its MPR set, and retransmits the message
(even if it is not supposed to) which is received by C. Node
B retransmits the message to C, where C is MPR of B. The
crucial point is that C, even being a MPR, will not relay the
message because C has already received it from X .

X

C

B

A

Fig. 7. Node X performs a MPR attack.

C. Gaining Priviledged Position

A complement to other attacks is the fact that a node can
force its election as MPR by setting the Willingness field
to the WILL ALWAYS constant in its HELLOs. According to
the protocol, its neighbors will always select it as an MPR.

Using this mechanism, a compromised node can easily gain,
as an MPR of some nodes, a priviledged position inside the
network and later exploit it. In this case, a countermeasure
is to allow each node to select two (or even more) MPRs
to cover all its 2-hop neighborhood (at the expense of MPR
flooding efficiency). This remedy can also be used to prevent
incorrect MPR selection, which is an effect of some of the
attacks explained in the previous sections.

V. DISTRIBUTED KEY MANAGEMENT

Our architecture relies on asymmetric cryptographic tech-
niques. In this section, this general architecture is detailed,
while details about cryptography are in section VI. The
architecture relies on two levels of key distribution:
• PKI Interaction: an (offline) PKI Authority is in charge

of certifying or assigning keys of each node participating in
the trusted network. Each node joining the network will have
the public key of of the certification authority, as pictured on
figure 8. This key is denoted the global key.
• Key Distribution: later, any node entering the ad-hoc

network could diffuse its public keys, with a specific key
exchange protocol, as pictured on figure 9, with proper pa-
rameters, certificates and signatures. The key which is used
later to sign message is denoted the local key, and can be
either its global key, or newly generated private/public keys.
• Protocol Message Signing: at the same time, the node

would start originating OLSR control messages, signing them
using the local key with a specific extension (see figure 10)
which prepends a special signature message.

However, the architecture targets two kinds of different
asymmetric cryptography: identity-based techniques, where
the public key of a node is derived from the some identifier of
the node (see sec. VI), other traditional asymmetric techniques,
where a public key exists but must be distributed (possibly
with certificate).

The previous presentation and figures were accurate in the
case of traditional asymmetric techniques. But when identity-
based systems are used, the PKI Authority doesn’t need to
issue a certificate for the key of the node: in essence, the key
is “self-certifying”. There are two levels of signatures (global
and local keys), each of which can use either technique. The
following table details the key distribution method, depending
on the choice at each level:

Global key Local key Key distribution
identity-
based

same not needed

identity-
based

traditional
asymmetric

distribution of local key

identity-
based

different,
identity-based

node can act as a IBS key
server for other nodes, and dis-
tributes its local public master
key with all IBS parameters

traditional
asymmetric

identity-based same as above, but with a cer-
tificate for global key

traditional
asymmetric

same/different;
traditional
asymmetric

distribution of local public key
and certificate for global key

Fig. 8. Authentication Authority

Fig. 9. Key Distribution Fig. 10. Signing

As represented on figure 9 and in the table, a special
protocol operates in order to exchange keys. In the case of an
global key, with traditional asymmetric cryptology, the node
originates Key Distribution Messages which include: the global
public key, a certificate of the global public key which includes
the node identifier (originator IP address), and, when the local
key is different from the global key, all the parameters of the
local key. To authenticate the message, it is signed with the
global key itself. In the currently implemented protocol, a pure
flooding of this message is performed.

When the global key is identity-based, no certificate is
necessary, and only information about the local key (if any)
is transmitted (with a signature).

VI. CRYPTOSYSTEMS

Our security architecture relies on the use of asymmetric
keys. Several such cryptosystems exist, and a good reference
for mature and state-of-the-art cryptosystems is the IEEE
P1363 standardisation group for public-key cryptography [31].

Asymmetric key systems include:
• Pairing-based systems
• Identity-based systems (some of which are pairing-based)
• Traditional public key cryptography
Each system offer different features. Some pairing-based

systems such as BLS signatures [18] offer short signa-
tures with many cryptographic extensions (blind, aggregate,
threshold signatures, multisignatures, batch-verification with
[24], . . . ; see [19] for a review of pairing-based systems).

Some of these pairing-systems, are “identity-based” sys-
tems. The principle of identity-based systems is simple: the
public key of a signing entity is derived from an identifier of
the entity (here the IP address). Naturally, the corresponding
private key is generated by the Authentication Authority.
Identity-based systems remove the need to transmit a certifi-
cate, or have a certifying authority present in the network.

Traditional public key cryptography offers systems based
on integer factorization or discrete logarithm (faster than pre-
vious methods), and elliptic curve discrete logarithm (shorter
signatures).

A. Implementation and empirical evaluation of cryptosystems

In our current implementation of the security architecture,
two different pairing-based systems are used for signatures:

• Identity-based signatures with Cha-Cheon signatures [20]
(pairing-based), for the global keys.

• BLS short signatures for the local keys.

Both are prototypes designed to investigate cryptosystems,
and the global keys have realistic size but implementation
is slow, while local keys have irrealistic sizes but a faster
implementation.

For both cases, a Weil pairing is used on supersingular
elliptic curves of embedding degree k = 1, using the family
of such curves proposed in [21], and with the following
parameters:

Key Method Elliptic curve and pa-
rameters

Key
(Size)

Security

Global
Key

CC
[20]

ng = 2174 + 2115 + 1,
pg = (2339ng)

2 + 1,
E : y2 = x3

− x

(U, V) ∈
E(Fpg)2

∼ 80
bits, ∼

RSA1024
Local
Key

BLS
[18]

nl = 214+25+1, pl =
(2nl)

2 + 1, E : y2 =
x3

− 4x

s ∈

E(Fpl
)

none in
practice

According to [21], elliptic curves of degree 1 are an possible
but uncommon choice. Then, many optimisations for other
degrees > 1 are not available, and the resulting signature key
size is larger for an identical security level. However as k = 1,
there is no need to consider the elliptic curve on an algebraic
extension of the field Fp; hence, implementation is simpler.

The obtained results are highlighted in the table which
follows. For our proof of concept implementation for local key
signature with 32 bits integers (hence no security), most of the
time is spent in the computation of an hash of the message,
but still, considering the pairing timings, the results obtained
already show that the computational power of the 486 (see
sec. III-D) is too small to have a chance of implementing real
pairings.

Key system 486
(133Mhz)

PIII
(1 GHz)

P4
(2.8 Ghz)

Global Key Sign. (CC) 18.3 s 0.51 s 0.25 s
Global Key Verif. (CC) 77.3 s 2.12 s 1.08 s
Local Key Sign. (BLS) 30 ms 1.1 ms 0.48 ms
Local Key Verif. (BLS) 43 ms 1.57 ms 0.72 ms
Local Key, Weil pairing 7.83 ms 0.28 ms 0.12 ms

In reality, although there exists identity-based systems with
signature methods which are noticeably more efficient [22],
we see that pairing computation is already a bottleneck.
Benchmarking other systems, which are considerably more
mature, we found 150ms for a signature for a PIII 1 Ghz with
[23]. For current security levels, Tate pairing can give faster
results: 32.5ms in [27]; 20ms for a 512-bit Tate pairing with
[26], also in [28], with 53ms for one BLS verification.

Traditional asymmetric cryptography is more suitable for
486-133 Mhz. Using crypto++ [25], results are: ESIGN-
1023 sign/verif= 30ms/12ms; RSA-1024 = 380ms/12ms; RW-
1024=370ms/6ms; LUC=1024=590ms/15ms. Note that signa-
tures longer than verification, match perfectly OLSR networks.

VII. WORMHOLE ATTACK PREVENTION

In order to prevent wormhole attacks, a variant of the count-
ing technique [4] is used. With such techniques, each node
periodically declares how many messages it had received from
neighbors. If a compromised link drops packets, a counting
mismatch will be detected.

However, to prevent compromised links to mutate packets
(instead of just dropping them), instead of a simple count, each
node advertises a set of hashes of of the packets received over
each of the last k intervals, using [13], allowing neighbors to
check whether packet loss crosses a threshold. If it is the case,
the link is assumed compromised and is no longer advertised.

VIII. TIMESTAMP

In our architecture, replay attacks are prevented by the
traditional use of timestamps. A message is rejected if the
timestamp is judged to be too old. The timestamp used here is
based on wall clock. There are two possibilities: synchronized
or unsynchronized clocks.

The main issue is that with unsynchronized clocks, each
OLSR node should first determine its clock difference with
any other node in the network in a secure way. This re-
quires typically a N2 messages exchanges, associated with
a challenge/response protocol. In [6], the standard chal-
lenge/response was optimized to limit emissions to periodic N

message exchanges (each transmitted to the whole network),
while in [7], the challenge/response protocol was run once but
for each pair of nodes.

Because of the complexities of unsynchronized clocks,
in this current approach, clock synchronization is assumed.
Hence the functioning is the following:
• The clock of one node has an initial synchronization,

with some authentication authority, when key information is
exchanged.
• The clock of one node is synchronized (by an unspecified

mechanism) from time to time (for instance manually) or direct
connection to a trusted clock reference.

A timestamp is rejected if it is too far from the current time,
e.g. |T imestamp− t| ≥ ∆t. A logical choice for ∆t is to set
it close to the holding time of duplicate messages. Indeed,
once a message is in the duplicate table (at first reception),
further duplicate transmissions will be ignored as long as the
duplicate tuple exists, protecting against replay attacks.

Then, the main issue when synchronizing clock becomes
the precision of the clocks. In most computers and network
equipment, piezo-electric quartz oscillators are used to keep
track of time (in PCs, it is the so-called BIOS clock), and the
precision of those clocks is limited ; in absolute terms, on the
order of magnitude of one second per day. For instance, [29]
reports a maximum clock drift between nodes was 0.7 seconds

per day on a cluster of 8 PCs. This drift is due to two factors:
the lack of precision of the quartz (assumed to oscillate at a
certain frequency F0, different from the actual one Fr), and
also the variations in frequency Fr due to temperature, aging,
vibration-induced noise, . . . [30]. The first factor dominates.

A. Empirical study of time synchronization

In order to assess the frequency needed for resynchroniza-
tion, experiments were conducted with the routers targetted
by the OLSR implementation (see sec. III-D): 4 routers were
broadcasting their BIOS clock periodically on an Ethernet. A
machine recorded the arrival times of the different broadcast
of the clocks, along with their advertised time value.

First the time drift is presented on figure 11: one of the
machines, router 1 is used at reference, and the difference
between the value of clocks of the nodes is plotted as a
function of the experiment. Clocks are synchronized at the
begining of the experiment. As one can see, the maximum
clock drift (between router 2 and router 3, is around 1
second per day), quite comparable with expected values.

However the second observation is that the curves of
figure 11 are mostly linear, confirming that the main factor
in clock drift is incorrect calibration of Fr. Using linear
regression on the values found, the linear component of
drift between one router and the router 1 was removed.
In practice such corrections could be performed by making
precise time difference measurements at two separated points
of time. The figure 12 shows the results. The first observation,
is that the precision is much better, the drift is around
30 ms per day. However the shape of the curves is not
convincing, for instance the curve of the router router 2
is noticeably irregular. Comparing the drift estimates based 1)
on measurements from day=4 to day=6, to 2) drift estimates
based on measurements from day=7.5 to day=9.5 (worst case
discrepancy), the discrepancy between the estimates is found
to be about 0.2 second per day. Hence it is one order of
magnitude more that before, but nearly one order of magnitude
than without linear drift correction.

The following table gives a summary of the equiv-
alent necessary synchronization intervals, for a drift of
maximum 15 seconds, based on the measurement results:

Method unique syn-
chronization

drift correction
(average)

drift correction
(worst)

Measured drift 1 sec per day 30 ms per day 0.2 sec per day
Needed synchro-
nization interval

every 15 days every 500 days every 75 days

IX. CONCLUSION

This article presented issues of OLSR security, reviewed
some of the existing litterature addressing them, and proposed
an architecture to secure OLSR, which is being implemented.

ACKNOWLEDGMENTS

The authors want to thank Fraņcois Morain and Andreas Enge, for
information and pointers about cryptography, including identity-based
systems.

-7

-6

-5

-4

-3

-2

-1

 0

 1

 2

 3

 1 2 3 4 5 6 7 8 9 10

tim
e

di
ffe

re
nc

e
(s

ec
on

ds
),

 r
ef

er
en

ce
 =

 r
ou

te
r

1

time (days)

router 2
router 3
router 4

Fig. 11. Time difference between nodes

-0.15

-0.1

-0.05

 0

 0.05

 0.1

 0.15

 0.2

 1 2 3 4 5 6 7 8 9 10

tim
e

di
ffe

re
nc

e
(s

ec
on

ds
),

 r
ef

er
en

ce
 =

 r
ou

te
r

1

time (days)

router 2
router 3
router 4

Fig. 12. Time difference when synchronising clocks

REFERENCES

[1] Clausen, Thomas Ed. - Jacquet, Philippe Ed. - Adjih, Cédric - Laouiti,
Anis - Minet, Pascale - Mühlethaler, Paul - Qayyum, Amir - Viennot
Laurent The Optimised Routing Protocol for Mobile Ad-hoc Networks:
protocol specification, INRIA Research Report RR-5145, March 2004
; also “Optimized Link State Routing Protocol”, IETF: The Internet
Engineering Task Force, RFC 3626, October 2003

[2] R. Perlman, “Network Layer Protocols with Byzantine Robustness”,
Ph.D. thesis, Massachusetts Institute of Technology, October 1988.

[3] Daniele Raffo, “Security Schemes for the OLSR Protocol for Ad Hoc
Networks.”, Ph.D. thesis, Université Paris 6, to be defended in September
2005.

[4] Cédric Adjih, Thomas Clausen, Anis Laouiti, Paul Mühlethaler, and
Daniele Raffo. “Securing the OLSR Routing Protocol With or Without
Compromised Nodes in the Network”. Technical Report INRIA RR-
5494. HIPERCOM project, INRIA Rocquencourt, February 2005.

[5] Thomas Clausen (ed) and Emmanuel Baccelli (ed). “Securing OLSR
Problem Statement”. Internet-Draft, draft-clausen-manet-solsr-ps-00.txt,
work in progress. IETF MANET Working Group, February 14 2005

[6] Cédric Adjih, Thomas Clausen, Philippe Jacquet, Anis Laouiti, Paul
Mühlethaler, and Daniele Raffo. “Securing the OLSR Protocol”. In
Proceedings of the 2nd IFIP Med-Hoc-Net 2003, Mahdia, Tunisia, June
25-27 2003.

[7] A. Hafslund, A. Tnnesen, J. Andersson, R. Rotvik, Kure, “Secure
Extension to OLSR”, OLSR Interop Workshop, 2004.

[8] D. Dhillon, T. Randhawa, M. Wang, L. Lamont, “Implementing a Fully
Distributed Certificate Authority in an OLSR MANET”, WCNC 2004
IEEE, Atlanta, Georgia, USA

[9] Daniele Raffo, Cdric Adjih, Thomas Clausen, and Paul Mhlethaler. “Se-
curing OLSR Using Node Locations”. In Proceedings of 2005 European
Wireless (EW 2005), Nicosia, Cyprus, April 10-13 2005.

[10] Daniele Raffo, Cédric Adjih, Thomas Clausen, and Paul Mühlethaler.
“An Advanced Signature System for OLSR”. In Proceedings of the 2004
ACM Workshop on Security of Ad Hoc and Sensor Networks (SASN
’04), Washington DC, USA, October 25 2004.

[11] Kimaya Sanzgiri, Bridget Dahill, Brian N. Levine, Clay Shields, and
Elizabeth M. Belding-Royer. “A Secure Routing Protocol for Ad hoc
Networks”, ICNP November 2002.

[12] Bruce Schneier “Attack Trees – Modeling security threats” Dr. Dobb’s
Journal December 1999

[13] Burton H. Bloom, “Space/time trade-offs in hash coding with allowable
errors”, Communications of the ACM, Volume 13, Issue 7 (July 1970),
pp 422-426.

[14] I.Avramopoulos, H. Kobayashi, R. Wang, and A. Krishnamurthy,
“Highly secure and efficient routing”, in Proc. IEEE Infocom 2004, Hong
Kong, Mar. 2004.

[15] I.Avramopoulos, H. Kobayashi, R. Wang, and A. Krishnamurthy,
“Amendment to: Highly secure and efficient routing”, Feb. 2004.

[16] T. Plesse, J. Lecomte, C. Adjih, M. Badel, P. Jacquet, A. Laouiti, P.
Minet, P. Muhlethaler, A. Plakoo. ”OLSR performance measurement in

a military mobile ad-hoc network”, Int. Workshop on Wireless Ad-Hoc
Networking, Tokyo, Japan, March, 2004.

[17] OOLSR, implementation of the OLSR protocol, INRIA,
http://hipercom.inria.fr/OOLSR/, 2003-2005

[18] D. Boneh, B. Lynn, H. Shacham, ”Short signatures from the Weil
pairing,” Advances in Cryptology, Asiacrypt’2001, Lecture Notes on
Computer Science 2248 (2002).

[19] R. Dutta, R. Barua, P. Sarkar, ”Pairing-Based Cryptography : A Survey”,
Cryptology ePrint Archive, Report 2004/064.

[20] J. C. Cha, J. H. Cheon, ”An Identity-Based Signature from Gap Diffie-
Hellman Groups”, Practice and Theory in Public Key Cryptography
PKC’2003, Lecture Notes on Computer Science 2567.

[21] N. Koblitz, A. Menezes, “Pairing-based cryptography at high security
levels”, technical report, CACR 2005-08, Centre for Applied Crypto-
graphic Research, University of Waterloo, 2005.

[22] Paulo Barreto, private communication.
[23] Security Lab in the Computer Science Department at Stanford Univer-

sity, ibe-0.7.2.tgz implementation of Identity-Based Encryption
(and signature), http://crypto.stanford.edu/ibe/.

[24] J.H Cheon, Y.D. Kim, H.J. Yoon “A New ID-based Signature with Batch-
Verification”, Cryptology ePrint Archive, Report 2004/131.

[25] W. Dai et al., “Crypto++”,
http://www.eskimo.com/˜weidai/cryptlib.html

[26] M. Scott, MIRACL, Multiprecision Integer and Rational Arithmetic
C/C++ Library, http://indigo.ie/˜mscott/

[27] S. Galbraith, K. Harrison, D. Soldera, “Implementing the Tate pairing”,
HP Laboratories Research Report HPL-2002-23, March 2002.

[28] P.S.L.M. Barreto, H.Y. Kim, B. Lynn, M. Scott, “Efficient Algorithms for
Pairing-Based Cryptosystems”, Crypty’2000, LNCS 2442, pp 354–368.

[29] Jorji Nonaka, Gerson H. Pfitscher, Katsumi Onisi, Hideo Nakano “An
Evaluation of Low Cost Hardware-assisted Internal Clock Synchroniza-
tion in PC Cluster Environment”, PDPTA 2002, pp 456-461.

[30] J. R. Vig, “Introduction to Quartz Frequency Standards”, SLCETTR -
92-1 (rev. 1), Army Research Laboratory, Electronic and Power Sources
Directorate, Fort Monmouth, NJ, October 1992.

[31] The IEEE P1363 Working Group, Standard Specifications For Public-
Key Cryptography.

[32] Yih-Chun Hu, Adrian Perrig, and David B. Johnson. Ariadne: A secure
on-demand routing protocol for ad hoc networks. In Proceedings
of the 8th ACM International Conference on Mobile Computing and
Networking, September 2002.

[33] Yih-Chun Hu, Adrian Perrig, and David B. Johnson. Packet leashes:
A defense against wormhole attacks in wireless ad hoc networks. In
Proceedings of the Twenty-Second Annual Joint Conference of the
IEEE Computer and Communications Societies (INFOCOM 2003), San
Francisco, CA, USA, April 2003.

[34] Leslie Lamport, Robert Shostak, and Marshall Pease. The Byzantine
generals problem. ACM Transactions on Programming Languages and
Systems, 4(3):382–401, 1982.

[35] J. Moy. OSPF version 2, April 1998. RFC 2328, Standards Track.

