MCS-48™
MICROCOMPUTER
USER’'S MANUAL

Intellec and MCS are Registered
Trademarks of Intel Corporation

Copyright ©1978 by intel Corporation. All rights reserved, no part of this publication
including any mnemonics contained herein may be reproduced without the prior
written permission of Intel Corporation, 3065 Bowers Avenue, Santa Clara, CA 95051

INTRODUCTION

1.0 Introductionto MCS-48™ 1-1
1.1 FunctionsofaComputer 1-5
1.2 Programming a Microcomputer 1-10
1.3 Developing An MCS-48™ Based Product 1-13

e The 8049/8039 is now 80% faster! See page 6-9.

* The 8022 is an 8021 with more Memory, I/O, and an A/D
converter. See page 6-21.

INTRODUCTION

1.0 Introduction to MCS-48™

Recent advances in NMOS technology
have allowed intel for the first time to place
enough capability on a single silicon die to
create a true single-chip microcomputer
containing all the functions required in a
digital processing system. A set of such
microcomputers on single chips, their
variations, and optional peripherals are
collectively called the MCS-48 micro-
computer family. These products are fully
described in this manual.

The head of the family is the 8048
microcomputer which contains the following
functions in a single 40 pin package:

8-Bit CPU

1K x 8 ROM Program Memory
64 x 8 RAM Data Memory

27 i/0 Lines

8-Bit Timer/Event Counter

A 2.5 or 5.0 microsecond cycle time and a
repertoire of over 90 instructions each
consisting of either one or two cycles makes
the single chip 8048 the equal in performance
of most presently available multi-chip NMOS

microprocessors. The 8048 is, however, a
true “low-cost” microcomputer. Asingle 5V
supply requirement for all MCS-48 com-
ponents assures that "low cost” also
applies to the power supplyin your system.

New Family Members

The MCS-48 family of microcomputers
which began with the 8048 and 8748 has
now been expanded with new members
which provide either more capability or
lower cost than the original family mem-
bers. While broadening the applications
possibie with a single chip microcomputer,
these new microcomputers share both the
instruction set and development support of
the 8048.

The 8049 is a single-chip microcomputer
which is completely interchangeable with
the 8048, but contains twice the program
memory and twice the data memory of the
8048. The 8035 and 8039 are compatible
processors without internal program mem-
ory. The 8039 contains twice the data
memory of the 8035.

The 8021 is a new very low cost MCS-48
family member which contains a subset of

8049 8048 8021 FEATURES
v v v 8 BIT CPU
2K x 8 1K x 8 1K x 8 PROGRAM MEMORY
128 x 8 64x8 64 x8 DATA RAM
27 27 21 1/0O LINES
v v v TIMER COUNTER
v v v OSCILLATOR AND CLOCK
v N v RESET CIRCUIT
v v INTERRUPT

ON CHIP FEATURES

INTRODUCTION

the 8048's instruction set and incorporates
several new features critical in low cost
applications.

Even with low component costs; however, a
project may be jeopardized by high develop-
ment and rework costs resulting from an
inflexible production design. Intel has solved
this problem by creating two pin-compatible
versions of the 8048 microcomputer: the
8048 with mask Programmable ROM pro-
gram memory for low cost production and
the 8748 with user programmable and
erasable EPROM program memory for
prototype development. The 8748 is essen-
tially a single chip microcomputer “bread-
board” which can be modified over and over
again during development and pre-produc-
tion then replaced by the low cost 8021*,
8048, or 8043 ROM for volume production.
The 8748 provides a very easy transition
from development to production and also
provides an easy vehicle fortemporary field
updates while new ROMs are being made.

SPECIAL FEATURES
* SINGLE 5V SUPPLY

* 40 PIN DIP OR 28 PIN DIP

¢ PIN COMPATIBLE ROM AND EPROM

2.5, 5.0 AND 10.0 usec CYCLE VERSIONS
ALL INSTRUCTIONS 1 OR 2 CYCLES
SINGLE STEP

8 LEVEL STACK

2 WORKING REGISTER BANKS

RC, LC, XTAL, OR EXTERNAL
FREQUENCY SOURCE

* OPTIONAL CLOCK OUTPUT
* POWER DOWN STANDBY MODE

To allow the MCS-48 to solve a wide range
of problems and to provide for future
exXpansion, all 8048 and 8049 functions
have been made externally expandable
using either special expanders or standard
memories and peripherals. An efficient low
cost means of I/0 expansion is provided by
either the 8243 I/0 Expander or standard
TTL or CMOS circuits. The 8243 provides
16 1/0 lines in a 24 pin package. For sys-
tems with large 1/0 requirements, multiple
8243s can be used.

For such applications as Keyboards, Dis-
plays, Serial communication lines, etc.
standard MCS-80/85 peripheral circuits
may be added. Program and data memory
may be expanded using standard memories
or the 8355 and 8155 memories that also
include programmable 1/0 lines and timing
functions.

For applications which require a more
custom tailored interface, the 8041 or 8741
Universal Peripheral Interface (UPI-41)
devices can be used. The UPI-41 devices
are available in both ROM and EPROM
versions and are essentially slave versions
of the 8048/8748 which are designed to
interface directly with expandable MCS-48
processors and provide flexible intelligent
I/O capability. The 8041/8741 share the
instruction set of the MCS-48 family of
processors.

The 8035 and 8039 are an 8048 or 8049
respectively without internal program
memory that allows the user to match his
program memory requirements exactly by
using a wide variety of external
memories. The 8035 and 8039 allow the
user to select a minimum cost system no
matter what his program memory re-
quirements. The 8035L is an 8035 with the
powerdown mode of the 8048.

The MCS-48 processors are designed to be
efficient control processors as well as
arithmetic processors. They provide an
instruction set which allows the user to
directly set and reset individual lines within
its 1/0 ports as well as test individual bits
within the accumulator. A large variety of
branch and table look-up instructions
make these processors very efficient in
implementing standard logic functions.
Also, special attention has been given to
code efficiency. Over 70% of the instruc-
tions are a single byte long and all others
are only two bytes long. This means many
functions requiring 1.5K to 2.0K bytes in
other computers may very well be com-
pressed into the 1K words resident in the
8048 or up to 3K to 4K equivalent bytes may
be compressed into the 8049.

*The 8021 is code compatibie but not pin compatible with the 8748.

1-2

INTRODUCTION

FUNCTION PART DESCRIPTION COMMENTS
NUMBER
Microcomputers 8021 1K ROM Program Memory Compatible versions of
8048 1K ROM Program Memory the single chip microcom-
8049 2K ROM Program Memory puters provide mask
8035 No Program Memory 64 x 8 RAM programmed, light erasable,
8035L 8035 with Power Down Mode or no internal program
Eo 8039 No Program Memory 128 x 8 RAM memory.
< 8048-8 1K ROM Program Memory
8 8748-8 1K EPROM Program Memory
= 8035-8 No Program Memory
Memory and 1/0 8355 2K x 8 ROM with 16 1/O Lines Compatible devices aliow
Expanders 8755A 2K x 8 EPROM with 16 1/0 Lines direct expansion of
8155/56 256 x 8 RAM with 22 1/O Lines and Timer MCS-48 functions with
no additional external
components.
1/0 Expander 8243 16 Line I/O Expander L.ow Cost 1/0Q Exapnder
Standard ROMs 8308 1K x 8 450 ns Allow low cost external
2316E 2K x 8 450ns expansion of Program
Memory. The 8308 is
interchangeable with
8708 and the 2316E with
the 2716.
Standard EPROM 8708 1K x 8 450 ns Light Erasable User programmable and
2716 2K x 8 450 ns Light Erasable erasable.
Standard RAMs 8111A4 256 x 4 450 ns Common /O Data memory can be easily
8101A-4 256 x 4 450 ns Separate /O expanded using standard
@ 5101 266 x 4 650 ns CMOS NMQOS RAMs. The 5101
é CMOS equivalent reduces
2 standby power to
g 75 nW/bit
EU Standard /O 8212 8-Bit 1/0 Port Serves as Address Latch or
8 1/0 port.
S B8255A Programmable Peripheral Interface Three 8bit programmable
8'.; 1/0 ports.
g 8251A Programmable Communicating Interface Serial Communications
- Receiver/ Transmitter
)
E Standard Peripherals 82056 1 of 8 Binary Decoder MCS-80 peripheral devices
E 8214 Priority Interrupt Controller are compatible with the
8 8216 Bi-directianal Bus Driver MCS-48 allowing easy
8226 Bi-directionat Bus Driver {Inverting) addition of such
8253 Programmable Interval Timer specialized interfaces as
8259 Programmable Interrupt Controlier the 8279 Keyboard/Display
8279 Programmable Keyboard/Display nterface. Future MCS-
Interface (64 Keys} 80/85 devices will also be
8278 Programmable Keyboard/Display compatible.
Interface (128 Keys}
Universal Peripheral 8041 ROM Program Memory User programmable to
interface 8741 EPROM Program Memory perform any custom /0

and control functions.

MCS-48™ MICROCOMPUTER COMPONENTS

1-3

INTRODUCTION

384

8049
8155

320

8048
81565

DATA MEMORY (RAM)

(38}

128

8049
8155
8355

(38}

8048
8355
8155

(63) (53)

8049

64

8048

24)

8049
8355

(24)

8048
8355

{28} (28)

1K

2K

3K 4K

PROGRAM MEMORY (ROM)

THE EXPANDED MCS-48™ SYSTEM

{ 1 NUMBER QF AVAILABLE
1/0 LINES

The chart above shows the expansion
possibilities using the 8048 and 8049 in
various combinations with the Intel® 8355/
8755 Program Memory and 1I/0O Expander
and the 8155 Data Memory and /0
Expander. Data Memory can be expanded
beyond the resident words in blocks of 256

1-4

by adding 8155’s. Program Memory can be
expanded beyond the resident 1K or 2K in
blocks of 2K by using the 8355/8755 in com-
bination with the 8048 or 8049. If all external
memory is desired, the 8035 or 8039 can be
substituted for the 8048 and 8049.

INTRODUCTION

1.1 The Function of a Computer

This chapter introduces certain basic com-
puter concepts. It provides background
information and definitions which will be
useful in later chapters of this manual. Those
already familiar with computers may skip this
material, at their option.

1.1.1 A Typical Computer System
A typical digital computer consists of:

A central processor unit (CPU)
Program Memory

Data Memory

Input/output (1/0) ports

The processor memory serves as a place to
store Instructions, the coded pieces of
information that direct the activities of the
CPU, while Memory stores the Data, the
coded pieces of information that are
processed by the CPU. A group of logically
related instructions stored in memory is
referred to as a Program. The CPU “reads”
each instruction from memory in a logically
determined sequence, and uses it to initiate
processing actions. If the program sequence
is coherent and logical, processing the
program will produce intelligible and useful
results. The program must be organized such
that the CPU does not read a non-instruction
word when it expects to see an instruction.

The CPU can rapidly access any data stored
in memory; but often the memory is not large
enough to store the entire data bank required
for a particular application. The problem can
be resolved by providing the computer with
one or more Input Ports. The CPU can
address these ports and input the data
contained there. The addition of input ports
enables the computer to receive information
from external equipment (such as a paper
tape reader or floppy disk) at high rates of
speed and in large volumes.

A computer also requires one or more Qutput
Ports that permit the CPU to communicate
the result of its processing to the outside
world. The output may goto adisplay, foruse
by a human operator, to a peripheral device
that produces “hard-copy”, such as a line-

1-5

printer, to a peripheral storage device, such
as a floppy disk unit, or the output may
constitute process control signals that direct
the operations of another system, such as an
automated assembly line. Like input ports,
output ports are addressable. The input and
output ports together permit the processorto
communicate with the outside world.

The CPU unifies the system. It controls the
functions performed by the other compon-
ents. The CPU must be able to fetch
instructions from memory, decode their
binary contents and execute them. It must
also be able to reference memory and 1/O
ports as necessary in the execution of
instructions. In addition, the CPU should be
able to recognize and respond to certain
external control signals, such as INTER-
RUPT requests. The functional units within a
CPU that enable it to perform these functions
are described below.

1.1.2 The Architecture of a CPU

A typical central processor unit (CPU)
consists of the following interconnected
functional units:

Registers
Arithmetic/Logic Unit (ALU)
Control Circuitry

Registers are temporary storage units within
the CPU. Some registers, such as the
program counter and instruction register,
have dedicated uses. Other registers, such as
the accumulator, are for more general
purpose use.

Accumulator

The accumulator usually stores one of the
operands to be manipulated by the ALU. A
typical instruction might direct the ALU to
add the contents of some other register to the
contents of the accumulator and store the
result in the accumulator itself. In general,
the accumulator is both a scurce (operand)
and a destination (result) register. Often a
CPU will include a number of additional
general purpose registers that can be usedto
store operands or intermediate data. The
availability of general purpose registers

INTRODUCTION

eliminates the need to “shuffle” intermediate
results back and forth between memory and
the accumulator, thus improving processing
speed and efficiency.

Program Counter (Jumps, Subroutines and
the Stack):

The instructions that make up a program are
stored in the system’s memory. The central
processor references the contents of mem-
ory in order to determine what action is
appropriate. This means that the processor
must know which location contains the next
instruction.

Each of the locations in memory is
numbered, to distinguish it from all other
locations in memory. The number which
identifies a memory location is called its
Address. The processor maintains a counter
which contains the address of the next
program instruction. This register is called
the Program Counter. The processor up-
dates the program counter by adding “1” to
the counter each time it fetches an
instruction, so that the program counter is
always current (pointing to the next instruc-
tion).

The programmer therefore stores his instruc-
tions in numerically adjacent addresses, so
that the lower addresses contain the first
instructions to be executed and the higher
addresses contain later instructions. The
only time the programmer may violate this
sequential rule is when an instruction in one
section of memory is a Jump instruction to
another section of memory.

A jump instruction contains the address of
the instruction which is to follow it. The next
instruction may be stored in any memory
location, as long as the programmed jump
specifies the correct address. During the
execution of a jump instruction, the proces-
sor replaces the contents of its program
counter with the address embodied in the
Jump. Thus, the logical continuity of the
program is maintained.

A special kind of program jump occurs when
the stored program “Calls” a subroutine. In

1-6

this kind of jump, the processor is requiredto
“remember” the contents of the program
counter at the time that the jump occurs. This
enables the processor to resume execution
of the main program when it is finished with
the last instruction of the subroutine.

A Subroutine is a program within a program.
Usually it is a general-purpose set of
instructions that must be executed repeat-
edly in the course of a main program.
Routines which calculate the square, the
sine, or the logarithm of a program variable
are good examples of functions often written
as subroutines. Other examples might be
programs designed for inputting data to a
particular peripheral device.

The processor has a special way of handling
subroutines, in order to insure an orderly
return to the main program. When the
processor receives a Call instruction, it
increments the Program Counter and stores
the counter’s contents in a reserved memory
area known as the Stack. The Stack thus
saves the address of the instruction to be
executed after the subroutine is completed.
Then the processor loads the address
specified in the Call into its Program Counter.
The next instruction fetched will therefore be
the first step of the subroutine.

The last instruction in any subroutine is a
Return. Such an instruction need specify no
address. When the processor fetches a
Return instruction, it simply replaces the
current contents of the Program Counter
with the address on the top of the stack. This
causes the processor to resume execution of
the calling program at the point immediately
following the original Call instruction.

Subroutines are often Nested; that is, one
subroutine will sometimes call a second
subroutine. The second may call a third, and
so on. This is perfectly acceptable, as long as
the processor has enough capacity to store
the necessary return addresses, and the
logical provision for doing so. In other words,
the maximum depth of nesting is determined
by the depth of the stack itself. If the stack has
space for storing three return addresses, then

INTRODUCTION

three levels of subroutines may be ac-
commodated.

Instruction Register and Decoder

Every computer has a Word Length that is
characteristic of that machine. A computer’s
word length is usually determined by the size
of its internal storage elements and intercon-
necting paths (referred to as Buses); for
example, a computer whose registers and
buses can store and transfer 8-bits of
information has a characteristic word length
of 8-bits and is referred to as an 8-bit parallel
processor. An 8-bit parallel processor gener-
ally finds it most efficient to deal with 8-bit
binary fields, and the memory associated
with such a processor is therefore organized
to store 8-bits in each addressable memory
location. Data and instructions are stored in
memory as 8-bit binary numbers, or as
numbers that are integral multiples of 8-bits:
16-bits, 24-bits, and so on. This characteristic
8-bit field is often referred to as a Byte. If
however, efficient handling of 4 or even 1-bit
data is necessary special processor instruc-
tions can provide this capability.

Each operation that the processor can
perform is identified by a unique byte of data
known as an Instruction Code or Operation
Code. An 8-bit word used as an instruction
code can distinguish between 256 alternative
actions, more than adequate for most
processors.

The processor fetches an instruction in two
distinct operations. First, the processor
transmits the address in its Program Counter
to the program memory. Then the program
memory returns the addressed byte to the
processor. The CPU stores this instruction
byte in a register known as the Instruction
Register, and uses it to direct activities during
the remainder of the instruction execution.

The 8-bits stored in the instruction register
can be decoded and used to selectively
activate one of anumber of output lines. Each
line represents a set of activities associated
with execution of a particular instruction
code. The enabted line can be combined with
selected timing pulses, to develop electrical

1-7

signals that can then be used to initiate
specific actions. This translation of code into
action is performed by the Instruction
Decoder and by the associated control
circuitry.

An 8-bit instruction code is often sufficient to
specify a particular processing action. There
are times, however, when execution of the
instruction requires more information than 8-
bits can convey.

One example of this is when the instruction
references a memory locaticn. The basic
instruction code identifies the operation to be
performed, but cannot specify the object
address as well. In a case like this, a two byte
instruction must be used. Successive instruc-
tion bytes are stored in sequentially adjacent
memory locations, and the processor per-
forms two fetches in succession to obtain the
full instruction. The first byte retrieved from
memory is placed in the processor’s instruc-
tion register, and subsequent byte is placed
in temporary storage; the processor then
proceeds with the execution phase.

Address Register(s)

A CPU may use aregister to hold the address
of a memory location that is to be accessed
for data. If the address register is Program-
mable, (i.e, if there areinstructions that allow
the programmer to alter the contents of the
register) the program can “build” an address
in the address register prior to executing a
Memory Reference instruction (i.e., an
instruction that reads data from memory,
writes data to memory or operates on data
stored in memory).

Arithmetic/Logic Unit (ALU)

All processors contain an arithmetic/logic
unit, which is often referred to simply as the
ALU. The ALU, as its name implies, is that
portion of the CPU hardware which performs
the arithmetic and logical operations on the
binary data.

The ALU must contain an Adder which is
capable of combining the contents of two
registers in accordance with the logic of
binary arithmetic. This provision permits the

INTRODUCTION

processor to perform arithmetic manipu-
lations on the data it obtains from memory
and from its other inputs.

Using only the basic adder a capable
programmer can write routines which will
subtract, multiply and divide, giving the
machine complete arithmetic capabilities.
In practice, however, most ALUs provide
other built-in functions, including boolean
logic operations, and shift capabilities.

The ALU contains Flag Bits which specify
certain conditions that arise in the course of
arithmetic and fogical manipulations. It is
possible to program jumps which are
conditionally dependent on the status of one
or more flags. Thus, for example, the
program may be designed to jump to a
special routine if the carry bit is set following
an additional instruction.

Control Circuitry

The control circuitry is the primary functional
unit within a CPU. Using clock inputs, the
control circuitry maintains the proper se-
quence of events required for any processing
task. After an instruction is fetched and
decoded, the control circuitry issues the
appropriate signals (to units both internal
and external to the CPU) for initiating the
proper processing action. Often the control
circuitry will be capable of responding to
external signals, such as an interrupt. An
Interrupt request will cause the control
circuitry to temporarily interrupt main pro-
gram execution, jump to a special routine to
service the interrupting device, then auto-
matically return to the main program.

1.1.3 Computer Operations

There are certain operations that are basic to
almost any computer. A sound understand-
ing of these basic operations is a necessary
prerequisite to examining the specific
operations of a particular computer.

Timing
The activities of the central processor are

cyclical. The processor fetches an instruc-
tion, performs the operations required,

1-8

fetches the next instruction, and so on. This
orderly sequence of events requires precise
timing, and the CPU therefore requires afree
running oscillator clock which furnishes the
reference for all processor actions. The
combined fetch and execution of a single
instruction is referred to as an Instruction
Cycle. The portion of a cycle identified with a
clearly defined activity is called a State. And
the interval between puises of the timing
oscillator is referred to as a Clock Period. As
a general rule, one or more clock periods are
necessary for the completion of a state, and
there are several states in a cycle,

Instruction Fetch

The first state(s) of any instruction cycle will
be dedicated to fetching the next instruction.
The CPU issues a read signal and the
contents of the program counter are sent to
program memory, which responds by
returning the next instruction word. The first
byte of the instruction is placed in the
instruction register. If the instruction con-
sists of more than one byte, additional states
are required to fetch the second byte of the
instruction. When the entire instruction is
present in the CPU, the program counter is
incremented (in preparation for the next
instruction fetch) and the instruction is
decoded. The operation specified in the
instruction will be executed in the remaining
states of the instruction cycle. The instruc-
tion may call for a data memory read or write,
an input or output and/or an internal CPU
operation, such as a register-to-register
transfer or an add operation.

Memory Read

An instruction fetch is merely a special
program memory read operation that brings
the instruction to the CPU's instruction
register. The instruction fetched may then
call for data to be read from data memory
into the CPU. The CPU again issues a read
signal and sends the proper memory
address; memory responds by returning the
requested word. The data received is pfaced
in the accumulator or one of the other
general purpose registers (not the instruc-
tion register).

INTRODUCTION

Memory Write

A memory write operation is similar to a read
except for the direction of data flow. The
CPU issues a write signal, sends the proper
memory address, then sends the data word
to be written into the addressed data memory
location.

Input/Output

Input and Output operations are similar to
memory read and write operations with the
exception that an 1/O port is addressed
instead of a memory location. The CPU
issues the appropriate input or output
control signal, sends the proper address and
either receives the data being input or sends
the data to be output.

Data can be input/output in either paraliel or
serial form. All data within a digital computer
is represented in binary coded form. A binary
data word consists of a group of bits; each bit
is either a one or a zero. Parallel 1/0 consists
of transferring all bits in the word atthe same
time, one bit per line. Serial i/O consists of
transferring one bit at a time on a single line.
Naturally serial 1/0O is much slower, but it
requires considerable less hardware than
does parallel 1/0.

Interrupts

Interrupt provisions are included on many
central processors, as a means of improving

the processor’s efficiency. Consider the case
of a computer that is processing a large
volume of data, portions of which are to be
output to a printer. The CPU can output a
byte of data within a single machine cycle but
it may take the printer the equivalent of many
machine cycles to actually print the char-
acter specified by the data byte. The CPU
could then remain idle waiting until the
printer can accept the next data byte. If an
interrupt capability is implemented on the
computer, the CPU can output a data byte
then return to data processing. When the
printer is ready to accept the next data byte, it
can request an interrupt. When the CPU
acknowledges the interrupt, it suspends
main program execution and automatically
branches to a routine that will output the next
data byte. After the byte is output, the CPU
continues with main program execution.
Note that this is, in principle, quite similarto a
subroutine call, except that the jump is

initiated externally rather than by the
program.
More complex interrupt structures are

possible, in which several interrupting
devices share the same processor but have
different priority levels. Interruptive proces-
sing is an important feature that enables
maximum utilization of a processor's capa-
city for high system throughput.

INTRODUCTION

1.2 Programming a Microcomputer
1.2.1 Machine Language Programming

A microprocessor is instructed what to do by
programming it with a series of instructions
stored in Program Memory. The processor
fetches these instructions one at a time and
performs the operation indicated. These
instructions must be stored in a form that the
processor can understand. This format is
referred to as Machine Language. For most
microprocessors this instruction is a group
of 8 binary bits (1's and 0's) called a word
(also called a byte if the word is 8-bits). Some
instructions require more than one location
in Program Memory. To execute a multi-byte
instruction, the processor must execute
multiple fetches of program memory before
performing the instruction. Because mutti-
byte instructions take more Program Mem-
ory and take ionger to execute than single
byte instructions their use is usually kepttoa
minimum.

A processor may be programmed by
writing a sequence of instructions in the
binary code (ones and zeros) which the
machine can interpret directly. This is
machine language programming and it is
very useful where the program to be written
is small and the application requires that
the designer have an intimate knowledge of
the microprocessor. Machine language pro-
gramming allows the user, because of his
detailed knowledge, to use many program-
ming “tricks” to produce the most compact
and efficient code possible.

The following is an example of a machine
language program: This program reads 5
sequential 8-bit words in from an /0O port
and stores them sequentially in data
memory. The program starts by initializing
two registers, one which determines where
the data is to be stored and another which

counts the number of words to be stored.
When finished the processor continues on
to the next instructions.

Step Machine
Number Code Explanation
0 1011 1000 Load decimal 32 in
1 0010 0000 register RO _
2 1011 1010 Load decimal 5 in
3 0000 0101 register R2
4 0000 1001 Load Port 1 to accu-
mulator
5 1111 0000 Transfer contents of
accumuiator to reg-
ister addressed by
register 0
6 0001 1000 Increment RO by 1
7 1110 1010 Decrement register 2
8 0000 0100 by 1, if result is zero
continue to step §, if
not go to step 4
9 —_
10 —

As you can see, writing machine instruc-
tions in ones and zeros can be very
faborious and subject to error. it is almost
always more efficient to represent each 8-
bits if machine language code in a
shorthand format called Hexadecimal.
The term hexadecimal results from the
character set used in hexadecimal notation.
Hexadecimal is merely an extension of the
normal decimal numbers by the addition of
the first six letters of the alphabet. This
gives atotal of 16 different characters. Each
hexadecimal “digit” can represent 16
values or the equivalent of four binary bits;
therefore, each 8-bit machine language
word can be represented by 2 hexadecimal
(hex for short) digits. The correspondence
among the decimal, binary, and hex
number systems is given below:

INTRODUCTION

Decimal Hex Binary
0 0 0000
1 1 0001
2 2 0c10
3 3 0011
4 4 0100
5 5 0101
6 6 0110
7 7 0111
8 8 1000
9 9 1001
10 A 1010
11 B 1011
12 C 1100
13 D 1101
14 E 1110
15 F 1111
Our machine language program then
becomes:
Step Hex Code
0 B8
1 20
2 BA
3 05
4 09
5 FO
6 18
7 EA
8 04

This coding is now quite efficient to write
and read and coding errors are much easier
to detect. Hex coding is usually very
efficient for small programs (afew hundred
lines of code) however, it does have two
major limitations in larger programs:

1. Hex coding is not self-documenting, that
is, the code itself does not give any indication
in human terms of the operation to be
performed. The user must learn each code or

constantly use a Program Reference Card to
convert.

2. Hex coding is absolute, that is, the
program will work only when stored in a
specific location in program memory. This is
because the branch or jump instructions in
the program reference specific addresses
elsewhere in the program. In the example
above steps 7 and 8 reference step (or
address) 4. If the program were to be moved,

step 8 would have to be changed to refer to
the new address of step 4.

1.2.2 Assembly Language Programming
Assembly language overcomes the dis-
advantages of machine language by allowing
the use of alphanumeric symbols to repre-
sent machine operation codes, branch
addresses, and other operands. For example,
the instruction to increment the contents of
register 0 becomes INC RO instead of the hex
18, giving the user at a glance the meaning of
the instruction. Our example program can be
written in assembly language as follows:

Step No. Hex Code Assembly Code

0 B8 MOV RO, #32
1 20

2 BA MOV R2, #05
3 05

4 09 INP: IN A, P1

5 FoO MOV @RO, A
6 18 INC RO

7 EA DJNZ R2, INP
8 04

The first statement can be verbalized as
follows: Move to Register 0 the decimal
number 32. Move instructions are always
structured such that the destination is first
and the source is second. The pound sign “#”
indicates that the source is “immediate” data
(data contained in the following byte of
program memory). In this case data was
specified as a decimal 32, however, this could
have been written as a hex 20H or a binary
0010 0000B since the assembler will accept
either form. Notice also that in this instance
two lines of hex code are represented by one
line of assembly code.

The input instruction IN A, P1 has the same
form as a MOV instruction indicating that the
contents of Port 1 are to be transferred to the
accumulator. In front of the input instruction
is an address lable which is delineated by a
colon. This lable allows the program to be
written in a form independent of its final
location in program memory since the
branch instruction at the end of the program
can refer to this lable rather than a specific
address. This is a very important advantage
of assembly language programs since it

INTRODUCTION

allows instructions to be added or deleted
throughout the program during debugging
without requiring that any jump addresses be
changed.

The next instruction MOV @RO0, A can be
verbalized as, Move to the data memory
location addressed by RO, the contents of the
accumulator. The @ sign indicates an
indirect operation whereby the contents of
either register 0 or register 1 acts as a pointer
to the data memory location to be operated
on.

The last instruction is a Decrement and Jump
if Not Zero instruction which acts in
combination with the specified register as a
loop counter. In this case register 2 is loaded
with 5 initially and then decremented by one
each time the loop is executed. If the result of
the decrement is not zero, the program jumps
to INP and executes another input operation.
The fifth time thru the loop the result is zero
and execution falls through to whatever
routine follows the DJNZ instruction.

In addition to the normal features provided
by assemblers, more advanced assemblers
such as that for the MCS-48 offer such things
as evaluation of expressions at assembly
time, conditional assembly, and macro
capability.

1. Evaluation of Expressions Certain
assemblers allow the use of arithmetic
expressions and multiple symbols in the
operand portion of instructions. For instance
the MCS-48 assembler accepts instructions
such as:

ADD A, # ALFA*BETA/2

ALFA and BETA are two previously defined
symbols. At assembly time the expression
ALFA*BETA/2 will be evaluated and the
resuiting number (which is the average of
ALFA and BETA) will be treated as
immediate data and designated as the
second byte of the ADD immediate instruc-
tion. This expression has allowed the
immediate data of this instruction to be
defined in a single statement and eliminated
the need for a third symbol equal to
ALFA*BETA/2.

2. Conditional Assembly - Conditional as-
sembly allows the programmer to select only
certain portions of his assembly language
(source) program for conversion to machine
{(object) code at assembly time. This allows
for instance, the inclusion of various “debug”
routines to be included in the program during
development. Using conditional assembly,
they can then be left out when the final
assembly is done.

Conditional assembly also allows several
versions of one basic program to be
generated by selecting various portions of a
larger program at assembly time.

3. Macro’'s - A macro instruction is essen-
tially a symbol which is recognized by the
assembler to represent a specific sequence
of several standard instructions. A macrois a
shorthand way of generating the same
sequence of instructions at several locations
in a program without having to rewrite the
sequence each time it is used. For example, a
typical macro instruction might be one which
performs a subtract operation. The 8048 does
not have a subtract instruction as such but
the operation can be performed easily with
three instructions:

CPL A
ADD A, REG
CPL A

This routine subtracts a register from the
accumulator and leaves the result in the
accumulator. This sequence can be defined
as a macro with the name SUB and an
operand which can be RO to R7. To subtract
R7 from the accumulator then, the program-
mer merely has to write:

SUB R7

and the assembler will automatically insert
the three instructions above with R7 substi-
tuted for REG.

Once the assembly language source code is
written it can be converted to machine
executable object code by passing it through
an assembler program. The MCS-48 assem-
bier is a program which runs on the 8080-
based Intellec MDS system explained in the
next section.

INTRODUCTION

1.3 Developing An MCS-48™ Based
Product

Although the development of a microcom-
puter based product may differ in detail from
the development cycle of a product based on
TTL logic or relays, the basic procedures are
the same — only the tools are different.

1.3.1 Education

The first step of course is to become familiar
with what the microcomputer is and what it
can do. The first step in this education is this
document, the MCS-48™ User's Manual. The
user's manual gives a detailed description of
the MCS-48 family of components and how
they may be used in various system configu-
rations. Also included is a description of the
8048 instruction set and examples of
how the instructions may be used. Fora more
complete discussion of the instruction set
and programming techniques the MCS-48
Assembly Language Manual is also available.

If time is critical in getting started in
microcomputers, individuals can attend one
of many Intel sponsored 3-day training
courses which give basic instruction in the
MCS-48 as well as hands-on experience with
MCS-48 development systems. These
courses are a convenient means of getting
started with the MCS-48, particularly for
those not familiar with microprocessors.

After general familiarization is complete,
either through self-instruction or a training
course, the next step is to gain a better “feel”
for what a microprocessor can do in your
own applications by writing several exercise
programs which perform basic functions.
You may require such things as 1/0 routines,
delays, counting functions, look-up tables,
arithmetic functions, and logical operations
which can serve as a set of building blocks for
future applications programs. Several basic
Programming examples are included in the
MCsS-48 Assembly Language Manual while
the Intel User's Library is a source of more
Specific applications routines.

1.3.2 Function Definition
After a thorough understanding of the

microprocessor is achieved, the functions to
be impilemented can be defined using a
flowchart method to describe each basic
system function and the sequence in which
the processor executes these functions.
Once the system is flowcharted, critical time-
related functions can be identified and
sample programs written to verify that
performance requirements can be met.

1.3.3 Hardware Configuration

The next step involves the definition of the
microcomputer hardware required to imple-
ment the function. Input/Qutput capability
must be defined in terms of number of inputs,
number of outputs, bi-directional lines,
latching or non-latching 1/O, output drive
capability, and input impedance. The num-
ber of words of RAM storage required for
intermediate results and data storage must
then be determined. The type of system will
dictate whether battery backup is needed to
maintain data RAM during power failure.

Probably the most difficult parameter to
define initially is the amount of program
memory needed to store the applications
program. Although previously written exer-
cise programs will make this estimate more
accurate, a generous amount of “breathing
room” should be allowed in program memory
until coding is complete and the exact
requirements are known. Many special
functions such as serial communications
(TTY) or keyboard/display interfaces may be
implemented in software (programs); how-
ever, in cases where these functions place a
severe load on the processor in terms of time
or program memory, special peripheral
interface circuits such as the 8251, Universal
Synchronous or Asychronous Receiver/
Transmitter (USART) or 8279 Keyboard/
Display interface may be used.

1.3.4 Code Generation

The writing of the final program code tor the
application can begin once the system
function and hardware have been defined
and can be generated in parallel with the
detailed hardware design (PC card layout,
power supply, etc.}

INTRODUCTION

At this point, there are two paths available to
the designer/programmer and two types of
design development aids provided by Intel to
simplify the procedures. One system, called
PROMPT 48, is a low cost development
system which supports machine language
programming and the second is the Intellec
Microcomputer Development System which
supports both machine and assembly langu-
ages. For those of you unfamiliar with the
advantages and disadvantages of machine
and assembly languages see Section 1.2.

1.3.5 PROMPT 48

PROMPT 48 is a low cost design aid
consisting of: an 8748 processor to execute
programs, control circuitry to provide debug
functions such as single step and break
points, a monitor program stored in ROM,
an EPROM programmer, and a hexa-
decimal keyboard and display. There are two
processor sockets on the front of PROMPT
48, one for programming the 8748 and one in

which a programmed 8748 executes its
program while under control of the monitor
routine.

Use of PROMPT 48 involves the following
steps:

1. Loading an application program into the
PROMPT RAM memory via Hex keyboard or
external terminal (TTY and RS232 interface
provided).

2. Inserting an erased 8748 in the program-
ming socket and transferring the application
program to its internal EPROM.

3. Transferring programmed 8748 to execu-
tion socket where program is executed and
debugged under control of the monitor.

The monitor routine allows the user to single
step this processor, examine or modify all
internal registers and data memeory; orto run
at full speed and stop the processor at
predetermined breakpoints. PROMPT 48

LOCKED LOCKED

0

[T

(LT TR

20 21

PROGRAMMING
SOCKET

20 P2

EXECUTION
SOCKET

r‘_ COMMAND/FUNCTION GROUP

49 1

[——

50 1/Q PORTS CONNECTOR 2

prompt 48

EEEREEGE:

FUNCTION \ ADDRESS l DATA
@ POWER ON COMMANDS HEX DATA/FUNCTIONS

e —e—
o] |[8][eJ[Al[B]
e T]| e (2] [B][€]
By i @ \IJNSTR NEXT @ EXECUTE
__ J
.
- intgl

INTRODUCTION

also provides 1K of writeable program
memory which may be used to debug user
programs. A multiple single step feature
is also provided in which the processor steps
through its program dumping all internal
contents to external RAM where it may be
later displayed or typed out on an external
terminal. Paper tape input and output in
Intel’s hexadecimal format is also available
through the TTY.

1.3.6 Intellec Development System

The Intellec Microcomputer Development
System is a modular development system
which can be expanded as necessary to meet
the requirements of your design cycle. The
system consists of the processor unit which
is based on Intel's 8080A microprocessor,
and several optional units such as the UPP
Universal PROM Programmer, the PTR High
Speed Paper tape reader, the DOS Disk
Operating System, and the Intellec CRT
terminal.

To support the development of MCS-48
systems a macro-assembler ASM 48 s
available for the Intellec System as well as a
personality module for the UPP which will
program the EPROM of the 8748. Also to be
provided is in-circuit emulation capability
with ICE-48 which will allow emulation and
debug of user's 8048 application programs
on the 8080A-based Intellec Development
System.

The Intellec system is a flexible high
performance development system which can
support Intel’'s various microcomputer fami-
lies with various optional modules. The

macro-assembler and text editor programs
provided allow the designer to write and edit
his programs in assembly language and then
generate the machine language output
necessary to program the 8748 EPROM. The
availability of a high speed CRT and a
diskette operating system eliminates the
laborious input and output of paper tape files
normally required during the assembly
process. Finally, ICE 48 allows the user to
extend the resources of his entire Intellec
system into the 8048 socket of his own
system and use all its emulation, debug, and
display facilities directly.

1.3.7 Production

Once a working program has been achieved,
a preproduction phase usually follows where
several prototype systems are evaluated in
simulated situations or in actual operation in
the field. During this period the use of the
8748 EPROM allows quick alteration of the
application program when problems or
suggested changes arise. Depending on the
magnitude and number of future changes
anticipated, the first production units may
also be shipped with EPROM processor.
However, to achieve the maximum cost
reduction potential in high volume appli-
cations, a conversion to the 8048 ROM is
usually necessary. This is an easy transition
since the 8048 and 8748 are pin and machine
code compatible equivalents. The user
merely develops a hexadecimal tape of his
8748 program memory contents using his
Intellec System or PROMPT 48 development
aid and sends it to Intel along with his 8048
order. As the 8048 ROM'’s arrive they can
immediately replace the 8748 EPROMs.

THE SINGLE COMPONENT MCS-48™ SYSTEM

SECTION 1: 8048/8748/8035 and 8049/8039

2.0 SUMMAIY i e e e 2-1
2.1 Architecture ... e 2-1
2.2 Pin Description it i i i i i 2-14
2.3 Programming, Verifying and Erasing EPROM 2-16
24 Testand Debugo il 2-18
SECTION 2: 8021

2.5 Program Memoryt 2-21
2.6 Data Memory i i i i i i i i 2-21
2.7 Oscillatorand Clock oo, 2-22
2.8 Timer/Event Counter, 2-22
2.9 Input/Output Capabilities 2-23
210 CPU e e 2-25
2.1 Reset ... e e 2-25

THE SINGLE COMPONENT MCS-48™ SYSTEM

2.0 Summary

Sections 2.1 through 2.4 describe in detail
the functional characteristics of the 8748
EPROM, 8048/8049 ROM and 8035/8039
single component microcomputers. Unless
otherwise noted, details within these
sections apply to all versions. Sections 2.5
through 2.11 describe the operation of the
8021. This chapter is limited to those
functions useful in single-chip implemen-
tations of the MCS-48. Chapter 3 discusses
functions which allow expansion of pro-
gram memory, data memory, and input-
output capability.

2.1 Architecture

The following sections break the 8048 into
functional blocks and describe each in detail.

2.1.1 Arithmetic Section

The arithmetic section of the processor con-
tains the basic data manipulation functions of
the 8048 and can be divided into the following

blocks: _ , _ ,
Arithmetic Logic Unit (ALU)
Accumulator
Carry Flag
Instruction Decoder

In a typical operation data stored in the
accumulator is combined in the ALU with data
from another source on the internal bus (such
as a register or 1/O port) and the result is
stored in the accumulator or another register.
The following is a more detailed description of
the function of each block:

Instruction Decoder

The operation code (op code) portion of each
program instruction is stored in the Instruction
Decoder and converted to outputs which
control the function of each of the blocks of
the Arithmetic Section. These lines control
the source of data and the destination register
as well as the function performed in the ALU.

2-1

Arithmetic Logic Unit

The ALU accepts 8-bit data words from one
or two sources and generates an 8-bit result
under control of the Instruction Decoder.
The ALU can perform the following functions:

Add With or Without Carry
And, OR, Exclusive OR
Increment/Decrement

Bit Complement

Rotate Left, Right

Swap Nibbles

BCD Decimal Adjust

If the operation performed by the ALU results
in a value represented by more than 8 bits
(overflow of most significant bit) a Carry Flag
is set in the Program Status Word.

Accumulator

The accumulator is the single most important
data register in the processor being one of the
sources of input to the ALU and often the
destination of the result of operations per-
formed in the ALU. Data to and from 1/O ports
and memory also normally passes through
the accumulator.

2.1.2 Program Memory

Resident program memory consists of 1024
or 2048 words eight bits wide which are
addressed by the program counter. in the
8748 this memory is user programmable
and erasable EPROM, in the 8048/8049 the
memory is ROM which is mask program-
mable at the factory, white the 8035/8039
has no internal program memory and is
used with external devices. Program code
is completely interchangeable among the
various versions. See Section 2.3 for
EPROM programming technigues.

SINGLE COMPONENT SYSTEM

Auo 508

ITAYNI

S$3e0ul1s d3ls AHOWIW

AHIOTD
Eglsrte]
380H LS
H3LVvY

IVIX

ALVHYIIS 3IBOHLS

AHOW3IIN H3ONVJIX3I

(@ % gzu) ALIUM av3IE TIONIS WYHOOMd $53IHAAY HOLYITIOSO /ndd ANOHd LdNHHIALN]
* 8% 49 IZINVILING
S S S SR S N SN N S S
INIAISIY
oM ad % N3Sd IV ZIVIX LIVIX w3 DOMd 13§34 NI
e
ONIWIL ANV TOYLNGD
DY ————
IHOLS Y1VQ NS =
AHYYD ———o]
SY14 HINIL ——] {ABONYLS HIMOA MOT) AGH +———
A
21501
MNVE 43151934
GNOJ3S TYNDILID LoV -] 4<nwﬁqammou
o Snrav ATddNS WYHOOH s~
{(HLONZT I18VIYYA) 2 09v14 Ivwo3d A
MOVLS 13AIT B g
= [TV p——
L ¥315193y
P 8315193y [T ETE— i
5 ¥3151934 J
¥ ¥3151934 01531
HILY
z 4315193H 501
L H3151934 4300936 N JILIWHLIYY
- d ——
0 43151934 ILE103H
uaxatdiInw NOILINH IS “ ﬁ T8
HOLYINWNDOY
mmwmmw_wm__zmqm $9V14 (8} DIH dW3L
HaLY}
anv NS
‘ ¥3d4ng @
sng
1 1404 > >
axom B yyinnoo @) L1831
SOLYLS vt HAINAOD
WYHD0Ud HIM0T INIAI/HAWLL ‘D34
e—] 08+ [—— 080
300030
i 7 :
93y dW31 2d % 0/1 140d
MOT ONY +(8 X 3M2) z H3INOOD (7 HOIH) HIONVIXI
ﬁ\ HoLYT S0 P, WVYHOOUd HDIH HOLV Z Lu0d | anv v o)
WOU/WOHd3 HOLYT Z 1HCd
LIN3QIS3Y
y344na sng
433309 5n8 A
AHOWIW
ONV 071 3HOW

OL NOISNVdX3

8048/8049 BLOCK DIAGRAM

)
SINGLE COMPONENT SYSTEM

There are three locations in Program Memory

of special importance:

LOCATION O
Activating the Reset line of the processor
causes the first instruction to be fetched
from location O.

LOCATION 3
Activating the Interrupt input line of the
processor (if interrupt is enabled) causes a
jump to subroutine.

LOCATION 7
A timer/counter interrupt resulting from
timer/counter overflow (if enabled) causes
a jump to subroutine.

Therefore, the first instruction to be executed
after initialization is stored in location 0, the
first word of an external interrupt service
subroutine is stored in location 3, and the first
word of a timer/counter service routine is
stored in location 7. Program memory can be
used to store constants as well as program
instructions. Instructions such as MOVP and
MOVPS3 aliow easy access to data “lookup”
tables.

Data Memory

Resident data memory is organized as 64 or
128 words 8-bits wide. All locations are
indirectly addressable through either of
two RAM Pointer Registers which reside at
address 0 and 1 of the register array. In
addition, the first 8 locations (0-7) of the
array are designated as working registers
and are directly addressable by several
instructions. Since these registers are more
easily addressed, they are usually used to
store frequently accessed intermediate
results. The DJNZ instruction makes very
efficient use of the working registers as pro-
gram loop counters by allowing the
programmer to decrement and test the
register in a single instruction.

B_y executing a Register Bank Switch instruc-
tion (SEL RB) RAM locations 24-31 are
designated as the working registers in place
of locations 0-7 and are then directly address-
able. This second bank of working registers
may be used as an extension of the first bank
Or reserved for use during interrupt service

4095

2048 4 seLwmBt

2047 y SEL MBO

1024
1023

ON CHIP 8049
|

LOCATION 7 — TIMER
INTERRUPT VECTORS
PROGRAM HERE

ON CHIP 8048

LOCATION 3 — EXTERNAL
INTERRUPT VECTORS
PROGRAM HERE

- N W A A W@

RESET VECTORS

o 7I615]4|3lzl"l° [PROGRAM HERE

ADDRESS

MCS-48™ PROGRAM MEMORY MAP

L 63
{128)
USER RAM
32x8
{96 x 8)
o
30 S 7
R BANK 1
WORKING
DIRECTLY
REGISTERS ADDRESSABLE
gx8 WHEN BANK 1
___________ IS SELECTED
_____ RU
§ 24 RO
;B
8 LEVEL STACK ADDRESSED
OR INDIRECTLY
USER RAM THROUGH
R10OR RO
16x8 {RO’ OR R1)
8
’ BANK 0
WORKING DIRECTLY
REGISTERS ADDRESSABLE
3x8 WHEN BANK 0
e e e -m— 1 1sseLecTED
- R
RO
o

IN ADDITION RO OR R1 (R0’ OR R1") MAY
BE USED TO ADDRESS 256 WORDS OF
EXTERNAL RAM.
() 8049 only

DATA MEMORY MAP

SINGLE COMPONENT SYSTEM

subroutines allowing the registers of Bank 0
used in the main program to be instantly
“saved” by a Bank Switch. Note that if this
second bank is not used, locations 24-31 are
still addressable as general purpose RAM.
Since the two RAM pointer Registers R0 and
R1 are a part of the working register array,
bank switching effectively creates two more
pointer registers (RO’ and R1') which can be
used with RO and R1 to easily access up to
four separate working areas in Ram at one
time. RAM locations (8-23) also serve a dual
role in that they contain the program counter
stack as explained in Sec. 2.1.6. These loca-
tions are addressed by the Stack Pointer
during subroutine calls as well as by RAM
Pointer Registers RO and R1. if the level of
subroutine nesting is less than 8, all stack
registers are not required and can be used as
general purpose RAM locations. Each level of
subroutine nesting not used provides the user
with two additional RAM locations.

2.1.4 Input/Output

The 8048 has 27 lines which can be used for
input or output functions. These lines are
grouped as 3 ports of 8 lines each which
serve as either inputs, outputs or bidirectional

ports and 3 “test” inputs which can alter
program sequences when tested by conditional
jump instructions.

Ports 1 and 2

Ports 1 and 2 are each 8 bits wide and have
identical characteristics. Data written to these
ports is statically latched and remains un-
changed until rewritten. As input ports these
lines are non latching, i.e., inputs must be
present until read by an input instruction.
Inputs are fully TTL compatible and outputs
will drive one standard TTL load.

The lines of ports 1 and 2 are called quasi-
bidirectional because of a special output
circuit structure which allows each line to
serve as an input, an output, or both even
though outputs are statically latched. The
figure shows the circuit configuration in detail.
Each line is continuously pulled up to +5v
through a resistive device of relatively high
impedance (~50K(2). This pullup is sufficient
to provide the source current for a TTL high
level yet can be pulled low by a standard TTL
gate thus allowing the same pin to be used for
both input and output. To provide fast switching
times in a “0” to “1” transition a relatively low

ORL, ANL

INTERNAL Qj

BUS

FLIP
FLOP

cLk Q

+5V

1/0
PIN
PORT 1
AND 2

WRITE
PULSE

INPUT

BUFFER
IN

“QUASI Bl DIRECTIONAL” PORT STRUCTURE

2.4

SINGLE COMPONENT SYSTEM

impedance device (~5KQ) is switched in
mornentarily (~500ns) whenever a “1” is
written to the line. When a “0” is written to the
line a low impedance (~300()) device over-
comes the light pullup and provides TTL
current sinking capability. Since the pulldown
transistor is a low impedance device a _“1”’
must first be written to any line which is to be

used as an_inpul. Reset initializes all lines.to

the high impedance “1” state. This structure
alffows input and output on the same pin and
also allows a mix of input lines and output
lines on the same port. The quasi-bidirectional
port in combination with the ANL and ORL
logical instructions provide an efficient means
for handling single line inputs and outputs
within an 8-bit processor. See also Section
3.7.

Bus

Bus is also an 8-bit port which is a true bi-
directional port with associated input and
output strobes. If the bidirectional feature is
not needed, Bus can serve as either a statically
latched output port or non-latching input port.
Input and output lines on this port cannot be
mixed however.

As a static port, data is written and latched
using the OUTL instruction and inputted using
the INS instruction. The INS and OUTL instruc-
tions generate pulses on the corresponding
RD and WR output strobe lines; however, in
the static port mode they are generally not
used. As a bidirectional port the MOVX instruc-
tions are used to read and write the port. A
write to the port generates a pulse on the WR
output line and output data is valid at the
trailing edge of WR. A read of the port
generates a pulse on the RD output line and
input data must be valid at the trailing edge of
RD. When not being written or read, the BUS
lines are in a high impedance state. See also
Sections 3.6 and 3.7.

2.1.5 Test and INT Inputs

Three pins serve as inputs and are testable
With the conditional jump instruction. These
are TO, T1, and INT. These pins allow inputs

25

to cause program branches without the neces-
sity to load an input port into the accumulator.
The TO, T1, and INT pins have other possible
functions as well. See the pin description in
Sec. 2.2.

2.1.6 Program Counter and Stack

The Program Counter is an independent
counter while the Program Counter Stack is
implemented using pairs of registers in the
Data Memory Array. Only 10 (or 11) bits of
the Program Counter are used to address
the 1024 (2048) words of on-board program
memory while the most significant bits are
used for external Program Memory fetches.
The Program Counter is initialized to zero
by activating the Reset line.

An interrupt or CALL to a subroutine causes
the contents of the program counter to be
stored in one of the 8 register pairs of the
Program Counter Stack. The pair to be used
is determined by a 3-bit Stack Pointer which
is part of the Program Status Word (PSW).
Data RAM locations 8 thru 23 are available as
stack registers and are used to store the
Program Counter and 4 bits of PSW as
shown in the figure. The Stack Pointer when
initialized to 000 points to RAM locations
8 and 9. The first subroutine jump or interrupt
results in the program counter contents being
transferred to locations 8 and 9 of the RAM
array. The stack pointer is then incremented
by one to point to locations 10 and 11 in
anticipation of another CALL. Nesting of sub-
routines within subroutines can continue up to
8 times without overflowing the stack. If
overflow does occur the deepest address
stored (location 8 and 9) will be overwritten
and lost since the stack pointer overflows
from 111 to 000. 1t also underflows from 000
to 111.

The end of a subroutine, which is signalled by
a return instruction (RET or RETR), causes
the Stack Pointer to be decremented and the
contents of the resulting register pair to be
transferred to the Program Counter.

SINGLE COMPONENT SYSTEM

2.1.7 Program Status Word

Arr ol A | Ag | Ay | Ag [A5 | Ag | Azl Ap | Ag | Ag An 8-bit status word which can be loaded to
— T ! and from the accumulator exists called the
o prodram Counter Program Status Word (PSW). The accom-

* Overflows 7FFH to 000H panying figure shows the information available

in the word. The Program Status Word is

PROGRAM COUNTER actually a collection of flip-flops throughout

the machine which can be read or written as a
whole. The ability to write to PSW allows for
easy restoration of machine status after a
power down sequence.

SAVED IN STACK STACK POINTER The upper four bits of PSW are stored in the

;] ' ' Program Counter Stack with every call to
ey [ac | Fo [Bs | 1 | s | 8¢ | so subroutine or interrupt vector and are optionally
restored upon return with the RETR instruction.

Ms8 Ls8 The RET return instruction does not update
PSW.
CcYy CARRY . . iy
AC AUXILLARY CARRY The PSW bit definitions are as follows:
BS REGISTER BANK SELECT Bits 0 - 2: Stack Pointer bits (S,, S+, S2)
Bit 3: Not used (“1” level when
PROGRAM STATUS WORD (PSW) read)
Bit 4: Working Register Bank Switch
Bit (BS)
0 =Bank0
1 = Bank 1
POINTER
. R23 Bit 5: Flag 0 bit (FO) user controlled
m ! 99 flag which can be comple-
$ 21 mented or cleared, and tested
110 + 20 with the conditional jump in-
$ 19 struction JFO.
101 t 18 Bit 6: Auxiliary Carry (AC) carry bit
{ 17 generated by an ADD instruc-
100 } tion and used by the decimal
; 16 adjust instruction DA A.
011 : 15 Bit 7: Carry (CY) carry flag which
\ 14 indicates that the previous
. 13 operation has resulted in over-
010 v 12 flow of the accumulator.
001 ; 1 2.1.8 Conditional Branch Logic
" 10 The conditional branch logic within the pro-
000 PSW ’ PCs.14 9 cessor enables several conditions internal
PCas . PCo3 R8 and external to the processor to be tested by
MSB LSB the users program. By using the conditional
jump instruction the following conditions can
effect a change in the sequence of the
PROGRAM COUNTER STACK program execution.

2-6

SINGLE COMPONENT SYSTEM

Jump Conditions 2.1.9 Interrupt _
Device Testable (Jump On) An interrupt sequence is initiated by applying
ol al alow “0” level input to the INT pin. Interrupt is
Accumulator All zer 0 :s level triggered and active low to allow “WIRE
AC Ul tor Bit eros ze1r ORing” of several interrupt sources at the
C(:r:umF!; 0 0 1 input pin. The Interrupt line is sampled every
U ryFl 9 Fo. F1 1 machine cycle during ALE and when detected
Tﬁ'ierr Oe:/gsrﬂ(’FI) 1 causes a “jump to subroutine” at location 3 in
TI tel f 9[_‘3 Tflg 0 1 program memory as soon as all cycles of the
Iets rrnptulfl (t NT) 0 current instruction are complete. As in any
nterrupt Input (INT) — CALL to subroutine, the Program Counter
s | CONDITIONAL
JUMP LOGIC
TIMER
FLAG INTERRUPT
JTF CALL
EXECUTED—‘r\ R EXECUTED
RESET ————rig
CLR EXTERNAL
D Q] INTERRUPT
RECOGNIZED
TIMER s a
OVERFLOW
TIMER
OVERFLOW _ TIMER
FF Q] INTERRUPT
e I S
R
EXECUTED
RESET _\
D>,
INTERRUPT
IN
PROGRESS
ENTCNT) FF
EXECUTED S e R
TIMER
INT
DIS TCNTI 3 ENABLE
EXECUTED 37 R a RETR
RESET_I'——‘ EXECUTED
Nt
PIN % D
INT
FF
a
CLK
ALE
LAST CYCLE D————?
OF INsT. | NOTE:
EN ¢ [—— Q 1. INT INPUT IS SAMPLED BY ALE EVERY MACHINE CYCLE
EXECUTED EXCEPT FIRST CYCLE OF DOUBLE CYCLE INSTRUCTION,
INT 2. WHEN INTERRUPT IN PROGRESS f/f ISSET ALL FURTHER
ENABLE INTERRUPTS ARE LOCKED OUT INDEPENDENT OF STATE
DIS ¢ OF EiTHER INTERRUPT ENABLE f/f,
EXECUTED ’ R 3. WHILE TIMERINTERRUPTS ARE DISABLED TIMER OVERFLOW
RESET ——— f/€ WILL NOT STORE ANY OVERFLOW THAT OCCURS. TIMER
FLAG WILL BE SET, HOWEVER.

INTERRUPT LOGIC

2-7

SINGLE COMPONENT SYSTEM

and Program Status word are saved in the
stack. For a description of this operation see
the previous section, Program Counter and
Stack. Program Memory location 3 usually
contains an unconditional jump to an interrupt
service subroutine elsewhere in program
memory. The end of an interrupt service
subroutine is signalled by the execution of a
Return and Restore Status instruction RETR.
The interrupt system is single level in that
once an interrupt is detected all further inter-
rupt requests are ignored until execution of an
RETR re-enables the interrupt input logic.
This occurs at the beginning of the second
cycle of the RETR instruction. This sequence
holds true also for an internal interrupt gener-
ated by timer overflow. f an internal timer/
counter generated interrupt and an external
interrupt are detected at the same time, the
external source will be recognized. See the
following Timer/Counter section for a descrip-
tion of timer interrupt. If needed, a second
external interrupt can be created by enabling
the timer/counter interrupt, loading FFH in the
Counter (one less than terminal count), and
enabling the event counter mode. A “1” to “0”
transition on the T1 input will then cause an
interrupt vector to location 7.

Interrupt Timing

The interrupt input may be enabled or disabled
under Program Control using the EN | and
DIS I instructions. Interrupts are disabled by
Reset and remain so untif enabled by the
users program. An interrupt request must be
removed before the RETR instruction is ex-
ecuted upon return from the service routine
otherwise the processor will re-enter the ser-
vice routine immediately. Many peripheral
devices prevent this situation by resetting
their interrupt request line whenever the pro-
cessor accesses (Reads or Writes) the periph-
erals data buffer register. If the interrupting
device does not require access by the pro-
cessor, one output line of the 8048 may be
designated as an “interrupt acknowledge”
which is activated by the service subroutine to
reset the: interrupt request. The INT pin may
also be tested using the conditional jump
instruction JNI. This instruction may be used

2-8

to detect the presence of a pending interrupt
before interrupts are enabled. If interrupt is
left disabled, INT may be used as another test
input like TO and T1.

2.1.10 Timer/Counter

The 8048 contains a counter to aid the user in
counting external events and generating ac-
curate time delays without placing a burden
on the processor for these functions. In both
modes the counter operation is the same, the
only difference being the source of the input
to the counter.

Counter

The 8-bit up binary counter is presettable and
readable with two MOV instructions which
transfer the contents of the accumulator to the
counter and vice versa. The counter content is
not affected by Reset and is initialized solely’
by the MQV_T.A instruction. The counter is
stopped by a Reset or STOP TCNT instruction
and remains stopped until started as a timer
by a START T instruction or as an event
counter by a START CNT instruction. Once
started the counter will increment to its maxi-
mum count (FF) and overflow to zero contin-
uing its count until stopped by a STOP TCNT
instruction or Reset.

The increment from maximum count to zero
(overflow) results in the setting of an overflow
flag flip-flop and in the generation of an
interrupt request. The state of the overflow
flag is testable with the conditional jump
instruction JTF. The flag is reset by executing
a JTF or by Reset. The interrupt request is
stored in a latch and then ORed with the
external interrupt input INT. The timer interrupt
may be enabled or disabled independently of
external interrupt by the EN TCNTI and DIS
TCNTI instructions. If enabled, the counter
overflow will cause a subroutine call to location
7 where the timer or counter service routine
may be stored. If timer and external interrupts
occur simultaneously, the external source will
be recognized and the Call will be to location
3. Since the timer interrupt is latched it will
remain pending until the external device is
serviced and immediately be recognized upon
return from the service routine. The

SINGLE COMPONENT SYSTEM

PRESCALER

XTAL + 15— +32

CLEARED ON START TIMER

LOAD OR READ

JUMP ON

ﬂnﬁg TIMER FLAG
START
- EDGE COUNTER 8 BIT TIMER/ .
DETECTOR °© v EVENT COUNTER
o OVERFLOW
STOP T NOT CLEARED ON RESET FLAG

- INT
ENABLE ——————»

TIMER/EVENT COUNTER

pending timer interrupt is reset by the Call
to location 7 or may be removed by
executing a DIS TCNTI instruction.

As an Event Counter

Execution of a START CNT instruction con-
nects the T1 input pin to the counter input and
enables the counter. Subsequent high to low
transitions on T1 will cause the counter to
increment. The maximum rate at which the
counter may be incremented is once per
three instruction cycles (every 7.5usec when
using a 6MHz crystal)—there is no minimum
frequency. T1 input must remain high for at
least 500ns (at 6MHz) after each transition.

As a Timer

Execution of a START T instruction connects
an internal clock to the counter input and
enables the counter. The internal ciock is
derived by passing the basic 400 KHz machine
cycle clock ALE through a + 32 prescaler.
The prescaler is reset during the START T
Instruction. The resulting 12.5 KHz clock
Increments the counter every 80 usec
(assuming 6 MHz XTAL). Various delays
between 80 usec and 20 msec (256 counts)
Can be obtained by presetting the counter and
detecting overflow. Times longer than 20
msec may be achieved by accumulating mul-

2-9

tiple overflows in a register under software
control. For time resolution less than 80 usec
an external clock can be applied to the T1
input and the counter operated in the event
counter mode. ALE divided by 3 or more can
serve as this external clock. Very small delays
or “fine tuning” of larger delays can be easily
accomplished by software delay loops.

2.1.11 Clock and Timing Circuits

Timing generation for the 8048 is completely
self-contained with the exception of a fre-
quency reference which can be XTAL,
inductor, or external clock source. The
Clock and Timing circuitry can be divided
into the following functional blocks:

Oscillator

The on-board oscillator is a high gain series
resonant circuit with a frequency range of 1 to
6MHz. The X1 external pin is the input to the
amplifier stage while X2 is the output. A
crystal or inductor connected between X1
and X2 provides the feedback and phase
shift required for oscillation. A 5.9904 MHz
crystal provides for easy derivation of all
standard communications frequencies. If an
accurate frequency reference and maximum
processor speed are not required, an induc-

SINGLE COMPONENT SYSTEM

tor may be used in place of the crystal. With
an inductor the oscillator frequency can be
approximately 3 to 5 MHz. For higher speed
operation a crystal should be used. An
externally generated clock may also be
applied to X1-X2 as the frequency source.

State Counter

The output of the oscillatar.is.divided by 3 in
the State Counter to create a clock which
defines the state times of the machine (CLK).
CLK can be made available on the external
pin TO by executing an ENTO CLK instruction.
The output of CLK on T0 is disabled by Reset
of the processor.

Cycle Counter

CLK is then divided by 5 in the Cycle Counter
to provide a clock which defines a_machine
cycle consisting of 5 machine states. This
clock Is called Address Latch Enable (ALE)

~ because of its function in MCS-48 systems

with external memory. It is provided continu-
ously on the ALE output pin.

2.1.12 Reset

The reset input provides a means for initializa-
tion for the processor. This Schmitt-trigger
input has an internal pullup resistor which in
combination with an external 1 ufd capacitor
provides an internal reset pulse of sufficient
length to guarantee ail circuitry is reset. If the

DIAGRAM OF 8048 CLOCK UTILITIES

[CLOCK

QUTPUT T
JUMP ON q o*
TEST=10R0 TEST RESET

INPUT

3
STATE COUNTER Busec (2 MHz)

{400 kHaz)

5 2.5usec
CYCLE COUNTER|” ‘D —| AL

INSTRUCTION CYCLE

2.5 usec CYCLE

85 §1 S2

INPUT
INST.

S3 J 54 | 55 $1

DECODE EXECUTION INPUT

OUTPUT ADDRESS | INC. PC OUTPUT ADDRESS

L R

MCS-48™ CYCLE TIMING

semer | ML ML Ml gl g I [
i L

: L

PROG 1 |

SINGLE COMPONENT SYSTEM

WYHOVIAQ DNIWILL NOILONYLSNI

. B %2012 - HILINNCD WYHOOHd | NOLLINHLISN! Y19 0N
aA3sS3D2V ONIFE ST AHOWIW WY HDOHd TYNBILX3T HI 318YN3 INIWAHONI + HOL3d
JNIL SIHL LV LNdLNO 3HY SISSIHAQY NOILONYISNI QITVA- - BRI, — st wenooms | o mare o
118vsIa LINIWIHONI ¢ HO134
_ - HILNAOD WYHDOHd | NOILINHLSNI .
378YN3 ININAHONI + HOL13d
HILNNOD o Y3ILNAOD WYHIOHd | NOILINH 1SN
4015 INIWIHONI + HO134 LNDL dOLS
431NNOD _ HIINNOD WYLHOOHd | NOILINYLSNI IND 181$
1u8vis INIWIHONI H2134 1 LHlS
) HILNNOD WYED0Hd) viva 3Lvid3nn L 43nIL NOILIGNDD Y3LNNOD WYHOOHd | NOILINBLSNI TYNGILINGSI
3L1vadn . HOL3d LN3WIHONI 11dWVS ANIWIHON H3134
B . viva HAWIL SSIHAAY/IA0DM0 | HILNAOD WYHOOHd | NOFLIMH SN v a o
- - . — 1Nd1ND ANIWIHONI 1Nd1NO LNIWIUONE HO134
I] viva FETTIN $53HGAY/300040 | HIINNOD WYHD0HS | NOILINHLSNI v 4 any
T - .) T 1NdLNo LNIWIHINI indinc ANIWIHONI HOL3d
o _ . L H3IMOTZd OL ETT SSIHAAV/IA0DD | YILNNOD WYHOOHE | NOILLONHLSNI 4 anOn
) vivad 1nd1no LN3WIHONI LAALNG LNIWINONI HOL33
~ HIMOT Zd N - HIWIL SSIHAAV/IA0A0 | HILNNOD WYHSOHd | NOILONHLSNI v anow
X avas LNSWIHON 1Nd1no LNIWIHONI HOL3d
EEEICTES ssayaav HILNNOD WYHDOHd NOILINHLISNI 5"
— e — — [BT XAGW
.| vivadvad LNIWIHON WYH 1Nd1N0 LNZWIHONI HO134 " o
o o Wy ol viva HIWIL ssauaay HILNNOD AVHOOHd | NOILONYISNI V'H @ XAOW
. 1NdLNO LNIWIHON WYH LNaino ANIWIUONI HOL34
1404 0L HILNNOD WYHOOHL v1va 3LVIGINN HawIL HILNNOD WVHOOUd | NOILONYLSNI ”
Lndino ININIHONT - HOLAd 1604 0v3IH ANIWIHINI T INIWIHONI HOL34 viva sne s
1404 OL ¥ILNNOD WYHOOHd V1va 31vIG3WNI HAWIL - H3LINAOD WYHOOHd | NOILONY ISN! .
LNdLNO ANIWIAUONI A B HD13d 1404 Qv3Y LNAWIHINI — INFWIHONE * HoL14 vLva: 'SnE INY
o B \‘ LHOd OL YETI o HILNNOD WYHOOHd | NOILDNHISNI v snE 1LNG
. 10d1N0 LNIWIHONI LNIWIHONI HOL3d s
- B B 3L HILNNOD WYHDOHd | NOLLINHLSNI .
|| LvodavsH LNIWNIHINI - INIWAHONI HDL134d Sna Y SN
1HO4 01 HIINNOD WYHDOHd v1va 2LVIaINNI HIWL HILNNOD WYHOOHd | NOILDNHISNI .
1NdLN0 LNIWIHON . — HO134 LH0d avay LNINIHONI - IN3WI™ON HI134 vilvd= 4740
1404 0L HILINMOD WYHDOHI V1va ILVIQINW o HIWL HIINNOD WYHOOHd | NOILINYLSNI .
- 1Nd1N0 LNIWIHONI . —- HOL34 1804 gv3y LNAWIHON — INIWIHONE * HI134 vLwdsd Ny
- 140401 HIwWIL YILNNOD WYHDOHd | NOILINHISNL 41N
. - 1NdLNO LNIWIHINI - ANIWILONL ¢ H3134
EETI HIINAOD WVHOOHd | NOILINHISNI R
I P — 1LH0d aY - R -
. Od avay INIWIHONI INTWIHONG 4 HO134 4V NI
g8 S £S Zs LS s5S s £S5 Zs LS NOILIMY1SNI
Z 310AD L 370AD

2-11

SINGLE COMPONENT SYSTEM

reset puise is generated externally the reset
pin must be held at ground (.5V) for at east
50 milliseconds after the power supply is
within tolerance. Only 5 machine cycles
(12.5us @ 6 MHz) are required if power is
already on and the oscillator has stabilized.

EXTERNAL RESET

ACTIVE
PULLUP

i1 K RESET

1uF
'IUVI

Reset performs the following functions:

Sets program counter to zero.

Sets stack pointer to zero.

Selects register bank 0.

Selects memory bank 0.

Sets BUS to high impedance state.
(except when EA = 5V)

Sets Ports 1 and 2 to input mode.
Disables interrupts (timer and external)
Stops timer.

Clears timer flag.

10. Clears FO and F1.

11. Disables clock output from TO.

2.1.13 Single-Step

This feature provides the user with a debug
capability in that the processor can be stepped
through the program one instruction at a time.
While stopped, the address of the next instruc-
tion to be fetched is available concurrently on
BUS and the lower half of Port 2. The user
can therefore follow the program through
each of the instruction steps. A timing diagram,
showing the interaction between output ALE
and input SS is shown. The BUS buffer
contents are lost during single step, however,
a latch may be added 1o re-establish the lost
I/O capabitity if needed. (See 2.4.1).

N

LN

2-12

Timing

The 8048 operates in a single-step mode as
follows:

1. The processor is requested to stop by
applying a low level on SS.

2. The processor responds by stopping
during the instruction fetch portion of the
next instruction. If a double cycle instruc-
tion is in progress when the single step com-
mand is received, both cycles will be com-
pleted before stopping.

3. The processor acknowledges it has
entered the stopped state by raising ALE
high. In this state (which can be maintained
indefinitely) the address of the next instruc-
tion to be fetched is present on BUS and
the lower half of port 2.

4. SS is then raised high to bring the pro-
cessor out of the stopped mode allowing it
to fetch the next instruction. The exit from
stop is indicated by the processor bringing
ALE low.

5. To stop the processor at the next instruc-
tion SS must be brought low again as soon
as ALE goes low. If SS is left high the pro-
cessor remains in a “Run” mode.

A diagram for implementing the single step
function of the 8748 is shown. A D-type flip-
flop with preset and clear is used to generate
SS. In the run mode SS is held high by
keeping the flip-flop preset (preset has prec-
edence over the clear input). To enter single
step, preset is removed allowing ALE to bring
SS low via the clear input. ALE should be
buffered since the clear input of an SN7474 is
the equivalent of 3 TTL loads. The processor
is now in the stopped state. The next instruc-
tion is initiated by clocking a “1” into the flip-
flop. This “1” will not appear on SS unless
ALE is high removing clear from the flip-flop.
In response to SS going high the processor
begins an instruction fetch which brings ALE
low resetting SS through the clear input and
causing the processor to again enter the
stopped state.

SINGLE COMPONENT SYSTEM

SINGLE STEP CIRCUIT

MOMENTARY
PUSHBUTTON

Lo

[S o

10K

Oy

10K

DEBOUNCE

LATCH

1/2 7400

BV

SINGLE < 10K

STEP

PRESET

+HBV D Q

> cLOCK

T———d— ALE

1/2 7474

SINGLE STEP TIMING

ALE / \

/

N

DATA
BUS

PCO-7

P20-23 110

PC8-11

N
>.__
X_

ACTIVE CYCLE

STOP CYCLE STOP CYCLE |

2.1.14 Power Down Mode
(8048, 8049, 8039, 8035L)

Extra circuitry has been added to the 8048
ROM version to allow power to be removed
from all but the 64/128 x 8 data RAM array
for low power standby operation. In the
Power down mode the contents of data
RAM can be maintained while drawing
typically 10% to 15% of normal operating
POower requirements.

213

Ve serves as the 5V supply pin for the bulk
of 8048 circuitry while the Vpp pin supplies
only the RAM array. In normal operation both
pins are at 5V while in standby Vcc is at
ground and only Vpp is maintained at 5V.
Applying Reset to the processor through the
Reset pin inhibits any access to the RAM by
the processor and guarantees that RAM can-
not be inadvertently altered as power is
removed from Ve .

SINGLE COMPONENT SYSTEM

POWER SUPPLY

PROCESSOR) |
INT E/RRUFTED
NORMAL

|
! |
—I_____‘_____POWERON

i i SEQUENCE
FOLLOWS

POWER SUFPLY
FAIL SIGNAL

I
W
RESET |
[T . -
DATA SAVE
ROUTINE
EXECUTED

I
ACCESS TO
DATA RAM
INHIBITED

POWER DOWN SEQUENCE

A typical power down sequence occurs as
follows:

1. Imminent power supply failure is detected
by user defined circuitry. Signal must be
early enough to allow 8048 to save all nec-
essary data before V¢ falls below normal
operating limits.

2. Power fail signal is used to interrupt
processor and vector it to a power fail
service routine.

3. Power fail routine saves all important
data and machine status in the internal data
RAM array. Routine may also initiate trans-
fer of backup supply to the Vpp pin and
indicate to external circuitry that power fail
routine is complete.

4. Reset is applied to guarantee data will
not be altered as the power supply falls out
of limits. Reset must be heid low until V¢
is at ground level.

Recovery from the Power Down mode can
occur as any other power-on sequence with
an external capacitor on the Reset input
providing the necessary delay. See the previ-
ous section on Reset.

2.1.15 External Access Mode

Normaily the first 1K (8048) or 2K (8049)
words of program memory are automati-
cally fetched from internal ROM or EPROM.
The EA input pin however allows the user to

214

effectively disable internal program mem-
ory by forcing all program memory fetches
to reference external memory. The follow-
ing chapter explains how access to externai
program memory is accomplished.

The External Access mode is very useful in
system test and debug because it aliows the
user to disable his internal applications pro-
gram and substitute an external program of
his choice—a diagnostic routine for instance.
In addition, the section on Test and Debug
explains how internal program memory can
be read externally, independent of the
processor.

A “1” level on EA initiates the external access
mode. For proper operation, Reset should be
appiied while the EA input is changed.

2.2 Pin Description

The MCS-48 processors (except 8021) are
packaged in 40 pin Dual In-Line Packages
(DIP’s). The following is a summary of the
functions of each pin. Where it exists, the
second paragraph describes each pin’s
function in an expanded MCS-48 system.
Unless otherwise specified, each input is
TTL compatible and each output will drive
one standard TTL load.

PROGRAM
PROM

)

+5V

l GTD

el
XTAL{

&

RESET
SINGLE STEP

EXTERNAL ___ .| 8048
MEM. 8049
—q READ
TEST
— WRITE
PROGRAM
INTERRUPT —-Of STORE ENABLE
ADDRESS

LATCH ENABLE

8048 LOGIC SYMBOL

SINGLE COMPONENT SYSTEM

Designation

Pin
Number

Function

VSS
VDD

VCC

PROG

P10-P17
(Port 1)

P20-P27
(Port 2)

D0-D7
(BUS)

20
26

40

25

27-34

21-24
35-38

12-19

39

Circuit GND potential

Programming power supply; +25V during program,
+5V during operation for both ROM and PROM. Low
power standby pin in 8048 ROM version

Main power supply; +5V during operation and
8748 programming.

Program pulse (+25V) input pin during 8748
programming.
Output strobe for 8243 1/O expander.

8-bit quasi-bidirectional port. (internal Pullup = 50K{})

8-bit quasi-bidirectional port. (Internal Pullup = 50K(})

P20-P23 contain the four high order program counter
bits during an external program memory fetch and serve
as a 4-bit 1/O expander bus for 8243.

True bidirectional port which can be written or read syn-
chronously using the RD, WR strobes. The port can also
be statically latched.

Contains the 8 low order program counter bits during an
external program memory fetch, and receives the ad-
dressed instruction under the control of PSEN. Also con-
tains the address and data during an external RAM data
store instruction, under control of ALE, RD, and WR.

Input pin testable using the conditional transfer instruc-
tions JTO and JNTO. TO can be designated as a clock
output using ENTO CLK instruction. TO is also used dur-
ing programming.

Input pin testable using the JT1, and JNT1 instructions.

Can be designated the event counter input using the
STRT CNT instruction.

Interrupt input. Initiates an interrupt if interrupt is enabled.
Interrupt is disabled after a reset. (Active low)

Output strobe activated during a BUS read. Can be
used to enable data onto the BUS from an external
device. (Active low)

Used as a Read Strobe to External Data Memory.

SINGLE COMPONENT SYSTEM

Input which is used to initialize the processor. Also used
during PROM programming and verification. (Active low)

Output strobe during a BUS write. (Active low)
Used as write strobe to external data memory.

Address Latch Enable. This signal occurs once during
each cycle and is useful as a clock output.

The neqative edge of ALE strobes address into external

Program Store Enable. This output occurs only during a
fetch to external program memory. (Active Low)

Single step input can be used in conjunction with ALE
to “single step” the processor through each instruction.
{Internal putiup = 300K

External Access input which forces all program memory
fetches to reference external memory. Useful for emula-
tion and debug, and essential for testing and program
(Internal pullup = 10MQ
on 8048/8049, 8035L, 8039 only)

One side of crystal input for internal oscillator. Also input

Pin

Designation | Number | Function
RESET 4

(Internal puliup = 200K}
WR 10
ALE 11

data and program memory.
PSEN 9
SS 5

(Active Low)
EA 7

verification. (Active High)
XTAL1 2

for external source.
XTAL2 3

Other side of crystal input.

Unless otherwise stated inputs do not have internal pullup resistors.

2.3 Programming, Verifying and
Erasing EPROM

The internal Program Memory of the 8748
may be erased and reprogrammed by the user
as explained in the following sections:

2.3.1 Programming/Verification

In brief, the programming process consists
of: activating the program mode, applying an
address, latching the address, applying data,
and applying a programming pulse. Each
word is programmed completely before moving
on to the next and is foilowed by a verifica-
tion step. The following is a list of the pins
used for programming and a description of
their functions:

2-16

Pin Function

XTAL 1 Clock Input (1 to 6MHz)

Reset Initialization and Address
Latching

Test O Selection of Program or
Verify Mode

EA Activation of Program/Verify
Modes

BUS Address and Data Input
Data Output During Verify

P20-1 Address Input

Voo Programming Power Supply

PROG Program Pulse Input

SINGLE COMPONENT SYSTEM

RESET
0
e BUS AND PROG CAN BE DRIVEN ONLY DURING THIS TIME ——»
+5V
TEST 0
0
+25V
EA
+5V
BUS < ADDRESS Ag-A7 X DATA >———-< DATA OUT
PREVIOUS
£20.21 ,
ADDRESS X ADDRESS Ag-Ag
+26V
VpbD
5V
+25V
PROG J,(,\/_F_':_Oﬂ_L . fLoAT _ _ _

SEE 8048/8748 DATA SHEET (CHAPTER 6) FOR DETAIL TIMING SPECIFICATIONS.

WARNING: An attempt to program a mis-socketed 8748 will result in severe damage to the part. An indication of a properly socketed part
is the appearance of the ALE clock output. The lack of this clock may be used to disable the programmer.

PROGRAMMING/VERIFY SEQUENCE

8748 Erasure Characteristics

The erasure characteristics of the 8748 are
such that erasure begins to occur when
exposed to light with wavelengths shcgrter
than approximately 4000 Angstroms (A). It
should be noted that sunlight and certain
types of fluorescent lamps have wave-
lengths in the 3000-4000A range. Data
show that constant exposure to room level
fluorescent lighting could erase the typical
8748 in approximately 3 years while it
Would take approximately 1 week to cause
€rasure when exposed to direct sunlight. If
t_he 8748 is to be exposed to these types of
lighting conditions for extended periods of
time, opaque labels are availabte from Intel
Which should be placed over the 8748 win-
dow to prevent unintentional erasure.

When erased, bits of the 8748 Program
Memory are in the logic “0” state.

The recommended erasure procedure for
the 8748 is exposure to shortwave ultra-
viotet light which has a wavelength of 2537
Angstroms (A). The integrated dose (i.e., UV
intensity X exposure time) for erasure
should be a minimum of 15W-sec/cm2. The
erasure time with this dosage is approxi-
mately 15 to 20 minutes using an ultraviolet
lamp with a 12000uW/cm2 power rating.
The 8748 should be placed within oneinch
from the lamp tubes during erasure. Some
lamps have a filter on their tubes and this
filter should be removed before erasure.

SINGLE COMPONENT SYSTEM

The Program/Verify sequence is:

1. Vbp = 5v, Clock applied or internal
oscillator operating, Reset =0v Test0 =
Sv, EA = 5v, BUS and PROG floating

Insert 8748 in programming socket

. Test 0 = Ov (Select Program Mode)

EA = 25v (Activate Program Mode)
Address applied to BUS and P20-1
Reset = 5v (Latch Address)

Data applied to BUS

Vpp = 25v (Programming Power)

L @ N OO AN

PROG = Ov followed by one 50ms pulse
to 25v

Vpp = 5v

TEST 0 = 5v (Verify Mode)

Read and Verify Data on BUS
TEST 0 = Ov

Reset = Ov and repeat from Step 5

10.
11.
12.
13.
14.

15. Programmer should be at conditions of

Step 1 when 8748 is removed from socket.

2.4 Test and Debug

Several MCS-48 features described in the
previous sections are discussed here to
emphasize their use in testing MCS-48
components and in debugging MCS-48
based systems.

2.4.1 Single Step

Single step circuitry within the micro-
computer in combination with the external
circuitry described in Section 2.1.13 allows
the user to execute one instruction at a time
whether the instruction is one or two cycles
in length. After completion of the instruction
the processor halts with the address of the
next instruction to be fetched available on the
eight lines of BUS and the lower 4-bits of port
2.

2-18

P23
P22
P21
P20
DB7
DBé
DB5
DB4
DB3
D82z
DB1
DBO

ADDRESS OUTPUT DURING SINGLE STEP

This allows the user to step through his
program and note the sequence of instruc-
tions being executed.

While the processor is stopped, the I/0Q
information on BUS and the 4-bits of port 2is,
of course, not available. 1/0 information is,
however, valid at the leading edge of ALE and
can be latched externally using this signal if
necessary.

2.4.2 Disabling Internal Program Memory

Applying +5V to the EA (external access) pin
of the MCS-48 microcomputers allows the
user to effectively disable internal program
memory by forcing all instruction fetches to
occur from an external memory. This
external memory can be connected as
explained in the section on program memory
expansion and can contain a diagnostic
routine to exercise the processor, the internal
RAM, the timer, and the i/0 lines. EA should
be switched only when the processor is in
RESET.

2.4.3 Reading Internal Program Memory

Just as the processor may be isoiated from
internal program memory using EA, program
memory can be read independent of the
processor using the verification mode des-
cribed in the previous section, Programming/
Verification.

SINGLE COMPONENT SYSTEM

The processor is placed in the READ mode
by applying a high voltage (+25V for the
8748, +12V for the 8048/8049) to the EA pin
and +5V to the TO (8748 only) input pin.
RESET must be at 0V when voltage is
applied to EA. The address of the location
to be read is then applied to the same lines

(TTL levels) of BUS and Port 2 which output
the address during single step (see below).
The address is latched by a “0” to “1”
transition on RESET and a high level on
RESET causes the contents of the program
memory location addressed to appear on
the eight lines of BUS.

A1
P22 Ao (8049 only)
A
P21 2 Ag
A
P20 i Ag
by | A
A, /D, 3 7
DB7 {= 170, ty |e—— Ag
I
Ag/D, . 5
DB6 |/02 |0 — A4
Ay /D, 8216 O —= D7
D85 1/Q, 0, — Dg
. D
A4/D4 01 5
DB4 170, Co — Pa
8048 —
8748 A;3/Dy EN CS
DB3 _L
A,/D | DATA
DB2 22 = ouT
A./D
DB1 '
.} .
Ay/D, 3 Ps
DBO | 10, O b—— D,
o D,
I/O2 Op D0 -
8216 I3 |+—— A3
RESET 110, I fe—— A
Iy Ja—— A,
EA |- 110, o |[—— Ay
EN c3
TO L T~
T +25V (8748)
T +12v (8048}
[+5V (8748)
| NC (8048)
5V
RESET 0 |
1
12V (+25V) :
EA 0 I :
5V 4
BUS ——< ADDRESS X DATA
0
BV
ADDRESS

P20-21 ___L
0

‘ READING INTERNAL PROGRAM MEMORY

SINGLE COMPONENT SYSTEM

8021 Functional Specifications

The following is a functional description of
the major elements of the 8021.

2.5 Program Memory

The 8021 contains 1K x 8 of mask
programmable ROM. No external ROM
expansion capability is provided.

2.6 Data Memory

A 64 x 8 dynamic RAM s located on chip for
data storage. All locations are indirectly
addressable and eight designated locations
are directly addressable. Also, included in
the memory is the address stack, addressed
by a 3-bit stack pointer.

Memory is organized as shown in Figure 1.
The least significant 8 addresses, 0-7, are
directly addressable by any of the 11 direct
register instructions. The locations are
readily accessible for a variety of opera-
tions with the east number of instruction
bytes required for their manipulation.

Registers 0 and 1 have another function, in
that they can be used to indirectly address
all locations in memory, using the indirect
register instructions. These indirect RAM
address registers, IRAR’s, are especially
useful for repetitive-type operations on
adjacent memory locations. The indirect
register instruction specifies which IRAR to
use, and the contents of the IRAR isused to
address a location in RAM. The contents of
the addressed location is used during the
execution of the instruction and may be
modified. A value larger than 63 should not
be preset in the IRAR when selected by an
Indirect register instruction. IRAR’s may
point to address 0-7, if desired.

Locations 8-23 may be used as the address
stack. The address stack enables the
Processor to keep track of the return
addresses generated from CALL instruc-
tions. A 3-bit stack pointer (SP)supplies the
address of the locations to be loaded with

2.21

the next return address generated. The SP
to this pushdown stack is incremented by
one after a return address is stored, and
decremented by one before an address is
fetched during a RET. A total of 8 levels of
nesting is possible. The SP is initialized to
location 8 upon RESET. Since each
address is 10-bits long, two bytes must be
used to store a single address. The SP is
incremented and decremented by one, but
each increment or decrement moves the
address pointed to by two. Therefore, only
even numbered addresses are pointed to.

If a particular application does notrequire 8
levels of nesting, the unused portion of the
stack may be used as any other indirectly
addressable scratchpad location. For ex-
ample, if only 3 levels of subroutine nesting
are used, then only locations 8-13 need be
reserved for the address stack, and
locations 14-63 can be used for data
storage. The unincremented program
counter address is stored in the address
stack. The stack contents is incremented
before being loaded into the program
counter during a return from subroutine.

LOC 24-63

INDIRECTLY
ADDRESSABLE
BY
IRARO OR 1

CAN BE USED
FOR ADDRESS
STACK

LOC 8-23

DIRECTLY
ADDRESSABLE

N|w(esjon|d|w

tRAR 1
IRAR_ 0

FIGURE 1. INTERNAL RAM ORGANIZATION

SINGLE COMPONENT SYSTEM

2.7 Oscillator and Clock

The 8021 contains its own onboard
oscillator and clock circuit, requiring only
an external timing control element. This
control element can be a crystal, inductor,
resistor, or clock in. The capacitor normally
required in resistor or inductor timing
control operation is integrated onto the
8021. Ali internal time slots are derived from
the external element, and all outputs are a
function of the oscillator frequency. Pins
XTAL1 and XTAL2 are used to input the
particular control element. An instruction
cycle consists of 10 states, and each state is
a time slot of 3 osciilator periods. (See
Figure 2) Therefore, to obtain a 10 usec
instruction cycle, a3 MHz crystal should be
used. An oscillator frequency of 3 MHz may
also be obtained by connecting a 10KQ
resistor between XTAL1 and XTALZ2. Note
that the required resistance may vary from
10K}, and should be adjusted as neces-
sary.

The 8021 utilizes dynamic RAM and certain
other dynamic logic. Due to the clocking
required with dynamic circuits, the oscil-
lator frequency must be equal to or greater
than 600K Hz, or improper operation may
occur.

2.8 Timer/Event Counter

The 8021 has internal timer/event counter
circuits that can monitor elapsed time or
count external events that occur during
program execution. The circuit has an 8-bit
binary up-counter that is presettable and
readable with two MOV instructions. These
instructions transfer the contents of the
accumulator to the counter and vice-versa.
The counter content is not affected by
Reset, and is initialized solely by the MOV
T,Ainstruction. The counteris stopped by a
RESET or STOP TCNT instruction and
remains stopped until started asatimerbya
STRT T instruction or as an event counter
by a STRT CNT instruction. Once started,

CYCLE
Tives 1) ?

ALE

DATA
IN

PO, P1, P2

—~

DATA CUT

ALL PORTS FOR IN AND OUTL INSTRUCTIONS

FIGURE 2. 8021 TIMING DIAGRAM

2.22

SINGLE COMPONENT SYSTEM

the counter increments to its maximum
count (FF), and overflows to zero. The count
continues until stopped by a STOP TCNT
instruction or RESET. The increment from
maximum count to zero (overflow) sets an
overflow flag. The state of the overflow flag
is testable with the conditional jump in-
struction JTF. The flag is reset by JTF or by
executing a RESET.

By a MOV T,A instruction, the contents of
the accumulator are loaded to the timer. At
the STRT T command an internal prescaler
is zeroed and thereafter increments once
each 30 input clocks (once each single
cycle instruction, twice each double cycle
instruction). The prescaler is adivide by 32.
At the (11111) to (00000) transition the timer
is incremented. The timer is 8-bits and an
overflow (FFH) to (O0OH) timer flag is set. A
conditional branch instruction (JTF) is
available for testing this flag, the flag being
reset each test. Total count capacity for the
timer is 28 x 25=8192 or 81.9 msec ata 10
usec cycle time. Contents of the timer are
moved to the accumulator by the MOV A, T
instruction without disturbing the counting
process. The timer stops upon the STOP
TCNT instruction.

The STRT CNT instruction connectsthe T1
input pin to the event counter input and
enables the counter. Subsequent high-to-
low transitions on T1 increment the
counter. The maximum rate at which the
counter can increment is once per three
instruction cycies (30us for a 3 MHz
oscillator). There is no minimum frequency.
T1 input must remain high for at least 500ns
after each transition. The event counter is
stopped by a STOP TCNT instruction.

2.9 Input/Output Capabilities

The 8021 I/0 configurations are highly
flexible. A number of different configur-
ations are possible, tailoring an 8021 to a
given task. Other than the power supply
and dedicated pins, all other pins (20) can
be used for input, output, or both,
depending on the configuration.

All ports are quasi-bidirectional to facili
tate stand-alone use. A simplified sche-

2-23

matic of the quasi-bidirectional inter-
face is shown in Figure 3. This con-
figuration allows buffered outputs, and
also allows external input. Data written to
these ports is statically latched and remains
unchanged until rewritten. As input ports
these lines are non-latching, i.e., inputs
must be present until read by an input
instruction. When writing a “0” or low value
to these ports, the large pulldown device
sinks an external TTL load. When writing a
“1”, a large current is supplied through the
targe pullup device to allow a fast data
transfer. After a short time (less than one
instruction cycle), the iarge device is shut
off and the small pullup maintains the “1”
level indefinitely. However, in this situation,
an input device capable of overriding the
small amount of sustaining current sup-
plied by the pullup device can be read.
(Alternatively, the data written can be read).
So, by writing a “1” to any particular pin,
that pin can serve either as a true high-level
latched output pin, or as just a pullup
resistor on an input. This allows maximum
user flexibility in selecting his input or
latched output pins, with a minimum of
external components.

Port 00-07 is also quasi-bidirectional,
except there is no large pullup device. As
outputs, this port is essentially open drain.

By mask option the small pullup devices on
PO0-PO7 may be deleted on any pin
providing a true open drain output. This is
useful in driving analog circuits and certain
loads, such as keyboards.

INTERNAL
BUS

WRITE TO
PORT

INPUT BUFFER

FIGURE 3. QUASI-BIDIRECTIONAL
PORT STRUCTURE

SINGLE COMPONENT SYSTEM

2.9.1 T1 Input

The 8021 T1 input line can be used as an
input for the following functions:

¢ Event Counter (external input)
e Test input for branch instructions
e Zero voltage crossing detection

The operation of T1 as an input to the Event
Counter is described in the Timer/Event
Counter section. When used as a testinput,
the JT1 and JNT1 instructions test for 1 and
0 levels, respectively.

The T1 pin can also be used to detect the
zero crossing of slowly moving AC signals
(60 Hz). The self-biasing circuit shown in
Figure 4 permits the Test 1 input to detect
when the input voltage crosses zero within
+5%, then the voitage is coupled through
a 1.0uf capacitor. Maximum input voltage is
3V peak-to-peak. The zero cross detection
is especially useful in SCR control of 60 Hz
power and in developing time-of-day and
other timing routines. As a ROM mask
option there is a pullup resistor that is
useful for switch contact input or standard
TTL.

2.9.2 High Current Outputs
Very high current drive is desirable for

(a) ZERO CROSS DETECT

EXTERNAL
CAPACITOR

—{F— P~

(b} OPTIONAL PULLUP RESISTOR

J‘a PIN
EXTERNAL
SWITCH J_

minimizing external parts required to do
high power control. P10 and P11 have been
designated high drive outputs capable of
sinking 7mA at Vss + 2.5 volts. (For clarity,
thisis 7mAtoVss witha2.5voltdrop across
the buffer.) These pins may, of course, be
paralleled for 14mA drive if the output logic
states are always the same.

2.9.3 Expanded I/0

The 8021 can be used with the 8243 (/O
expander chip, which provides additional
I/O capability with a limited number of
overhead pins. This chip has 4 directly
addressable 4-bit ports. It connects to the
PROG pin, which provides a clock, and pins
P20-P23, which provide address and data.
These ports can be written with a MOVD
P.A; ANLD P,A; and ORLD P,A for Ports 4-7.
A high to low transition on PROG signifies
that address and control are available on
P20-P23. The previcus data on P20-P23
before an output expander instruction is
lost. Therefore, when using an output
expander P20-P23 are not useful for
general input/output. Reading is via the
MOVD A,P. This circuit configuration is
shown in Figure 5. The timing diagram is
shown in Figure 6.

The 8021 can also use standard low cost
TTL to expand the number of i/0 lines. An
example is shown in the Applications
section.

8021 8243
PROG PROG

L }

FIGURE 4. TEST 1 PIN

FIGURE 5. I/0 EXPANDER INTERFACE

SINGLE COMPONENT SYSTEM

PROG

ADDRESS DATA
DATA IN CODE FLOAT N
{4 BITS) (4 BITS)
DATA OUT ADDRESS DATA
(P20-P23) CODE ouT
(4 BITS) {4 BITS)
BITS 01 BITS 2,3
00 00] READ
01| PORT 01] WRITE
10| ADDRESS 10[OR
”J 11} AND PORT 2 FOR EXPANDED I/0 WiTH 8243

FIGURE 6. EXPANDED {/0 TIMING DIAGRAM

2.10 CPU

The 8021 CPU has arithmetic and logical
capability. A wide variety of arithmetic and
logic instructions may be exercised, which
affect the contents of the accumulator,
and/or direct or indirect scratchpad loca-
tions. Provisions have been made for
simplified BCD arithmetic capability using
the DAA, SWAP A, and XCHD instructions.
In addition, MOVP A @A allows table
lookup for display formating and constants.
The conditional branch logic within the
processor enables several conditions inter-
nal and external to the processor to be
tested by the users program. Use the
conditional jump instructions with the tests
listed below to effect a change in the
program execution sequence.

The 8021 may see poorly regulated and
noisy power supplies. A useful feature is to
sense when the power supply dips anddoa
RESET to prevent continued operation with
incorrect data. This feature may be
implemented on the 8021 by connecting a
diode between the RESET node and
ground. See Figure 7.

A RESET will then be forced if the supply
drops approximately 1.5 volts and rapidly
recovers. One instruction cycle will RESET
the 8021 to the initialized state.

By removing the diode and using only the
capacitor, voltage drops in Vcc will not
cause a RESET.

vee

Jump Jump 1wk L
Test Condition Instructions ov T
Accumulator A=0 A#0 JZ JNZ
Carry Flag 0 1 JNC, JC RESET
Timer Overflow Flag — 1 JTF
Test Input-T1 0 1 JNTH, JT1

2.11 Reset

A positive-going signal to the RESET input
resets the necessary miscellaneous flip-
flops and sets the program counter and
Stack pointer to zero.

FIGURE 7. POWER ON RESET

THE EXPANDED MCS-48™ SYSTEM

3.08ummary ... 3-1
3.1 Expansion of Program Memory 3-1
3.2ExpansionofDataMemory 3-4

3.3 Expansionof Input/Qutput 3-5
3.4 Multi-Chip MCS-48 Systems
3.5 Memory Bank Switching
3.6 Control Signal Summary 3-11

3.7 Port Characteristics 3-11
MCS-48™ CYCLE TIMING
FOR EXTERNAL MEMORY
ALE
PSEN I ;
e, +
IF EXTERNAL PROGRAM
o o MEMORY FETCH
N/
/T \ — <
ADDRESS INSTRUCTION ADDRESS INSTRUCTION ADDRESS WRITE
el 1o X ADDRESS X PORTJX ADDRESS X PORT 1/0 (:Sgéggiﬁ:gagm FETCH:) -
RD

THE EXPANDED MCS-48"SYSTEM

3.0 Summary

if the capabilities resident on the single-
chip 8048/8049, 8748, or 8035/8039 are not
sufficient for your system requirements,
special on-board circuitry allows the
addition of a wide variety external memory,
1/Q, or special peripherals you may require.
The processors can be directly and simply
expanded in the following areas:

® Program Memory to 4K words

e Data Memory to 320 words (384 words
with 8049) '

¢ /O by unlimited amount

¢ Special Functions using 8080/8085
peripherals

By using bank switching techniques maxi-
mum capability is essentially unlimited. Bank
switching is discussed later in the chapter.
Expansion is accomplished in two ways:

1. Expander I/O—A special |/O Expander
circuit the 8243 provides for the addition of
four 4-bit Input/Output ports with the sac-
rifice of only the lower half (4 bits) of port 2
for inter-device communication. Multiple
8243's may be added to this 4-bit bus by
generating the required “chip select” lines.

2. Standard 8085 Bus—One port of the
8048 is like the 8 bit bidirectional data bus
of the 8085 microcomputer system allow-
ing interface to the numerous standard
memories and peripherals of the MCS-
80/85 microcomputer family.

MCS-48 systems can be configured using
either or both of these expansion features to
Optimize system capabilities to the application.
Bch expander devices and standard mem-
Ories and peripherals can be added in virtually
any number and combination required.

31

3.1 Expansion of Program Memory

Program Memory is expanded beyond the
resident 1K or 2K words by using the 8085
BUS feature of the MCS-48. All program
memory fetches from addresses less than
1024 (2048) occur internally with no
external signals being generated (except
ALE which is always present). At address
1024 the 8048 automatically initiates exter-
nal program memory fetches.

3.1.1 Instruction Fetch Cycle (External)

For all instruction fetches from addresses
of 1024 (2048) or greater the following will
occur:

1. The contents of the 12 bit program
counter will be output on BUS and the lower
half of port 2.

2. Address Latch Enable (ALE) wili indi-
cate the time at which address is valid. The
traiting edge of ALE is used to latch the
address externally.

3. Program Store Enable (PSEN) indicates
that an external instruction fetch is in prog-
ress and serves to enable the external
memory device.

4. BUS reverts to input {floating) mode
and the processor accepts its 8 bit
contents as an instruction word.

Al instruction fetches including internal
addresses can be forced to be external by
activating the EA pin of the 8048/8049. The
8035/8039 processors without program
memory always operate in the external
program memory mode (EA=5V).

3.1.2 Extended Program Memory
Addressing (Beyond 2K)

For programs of 2K words or less, the
8048/8049 addresses program memory in

EXPANDED MCS-48 SYSTEM

I 1 [L

FLOAT!NK X FLOATING X X FLOATING
7

ADDRESS INSTRUCTION

BUS

INSTRUCTION FETCH FROM
EXTERNAL PROGRAM MEMORY

the conventional manner. Addresses be-
yond 2047 can be reached by executing a
program memory bank switch instruction
(SEL MBO, SEL MB1) followed by a branch
instruction (UMP or CALL). The bank switch
feature extends the range of branch
instructions beyond their normal 2K range
and at the same time prevents the user from
inadvertently crossing the 2K boundary.

Program Memory Bank Switch

The switching of 2K program memory banks
is accomplished by directly setting or resetting
the most significant bit of the program counter
(bit 11). Bit 11 is not altered by normal incre-
menting of the program counter but is loaded
with the contents of a special flip-flop each
time a JMP or CALL instruction is executed.
This special flip-flop is set by executing an
SEL MB1 instruction and reset by SEL MBO.
Therefore, the SEL MB instruction may be
executed at any time prior to the actual bank
switch which occurs during the next branch
instruction encountered. Since all twelve bits
of the program counter including bit (11) are
stored in the stack when a Call is executed,
the user may jump to subroutines across the
2K boundary and the proper bank will be
restored upon return. However, the bank
switch flipflop will not be altered on return.

Interrupt Routines

Interrupts always vector the program counter
to location 3 or 7 in the first 2K bank and bit
11 of the program counter is held at “0”
during the interrupt service routine. The end
of the service routine is signalled by the
execution of an RETR instruction. Interrupt
service routines should therefore be contained

3-2

1| A0 Ay
1 T J

Conventional Program Counter
¢ Counts D00H to 7FFH
¢ Overflows 7FFH to 000H

JMP or CALL instructions transfer contents of
internal flipflop to Aqq
* Flipflop set by SEL MB1
* Flipfiop reset by SEL MB0
or by RESET

Ag | As

Ag

Ag | Ay | Ay

During interrupt service routine
Ajiq is forced to “0"

All 12 bits are saved in stack

PROGRAM COUNTER

entirely in the lower 2K words of program
memory. The execution of a SEL MBC or SEL
MB1 instruction within an interrupt routine is
not recommended since it will not alter PC11
while in the routine, but will change the
internal flip flop.

3.1.3 Restoring 1/0 Port Information

Aithough the lower half of Port 2 is used to
output the four most significant bits of address
during an external program memory fetch,
the 1/O information is still outputed during
certain portions of each machine cycle. 1/O
information is always present on Port 2 lower
at the rising edge of ALE and can be sampled
or latched at this time.

3.1.4 Expansion Examples

The accompanying figure shows the addition
of three 2708 1K X 8 EPROMSs or three 8308
pin-compatible ROM replacements for a total
of 4K words of program memory. The BUS
port of the 8048 is connected directly to the
data output lines of the memories. The lower
8 bits of address are latched in an 8212 8-bit
latch using ALE as the strobe. The lower half
of Port 2 provides the upper 4 bits of address
and since these address bits are stable for
the duration of the program memory fetch,
they do not have to be latched. Two of the
upper address bits are connected directly to
the address inputs of the memories while the
two most significant bits are decoded to
provide the three chip selects needed. The
PSEN output of the 8048/8748 is used to
enable the chip select lines and therefore the
memories.

EXPANDED MCS-48 SYSTEM

PROGRAM MEMORY

—

ADDRESS

PORT 2;,

>

DECODER

2708/
8308

DATA
ouT

9
0,
0y

cs TK-2K

10F 4
E

ALE

8212

10

ADDRESS

8048

BUS

PSEN

2708/
8308

DATA
ouT

jCS 2K - 3K

ADDRESS

USING 1K x 8 PROM/ROM

2708/
8308

DATA
ouT

Ccs 3K - 4K

EXPANDING MCS-48 ™ PROGRAM MEMORY USING STANDARD MEMORY PRODUCTS

Also shown is the addition of 2K words of
program memory using an 8316A 2K x 8
ROM to give a total of 3K words of program
memory. In this case no chip select decoding
is required and PSEN enables the memory
directly through the chip select input. If the
system requires only 2K of program the same
configuration can be used with an 8035
substituted for the 8048. The 8049 would
provide 4K with the same configuration.

The next figure shows how the new 8755/8355
EPROM/ROM with |/O interfaces directly to
the 8048 without the need for an address
latch. The 8755/8355 contains an internal 8-bit
address latch eliminating the need for an
8212 latch. In addition to a 2K X 8 program
memory the 8755/8355 also contains 16 /O
fines addressable as two 8-bit ports. These
ports are addressed as external RAM; there-

PORT 20-22

8048 ALE

E

8212
LATCH

ADDRESS
2316
ROM

e

BUS

@

DATA
ouT

PSEN

Of

cs

USING 2K x 8 ROM

EXPANDING MCS-48™ PROGRAM MEMORY USING STANDARD MEMORY PRODUCTS

3-3

EXPANDED MCS-48 SYSTEM

fore, the RD and WR outputs of the 8048 are
required. See the following section on data
memory expansion for more detail. The sub-
sequent section on 1/O expansion explains
the operation of the 16 1/O lines.

ALE =1 ALE 2K X 8
PSEN =1 RD
WR iCW

PROM

WITH
/0
8355/
8755

Ag-Aqq. CS

/0

P20-P23

TEST
INPUTS

/0

EXTERNAL PROGRAM MEMORY INTERFACE

3.2 Expansion of Data Memory

Data Memory is expanded beyond the resi
dent 64 words by using the 8085 type bus
feature of the MCS-48.

3.2.1 Read/Write Cycle

All address and data is transferred over the 8
lines of BUS. A read or write cycle occurs as
follows:

1. The contents of register RO or R1 is out-
puted on BUS. ’

2. Address Latch Enable (ALE) indicates
address is valid. The trailing edge of ALE is
used to iatch the address externally.

3. A read (RD) or write (WR) pulse on the
corresponding output pins of the 8048 indi-
cates the type of data memory access in
progress. Output data is valid at the trailing
edge of WR and input data must be valid at
the trailing edge of RD.

4. Data (8-bits) is transferred in or out over
BUS.

READ FROM EXTERNAL DATA MEMORY

ALE I

L

BUS

FLOATING){ADDR ESSX XDA;AX
£
7

FLOATING

FLOATING

WRITE TO EXTERNAL DATA MEMORY

ALE _J I
WR
BUS FLOATINGXADDR ESS%LOATINGX DATA X FLOATING

3-4

EXPANDED MCS-48 SYSTEM

3.2.2 Addressing External Data Memory

External Data Memory is accessed with its
own two-cycle move instructions MOVX A,
@R and MOVX @R, A which transfer 8 bits of
data between the accumulator and the ex-
ternal memory location addressed by the
contents of one of the RAM Pointer Registers
RO or R1. This allows 256 locations to be
addressed in addition to the resident
locations. Additional pages may be added
by “bank switching” with extra output lines of
the 8048.

3.2.3 Examples of Data Memory
Expansion

The accompanying figure shows how the
8048 can be expanded using standard 256 X
4 static RAMs such as the 2101-2 or its low
power CMOS equivalent, the 5101. An 8212
serves as an address latch while each 4-bit

tional 4-bit data bus of the memories. The WR
output of the processor controls the Read/
Write input of the memories while the data
bus output drivers of the memories are con-
trolled by RD. The chip select lines of the
memories are continuously enabled unless
additional pages of RAM are required. Also
shown is the expansion of data memory using
the 8155 memory and I/O expanding device.
Since the 8155 has an internal 8-bit address
latch it can interface directly to the 8048 with-
out the use of an external 8212 latch. The
8155 provides an additional 256 words of sta-
tic data memory and also includes 22 1/O
lines and a 14 bit timer. See the following sec-
tion on 1/O expansion and the 8155 data sheet
for more details on these additional features.

3.3 Expansion of input/Output

There are four possible modes of 1/0
expansion with the 8048: one using a

half of BUS is connected directly to a bidirec- special low cost expander, the 8243;
BUS‘<: 8
<& Iy “
DI 1-8 1/01-4 CS1 /014 8%
ALE P52 4213 DO1 A a 211172101 CS2 ‘_‘b_— A A, 2111/2101552 3:_1—
8048 Lo Dos °77 5101 - 7 5101 -
—{mD
15V oD R/W oD RAW
| A
_ 1
RD
WR
BUS < 8 > ADg.7
ALE ALE g155
8o4g WA WR RAM l«—————— TIMER IN
RD »| RD = TIMER OUT
PORT 10/M
TEST

INPUTS

(CE—

8048 INTERFACE TO 256 X 8 STANDARD MEMORIES

35

EXPANDED MCS-48 SYSTEM

another using standard MCS-80/85 1/0
devices; and a third using the combination
memory/I/O expander devices the 8155,
8355, and 8755. It is also possible to expand
using standard TTL devices as shown in
Chapter 5.

3.3.1 I/O Expander Device

The most efficient means of 1/0 expansion for
small systems is the 8243 /O Expander De-
vice which requires only 4 port lines (lower
half of Port 2) for communication with the
8048. The 8243 contains four 4-bit I/O ports
which serve as extension of the on chip 1/O
and are addressed as ports #4-7. The follow-
ing operations may be performed on these
ports:

1. Transfer Accumulator to Port.
2. Transfer Port to Accumulator.
3. AND Accumulator to Port.

4. OR Accumulator to Port.

A 4-bit transfer from a port to the lower half of
the Accumulator sets the most significant four

bits to zero. Ali communication between the
8048 and the 8243 occurs over Port 2 lower
(P20-P23) with timing provided by an output
pulse on the PROG pin of the processor. Each
transfer consists of two 4-bit nibbles:

The first containing the “op code” and port
address and the second containing the actual
4 bits of data.

Nibble 1 Nibble 2
3 2 1 0 3 2 1 0
| I 1A A d|d
Instruction Port data

Code Address

Il AA

00 Read 00—Port #4

01 Write 01—Port #5

10 OR 10—Port #6

11 AND 11—Port #7

EXPANDER INTERFACE

20 1/0

PROG

CHIP SELECT CONNECTION IF MORE

THAN ONE EXPANDER IS USED

TEST
INPUTS

—

Tz
—

8048

P20-P23

PROG

DATAIN
P2

cs

P4 110

Ps i/o
8243

Pe 1/0

P7 /0

1103

OUTPUT EXPANDER TIMING

PROG \

BITS 0,1 BITS 2,3

—

007 READ

PORT
ADDRESS

00
01 | 01 WRITE
10 T- 10 OR
1 AND

1M_

P20-P23 _L X

>__

ADDRESS (4-BITS)
AND OPCODE

DATA (4-BITS)

3-6

EXPANDED MCS-48 SYSTEM

A high to low transition of the PROG line indi-
cates that address is present while a low to
high transition indicates the presence of data.
Additional 8243’'s may be added to the four bit
bus and chip selected using additional output
lines from the 8048/8748.

I/O Port Characteristics

Each of the four 4-bit ports of the 8243 can
serve as either input or output and can pro-
vide high drive capability in both the high and
low state.

3.3.2 1/0 Expansion with Standard
Peripherals

Standard MCS-80/85 type I/O devices may
be added to the MCS-48 using the same bus
and timing used for Data Memory expan-
sion. /O devices reside on the Data
Memory bus and in the data memory
address space and are accessed with the
same MOVX instructions. See the previous
section on data memory expansion for a
description of timing. The following are a
few of the Standard MCS-80 devices which
are very useful in MCS-48 systems.

8214 Priority Interrupt Encoder

8251 Serial Communications Interface
8255 General Purpose Programmable 1/0O
8279 Keyboard/Display Interface

8253 Interval Timer

See Chapter 7 for detailed data sheets on
these and other components.

3.3.3 Combination Memory and /0
Expanders

As mentioned in the sections on program and
data memory expansion the 8355/8755 and
8155 expanders also contain 1/O capability.

8355/8755: These two parts are ROM and
EPROM equivalents and therefore contain
the same 1/O structure. 1/O consists of two
8-bit ports which normally reside in the exter-
nal data memory address space and are ac-
cessed with MOVX instructions. Associated
with each port is an 8-bit Data Direction Reg-
ister which defines each bit in the port as
either an input or an output. The data direction
registers are directly addressable thereby al-
lowing the user to define under software con-
trol each individual bit of the ports as either
input or output. All cutputs are statically
latched and double buffered. Inputs are not
latched.

8155/8156: |I/0O on the 8155/8156 is config-
ured as two 8-bit programmable I/O ports
and one 6-bit programmable port. These
three registers and a Control/Status regis-
ter are accessible as external data memory
with the MOVX instructions. The contents
of the control register determines the mode
of the three ports. The ports can be
programmed as input or output with or
without associated handshake communi-
cation lines. In the handshake mode, lines
of the six-bit port become input and out-
put strobes for the two 8-bit ports. See the

8048

El 3
o O

BUS

It

KEYBOARD
INPUTS
INT
/D | ———SHIFT
- CNTL
8279 7\ SCAN
KEYBOARD QUTPUTS
RD DISPLAY
{A}DISPLAY
WR a >OUTPUT
DATA (BIDISPLAY
BUS 4 Jouteut

CS
=

KEYBOARD/DISPLAY INTERFACE

EXPANDED MCS-48 SYSTEM

data sheet in the Chapter 6 for details. Also
included in the 8155 is a 14-bit programmable
timer. The clock input to the timer and the
timer overflow output are available on exter-
nal pins. The timer can be programmed to
stop on terminal count or to continuously re-
load itself. A square wave or pulse output on
terminal count can also be specified.

I/O0 Expansion Examples
(See Also Chapter 5)

The accompanying figure shows the expan-
sion of 1/O using multiple 8243’s. The only
difference from a single 8243 system is the
addition of chip selects provided by additional
8048 output lines. Two output lines and two
inverters could also be used to address the
four chips. Large numbers of 8243's would
require a chip select decoder chip such as the
8205 to save /0 pins.

Also shown is the 8048 interface to a stan-
dard MCS-80 peripheral; in this case, the
8255 Programmable Peripheral Interface, a
40 pin part which provides three 8-bit pro-
grammable /O ports. The 8255 bus interface
is typical of programmable MCS-80 peripher-
als with an 8-bit bidirectional data bus, a RD
and WR input for Read/Write control, a CS

{chip select) input used to enable the Read/
Write control logic and the address inputs
used to select various internal registers.

8048

p=d
=

BUS

PORT
A

(L)

PORT
B

PORT
[

8048

P20

P21

RD

WR

o

us

E
A
e
g ' @255
PROGRAMMABLE
PERIPHERAL
2 INTERFACE
RO
WR
8 DO-7
CS
OPTION #1
Aﬂ
A1 8255
PROGRAMMABLE
PERIPHERAL
INTERFACE
RD
WR
¢S

OPTION

#2

INTERFACE TO MCS-80 PERIPHERALS

8243

BUS

PROG P20-3

YL
BE8Y

PROG P20-3

8243

PORT 1

I

I

i
TITE

8243

PROG P20-3

I

8243

PRCG P20-3

PORT 2

A

PROG J

LOW COST I/0 EXPANSION

3-8

EXPANDED MCS-48 SYSTEM

interconnection to the 8048 is very
straightforward with BUS, RD, and WR con-
necting directly to the corresponding pins on
the 8255. The only design consideration is the
way in which the internal registers of the 8255
are to be addressed. If the registers are to be
addressed as external data memory using the
MOVX instructions, the appropriate number of
address bits (in this case, 2) must be latched
on BUS using ALE as described in the section
on external data memories. If only a single
device is connected to BUS, the 8255 may be
continuously selected by grounding CS. If
multiple 8255’s are used, additional address
bits can be latched and used as chip selects.

A second addressing method eliminates ex-
ternal latches and chip select decoders by
using output port lines as address and chip
select lines directly. This method, of course,
requires the setting of an output port with ad-
dress information prior to executing a MOVX
instruction.

3.4 Multi-Chip MCS-48 Systems

The accompanying figure shows the addition
of two memory expanders to the 8048, one
8355/8755 ROM and one 8156 RAM. The
main consideration in designing such a sys-
tem is the addressing of the various memories
and I/O ports. Note that in this configuration
address lines A,, and A, have been ORed to
chip select the 8355. This ensures that the
chip is active for all external program memory
fetches in the 1K to 3K range and is disabled
for all other addresses. This gating has been
added to allow the 1/O port of the 8355 to be
used. If the chip was left selected all the time
there would be conflict between these ports
and the RAM and 1/0 of the 8156. The NOR
gate could be eliminated and A,; connected
directly to the CE (instead of CE) input of the
8355; however, this would create a 1K word
“hole” in the program memory by causing the
8355 to be active in the 2K to 4K range in-
stead of the normal 1K to 3K range.

8156/8355

8365/

8755

p2o3K 4

ROM

| >
>
m

-l
[£2]
m
2

8048

3 3

BUS <::_ 8

PORT

WR g156
A8 _lIcg RAM
89 o <E>P%RT
TIMER
IN
— TIMER
out

THE THREE COMPONENT MCS-48 SYSTEM

EXPANDED MCS-48 SYSTEM

{1fe] 1/0

1

8355/8755
ROM 1/0
2K x 8

TIMER

8155
RAM I/0
256 x 8

|

STANDARD

¢

STANDARD

ADDRESS RAM

LATCH

ROM/EPROM

8049
8048

it

8748

1000

8035
8039

L

ﬁ
U

8255
PPl

8251
USART

8279
KEYBOARD/DISPLAY

8243

8243

Hil

SERIAL
QUTPUT

e T

INPUT

U

DISPLAY

KEYBOARD

MCS-48 EXPANSION CAPABILITY

In this system the various locations are ad-
dressed as follows:

Data RAM—Addresses 0 to 255 when Port
2 Bit 0 has been previously set = 1 and Bit 1
set =0

RAM [/O—Addresses 0 to 3 when Port 2
Bit0O =1and Bit1 = 1

ROM |/O—Addresses 0 to 3 when Port 2
Bit2orBit3 =1

3.5 Memory Bank Switching

Certain systems may require more than the
4K words of program memory which are
directly addressable by the program counter
or more than the 256 data memory and /O
locations directly addressable by the pointer

3-10

registers RO and R1. These systems can be
achieved using “bank switching” technigues.
Bank switching is merely the selection of
various blocks or “banks” of memory using
dedicated output port lines from the processor.
In the case of the 8048 program memory is
selected in blocks of 4K words at a time
while data memory and 1/O are enabled 256
words at a time.

The most important consideration in imple-
menting two or more banks is the software
required to cross the bank boundaries. Each
crossing of the boundary requires that the
processor first write a contro! bit to an output
port before accessing memory or 1/0 in the
new bank. If program memory is being
switched, programs should be organized to

EXPANDED MCS-48 SYSTEM

keep boundary crossings to a minimum.
Jumping to subroutines across the boundary
should be avoided when possible since the
programmer must keep track of which bank
to return to after completion of the subrou-
tine. If these subroutines are to be nested and
accessed from either bank, a software “stack”
should be implemented to save the bank
switch bit just as if it were another bit of the
program counter.

From a hardware standpoint bank switching
is very straight-forward and involves only the
connection of an 1/O line or lines as bank
enable signals. These enables are ANDed
with normal memory and 1/O chip select
signals to activate the proper bank.

3.6 Control Signal Summary

The following table summarizes the in-
structions which activate the various
control outputs of the MCS-48 processors.

CONTROL
SIGNAL WHEN ACTIVE
RD DURING MOVX A,@R OR INS 8US
WR DURING MOVX @R,A OR OUTL BUS
ALE EVERY MACHINE CYCLE
PSEN DURING FETCH OF EXTERNAL
PROGRAM MEMORY {INSTRUCTION
OR IMMEDIATE DATA)
PROG DURING MOVD A,P ANLD P,A

MOVD P,A ORLD P,A

During all other instructions these outputs
are driven to the inactive state.

3.7 Port Characteristics

BUS Port Operations

The BUS port can operate in three different
Modes: as a latched 1/0 port, as a bi-

directional bus port, or as a program
memory address output when external
memory is used. The BUS port lines are
either active high, active low, or high
impedance (floating). The latched mode
(INS, OUTL) isintended for use inthe single
chip configuration where BUS is not being
used as an expander port. OUTL and MOVX
instructions can be mixed if necessary.
However, a previously latched output will
be destroyed by executing a MOVX
instruction and BUS wili be ieft in the high
impedance state. QUTL should never be
used in a system with external program
memory, since latching BUS can cause the
next instruction, if external, to be fetched
improperly.

Port 2 Operations

The lower half of Port 2 can be used in three
different ways: as a quasi, bi-directional
static port, as an 8243 expander port, and to
address external program memory. in all
cases outputs are driven low by an active
device and driven high momentarily by an
active device and held high by a 50K
resistor to +5V.

The port may contain latched /O data prior
to its use in another mode without affecting
operation of either. If lower Port 2 (P20-3) is
used to output address for an external
program memory fetch the I/O information
previously latched will be automatically
removed temporarily while address is
present then restored when the fetch is
complete. However, if lower Port 2 is used
to communicate with an 8243, previously
latched 1/0 information will be removed
and not restored. After an input from the
8243 P20-3 will be left in the input mode
(floating). After an output to the 8243 P2o_3
will contain the value written, ANDed, or
ORed to the 8243 port.

INSTRUCTION SET

INSTRUCTION SET

4.0 INTRODUCTION

The MCS-48 instruction set is extensive for
a machine of its size and has been tailored
to be straightforward and very efficient in
its use of program memory. All instructions
are either one or two bytes in length and
over 70% are only one byte long. Also, all
instructions execute in either one or two
cycles (2.5usec or 5.0usec when using a 6
MHz XTAL) and over 50% of all instructions
execute in a single cycle. Doubie cycle
instructions include all immediate instruc-
tions, and all 1/0 instructions.

The MCS-48 microcomputers have been
designed to efficiently handle arithmetic
operations in both binary and BCD as well
as to efficiently handie the single bit
operations required in control applications.
Special instructions have also been in-
cluded to simplify loop counters, table
lookup routines, and N-way branch rou-
tines.

Data Transfers

As can be seen in the accompanying
diagram, the 8-bit accumulator is the central

PROGRAM DATA <
MEMORY MEMORY
- MOV
{=data)
WORKING REG
ADD MOV MOV
MOV ADD ADD
MOVP ANL ANL
MOVP3 ORL ORL
ANL XRL XRL
MOVD ORL XCH XCH
ANLD RL XCHD
RLD X CHo NS MOVX EXTERNAL
EXPANDER ORL I MEMORY
0 PORTS <, @) j’> ACCUMULATOR BUS(B) Anp
4-7 7N PERIPHERALS
IN
MOV OUTL MOV
TIMER PROGRAM
COUNTER STATUS WORD
ANL </
ORL 8048
——> ON CHIP 1/0 8049
PORTS 1,2, BUS 8748
8035* | *NO PROGRAM
8039* , MEMORY
L @] [si] [is)]

DATA TRANSFER INSTRUCTIONS

41

INSTRUCTION SET

point for all data transfers within the 8048.
Data can be transferred between the 8
registers of each working register bank and
the accumulator directly, i.e. the source or
destination register is specified by the
instruction. The remaining locations of the
internal RAM array are referred to as Data
Memory and are addressed indirectly via an
address stored in either RO or R1 of the active
working register bank. R0 and R1 are also
used to indirectly address external data
memory when it is present. Transfers to and
from internal RAM require one cycle while
transfers to external RAM require two.
Constants stored in Program Memory can be
loaded directly to the accumulator and to the
8 working registers. Data can also be
transfered directly between the accumulator
and the on-board timer/counter or the
accumulator and the Program Status word
(PSW). Writing to the PSW alters machine
status accordingly and provides a means of
restoring status after an interrupt or of
altering the stack pointer if necessary.

Accumulator Operations

Immediate data, data memory, or the
working registers can be added with or
without carry to the accumulator. These
sources can also be ANDed, ORed, or
Exclusive ORed to the accumulator. Data
may be moved to or from the accumulator
and working registers or data memory. The
two values can also be exchanged in asingle
operation.

In addition, the lower 4 bits of the
accumulator can be exchanged with the
lower 4-bits of any of the internal RAM
locations. This instruction, along with an
instruction which swaps the upper and lower
4-bit halves of the accumulator, provides for
easy handling of 4-bit quantities, including
BCD numbers. To facilitate BCD arithmetic,
a Decimal Adjust instruction is included. This
instruction is used to correct the result of the
binary addition of two two-digit BCD
numbers. Performing a decimal adjust on the
result in the accumulator produces the
required BCD result,

4-2

Finally, the accumulator can be: incre-
mented. decremented, cleared, or comple-
mented and can be rotated left orright 1-bit at
a time with or without carry.

Although there is no subtract instruction in
the 8048, this operation can be easily
implemented with three single-byte single-
cycle instructions.

A value may be subtracted from the
accumulator with the result in the accumu-
lator by:

Complementing the accumulator
Adding the value to the accumulator
Compiementing the accumulator.

Register Operations

The working registers can be accessed via
the accumulator as explained above, or can
be loaded immediate with constraints from
program memory. In addition, they can be
incremented or decremented or used as loop
counters using the decrement and skip, if not
zero instruction, as explained under branch
instructions.

All Data Memory including working registers
can be accessed with indirect instructions via
RO and R1 and can be incremented.

Flags

There are four user accessible flags in the
8048: Carry, Auxillary Carry, FQ, and F1.
Carry indicates overflow of the accumulator,
and Auxillary Carry is used to indicate
overflow between BCD digits and is used
during decimal adjust operation.Both Carry
and Auxillary Carry are accessible as part of
the program status word and are stored on
the stack during subroutines. FO and F1 are
undedicated general purpose flags to be
used as the programmer desires. Both flags
can be cleared or complemented and tested
by conditional jump instructions. FO is also
accessible via the Program Status word and
is stored on the stack with the carry flags.

Branch Instructions

The unconditional jump instruction is two
bytes and allows jumps anywhere in the first

INSTRUCTION SET

2K words of program memory. Jumps to the
second 2K of memory (4K words are directly
addressible) are made by first executing a
select memory bank instruction then execu-
ting the jump instruction. The 2K boundary
can only be crossed via a jump or subroutine
call instruction i.e. the bank switch does not
occur until a jump is executed. Once a
memory bank has been selected all subse-
quent jumps will be to the selected bank until
another select memory bank instruction is
executed. A subroutine in the opposite bank
can be accessed by a select memory bank
instruction followed by a call instruction.
Upon completion of the subroutine execu-
tion will automatically return to the original
bank; however, unless the original bank is
reselected, the next jump instruction en-
countered will again transfer execution to the
opposite bank.

Conditional jumps can test the following
inputs and machine status:

TO Input pin

T1 Input pin

INT Input pin
Accumulator Zero

Any bit of Accumulator
Carry Flag

FO Flag

F1 Flag

Conditional jumps allow a branch to any
address within the current page (256 words)
of execution. The conditions tested are the
instantaneous values at the time the condi-
tional jump is executed. For instance, the
jJump on accumulator zero instruction tests
the accumulator itself not an intermediate
zero flag.

The decrement register and skip if not zero
instruction combines a decrement and a
branch instruction to create an instruction
Very useful in implementing a loop counter.
This instruction can designate any one of the
8 working registers as a counter and can
effect a branch to any address within the
Current page of execution.

A single byte indirect jump instruction allows
the program to be vectored to any one of

4.3

several different locations based on the
contents of the accumulator. The contents of
the accumulator points to a location in
program memory which contains the jump
address. The 8-bit jump address refers to the
current page of execution. This instruction
could be used, for instance, to vector to any
one of several routines based on an ASCII
character which has been loaded in the
accumulator. In this way ASCII key inputs
can be used to initiate various routines.

Subroutines

Subroutines are entered by executing a call
instruction. Calls can be made like uncondi-
tional jumps to any address in a 2K word
bank and jumps across the 2K boundary are
executed in the same manner. Two separate
return instructions determine whether or not
status (upper 4-bits of PSW) is restored upon
return from the subroutine.

The return and restore status instruction also
signals the end of an interrupt service routine
if one has been in progress.

Timer Instructions

The 8-bit on board timer/counter can be
loaded or read via the accumulator while the
counter is stopped or while counting. The
counter can be started as a timer with an
internal clock source or as an event counter
or timer with an external clock applied to the
T1 input pin. The instruction executed
determines which clock source is used. A
single instruction stops the counter whether
it is operating with an internal or an external
clock source. In addition, two instructions
allow the timer interrupt to be enabled or
disabled.

Control Instructions

Two instructions allow the external interrupt
source to be enabled or disabled. Interrupts
are initially disabled and are automatically
disabled while an interrupt service routine is
in progress and re-enabled afterward.

There are four memory bank select instrgc-
tions, two to designate the active working
register bank and two to control program

INSTRUCTION SET

memory banks. The operation of the program
memory bank switch is explained in section
3.1.2. The working register bank switch
instructions aliow the programmer to imme-
diately substitute a second 8 register working
register bank for the one in use. This
effectively provides 16 working registers or it
can be used as a means of quickly saving the
contents of the registers in response to an
interrupt. The user has the option to switch or
not to switch banks on interrupt. However, if
the banks are switched, the original bank will
be automatically restored upon execution of
a return and restore status instruction at the
end of the interrupt service routine.

A special instruction enables an internal
clock, which is the XTAL frequency divided
by three, to be output on pin T0. This clock
can be used as a general purpose clock in the
users system. This instruction should be
used only to initialize the system since the
clock output can be disabled only by
application of system reset.

Input/Output Instructions

Ports 1 and 2 are 8-bit static I/0 ports which
can be loaded to and from the accumulator.
Outputs are statically latched but inputs are
not latched and must be read while inputs are
present. In addition, immediate data from
program memory can be ANDed or ORed
directly to Port 1 and Port 2 with the result
remaining on the port. This allows “masks”
stored in program memory to selectively set
or reset individual bits of the 1/0 ports. Ports 1
and 2 are configured to allow input on a given
pin by first writing a “1” out to the pin.

An 8-bit port called BUS can also be
accessed via the accumulator and can have
statically latched outputs as well. It too can
have immediate data ANDed or ORed
directly to its outputs, however, unlike ports 1
and 2, all eight lines of BUS must be treated
as either input or output at any one time. In
addition to being a static port, BUS can be
used as a true synchronous bi-directional
port using the Move External instructions
used to access external data memory. When
these instructions are executed a cor-

responding READ or WRITE pulse is
generated and data is valid only at that time.
When data is not being transferred BUS is in
a high impedance state.

The basic three on board 1/O ports can be
expanded via a 4-bit expander bus using half
of port 2. I/O expander devices on this bus
consist of four 4-bit ports which are
addressed as ports 4 through 7. These ports
have their own AND and OR instructions like
the on board ports as well as move
instructions to transfer data in or out. The
expander AND and OR instructions, how-
ever, combine the contents of accumu-
lator with the selected port rather than
immediate data as is done with the on board
ports.

I/O devices can also be added externally
using the BUS port as the expansion bus. In
this case the 1I/0 ports become “memory
mapped”, i.e. they are addressed in the same
way as external data memory and exist in the
external data memory address space ad-
dressed by pointer register RO or R1.

4.1 Instruction Set Description

The following pages describe the MCS-48
instruction set in detail. The instruction set is
first summarized with instructions grouped
functionally. This summary page is followed
by a detailed descripticn listed alphabetically
by mnemonic opcode.

The alphabetical listing includes the follow-
ing information:

Mnemonic

Machine Code

Verbal Description

Symbolic Description
Assembly Language Example

The machine code is represented with the
most significant bit (7) to the left and two byte
instructions are represented with the first
byte on the left. The assembly language
examples are formulated as follows:

Arbitrary
Label: Mnemonic, Operand:

See section 1.2.2 for a description and
example of an assembly language program.

Descriptive Comment

8048/8049

INSTRUCTION SET SUMMARY

Mnzmonic

Description Bytes Cycle Mnemonic Description Bytes Cycles
ADD A, R Add register to A 1 1 E CALL Jump 10 subroutine 2 2
ADD A, @R Add data memory to A 1 1 a RET Return 1 2
ADD A, #data Add immediate to A 2 2 .§ RETR Return and restore status 1 2
ADDCA,R Add register with carry 1 1 7]
ADDC A, @R Add data memory with carry 1 1
ADDC A, #data Add immediate with carry 2 2. cLRC Clear Carry 1 i
ANL A, R And register to A 1 1 . CPLC Complement Carry 1 1
ANL A, @R And data memory 1o A 1 1 g cLRFo Clear Flag 0 1 i
ANL A, =data And immediate to A 2 2 w CFLFO Complement Flag 0 1 1
ORL A, R Or register to A 1 1 CLR F1 Clear Fiag 1 1 i
& ORLA, @R Or data memory to A 1 1 CPLF1 Complement Flag 1 1 1
2 ORLA, #data Or immediate to A 2 2
5 XRLA, R Exclusive Or register to A 1 1 MOV A, f Move ragister to A] 1
é XRL A, @R Exclus!ve or Fiata mt_amory to A 1 1 MOV A, @R Move data memory to A 1 ;
XRL A, #data Exclusive or immediate to A 2 2 MOV A, #data Move immediate to A 2 2
lDNE%’Z g‘:;f::neenr:ti 1 ‘1] MOV R, A Move A to register 1 1
CLR A Clear A 1 1 MOV @R, A Move A to data memory 1 1
CPL A Complement A 1 1 " MOV R, #data Move i.mmediate to register 2 2
DA A Decimal Adjust A 1 1 % MOV @R, #data Move immediate to data memory 2 2
SWAP A Swap nibbles of A 1 1 E MOV A, PSW Move PSW to A ! !
RL A Rotate A feft 1 1 £ xg: :S\g, A L\:ov: A toAF’SWd - : }
, xchange A and register
RLC A Rotate A I?ft through carry ! ! e XCHA,@R Exchange A and dagta memory 1 i
22(?/—\ :z::t: 2 ::g:; through carry : j XCHD A, @R Exchange nibble of A and register 1 !
MOVX A, @R Move external data memory to A 1 2
MOVX @R, A Move A to external data memory 1 2
INA,P Input port to A 1 2 MOVP A, @A Move to A from current page 1 2
QUTLP, A Output A to port 1 2 MOVP3 A, @A Move to A from Page 3 1 2
. ANL P, #data And immediate to port 2 2
?',- ORL P, #data Or immediate to port 2 2 MOV A, T Fead Timer/Counter 1 1
5 INS A, BUS Input BUS 1o A i 4 -)
© QUTLBUS,A Output A to BUS 1 5 § MOVT,A Load Timer/Counter : 1
3 ANL BUS, #data And immediate to BUS 2 2 3 STRTT Start Timer 1 1
£ ORL BUS, #data Or immediate to BUS 2 2 g STRTCNT Start Counter
MOVD A, P Input Expander port to A 1 2 °E-' STOP TCNT Stop Tlm.er/Coumer 1 1
MOVD P, A Output A to Expander port 1 9 s EN TCNTI Er_lable Tu_mer/Counter Interrupt 1 1
ANLD P, A And A ta Expander port 1 o DIS TCNTI Disable Timer/Counter {nterrupt 1 1
ORLD P, A Or A to Expander port 1 2
EN | Enable external interrupt 1 1
g INC R Increment register 1 1 _ DIS | Disable exlternal interrupt 1 1
% Inc @R Increment data merory 1 1 g SEL RBO Select register bank 0 1 1
E’ DEC R Decrement register 1 1 € SELRB1 Select register bank 1 1 1
O SEL MBO Select memory bank O 1 1
SEL MB1 Select memory bank 1 1 1
JMP addr Jump uncenditional 9 2 ENTO CLK Enable Clock output on TO 1 1
JMPP @A Jump indirect 1 2
DINZ R, addr Decrement register and skip 2 2 .
JC addr Jump on Carry =1 2 2 NOP No Operation ! !
JINC addr Jump on Carry =0 2 2
J Z addr Jump on A Zero 2 2
- JINZ addr Jump on A not Zero 2 2
§ JTOaddr JumponTO=1 2 2
;‘; JNTO addr JumponTO=0 2 2
JT1 addr Jumpon Tl =1 2 2
JNT1 addr JumpenT1=0 2 2
JFO addr Jump on FQ =1 2 2
JF1 addr JumponF1=1 2 2
JTF addr Jump on timer flag 2 2
JNI addr Jumpon INT =0 2 2
JBb addr Jump on Accumulator Bit 2 2

IV"“emonics copyright Intel Corporation 1976.

4-5

Accumulator

Input/OQutput

Registers

8021
INSTRUCTION SET SUMMARY

Mnemonic Description Bytes Cycle
ADD AR Add register to A 1 1
ADD A@R Add data memory to A 1 1
ADD A, #data Add immediate to A 2 2
ADDC AR Add with carry 1 1
ADDC A,@R Add with carry 1 1
ADDC A, #data Add with carry 2 2
ANL AR And register to A 1 1
ANL A@R And data memory to A 1 1
ANL A, #data And immediate to A 2 2
ORL. AR Or register to A 1 1
ORL A,@R Or data memory to A 1 1
ORL A, #data Or immediate to A 2 2
XRL AR Exclusive Or register to A 1 1
XRL A@R Exclusive or data memory to A 1 1
XRL A #data Exclusive or immediate to A 2. 2
INC A Increment A 1 1
DEC A Decrement A 1 1
CLR A Clear A 1 1
CPL A Complement A 1 1
DA A Decimal Adjust A 1 1
SWAP A Swap nibbles of A 1 1
RL A Rotate A left 1 1
RLC A Rotate A left through carry 1 1
RR A Rotate A right 1 1
RRC A Rotate A right through carry 1 1
IN AP Input port to A 1 2
QuUTL PA Qutput A to port k: 2
MOVD AP Input Expander port to A 1 2
MOVD P.A Output A to Expander port 1 2
ANLD P.A And A to Expander port 1 2
ORLD P.A Or A to Expander port 1 2
INC R Increment register 1 1
INC @R Increment data memory 1 1

Mnemonic Description Bytes Cycle
JMP addr Jump unconditional 2 2
JMPP @A Jump indirect 1 2
DJNZ R,addr Decrement register and Jump 2 2
on R not zero
e JC addr Jump on Carry = 1 2 2
€ UNC addr Jump on Carry = 0 2 2
g Jz addr Jump on A Zero 2 2
IJNZ addr Jump on A not Zero 2 2
JT1 addr Jumpon T1 =1 2 2
JNT1 addr Jumpon T1=0 2 2
@ JTF addr Jump on timer flag 2 2
]
g cALL Jump to subroutine 2 2
£ RET Return 1 2
”n
« CLR C Clear Carry 1 1
& CPL C Complement Carry 1 1
e
MOV AR Move register to A 1 1
MOV A.@R Move data memory to A 1 1
MOV A #data Move immediate to A 2 2
o MOV R,A Move A to register 1 1
g MOV @R A Move A to data memory 1 1
2 MOV R,#dsta Move immediate to register 2 2
'E MOV @R, #data Move immediate to data memory 2 2
B XCH AR Exchange A and register 1 1
XCH A GR Exchange A and data memory 1 2
XCHD A.@R Exchange nibble of A and register 1 1
MOVP A.@A Move to A from current page 1 2
s
£ Mov AT Read Timer/Counter 1 1
g MOV TA Load Timer/Counter 1 1
Q@ STRT T Start Timer 1 1
$ STRT CNT Start Counter 1 1
-E STOP TCNT Stop Timer/Counter 1 1
NOP No Operation 1 1

Instruction Set — The following instructions, which are
found in the 8748, have been deleted from the 8021

instruction set.

Data Moves Registers Branch Timer Control input/Output
Mov APSW | DEC R JTO addr | EN TCNT! | EN | ANL P #data
MOV PSW, A JNTO addr | DIS TCNTI (DIS i ORL P,#data
MOVX A @R Flags JFQ addr SEL RBO |INS A BUS *
MOVX @R.A CLR FO JF1 addr | Subroutine | SEL RB1 ; OUTL BUS A *
MOVP3 A.@A CPLV FO JNI - agdr RETR SEL MBC | ANL BUS,#data

CLR F1 JBb addr SEL MB1 | ORL BUS, #data
CPL F1 ENTQ CLK

*These Instructions have been replaced in the 8021 by
IN A,PO and QUTL PO,A respectively.

4-6

AC
addr
Bb
BS
BUS

CLK
CNT

data
DBF
FO, F1

PC
Pp
PSW

MCS-48™ INSTRUCTION SET

SYMBOLS AND ABBREVIATIONS USED

Accumulator

Auxillary Carry

12-Bit Program Memory Address
Bit Designator (b=0-7)

Bank Switch

BUS Port

Carry

Clock

Event Counter

Mnemonic for 4-Bit Digit (Nibble)
8-Bit Number or Expression
Memory Bank Flip-Flop

Flag 0, Flag 1

Interrupt

Mnemonic for “in-page” Operation
Program Counter

Port Designator (p=1, 2 or 4-7)
Program Status Word

Register Designator (r=0, 1 or 0-7)
Stack Pointer

Timer

Timer Flag

Test 0, Test 1

Mnemonic for External RAM
Immediate Data Prefix

Indirect Address Prefix

Current Value of Procgram Counter
Contents of X

Contents of Location Addressed by X
Is Replaced by

MnGmonics copyright Intel Corporation 1976.

47

INSTRUCTION SET

ADD A,R; Add Register Contents to Accumulator
0110 |(1rrr

The contents of register '’ are added to the
accumulator, Carry is affected.

(A) = (A) + (Rr) r=0-7
Example: ADDREG: ADD A,R6 ,ADD REG 6 CONTENTS
,TO ACC

ADD A,@R, Add Data Memory Contents to Accumulator
0110000

The contents of the resident data memory location
addressed by register ‘r’ bits 0-5*are added to
the accumulator. Carry is affected.

(A)=—(A) + ((Rr)) r=0-1

Example: ADDM: MOV RO, #01FH ;MOVE ‘1F' HEX TO REG 0
ADD A, @RO _ ;ADD VALUE OF LOCATION
7 ;47 TO ACC

ADD A,#data Add Immediate Data to Accumulator
0000/0011| [d7dgdsds |dgdy d1dp]

This is a 2-cycle instruction. The specified data
is added to the accumulator. Carry is affected

(A) = (A) + data

Example: ADDID: ADD A #ADDER: ;:ADD VALUE OF SYMBOL
ADDER’ TO ACC

ADDC ARy Add Carry and Register Contents to Accumulator
0111) 1rrr

The content of the carry bit is added to accumulator
location 0 and the carry bit cleared. The contents

of register 'r’ are then added to the accumulator.
Carry is affected.

(A) = (A)+(Rn)+(C) r=0-7

Example: ADDRGC: ADDC A,R4 ;ADD CARRY AND REG 4
;CONTENTS TO ACC

Mnemonics copyright Intel Corporation 1976, *0-6 for 8039/8049

4-8

INSTRUCTION SET

ADDC A,@R, Add Carry and Data Memory Contents to Accumulator
0111[000r

The content of the carry bit is added to accumulator
location 0 and the carry bit cleared. Then the contents
of the resident data memory location addressed by
register ‘r’ bits 0-5*are added to the accumulator.
Carry is affected.

(A) = (A)*((Rn))+(C) r=0-1

Example: ADDMC: MOV R1,#40 :MOVE ‘40’ DEC TO REG 1
ADDC A,@R1 ;ADD CARRY AND LOCATION 40
;CONTENTS TO ACC

ADDC A #data Add Carry and Immediate Data to Accumulator
0001|0011 d7dg dsdg | d3 do dq dg

This is a 2-cycle instruction. The content of the
carry bit is added to accumulator location 0 and
the carry bit cleared. Then the specified data is
added to the accumulator. Carry is affected.

(A) = (A)+data+(C)

Example: ADDC A #225 ‘ADD CARRY AND ‘225 DEC
' TO ACC
ANL AR, Logical AND Accumulator With Register Mask
0101 |1rrr

Data in the accumulator is logically ANDed with the
mask contained in working register ‘r'.

(A)= (A) AND (Rr) r=0-7
Example: ANDREG: ANL A,R3 “AND’ ACC CONTENTS WITH MASK
JIN REG 3

ANL A,@R, Logical AND Accumulator With Memory Mask
0101{000r

Data in the accumulator is logically ANDed with the
mask contained in the data memory location referenced
by register ‘r’, bits 0-57

(A)=— (A) AND ((Rn)) r=0-1

Example: ANDDM: MOV RO,#03FH ;MOVE ‘3F' HEX TO REG 0
ANL A, @R0O ;'AND’ ACC CONTENTS WITH
:MASK IN LOCATION 63

M”emonios copyright Intel Corporation 1976. *0-6 for 8039/8049

4-9

INSTRUCTION SET

ANL A #data Logical AND Accumulator With Immediate Mask

(0101]0011] | d7ded5 dg [d3dp ddg]

This is a 2-cycle instruction. Data in the accumulator
is logically ANDed with an immediately-specified mask.

(A)= (A) AND data

Examples: ANDID: ANL A #0AFH AND’ ACC CONTENTS
;WITH MASK 10101111
ANL A#3+X/Y ;'AND’ ACC CONTENTS
"WITH VALUE OF EXP
3EX/Y

ANL BUS,#data Logical AND BUS With Immediate Mask (Not in 8021)

|17001]1000] |d7ds ds dg [d3dp didg|

This is a 2-cycle instruction. Data on the BUS port is
logically ANDed with an immediately-specified mask. This

instruction assumes prior specification of an ‘OUTL
BUS, A’ instruction,

(BUS) = (BUS) AND data

Example: ANDBUS: ANL BUS, #MASK AND’ BUS CONTENTS

WITH MASK EQUAL VALUE
;OF SYMBOL ‘MASK’

ANL Pp.#data Logical AND Port 1-2 With Immediate Mask (Not in 8021)

11001 10pp]| @d6d5d4]d3d2d1c§[

This is a 2-cycle instruction. Data on port ‘p’is
logically ANDed with an immediately-specified mask.

(Pp)=— (Pp) AND data p=1-2

Example: ANDP2: ANL P2,#0FOH :AND’ PORT 2 CONTENTS

;WITH MASK ‘FO' HEX
:(CLEAR P20-23)

ANLD Pp,A Logical AND Port 4-7 With Accumulator Mask
1001 (11pp

This is a 2-cycle instruction. Data on port ‘p'is

logically ANDed with the digit mask contained in
accumulator bits 0-3.

(Pp)=— (Pp) AND (A0-3) p=4-7

Mnemonics copyright Intel Corporation 1976,

410

INSTRUCTION SET

Note: The mapping of port ‘p’ to opcode bits 0-1
is as follows:

—k
o

Port
0 4
0 5
1 6
1 7

T o R)

Example: ANDP4: ANLD P4,A AND’' PORT 4 CONTENTS
WITH ACC BITS 0-3

CALL address Subroutine Call

la10aga8‘1|0100j]a7aea5a4[a3a2a1a0

This is a 2-cycle instruction. The program counter and
PSW bits 4-7 are saved in the stack. The stack pointer
(PSW bits 0-2) is updated. Program control is then

passed to the location specified by ‘address’. PC

bit 11 is determined by the most recent SEL MB instruction.

Execution continues at the instruction following the
CALL upon return from the subroutine.

(SP)) — (PC), (PSW 4.7)
P) — (SP)+1

(
(S
(PCg-10) — (addrg-10)
(PCq-7) — addrg-7

(

Example: Add three groups of two numbers. Put subtotals in
locations 50, 51 and total in location 52.

MOV RO,#50 ;MOVE ‘50' DEC TO ADDRESS

;REG O
BEGADD: MOV A R1 ;MOVE CONTENTS OF REG 1

;TO ACC

ADD A,R2 ;ADD REG 2 TO ACC

CALL SUBTOT ;CALL SUBROUTINE ‘SUBTOT’

ADD A R3 ;ADD REG 3 TO ACC

ADD A R4 ;ADD REG 4 TO ACC

CALL SUBTOT ;CALL SUBROUTINE ‘SUBTOT

ADD AR5 ;ADD REG 5 TO ACC

ADD A,R6 ;ADD REG 6 TO ACC

CALL SUBTOT;CALL SUBROUTINE 'SUBTOT’

SUBTOT: MOV @R0O,A ;MOVE CONTENTS OF ACC TO
;LOCATION ADDRESSED BY

‘REG 0
INC RO 'INCREMENT REG 0
RET ‘RETURN TO MAIN PROGRAM

Mnemonics copyright Intel Corporation 1976.

INSTRUCTION SET

CLR A Clear Accumulator
00100111

The contents of the accumulator are cleared to zero.

A= 0
CLR C Clear Carry Bit
10010111

During normal program execution, the carry bit can
be set to one by the ADD, ADDC, RLC, CPL C, RRC, and
DAA instructions. This instruction resets the carry bit to zero.

C=0
CLR F1 Clear Flag 1 (Not in 8021)
1010|0101
Flag 1 is cleared to zero.
(F1)=0
CLR FO Clear Flag 0 (Not in 8021)
1000(0101
Flag 0 is cleared to zero.
(FO)=10

CPL A Complement Accumulator

00110111

The contents of the accumulator are complemented.
This is strictly a one’'s complement. Each one is
changed to zero and vice-versa.

(A) = NOT (A)

Example: Assume accumulator contains 01101010.

CPLA: CPL A JACC CONTENTS ARE COMPLE-
;MENTED TCO 10010101

CPL C Complement Carry Bit
1010{0111

The setting of the carry bit is complemented; one is
changed to zero, and zero is changed to one.

(C) = NOT (C)
Example: Set C to one; current setting is unknown.
CTO1: CLR C ;C IS CLEARED TO ZERO
CPL C ;C IS SET TO ONE

Mnemonics copyright Intel Corporation 1976. 412

INSTRUCTION SET

CPL FO Complement Flag 0 (Not in 8021)

10010101

The setting of flag 0 is complemented; one is
changed to zero, and zero is changed to one.

FO- NOT (FO)

CPL F1 Complement Flag 1 (Not in 8021)

1011(0101

The setting of flag 1 is complemented; one is
changed to zero, and zero is changed to one.

(F1)=— NOT (F1)

DA A Decimal Adjust Accumulator

Example:

01010111

The 8-bit accumulator value is adjusted to form two
4-bit Binary Coded Decimal (BCD) digits following

the binary addition of BCD numbers. The carry bit

C is affected. If the contents of bits 0-3 are

greater than nine, or if AC is one, the accumulator

is incremented by six.

The four high-order bits are then checked. If bits
4-7 exceed nine, or if C is one, these bits are
increased by six. If an overfiow occurs, C is

set to one.

Assume accumutator contains 10011011.

DA A ,ACC ADJUSTED TO 00000001
WITH C SET
C AC 7 4 3 0
0 0 1001 1011
0110 ADD SIX TO BITS 0-7

00 1010 0001

110 ADD SIX TO BITS 4-7
10 0000 00CGH1 OVERFLOW TO C

DEC A Decrement Accumulator

0000|0111

The contents of the accumulator are decremented by one.
(A)=— (A)-1

M'“lemonics copyright Intel Corporation 1976,

4-13

INSTRUCTION SET

Example: Decrement contents of external data memory location 63.

MOV RO,#3FH ;MOVE ‘3F’ HEX TO REG 0
MOVX A,@R0O ;MOVE CONTENTS OF LOCATION 63
; TO ACC
DEC A ;/DECREMENT ACC
MOVX @RO,A ;MOVE CONTENTS OF ACC TO
;LOCATION 63 IN EXPANDED
;MEMORY
DEC R,y Decrement Register (Not in 8021)
1100 1rrr
The contents of working register ‘r' are decremented
by one.
(Rr)=— (Rr)-1 r=0-7
Example: DECR1: DEC R1 ,DECREMENT CONTENTS OF REG 1
DIS | Disable External Interrupt (Not in 8021)
0001|0101

External interrupts are disabled. A low signai on
the interrupt input pin has no effect.

DIS TCNT! Disable Timer/Counter Interrupt (Not in 8021)
0011]/0101

Timer/counter interrupts are disabled. Any pending
timer interrupt request is cleared. The interrupt
sequence is not initiated by an overflow, but the
timer flag is set and time accumulation continues.

DJNZ R;, address Decrement Register and Test

1110]1rrr] [a7asasay|agapagap]

This is a 2-cycle instruction. Register ¢ is
decremented and tested for zero. If the register
contains all zeros, program control falls through

to the next instruction. If the register contents

are not zero, control jumps to the specified ‘address’.

The address in this case must evaluate to 8-bits, that
is, the jump must be to a location within the current
256-location page.

(Rr}=— (Rr)-1 r=0-7
If Rr not 0
(PCp.7)=— addr

Mnemonics copyright intel Corporation 1978.
414

INSTRUCTION SET

Note: A 12-bit address specification does not cause an
error if the DJNZ instruction and the jump target are
on the same page. If the DJNZ instruction begins in
location 255 of a page, it must jump to a target
address on the following page.

Example: Increment values in data memory locations 50-54.

MOV RO0,#50 :MOVE ‘50' DEC TO ADDRESS
:REG 0

MOV R3,#5 ;MOVE ‘5’ DEC TO COUNTER
;REG 3

INCRT: INC @RO JINCREMENT CONTENTS OF

:LOCATION ADDRESSED BY
‘REG 0

INC RO INCREMENT ADDRESS IN REG 0

DJNZ R3, INCRT ;DECREMENT REG 3 — JUMP TO
“INCRT IF REG 3 NONZERO
NEXT — “NEXT ROUTINE EXECUTED
;IF R3 1S ZERO

EN 1 Enable External Interrupt (Not in 8021)
0000|0101

External interrupts are enabled. A low signal on
the interrupt input pin initiates the interrupt
sequence.

EN TCNTI Enable Timer/Counter Interrupt (Not in 8021)
0010|0101

Timer/counter interrupts are enabled. An overflow
of the timer/counter initiates the interrupt sequence.

ENTO CLK Enable Clock Qutput (Not in 8021)
011110101

The test 0 pin is enabled to act as the clock output.
This function is disabled by a system reset.

Example: EMTSTO: ENTO CLK :ENABLE TO AS CLOCK OUTPUT
IN A,Pp Input Port or Data to Accumulator

0000(10pp

This is a 2-cycle instruction. Data present on port ‘p’
is transferred (read) to the accumulator. In the 8021
IN A,P2inputs P20-P23 to Ag-A3 while A4-A7 is set
to zero.

(A)= (Pp) p=1-2

M“Emonics copyright Intel Corporation 1976.

4-15

INSTRUCTION SET

Example: INP12: IN A,P1 JINPUT PORT 1 CONTENTS
;TO ACC
MOV R6,A ;MOVE ACC CONTENTS TO
'REG 6
IN A P2 JINPUT PORT 2 CONTENTS
;TO ACC
MOV R7 A yMOVE ACC CONTENTS TO REG 7

INC A Increment Accumulator

00010111

The contents of the accumulator are incremented
by one.

(A)== (A)+1

Example: Increment contents of location 100 in external
data memory.

INCA: MOV RO,#100 ;MOVE ‘100 DEC TO ADDRESS
REG O
MOVX A,@R0 ;MOVE CONTENTS OF LOCATION
;100 TO ACC
INC A JINCREMENT A
MOVX @R0,A ;MOVE ACC CONTENTS TO

;LOCATION 100
INC Ry Increment Register

00011 {1rrr
The contents of working register ‘r are incremented
by one.
(Rr) = (Rr)+1 r=0-7
Example: INCRO: INC RO /INCREMENT ADDRESS REG 0

INC @R,y Increment Data Memory Location
0001000

The contents of the resident data memory location
addressed by register ‘r’ bits 0-5*are incremented

by one.
({Rr)) = ((Rr))+1 r=0-1
Example: INCDM: MOV R1,#03FH :MOVE ONES TO REG 1
INC @R1 ;INCREMENT LOCATION 63
Mnemonics copyright Intel Corporation 1976. *0-6 for 8039/8049

4-16

INSTRUCTION SET

IN A,PO Input of Port 0 Data to Accumulator

Same as INS A,BUS except no RD pulse generated.
INS A,BUS Strobed Input of BUS Data to Accumulator

0000;1000

This is a 2-cycle instruction. Data present on the
BUS port is transferred (read) to the accumulator
when the RD pulse is dropped. (Refer to section on
programming memory expansion for details).

(A)=— (BUS)

Example: INPBUS: INS A,BUS ;INPUT BUS CONTENTS
; TO ACC

JBb address Jump If Accumulator Bit is Set {(Not in 8021)

[bobibg1][0010] |a7a6a5a4[a3a2a1a0]

This is a 2-cycle instruction. Control passes to the
specified address if accumulator bit ‘b’ is set

to one.
(PCgq-7)== addr If Bb=1
(PC) = (PC)+2 If Bb=0
Example: JB41S1: JB4 NEXT :JUMP TO ‘NEXT' ROUTINE
JIF ACC BIT 4=1
JC address Jump if Carry Is Set
1111{0110| |ajagasay|azapaqag

This is a 2-cycle instruction. Control passes to the
specified address if the carry bit is set to one.

(PCqp-7)== addr If C=1
(PC) = (PC)+2 If C=0
Example: JC1: JC OVFLOW JUMP TO ‘OVFLOW ROUTINE
IF C=1

JFO address Jump {f Flag 0 Is Set (Not in 8021)

1011|0110 (37366534[338231301

This is a 2-cycle instruction. Control passes to the
specified address if flag O is set to one.

(PCq.7)< addr If FO=1
(PC) = (PC)+2 If FO=0
Example: JFOIS1: JFO TOTAL :JUMP TO ‘TOTAL‘ ROUTINE
'IF FO=1

Mnemonics copyright intel Corporation 1976.
4-17

INSTRUCTION SET

JF1 address Jump If Flag 1 Is Set (Not in 8021)

0111]/0110| [a7agasas|agapaqag]| -

This is a 2-cycle instruction. Control passes to the
specified address if flag 1 is set to one.

(PCq-7) = addr If F1=1
(PC) = (PC)+2 IF F1=0
Example: JF11S1: JF1 FILBUF JUMP TO ‘FILBUF

;ROUTINE IF F1=1
JMP address Direct Jump Within 2K Block

La10a9a80]0100‘ ‘a7a6a5a4[a3a2a1 aﬂ

This is a 2-cycle instruction. Bits 0-10 of the program
counter are replaced with the directly-specified
address. The setting of PC bit 11 is determined by
the most recent SELECT MB instruction.

(PCg-10) = addr 8-10
(PCoq.-7) = addr 0-7

(PC14) = DBF
Example: JMP SUBTOT ;:JUMP TO SUBROUTINE ‘SUBTOT’
JMP $-6 ;:JUMP TO INSTRUCTION SIX LOCATIONS
:BEFORE CURRENT LOCATION
JMP 2FH JUMP TO ADDRESS ‘2F' HEX

JMPP @A Indirect Jump Within Page

[1011]0011]

This is a 2-cycle instruction. The contents of the
program memory location pointed to by the accumulator
are substituted for the ‘page’ portion of the program
counter (PC bits 0-7).

(PCo-7) == ((A))

Example: Assume accumulator contains OFH.

JMPPAG: JMPP @A JUMP TO ADDRESS STORED IN
,LOCATION 15 IN CURRENT PAGE

JNC address Jump If Carry Is Not Set

1110/0110] [ajagasas]agapayag|

This is a 2-cycle instruction. Control passes to the
specified address if the carry bit is not set, that
is, equals zero.

Mnemonics copyright Intel Corporation 1976.

INSTRUCTION SET

(PCp-7) = addr It C=0
(PC) = (PC)+2 IF C=1

Example: JCO0: JNC NOVFLO ;JUMP TO ‘NOVFLO’ ROUTINE
1f C=0

JNI address Jump If Interrupt Input is Low (Not in 8021)

[1000[0110]| [a;agasay agapa;ag]

This is a 2-cycle instruction. Control passes to the
specified address if the interrupt input signal is

low (=0), that is, an external interrupt has

been signaled. (This signal initiates an interrupt
service sequence if the external interrupt is enabled.)

(PCp-7)= addr If 1=0
(PC) = (PC)+2 If I=1

Example: LOC 3: JNI EXTINT JUMP TO ‘EXTINT ROUTINE
Af 1=0

JNTO address Jump If Test 0 Is Low (Not in 8021)

0010]0110| |asagasay|agzapa;ag]|

This is a 2-cycle instruction. Control passes to the
specified address, if the test 0 signal is low

(PCo.7) < addr If T0=0
(PC) = (PC)+2 If TO=1
Example: JTOLOW: JNTO 60 :JUMP TO LOCATION 60 DEC
|F T0=0

JNT1 address Jump If Test 1 Is Low

0100[0110| [ayagasay|azarajap]|

This is a 2-cycle instruction. Control passes to the
specified address, if the test 1 signal is low.

(PCg.7) = addr If T1=0
(PC) = (PC)+2 If T1=1

JNZ address Jump If Accumulator Is Not Zero

1001[0110]| |a7agasas|agapaqag

This is a 2-cycle instruction. Control pases to the
specified address if the accumulator contents are
nonzero at the time this instruction is executed.

(PCq.7) = addr If A#0
(PC) = (PC)+2 If A=0
Example: JACCNO: JNZ 0ABH JUMP TO LOCATION ‘AB" HEX
Mnemonics coouri , ;IF ACC VALUE IS NONZERO
! opyright Intel Corporation 1976.

4-19

INSTRUCTION SET

JTF address Jump If Timer Flag Is Set

0001[0110| |[ajagasay|agapaqag

This is a 2-cycle instruction. Control passes to the
specified address if the timer flag is set to one,
that is, the timer/counter register has overflowed.
Testing the timer flag resets it to zero. (This
overflow initiates an interrupt service sequence

if the timer-overflow interrupt is enabled.)

(PCg.7) < addr If TF=1
(PC) = (PC)+2 If TF=0
Example: JTF1: JTF TIMER :JUMP TO ‘TIMER’ ROUTINE
IF TF=1

JTO address Jump If Test 0 Is High (Not in 8021)

0011]0110| |ayagasas|azapayag]

This is a 2-cycle instruction. Control passes to the
specified address if the test 0 signal is high (=1).

(PCp.7) = addr If TO=1
(PC) = (PC)+2 If TO=0
Example: JTOHI: JTO 53 WJUMP TO LOCATION 53 DEC
JIF TO=1

JT1 address Jump If Test 1 Is High

0101;0110 }37866584183612&180—[

This is a 2-cycle instruction, Controt passes to the
specified address if the test 1 signal is high (=1).

(PCq.7) = addr If T1=1
(PC) = (PC)+2 If T1=0

Example: JT1HI: JT1 COUNT ;}JUMP TO ‘COUNT' ROUTINE
AF T1=1

JZ address Jump i Accumulator Is Zero

1100(0110 [a7a6a5a4|a3a2a1a0

This is a 2-cycle instruction. Control passes to the
specified address if the accumulator contains all
zeros at the time this instruction is executed.

(PCp.7) = addr if A=0
(PC) = (PC)+2 If A#0
Example: JACCO: JZ 0A3H JUMP TO LOCATION ‘A3’ HEX

;IF ACC VALUE IS ZERO

Mnemonics copyright Intel Corporation 1976.

420

INSTRUCTION SET

MOV A, #data Move Immediate Data to Accumulator

0010[0011| [drdgdsdyg |d3dpdidp|

This is a 2-cycle instruction. The 8-bit value
specified by ‘data’ is loaded in the accumulator.

(A)=— data

Example: MOV A,#0A3H ‘MOVE ‘A3 HEX TO ACC
MOV A,PSW Move PSW Contents to Accumulator (Not in 8021)
1100(0111

The contents of the program status word are moved
to the accumulator.

(A) - (PSW)
Example: Jump to ‘RB1SET routine if PSW bank switch, bit 4,

is set.

BSCHK: MOV A,PSW ;MOVE PSW CONTENTS TO ACC
JB4RBISET ;JUMP TO ‘RB1SET' IF ACC
BIT 4=1

MOV A,R;y Move Register Contents to Accumulator

1111 1rrr

8-bits of data are moved from working register ‘r’
into the accumulator.

(A)= (Rr) r=0-7
Example: MAR: MOV A R3 ‘MOVE CONTENTS OF REG 3
TO ACC

MOV A,@R; Move Data Memory Contents to Accumulator
l1111]o000r

The contents of the resident data memory location
addressed by bits 0-5%of register ‘r' are moved to
the accumulator. Register 'r’ contents are unaffected.

(A)=— ({Rn)) r=0-1
Example: Assume R1 contains 00110110.
MADM: MOV A,@RT1 'MOVE CONTENTS OF DATA MEM

JLOCATION 54 TO ACC

Mnemonics copyright Inte! Corporation 1976. *0-6 for 8039/8049
4-21

INSTRUCTION SET

MOV AT Move Timer/Counter Contents to Accumulator
01000010

The contents of the timer/event-counter register
are moved to the accumulator.

(A)= (T)

Example: Jump to “EXIT” routine when timer reaches ‘64,
that is, when bit 6 set — assuming initialization 64,

TIMCHK: MOV A, T ;MOVE TIMER CONTENTS TO
;ACC
JB6 EXIT WUMP TO ‘EXIT IF ACC BIT
;6=1

MOV PSW,A Move Accumulator Contents to PSW (Not in 8021)

110110111

The contents of the accumulator are moved into the
program status word. All condition bits and the
stack pointer are affected by this move.

(PSW) = (A)

Example: Move up stack pointer by two memory locations,
that is, increment the pointer by one.
INCPTR: MOV A ,PSW :MOVE PSW CONTENTS TO ACC
INC A /INCREMENT ACC BY ONE
MOV PSW, A ;MOVE ACC CONTENTS TO PSW

MOV Ry,A Move Accumulator Contents to Register

1010 |1rrr
The contents of the accumulator are moved to
register ‘r’.
(Rr) = (A) r=0-7
Example: MRA: MOV RQ,A ;MOVE CONTENTS OF ACC TO

;REG 0
MOV Ri,#data Move Immediate Data to Register

1011]1rorqrg| |d7dgdsds |dzgdydidp]

This is a 2-cycle instruction. The 8-bit value
specified by ‘data’ is moved to register ‘r’.

(Rr)-— data r=0-7

Mnemonics copyright Intel Corporation 1876.

4-22

INSTRUCTION SET

Examples: MIR4: MOV R4, #HEXTEN ;THE VALUE OF THE SYMBOL

“HEXTEN’ IS MOVED INTO
;REG 4

MIR 5: MOV R5#PI*(R*R);THE VALUE OF THE
:EXPRESSION ‘PI*(R*R)
1S MOVED INTO REG 5

MIR 6: MOV R6, #0ADH :;‘AD’ HEX IS MOVED INTO
;REG 6

MOV @R,;,A Move Accumulator Contents to Data Memory
1010|000

This is a 2-cycle instruction. The contents of the
accumulator are moved to the resident data
memory location whose address is specified by bits
0-5* of register ‘r’. Register ‘r’ contents are

unaffected.
((Rr)) = (A) r=0-1
Example: Assume RO contains 00000111,
MDMA: MOV @RO0,A ‘MOVE CONTENTS OF ACC TO

:LOCATION 7 (REG 7)
MOV @R,#data Move Immediate Data to Data Memory

1011]000r| [d7dgdsds |d3dpdidg

This is a 2-cycle instruction. The 8-bit value
specified by ‘data’ is moved to the resident data
memory location addressed by register ‘', bits 0-57

((Rr))=— data r=0-1

Examples: Move the hexadecimal value AC3F to locations 62-63.

MIDM: MOV RO,#62 ;MOVE ‘62" DEC TO ADDR REG 0
MOV @RO0,#0ACH ;MOVE ‘AC’ HEX TO LOCATION 62
INC RO ;INCREMENT REG 0 TO ‘63
MOV @RO,#3FH ;MOVE ‘3F’ HEX TO LOCATION 63

MOV T,A Move Accumulator Contents to Timer/Counter
0110{0010

The contents of the accumulator are moved to the
timer/event-counter register.

(T)=— (A)
Example: |Initialize and start event counter.
INITEC: CLR A ;CLEAR ACC TO ZEROS
MOV T,A ;MOVE ZEROS TO EVENT COUNTER
STRT CNT ;START COUNTER

M"emonics copyright Intel Corporation 1976. *0-6 for 8038/8042
4-23

INSTRUCTION SET

MOVD A,Pp Move Port 4-7 Data to Accumulator
0000 }|11pp

This is a 2-cycle instruction. Data on 8243 port
‘p’ is moved (read) to accumulator bits 0-3.
Accumulator bits 4-7 are zeroed.

(0-3) = (Pp) p=4-7
(4-7)= 0O

Note: Bits 0-1 of the opcode are used to represent ports
4-7. If you are coding in binary rather than assembly
language, the mapping is as follows:

Bits 1 0 Port
00 4
0 1 5
10 6
11 7

Example: INPPTS5: MOVD A,P5 ;MOVE PORT 5 DATA TO ACC
;BITS 0-3, ZERO ACC BITS 4-7

MOVD Pp,A Move Accumulator Data to Port 4-7
0011, 11pp

This is a 2-cycle instruction. Data in accumulator
bits 0-3 is moved (written) to 8243 port ‘p’.
Accumuiator bits 4-7 are unaffected. (See NOTE
above regarding port mapping.)

(Pp) = (Ag.3) p=4-7

Example: Move data in accumulator to ports 4 and 5.
OUTP45: MOVD P4,A ;MOVE ACC BITS 0-3 TO PORT 4
SWAP A 'EXCHANGE ACC BITS 0-3 AND 4-7
MOVD P5,A ;MOVE ACC BITS 0-3 TO PORT 5

MOVP A,@A Move Current Page Data to Accumulator
[1010[0011]

The contents of the program memory location addressed
by the accumulator are moved to the accumuiator. Only

bits 0-7 of the program counter are affected, limiting

the program memory reference to the current page. The

program counter is restored following this operation

(PCp.7) = (A)
(A) = ((PC))

Note: This is a 1-byte, 2-cycle instruction. If it appears
in location 255 of a program memory page, @A addresses
a location in the following page.

Mnemonics copyright Intel Corporation 1978.
4-24

INSTRUCTION SET

Example:

MOV128: MOV A,#128 ‘MOVE ‘128 DEC TO ACC
MOVP A @A ;CONTENTS OF 129th LOCATION
'IN CURRENT PAGE ARE MOVED TO
ACC

MOVP3 A, @A Move Page 3 Data to Accumulator (Not in 8021)

Example:

MOVX A,@R,

1110|0011

This is a 2-cycle instruction. The contents of the
program memory location (within page 3) addressed by
the accumulator are moved to the accumulator. The
program counter is restored following this operation.

(PCo.7)=(A)
(PCB_1 1)4- 0011
(A)«((PC))

Look up ASCIl equivalent of hexadecimal code in table
contained at the beginning of page 3. Note that ASCII
characters are designated by a 7-bit code; the eighth
bit is always reset.
TABSCH: MOV A,#0B8H ;MOVE ‘B8 HEX TO ACC (10111000)
ANL A #7FH ;LOGICAL AND ACC TO MASK BIT
;7 {00111000)
MOVP3 A,@A ;MOVE CONTENTS OF LOCATION
;'38 HEX IN PAGE 3 TO ACC
;(ASCII '8")
Access contents of location in page 3 labelled TABA1.
Assume current program location is not in page 3.
TABSCH: MOV A #LOW TAB1 ;ISOLATE BITS 0-7 OF LABEL
;ADDRESS VALUE
MOVP3 A,@A ;MOVE CONTENTS OF PAGE 3
;LOCATION LABELED ‘TABT
; TO ACC

Move External-Data-Memory Contents to Accumulator

Example:

1000({00O0Tr (Not in 8021)

This is a 2-cycle instruction. The contents of the
external data memory location addressed by register
‘r are moved to the accumulator. Register r' contents
are unaffected.

(A)=— ((Rn)) r=0-1
Assume R1 contains 01110110.

MAXDM: MOVX A,@R1 ;MOVE CONTENTS OF LOCATION

;118 TO ACC

Mnemonics copyright Intel Corporation 1976.

4-25

INSTRUCTION SET

MOVX @R,A Move Accumulator Contents to External Data Memory

1001[000r | (Not in 8021)

This is a 2-cycle instruction. The contents of the
accumulator are moved to the external data memory
tocation addressed by register ‘r'’. Register ‘r’
contents are unaffected.

((Rr)) = A

Example: Assume RO contains 11000111.
MXDMA: MOVX @RO,A ;MOVE CONTENTS OF ACC TO

;LOCATION 199 IN EXPANDED
;DATA MEMORY

NOP The NOP Instruction
0000!00O00C0

No operation is performed. Execution continues with
the following instruction.

ORL AR, Logical OR Accumulator With Register Mask
0100 [1rrr

Data in the accumulator is logically ORed with the
mask contained in working register ‘r’.

(A)=— (A) OR (Rr) r=0-7

Example: ORREG: ORL A,R4 ,'OR” ACC CONTENTS WITH
;MASK IN REG 4

ORL A,@R; Logical OR Accumulator With Memory Mask
0100{000r

Data in the accumulator is logically ORed with the mask
contained in the resident data memory location referenced by
register ‘r’, bits 0-5*

(A)-=— (A) OR ((Rr)) r=0-1
Example: ORDM: MOV RO,#3FH ;MOVE ‘3F HEX TO REG 0
ORL A,@RO ;'OR’ ACC CONTENTS WITH MASK

:IN LOCATION 63
ORL A,#data Logical OR Accumulator With Immediate Mask
[0100]0011] [d7dgdsds |dgdpdydg]

This is a 2-cycle instruction. Data in the accumulator
is logically ORed with an immediately-specified mask.

(A)= (A) OR data

Example: ORID: ORL A,#'X ;'OR" ACC CONTENTS WITH MASK
;01011000 (ASCII VALUE OF ‘X))

Mnemaonics copyright Intel Corporation 1976. *0-6 for 8039/8049
4-26

INSTRUCTION SET

ORL BUS,#data Logical OR BUS With Immediate Mask (Not in 8021)
1000[1000]| [d7dedsds [d3dodqdg

This is a 2-cycle instruction. Data on the BUS port is
logically ORed with an immediately-specified mask. This

instruction assumes prior specification of an ‘OUTL BUS A’
instruction.

(BUS) = (BUS) OR data

Example: ORBUS: ORL BUS#HEXMSK ;‘OR’' BUS CONTENTS WITH

;MASK EQUAL VALUE OF SYMBOL
' HEXMSK’

ORL Pp, #data Logical OR Port 1 or 2 With Immediate Mask (Not in

8021)
1000[10pp| |d7dgdsds |d3dpdidg]
This is a 2-cycle instruction. Data on port 'p’
is logically ORed with an immediately-specified mask.
(Pp)= (Pp) OR data p=1-2
Example: ORP1: ORL P1, #0FFH ‘OR’ PORT 1 CONTENTS WITH

;MASK ‘FF’ HEX (SET PORT 1
;TO ALL ONES)

ORLD Pp,A Logical OR Port 4-7 With Accumulator Mask
1000 (11pp

Thisis a2-cycle instruction. Dataonport‘p’is
logically ORed with the digit mask contained in
accumulator bits 0-3.

(Pp)=— (Pp) OR (Ag_3) p=4-7
Example: ORP7: ORLD P7,A 'OR" PORT 7 CONTENTS
WITH ACC BITS 0-3
OUTL PO,A Output Accumulator Data to Port 0 (8021 only)

1001|0000
OUTL BUS,A Output Accumulator Data to BUS (Not in 8021)
0000]0010

This is a 2-cycle instruction. Data residing in the
accumulator is transferred (written) to the BUS port and
latched. The latched data remains valid until altered by)

another OUTL instruction. Any other instruction Does not
requiring use of the BUS port (except INS) destroys the apply for
contents of the BUS latch. This includes expanded L OUTL
memory operations (such as the MOVX instruction). PO A
Logical operations on BUS data (AND, OR) assume the of ,8021
OUTL BUS,A instruction has been issued previously. -
(BUS) = (A)

Example: OUTLBP: OUTL BUS,A :OUTPUT ACC CONTENTS TO BUS

Mnemonics copyright Intel Corporation 1976.
4-27

INSTRUCTION SET

OUTL Pp,A Output Accumulator Data to Port 1 or 2
0011|10pp

This is a 2-cycle instruction. Data residing in the
accumulator is transferred (written) to port ‘p’ and

latched.
(Pp) = (A) p=1-2
Example: OUTLP: MOV A R7 MOVE REG 7 CONTENTS TO ACC
OUTL P2,A ;OUTPUT ACC CONTENTS TO PORT 2
MOV A,R6 ‘MOVE REG 6 CONTENTS TO ACC
CUTL P1,A :OUTPUT ACC CONTENTS TO PORT 1
RET Return Without PSW Restore
100010011

This is a 2-cycle instruction. The stack pointer

(PSW bits 0-2) is decremented. The program counter
is then restored from the stack. PSW bits 4-7 are

not restored.

(SP) = (SP)-1
(PC) = ((SP))

RETR Return With PSW Restore (Not in 8021)
100110011

This is a 2-cycle instruction. The stack pointer is
decremented. The program counter and bits 4-7 of the
PSW are then restored from the stack. Note that RETR
should be used to return from an interrupt, but

should not be used within the interrupt service

routine as it signals the end of an interrupt routine.

(SP)= (SP)-1
(PC)=— ((SP))
(PSW 4-7)= ((SP))

RL A Rotate Left Without Carry
1110|0111

The contents of the accumulator are rotated left one
bit. Bit 7 is rotated into the bit 0 position.

(AN+1) - (An)

(AQ)=— (A7) n=0-6
Example: Assume accumulator contains 10110001,
RLNC: RL A 'NEW ACC CONTENTS ARE 01100011.

Mnemanics copyright Intel Corporation 1976,

4-28

INSTRUCTION SET

RLC A Rotate Left Through Carry
(1111]0111]

The contents of the accumulator are rotated left one
bit. Bit 7 replaces the carry bit; the carry bit is
rotated into the bit 0 position.

(AN+1) = (An)

n=0-6
(AD) = (C)
(C)= (A7)

Example: Assume accumulator contains a ‘signed’ number,;
isolate sign without changing value.

RLTC: CLR C ;CLEAR CARRY TO ZERO
RLC A ;ROTATE ACC LEFT, SIGN
;BIT (7) IS PLACED IN CARRY
RR A ;ROTATE ACC RIGHT — VALUE

(BITS 0-6) IS RESTORED,
;CARRY UNCHANGED, BIT 7
;1S ZERO

RR A Rotate Right Without Carry
0111]0111|

The contents of the accumulator are rotated right
one bit. Bit Q is rotated into the bit 7 position

(An) < (AN+1) n=0-6
(A7)=— (AQ)
Example: Assume accumulator contains 10110001.
RRNC: RR A :NEW ACC CONTENTS ARE 11011000

RRC A Rotate Right Through Carry
01100111

The contents of the accumulator are rotated right one
bit. Bit O replaces the carry bit; the carry bit is
rotated into the bit 7 position.

(An)= (An+1) n=0-6
(A7) = (C)
(C)=—)AO0)
Example: Assume carry is not set and accumulator contains
10110001.
RRTC: RRC A :CARRY IS SET AND ACC

;CONTAINS 01011000

M)
N®Monics copyright Intel Corporation 1976.

4-29

INSTRUCTION SET

SEL MBO

Select Memory Bank 0 (Not in 8021)

Example:

SEL MB1

11110][0101

PC bit 11 is set to zero on next JMP or CALL instruction.
All references to program memory addresses fall within
the range 0-2047.

(DBF)=—0
Assume program counter contains 834 Hex.

SEL MBO ySELECT MEMORY BANK 0
JMP $+20 WJUMP TO LOCATION
;48 HEX

Select Memory Bank 1 (Not in 8021)

SEL RBO

11110101

PC bit 11 is set to one on next JMP or CALL instruction.
All references to program memory addresses fall
within the range 2048-4095.

(DBF) = 1
Select Register Bank 0 (Not in 8021)

SEL RB1

1100|0101

PSW bit 4 is set to zero. References to working
registers 0-7 address data memory locations 0-7.
This is the recommended setting for normal program
execution.

(BS)= 0
Select Register Bank 1 (Not in 8021)

Example:

11010101

PSW bit 4 is set to one. References to working registers
0-7 address data memory locations 24-31. This is the
recommended setting for interrupt service routines,
since locations 0-7 are left intact. The setting of

PSW bit 4 in effect at the time of an interrupt is
restored by the RETR instruction when the interrupt
service routine is completed.

(BS) = 1

Assume an external interrupt has occurred, control

has passed to program memory location 3, and PSW bit

4 was zero before the interrupt.

LOC3: JNI INIT s JUMP TO ROUTINE ‘INIT’ IF
JINTERRUPT INPUT IS ZERC

Mnemonics copyright Intel Corporation 1876.

4-30

INSTRUCTION SET

INIT: MOV R7,A ;MOVE ACC CONTENTS TO
;LOCATION 7
SEL RB1 ;SELECT REG BANK 1

MOV R7,#0FAH ;MOVE ‘FA" HEX TO LOCATION 31

SEL RBO ;SELECT REG BANK 0

MOV A,R7 ;RESTORE ACC FROM LOCATION 7
RETR ;RETURN — RESTORE PC AND PSW

STOP TCNT Stop Timer/Event-Counter
|0110[0101

This instruction is used to stop both time accumulation
and event counting.

Example: Disable interrupt, but jump to interrupt routine after
eight overflows and stop timer. Count overflows in

register 7.

START: DIS TCNTI ;DISABLE TIMER INTERRUPT
CLR A ;CLEAR ACC TO ZEROS
MOV T,A ;MOVE ZEROS TO TIMER
MOV R7,A 'MOVE ZEROS TO REG 7
STRT T START TIMER

MAIN: JTF COUNT JUMP TO ROUTINE ‘COUNT’
JIF TF=1 AND CLEAR TIMER FLAG

JMP MAIN ;CLOSE LOOP
COUNT: INC R7 JINCREMENT REG 7
MOV A,R7 ;MOVE REG 7 CONTENTS TO ACC
JB3 INT JUMP TO ROUTINE 'INT IF ACC
;BIT 31S SET (REG 7=8)
JMP MAIN ,OTHERWISE RETURN TO ROUTINE
;MAIN

INT: STOP TCNT ;STOP TIMER
JMP 7H WJUMP TO LOCATION 7 (TIMER)
JINTERRUPT ROUTINE

Mnemonics copyright Intel Corporation 1976.

4-31

INSTRUCTION SET

STRT CNT Start Event Counter
0100[0101]

The test 1 (T1) pin is enabled as the event-counter
input and the counter is started. The event-counter
register is incremented with each high-to-low transition
on the T1 pin.

Example: Initialize and start event counter. Assume overfiow
is desired with first T1 input.

STARTC: EN TCNTI ;ENABLE COUNTER INTERRUPT
MOV A#OFFH ;MOVE ‘FF HEX (ONES) TO
;ACC
MOV T,A ;MOVE ONES TO COUNTER

STRT CNT ;ENABLE T1 AS COUNTER
;JINPUT AND START

STRT T Start Timer
0101|0101

Timer accumulation is initiated in the timer register.
The register is incremented every 32 instruction cycles.
The prescaler which counts the 32 cycles is cleared
but the timer register is not.

Example: Initialize and start timer.

STARTT: CLR A ;CLEAR ACC TO ZEROS
MOV T,A ;MOVE ZEROS TO TIMER
EN TCNTI ;ENABLE TIMER INTERRUPT
STRT T ;START TIMER

SWAP A Swap Nibbles Within Accumulator
lo100[0111

Bits 0-3 of the accumulator are swapped with bits
4-7 of the accumulator.

(Ag-7) 5 (Ap-3)
Example: Pack bits 0-3 of locations 50-51 into location 50.
PCKDIG: MOV RO, #50 ;MOVE ‘50 DEC TO REG 0
MOV R1, #51 ;MOVE ‘51 DEC TO REG 1

XCHD A,@R0 ;;EXCHANGE BITS 0-3 OF ACC
;AND LOCATION 50

SWAP A 'SWAP BITS 0-3 AND 4-7 OF ACC

XCHD A,@R1 ;EXCHANGE BITS 0-3 OF ACC AND
;LOCATION 51

MOV @RO,A ;MOVE CONTENTS OF ACC TO
;LOCATION 50

Mnemonics copyright Intel Corporation 1976.

4-32

INSTRUCTION SET

XCH A,R; Exchange Accumulator-Register Contents

10010 1rrr

The contents of the accumulator and the contents of
working register ‘r’ are exchanged.

(A) <. (Rr) r=0-7

Example: Move PSW contents to Reg 7 without losing
accumulator contents.

XCHART7: XCH A,R7 ;EXCHANGE CONTENTS OF REG 7
;AND ACC
MOV A, PSW ;MOVE PSW CONTENTS TO ACC
XCH A,R7 ' EXCHANGE CONTENTS OF REG 7

;AND ACC AGAIN
XCH A,@R, Exchange Accumulator and Data Memory Contents
0010|000

The contents of the accumulator and the contents of
the resident data memory location addressed by bits
0-5*of register v’ are exchanged. Register ‘r
contents are unaffected.

(A) S — ((Rn) r=0-1

Example: Decrement contents of location 52.
DEC52: MOV RO,#52 :MOVE ‘52 DEC TO ADDRESS

'REG 0
XCH A,@R0 ' EXCHANGE CONTENTS OF ACC
‘AND LOCATION 52
DEC A 'DECREMENT ACC CONTENTS
XCH A,@RO {EXCHANGE CONTENTS OF ACC

;AND LOCATION 52 AGAIN
XCHD A,@R, Exchange Accumulator and Data Memory 4-Bit Data
10011][000r|

This instruction exchanges bits 0-3 of the accumulator
with bits 0-3 of the data memory location addressed by
bits 0-5%of register ‘r’. Bits 4-7 of the accumulator,

bits 4-7 of the data memory location, and the contents
of register ‘r’ are unaffected.

(Ag-3) > ((Rr0-3)) r=0-1

M .
Nemonics copyright Intel Corparation 1976. *0-6 for 8039/8049
4-33

INSTRUCTION SET

Example: Assume program counter contents have been stacked in
locations 22-23.

XCHNIB: MOV R0O,#23 ;MOQOVE ‘23 DEC TO REG 0
CLR A .CLEAR ACC TO ZEROS
XCHD A,@R0 ;;EXCHANGE BITS 0-3 OF ACC
,AND LOCATION 23 (BITS 8-11
;OF PC ARE ZEROED, ADDRESS
'REFERS TO PAGE 0)

XRL A,Ry Logical XOR Accumulator With Register Mask
1101 1rrr

Data in the accumulator in EXCLUSIVE ORed with the mask
contained in working register ‘r.

(A)= (A) XOR (Rr) r=0-7

Example: XORREG: XRL AR5 7 XOR" ACC CONTENTS WITH
;MASK IN REG 5

XRL A,@R; Logical XOR Accumulator With Memory Mask
1101/ 000r

Data in the accumulator is EXCLUSIVE ORed with the mask
contained in the data memory location addressed by
register ‘r’, bits 0-5*

(A)=— (A) XOR ((Rr)) r=0-1

Example: XORDM: MOV R1, #20H ;MOVE ‘20' HEX TO REG 1
XRL A,@R1 ;' XOR" ACC CONTENTS WITH MASK
;IN LOCATION 32

XRL A,#data Logical XOR Accumulator With Immediate Mask
1101]/0011| |d7dgdsdg |d3dpdidg]

This is a 2-cycle instruction. Data in the accumulator
is EXCLUSIVE ORed with an immediately-specified mask.

(A) = (A) XOR data

Example: XORID: XOR A #HEXTEN;XOR CONTENTS OF ACC WITH
'MASK EQUAL VALUE OF SYMBOL
' HEXTEN’

Mnemonics copyright intef Corporation 1976. *0-6 for 8039/8043
434

In

8048/8648/8748/8035

SINGLE COMPONENT 8-BIT MICROCOMPUTE'R‘”

* 8048 Mask Programmable ROM

* 8648 One-Time Factory Programmable EPROM
* 8748 User Programmable/Erasable EPROM

* 8035 External ROM or EPROM

u 8-Bit CPU, ROM, RAM, 1/0 in & 1K x 8 ROM/EPROM
Single Package 64 x 8 RAM

m Interchangeable ROM and EPROM 27 1/0 Lines
Versions B Interval Timer/Event Counter

® Single 5V Supply B Easily Expandable Memory and 1/0

B 2.5 usec and 5.0 usec Cycle Versions: ® Compatible with 8000 Series Peripherais
All Instructions 1 or 2 Cycles ® Single Level Interrupt

® Over 90 Instructions: 70% Single Byte

The Intel® 8048/8648/8748/8035 is a totally self-sufficient 8-bit parallel computer fabricated on a single silicon chip
using Intel’s N-channel silicon gate MOS process.

The 8048 contains a 1K x 8 program memory, a 64 x 8 RAM data memory,27 /0 lines,and an 8-bittimer/counter in addition
to onboard oscillator and clock circuits. For systems that require extra capability, the 8048 can be expanded using
standard memories and MCS-80™ (8080A) peripherals. The 8035 is the equivalent of an 8048 without program memory.
The 8035L has the RAM power down mode of the 8048 while the 8035 does not.

To reduce development problems to a minimum and provide maximum flexibility, three interchangeable pin-compatible
versions of this single component microcomputer exist: the 8748 with user-programmable and erasable EPROM program
memory for prototype and preproduction systems, the 8048 with factory-programmed mask ROM program memory for
low cost, high volume production, and the 8035 without program memory for use with external program memories.

This microprocessor is designed to be an efficient controller as weil as an arithmetic processor. The 8048 has extensive bit
handling capability as well as facilities for both binary and BCD arithmetic. Efficient use of program memaory results from
an instruction set consisting mostly of single byte instructions and no instructions over 2 bytes in length.

PIN CONFIGURATION LOGIC SYMBOL. BLOCK DJAGRAM
TOol 1 d 40 [JVee
xTaL 1§z 3 gﬂ — P.?RT oRD s
= cLOCK 1024 WORDS 64 WORD!
xTaL z[] 3 3e)27 XTAL PROGRAM DATA
AESET(] 4 37 [p26 — MEMORY MEMORY
s0s 36 [Ores “@ PORT
ide] 3% E”‘ RESET ——» =2
eal]7 34 L1P17 SINGLE
ﬁ‘DB 8 33[0r1e STEP [—»READ
PSEN(]o go4qg 32[0PIS EXTERNAL
wR] 11w 8648 M tjna MEM. 8048 8B8IT
CPU
aLte[J 11 8748 a0[Jei3 — WRITE
o812 8035 29 [er TEST
08,113 2 en —] PROGRAM
L — STORE
08,[] 14 2200 ENABLE
pB,[] 15 26 [1Vop INTERRUPT —=
DB, PROG ADDRESS g
Qe = —Lavey oty z
D8 [} 17 24 1P23 ENABLE EVENT COUNTER 1/0 LINES
0B;[] 18 23 [Qe22 aus
PORT
DB, [19 22{7F21 -—* £XPANDER
Ve 20 a10rn STROBE

6-1

8048/8648/8748/8035

PIN DESCRIPTION

Designation

Pin #

Function

Vss
Vobp

PROG

P10-P17
Port 1
P20-P27
Port 2

DB,-DB,

BUS

TO

T1

INT

20
26

40

25

27-34

21-24
35-38

12-19

39

Circuit GND potential

Programming power supply; +25V
during program, +b6V during oper-
ation for both ROM and PROM.
Low power standby pin in 8048
ROM version.

Main power supply; +5V during
operation and programming.

Program pulse (+25V) input pin
during 8748 programming.

Qutput strobe for 8243 1/0
expander.

8-bit quasi-bidirectional port.

8-bit quasi-bidirectional port.

P20-P23 contain the four high
order program counter bits during
an external program memory fetch

and serve as a 4-bit 1/0O expander
bus for 8243.

True bidirectional port which can
be written or read synchronously
using the RD, WR strobes. The

port can also be statically latched.

Contains the 8 low order program
counter bits during an external
program memory fetch, and receives
the addressed instruction under the
control of PSEN. Also contains the
address and data during an external
RAM data store instruction, under
control of ALE, RD, and WR.

Input pin testable using the con-
ditional transfer instructions JTO
and JNTOQ. TO can be designated as
a clock output using ENTO CLK
instruction. TO is also used during
programming.

Input pin testable using the JT1,

and JNT1 instructions. Can be des-
ignated the timer/counter input using
the STRT CNT instruction.

Interrupt input. Initiates an inter-
rupt if interrupt is enabled. Inter-
rupt is disabled after a reset. Also
testable with conditional jump
instruction. (Active low)

Designation

Pin #

Function

RD

RESET

ALE

XTAL1

XTAL2

6-2

8

10

11

Output strobe activated during a
BUS read. Can be used to enable .-
data onto the bus from an external
device,

Used as a read strobe to external
data memory. {Active low)

Input which is used to initialize the
processor. Also used during PROM
programming verification, and
power down. (Active low)

(Non TTL Viy)

Output strobe during a bus write.
{Active low)

Used as write strobe to external
data memory.

Address latch enable. This signal
occurs once during each cycle and
is useful as a clock output.

The negative edge of ALE strobes
address into external data and pro-
gram memory.

Program store enable. This output
occurs only during a feich to exter-
nal program memory. (Active low)

Single step input can be used in con-
junction with ALE to “single step’’
the processor through each in-
struction. (Active low)

External access input which forces
all program memory fetches to re-
ference external memory. Useful
for emulation and debug, and
essential for testing and program
verification. (Active high)

One side of crystal input for inter-
nal oscillator. Also input for exter-
nal source. (Non TTL V|y)

Other side of crystal input.

8048/8648/8748/8035

INSTRUCTION SET

Mnemonic Description Bytes Cycle Mnemonic Description Bytes Cycles
ADD A, R Add register to A 1 1 .g CALL Jump to subroutine 2 2
ADD A, @R Add data memory to A 1 1 3 RET Return 1 2
ADD A, #data Add immediate to A 2 2 .§ RETR Return and restore status 1 2
ADDC A, R Add register with carry 1 1 Iz
ADDC A, ®R Add data memory with carry 1 q
ADDC A, #data Add immediate with carry 2 2 CLR C Clear carry 1 1
ANL A, R And register to A 1 1 o CFEC Complement carry 1 !
ANL A, @R And data memory to A 1 1 g CLRFO Clear flag 0 1 1
ANL A, #data And immediate to A 2 2 w CPL FO Complement flag 0 1 1
_ ORLA,R Or register to A 1 1 CLR F1 Clear flag 1 ! !
2 ORLA, @R Or data memory to A 1 1 CPL F1 Complement flag 1 1 1
-'3 ORL A, #data Or immediate to A 2 2
§ XRL A, R Exclusive or register to A 1 1 MOV A R Move register to A] ;
&: XRL A, @R Exclusive or data memory to A 1 1 MOV A @R Move data memory to A] 1
XRL A, #data Exclusive or immediate to A 2 2 ‘ . .
INC A Increment A 1 i MOV A, #data Move immediate to A 2 2
DEC A Decrement A 1 1 MOV R, A Move A to register 1 1
CLR A Clear A 1 1 MOV @R, A Move A to data memory 1 1
CPL A Complement A 1 1 " MOV R, #data Move immediate to register 2 2
DA A Decimal adjust A 1 1 ”s-’ MOV @R, #data Move immediate to data memory 2 2
SWAP A Swap nibbles of A i 1 = MOV A,PSW Move PSW to A 1 1
RLA Rotate A left . 1 E MOV PSW, A Move A to PSW ‘ 1 1
RLC A Rotate A left through carry 1 1 Q XCHA,R Exchange A and register ! !
RR A Rotate A right 1 1 XCHA, @R Exchange A.and data memory- 1 1
RRC A Rotate A right through carry 1 1 XCHD A, @R Exchange nibble of A and register 1 1
MOVX A, @R Move external data memory to A 1 2
MOVX @R, A Move A to external data memory 1 2
INA, P Input port to A 1 2 MOVP A, @A Move to A from current page 1 2
OQUTLP, A Qutput A to port 1 2 MOVP3 A, @A Move to A from page 3 1 2
. ANL P, #data And irmmediate to port 2 2
,:'.- IONRSLAT‘B#S;E ﬁ‘rp::r;ijdsla:; :\0 port 12 Z . MOV A, T Read timer/counter 1 1
O OUTLBUS,A Output A to BUS 1 2 % :&\’T? A ls'::: :i‘::r’/“’““‘er 1 1
2 ANL BUS, #data And immediate to BUS 2 2 2
£ ORL BUS,#data Or immediate to BUS 2 2 g STRTCNT Start counter ! !
MOVD A, P Input expander port to A 1 2 % 2LO:C-:\ICT'\IJT it:p Itlmler/cou ner . ! !
MOVD P, A Output A to expander port 1 2 il ’ab e tlrner/counter |.nterrupt 1 1
ANLD P, A And A to expander port 1 5 DIS TCNTI Disable timer/counter interrupt 1 1
ORLD P, A Or A to expander port 1 2
EN | Enable external interrupt 1 1
§ INCR Increment register 1 1 _ Dbisl Disable ex_ternal interrupt 1 1
¥ incer lncrement data memory 1 1 g SEL RBO Select register bank 0 1 1
E’ DECR Decrement register 1 1 é SEL RB1 Select register bank 1 1 1
SEL MBO Select memory bank 0 1 1
SEL MB1 Select memory bank 1 1 1
JMP addr Jump unconditional 2 2 ENTO CLK Enable clock output on TO 1 1
JMPP @A Jump indirect 1 2
DJNZ R, addr Decrement register and ski 2 2 .
JC addr Jump oncarry = 1 g 2 2 NOP No operation ! !
JNC addr Jump oncarry =0 2 2
J Z addr Jump on A zero 2 2
JNZ addr Jump on A not zero 2 2
€ JTOaddr JumponTO=1 2 2
& JNTO addr Jump on TO=0 2 2
@ JT1 addr JumponT1=1 2 2
JNT1 addr JumponT1=0 2 2
JFO addr Jump on FO =1 2 2
JF 1 addr Jump on F1 =1 2 2
JTF addr Jump on timer flag 2 2
JNI addr Jump on INT = 0 2 2
JBb addr Jump on accumulator bit 2 2

Mnemonics copyright Intel Corporation 1976

6-3

8048/8648/8748/8035

ABSOLUTE MAXIMUM RATINGS*

Ambient Temperature Under Bias
Storage Temperature
Voltage On Any Pin With Respect

to Ground
Power Dissipation

..............................

0°C to 70°C
-65°C to +150°C

-0.5V to +7V
1.5 Watt

*COMMENT:

Stresses above those listed under "Absolute Maximum Ratings”
may cause permanent damage to the device. This is a stress rating
only and functional operation of the device at these or any other
conditions above those indicated in the operational sections of this
specification is not implied.

D.C. AND OPERATING CHARACTERISTICS T, = 0°C to 70°C, V¢ = Vpp = +5V £10%*, Vgg = OV

Limits
bal P . "
Symbo arameter YT I Typ. Mo Unit Test Conditions
ViL Input Low Voltage -5 l .8 A%
Viu Input High Voltage
(Al Except XTALT,XTAL2,RESET)| 20 Vee |V
ViH1 Input High Voltage (RESET, X1, X2)| 3.8 Vee Y
VoL Output Low Voltage _
(BUS, RD, WR, PSEN, ALE) 45 1V gy = 20mA
Vori Output Low Voltage y
(All Other Outputs Except PROG) 45 v fo = 1.6mA
VoL2 QOutput Low Voltage (PROG) 45 v loL = 1.0mA
VoH Qutput High Voltage _
(BUS, RD, WR, PSEN, ALE) 2.4 M low = ~100uA
VoH1 Output High Voltage
. v =
(All Other Qutputs) 2.4 low = ~50uA
Ve ’7Input Leakage Current .
i *10 A Vee<SV NSV
(T1, INT) “ S§SVINSVCCe
baL Output Leakage Current (BUS, TO) .
+10 A Vsg+. 45V <
(High Impedance State} H ss+ABSViN<Vee
Ipp Vpp Supply Current 10 20 mA
ipptlce| Total Supply Current 65 135 mA
*Standard 8748 and 8035 5%, +10% available.
WAVEFORMS

Instruction Fetch From External Program Memory

ALE

FSEN ‘
_—‘ 'LA —— | |

= ‘AL}‘H ;

—»J ton

BUS

X FLOATING x x FLOATING X
) .
I |

FLOATINGX} ‘

ADDRESS

- tpy —

"AD_“—’i

INSTRUCTION

o

Read From External Data Memory

ALE

e p—

tapg—> e —+ —r
| ‘ FLOATING | |
|
BUS FLOATING ‘ADDRESM XDATAX FLOATING
: |
; 1“‘!10"1
‘FtAD——b[
L

64

8048/8648/8748/8035

Write to External Data Memory

F - tee —.|
|

WR l I

|
‘ Ty ——te—] wo

. I 1,
; | ;
BUS FLOATING x] ADDRESS K FLOATIN&X DATA X FLOATING

-—— A —_—

A.C. CHARACTERISTICS T, = 0°Cto 70°C, Ve = Vpp = +6V #10%*, Vgg= OV

8048 8748-8
Symbo! Parameter 87%%73&?53§0§LL 8035-8 Unit Conditions {Note 1)
Min, [Max. Min. {Max.
tLL ALE Pulse Width 400 600 ns
taL Address Setup to ALE 150 150 ns
tLA Address Hold from ALE 80 80 ns
tee Control Pulse Width (PSEN, RD, WR) | 700 1500 ns
tpw Data Setup before WR 500 640 ns
two Data Hold After WR 120 120 ns | Cp=20pF
tey Cycle Time 25 | 15.0 4.17 {16.0 Ms 6 MHz XTAL
(3.6MHz XTAL for -8}
toR Data Hold 0 | 200 0 {200 ns
tRD PSEN, RD to Data In 500 750 ns
taw Address Setup to WR 230 260 ns
taD Address Setup to Data In 950 1450 ns
tAFC Address Float to RD, PSEN 0 0 ns

Note 1: Control outputs: CL=80pF
BUS Outputs: CL =150 pF, tgy = 2.5us
Note 2: The 8648 is a one-time programmable (at the factory} 8748 which can be ordered as the first 25 pieces of a new 8048 ROM order.
The substitution of 8648's for 8048's allows for very fast turnaround for initial code verification and evaluation units. The 8648, like
the 8748, is electrically and functionally interchangeable with the 8048 with the exception of the powerdown mode which the 8648
does not support and +5% supply tolerance instead of +10%.

*Standard 8748 and 8035 + 5%, + 10% available.

A.C. CHARACTERISTICS (PORT 2 TIMING)
Ta =0°C to 70°C, Vcc = 5V£10%

Symbol Parameter Min. Max. Unit Test Conditions
tcp Port Control Setup Before Falling

Edge of PROG 110 ns
trC Port Control Hold After Falling

Edge of PROG 140 ns
tPR PROG to Time P2 Input Must Be Valid 810 ns
top Output Data Setup Time 220 ns
trD Output Data Hold Time 65 ns
trF Inpet Data Hold Time 0 150 ns
tep PROG Pulse Width 1510 ns
tpL Port 2 1/0 Data Setup 400 ns
tLp Port 2 I/0 Data Hold 150 ns

65

8048/8648/8748/8035

PORT 2 TIMING

ALE

|

/7 \

Vs

EXPANDER tpL e tLp top tPO-»]
PORT A
) |
OUTPUT x PCH PORT 2p.3 DATA PORT CONTROL x OUTPUT DATA
|
EXPANDER - wral
PORT
INPUT
INPUT PCH PORT 2g.3 DATA PORT CONTROL e
—=1cp re
b e !
PROG /

PROGRAMMING, VERIFYING, AND
ERASING THE 8748 EPROM

Programming Verification

In brief, the programming process consists of: activating
the program mode, applying an address, latching the
address, applying data, and applying a programming pulse.
Each word is programmed completely before moving on to
the next and is followed by a verification step. The follow-
ing is a list of the pins used for programming and a descrip-
tion of their functions:

Pin Function

XTAL1 Clock Input (1 to 6MHz)

Reset Initialization and Address Latching

Test 0 Selection of Program of Verify Mode

EA Activation of Program/Verify Modes

BUS Address and Data Input Data Output
During Verify

P20-1 Address Input

Vpp Programming Power Supply

PROG Program Pulse Input

WARNING:

An attempt to program a missocketed 8748 wiil result in severe
damage to the part. An indication of a properly socketed part is the
appearance of the ALE clock output. The lack of this clock may
be used to disable the programmer,

6-6

Programming/Verification Sequence

+BY
RESET f
o BUS AND PROG CAN
o l-— - BE DRIVEN ONLY -
TEST O DURING THIS TIME |
+26V [
VR

Bus — ¢ ADDRESS AgAy X DAt y——DATA OUT

+25V

Voo +5V I I

+0v

The Program/Verify sequence is:

1. Vpp = By, Clock applied or internal oscillator operating,
RESET = Ov, TEST 0= 5v, EA = Bv, BUS and PROG
floating.

2. Insert 8748 in programming socket

3. TEST 0 = Ov (select program mode)

4, EA = 25v {activate program mode)

5. Address applied to BUS and P20-1

6. RESET = 5v (latch address}

7. Data applied to BUS

8. Vpp = 25v (programming power)

9, PROG = Ov fcllowed by one 50ms pulse to 25v

10. Vpp=5%v

11. TEST 0 = 5v (verify mode)

12, Read and verify data on BUS

13. TESTO=0v

14. RESET = Ov and repeat from step b

15. Programmer should be at conditions of step 1 when 8748

is removed from socket.

8048/8648/8748/8035

AC TIMING SPECIFICATION FOR PROGRAMMING
Ta =25°C + 5°C, Vcc =5V £ 5%, Vpp = 25V = 1V

Symbol Parameter Min. Max. Unit Test Condﬂlqnt
taw Address Setup Time to RESET ! dicy '
twa Address Hold Time After RESET | 4tcy

tow Data in Setup Time to PROG 1 4tcy

twp Data in Hold Time After PROG | 4tcy

tPH RESET Hold Time to Verify dicy

tvDDow Voo 4tcy

tvDoOH Voo Hold Time After PROG | 0]

tPw Program Pulse Width 50 60 MS

tTw Test 0 Setup Time for Program Mode 4icy

twr Test 0'Hold Time After Program Mode dicy

too Test 0 to Data Qut Delay 4tcy

tww RESET Pulse Width to Latch Address dicy

tr, t¢ Vob and PROG Rise and Fall Times 0.5 2.0 uS

toy CPU Operation Cycle Time 5.0 us

tRE RESET Setup Time Before EA 1, 4icy

Note: If Test 0 is high tog can be triggered by RESET 1.

DC SPECIFICATION FOR PROGRAMMING
Ta =25°C £ 5°C, Vce = 5V £ 5%, Vpp = 25V £+ 1V

Symbol Parameter Min. Max. Unit Test Conditions
VDoOH Vpp Program Voltage High Level 24.0 26.0 v

VooL VoD Voltage Low Leve! 4.75 5.25 Y

VPH PROG Program Voltage High Level 215 245 v

VeL PROG Volitage Low Level 0.2 v

VEAH EA Program or Verify Voltage High Level 215 245 v

VEAL EA Volitage Low Level 5.25 '

Iop Voo High Voltage Supply Current 30.0 mA

lpROG PROG High Voitage Supply Current 16.0 mA

lea EA High Voltage Supply Current 1.0 mA

6-7

8048/8648/8748/8035

WAVEFORMS FOR PROGRAMMING

COMEINATION PROGRAM/VERIFY MODE (EPROM'S ONLY)

PROGRAM VERIFY | PROGRAM
f— tTy —————— | I
0 \ /l \
tww .
RESET %‘ 7(\—/-—
taw <|<—~><——f— twa Ftno—ﬂ
ADDRESS DATA TO BE . DATA - NEXT ADDR
DBo-DBy - {0-7) VALID PROGRAMMED VALID = VALID - VALID
LAST NEXT
P2o-P1 ADDRESS X ADDRESS (8-9) VALID X ADDRESS
typow —»| — tvppH
: T
+25 i

Vop

. /]

PROG
H

/

VERIFY MODE (ROM/EPRCMI

e
+23 |
L
D e—

o

TO,RESET \ / \ / \
DBo-DE - ADDRESS DATA OUT - NEXT NEXTDATA \ __ _ -
057 {0-7} VALID VALID ADDRESS OUT VALID
Poo-P1 X ADDRESS {8-9) VALID X NEXT ADDRESS VALID
NOTES:

. PROG MUST FLOAT IF EA IS LOW {ie., # 25V), OR tF TO = 5V FOR THE 8748.
FOR THE 8048 PROG MUST ALWAYS FLOAT.

2. Vean FOR 8048 = 11.4V MIN., 126V MAX,

3. THE FOLLOWING CONDITIONS MUST BE MET:
CS=TTL "V
AD=TTL 'O

THIS CAN BE DONE USING 10K RESISTORS TO Vee, Vs RESPECTIVELY.
4. X1 AND X5 DRIVEN BY 3 MHz CLOCK WILL GIVE Busee toy. THIS IS GOOD
FOR -8 PARTS ASWELL AS NON -8 PARTS,

The 8748 EPROM can be programmed by either of two

Intel products:
1. PROMPT-48 Microcomputer Design Aid, or

Note: See Appendix 2 for 8048 ROM ordering procedures. To min-
imize turnaround time on the first 25 pieces 8648 may be specified
on the ROM order.

2. Universal PROM Programmer (UPP-101 or UPP-102]
peripherai of the Intellec® Development System with a

UPP-848 Personality Card.

6-8

NEW HIGH PERFORMANCE

8049/8039/8039-6

SINGLE COMPONENT 8-BIT MICROCOMPUTER
*8049 Mask Programmable ROM

*8039 External ROM or EPROM
*New 11 MHz Operation

m 8-Bit CPU, ROM, RAM, I/O in m 2K x 8 ROM
Single Package 128 x 8 RAM
m Single 5V +£10% Supply 27 110 Lines
m 1.36 usec Cycle; All Instructions m Interval Timer/Event Counter
1 or 2 Cycles m Easily Expandable Memory and l/O
m Over 90 Instructions: 70% Single Byte s Compatible with MCS Memory and /O
» Pin Compatible with 8048/8748 m Single Level Interrupt

The Intel® 8049/8039/8039-6 is a totally self-sufficient 8-bit paraliel computer fabricated on a single silicon chip using
Iintel’s N-channel silicon gate MOS process.

The 8049 contains a 2K x 8 program memory, a 128 x 8 RAM data memory, 27 I/O lines, and an 8-bit timer/counter in
addition to on board oscillator and ¢lock circuits. For systems that require extra capability, the 8049 can be expanded
using standard memories and Mcs-80™M/mcs-85™ peripherals. The 8039 is the equivalent to an 8049 without program
memory. The 8039-6 is a lower speed (6MHz) version of the 8039.

To reduce development problems to a minimum and provide maximum flexibility, two interchangeable pin-compatible
versions of this single component microcomputer exist: the 8049 with factory-programmed mask ROM program
memeory for low-cost high volume production, and the 8039 without program memory for use with external program
memories in prototype and preproduction systems.

This microprocessor is designed to be an efficient controller as well as an arithmetic processor. The 8048 has exten-
sive bit handling capability as well as facilities for both binary and BCD arithmetic. Efficient use of program memory
resuits from an instruction set consisting mostly of single byte instructions and no instructions over two bytes in
length.

PIN CONFIGURATION LOGIC SYMBOL BLOCK DIAGRAM
o1~ aoPve
PORT
xtaL 1] 2 s — =1
xtac 2(] 3 = Qe cLocK HPROGRAM oATA
HEser[] 4 37 [r26 L= MEMORY MEMORY
ss[s 36 [Jr2s pom
Nt e 35 [1P2s RESET— =2
P17
i“‘E 7 31 SINGLE
AD[] 8 33318 STEP ™ |— READ
PSEN[] o 049 32 {1r15 EXTERNAL ‘
wrl wo 8 31 [JP14 MEM. 8049 g'PBL'JT
ate] 8039 ,e3 S —= WRITE k
DBy 12 29 [0p12 TEST
oe,[] 12 28PN — PROGRAM
| sTORE
p8,T] 14 27[JP10 ENABLE
D8] 15 26 {1 VYop INTERRUPT —
ADDRESS ’
DB,[] 16 25 [1PROG ATy 88IT 27
D8, [} 17 24 P23 ENABLE TIMER/ 1
s EVENT COUNTER O LINES
DB [18 23 [Jp22 BUS ot
oe, (] 19 2 [3r21 EXPANDER
vgs[] 20 21 P20 STROBE

E:

8049/8039/8039-6

ABSOLUTE MAXIMUM RATINGS™

Ambient Temperature UnderBias 0°Cto70°C
Storage Temperature -65°Cto+150°C
Voltage on Any Pin With

RespecttoGround -0.5Vto+7V
Power Dissipation oo i 1.5 Watt

*COMMENT: Stresses above those listed under “Absolute
Maximum Ratings” may cause permanent damage to the
device. This is a stress rating only and functional
operation of the device at these or any other conditions
above those indicated in the operational sections of this
specification fs not implied. Exposure to absolute
maximum rating conditions for extended periods may
affect device reliability.

D.C. AND OPERATING CHARACTERISTICS T4 =0°Cto 70°C, Ve = Vpp = +5V £10%, Vgg = OV

Limits

Symbaol Parameter Min. Typ. Max. Unit Test Conditions
ViL Input Low Voltage -0.5 0.8 A
ViH tnput High Voltage

(All Except XTAL1, XTAL2, RESET) 2.0 Vee v
VIH1 Input High Volitage (RESET, X1, X2) 3.8 Vee \Y
VoL Output_llow__/_oltage

(BUS, RD, WR, PSEN, ALE) 0.45 v loL = 2.0mA
VoL Output Low Voltage

{All Other Qutputs Except PROG) 0.45 \Y loL = 1.6mA
VoLz Output Low Voltage (PROG) 0.45 v loL = 1.0mA
VoH Output High Voltage

(BUS, RD, WR, PSEN, ALE) 24 Y foH =~ 100uA
Vou1 Output High Voltage

{All Other Outputs} 24 \ loy =-50uA
e Input Leakage Current

(T1, INT} +10 KA Vss<VinNSVee
loL Output Leakage Current {Bus, TO)

{(High Impedance State) =10 HA Vgg +045<V |y S Ve
Ipp Power Down Supply Current 25 50 mA Ta = 25°C
Iop*lce | Total Supply Current 100 170 mA Ta =25°C

A.C. CHARACTERISTICS 714 =0°C1t070°C, V¢ = Vpp = +5V £10%, Vgg = OV

8049/8039 80396
{Note 1)
Symbol Parameter Min. Max. | Min. | Max. | Unit | Conditions (Note 2)
fLu ALE Pulse Width 150 400 ns
taL Address Setup to ALE 70 150 ns
LI Address Hold from ALE 50 80 ns
tec Control Puise Width (PSEN, RD, WR) 300 700 ns
tow Data Set-Up Before WR 250 500 ns
two Data Hold After WR 40 120 ns C_ =20pF
toy Cycie Time 1.36 15.0 2.5 15.0 HS 11MHz XTAL
(6MHz XTAL for -6)
tpr Data Hold c 100 0 200 ns
tRD PSEN, RD to Data In 200 500 ns
taw Address Setup to WR 200 230 ns
taD Address Setup to Data In 400 950 ns
tAFC Address Float to RD, PSEN -10 0 ns

Notes: 1. 8039-6 specifications are also valid for 8049/8039 operating at 6MHz.

2. Contro} Qutputs: C| = BOpF
BUS Qutputs: G = 150pF

8049/8039/8039-6

WAVEFORMS

INSTRUCTION FETCH FROM EXTERNAL PROGRAM MEMCRY

- oy »

‘—ILLAﬁ

—=| tAFC]"“tCC“—*

PSEN

——»tLAq—

— tDR -
BUS FLOATING x XFLOATING X
}‘*‘Roﬁ’ INSTRUCTION
““tADh“’

READ FROM EXTERNAL DATA MEMORY

ALE |
—

et

RD
tAFC_"" - — tDR
FLOATING
|
BUS FLOATII\EXADDR ESS x XDATAX FLOATING
‘ l-‘-tRD—b—

q——-—TAD—-——p

WRITE TO EXTERNAL DATA MEMCRY

ALE _J _j_
ot —

ow ‘- - i

’ wp
BUS FLOATING)(ADDR@(FLOAHN%DATA FLOATING

*—tAW—"i

6-11

8049/8039/8039-6

A.C. CHARACTERISTICS
Ta= 0°Cto70°C, Vg = 5V+10%

8049/8039 8039-6
Symbol Parameter Min. | Max. | Min. | Max. | Unit | Conditions (Note 2)
top Port Control Setup Before Falling
Edge of PROG 100 110 ns
tpc Port Control Hold After Falling Edge
of PROG 60 140 ns
ter PROG to Time P2 Input Must Be Valid 650 810 ns
top Output Data Setup Time 200 220 ns
tpp Output Data Hold Time 20 65 ns
tpe Input Data Hold Time 0 150 0 150 ns
tpp PROG Pulse Width 700 1510 ns
tpL Port 2 11O Data Setup 150 400 ns
tLp Port 2 I/O Data Hold 20 150 ns
WAVEFORMS

PORT 2 TIMING

ALE

EXPANDER
PORT

OUTPUT “

EXPANDER
PORT

INPUT l

J

1LP’1

top LI

PCH

PORT 203 DATA

PORT CONTROJ

OUTPUT DATA K

tPR

»! = tPFa

PCH PORT 203 DATA

PORT CONTROL

INPUT
DATA

cp

+——— tpg ————

PROG

6-12

tpp

8049/8039/8039-6

PIN DESCRIPTION

Desigration Pin # Function Designation Pin # Function
Vgs 20 Circuit GND potential RD 8 Output strobe activated during a
Vop 26 +5V during operation. Low power BUS read. Can be used to enable
standby pin. data onto the BUS from an external
Vee 40 Main power supply; +5V during device.
operation. Used as a Read Strobe to External
Data Memory. {(Active |
PROG 25 Output strobe for 8243 /O Y- {Active low}
expander. RESET 4 Input which is used to initialize the
P10-P17 27-34 8bit quasi-bidirectional port. pro.cessor. Also used during Ve.”fl-
Port 1 cation, and power down. (Active
P20-P27 21-24 &bit quasi-bidirectional port. - low) (Non TTL Vi)
Port 2 35-38 p20-P23 contain the four high WR 10 Outp.ut strobe during a BUS write.
order program counter bits during (Active low)
an external program memory fetch Used as write strobe to External
and serve as a 4-bit 1/0 expander Data Memory.
bus f
us for 8243 ALE 11 Address Latch Enable. This signal
DO-D7 1219 True bidirectional port which can occurs once during each cycle and
BUS be written or read synchronously is useful as a clock output.
using the RD, WR strobes. The .
port can also be statically latched. The negz_at[ve edge of ALE strobes
address into external data and pro-
Contains the 8 low order program gram memory.
counter bits during an external g .
program memory fetch, and receives PSEN 9 Program E:to;e E.nazliél:li:gti):t
the addressed instruction under the oc::urs only auring (Active I); ;
control of PSEN. Also contains the _ nal program memory. 1Act) w
address and data during an external sS 5 Single step input can be used in con-
RAM data store instruction, under junction with ALE to “single step’’
control of ALE, RD, and WR. the processor through each in-
TO 1 Input pin testable using the con- struction. (Active low)
ditional transfer instructions JTO EA 7 External Access input which forces
and JNTO. TO can be designated as all program memory fetches to re-
a clock output using ENTO CLK ference external memory. Useful
instruction. for emulation and debug, and
. . essential for testing and program
T 39 Input pin testable using the JT1, verification. (Active high)
and JNT1 instructions. Can be des- . . .
ignated the timer/counter input using < TAL1 2 One side of crystal input for inter-
the STRT CNT instruction. nal oscillator. Also input for exter-
— nal source. (Not TTL Compatible)
INT 6 Interrupt input. Initiates an inter-) .
XTAL2 3 Other side of crystal input.

rupt if interrupt is enabled. Inter-
rupt is disabled after a reset. Also
testable with conditional jump
instruction. {Active low)

6-13

8049/8039/8039-6

INSTRUCTION SET

Mnemonic Description Bytes Cycle Mnemonic Daescription Bytes Cycles
ADD A, R Add register to A 1 1 E CALL Jump to subroutine 2 2
ADD A, @R Add data memory to A 1 1 s RET Return 1 2
ADD A, #data Add immediate to A 2 2 .‘g RETR Return and restore status 1 2
ADDCA,R Add register with carry 1 1 7]
ADDC A, @R Add data memory with carry 1 1
ADDC A, #data Add immediate with carry 2 2 CLR C Clear Carry 1 1
ANL A, R And register to A 1 1 , CPLC Complement Carry 1 1
ANL A, @R And data memory to A 1 1 g CLR FO Clear Flag 0 1 1
ANL A, #data And immediate to A 2 2 & CPL FO Complement Flag 0 1 1
ORLA,R Or register to A 1 1 CLR F1 Clear Flag 1 1 1
8 ORLA, @R Or data memory to A 1 1 CPL F1 Complement Flag 1 1 1
£ ORLA, #data Or immediate to A 2 2
5 XRLA, R Exclusive Or register 0 A 1 1 MOV A, R Move register to A ; ;
o XRLA, @R Exclusive or data memory to A 1 1
o)) _ MOV A, @R Move data memory to A 1 1
XRL A, #data Exclusive or immediate to A 2 2 . .
INC A Increment A 1] MOV A, #data Move lmmedla.te to A 2 2
DEC A Decrement A 1 3 MOV R, A Move A 1o register 1 1
CLR A Clear A 1 1 MOV @R, A Move A to data memory 1 1
CPL A Complement A 1 1 - MOV R, #data Move immediate to register 2 2
DA A Decimal Adjust A 1 1 % MOV @R, #data Move immediate to data memory 2 2
SWAP A Swap nibbles of A 1 1 S Move A PSW Move PSWto A ! !
RLA Rotate A left 1 1 g MOV PSW, A Move A to PSW . 1 1
RLC A Rotate A left through carry 1 1 Q XCHA R Exchange A and register ! !
RR A Rotate A right 1 1 XCHA,@R Exchange /-\'and data memory- 1 1
RRC A Rotate A right through carry 1] XCHD A, @R Exchange nibble of A and register 1 1
MOVX A, ®R Move external data memory to A 1 2
MOVX @R, A Move A to external data memory 1 2
INA,P Input port to A 1 2 MOVP A, @A Move to A from current page 1 2
QUTLP, A Output A to port 1 2 MOVP3 A, ®A Move to A from Page 3 1 2
ANL P, #data And immediate to port 2 2
é ?NHSLAP’SFSZE ?;p':':r;?s'a::f port f g _ MOVAT Read Timer/Counter 1 1
<] OUTL'BUS, A Output A to BUS) 5 g MOV T, A Load T-imer/Counter 1 1
S ANL BUS,#data And immediate to BUS 2 2 g STRTT Start Timer ! !
£ ORL BUS, #data Or immediate to BUS 2 2 Q STRTCNT Start Counter ! !
MOVD A, P input Expander port 1o A 1 9 E STOP TCNT Stop Tlm.er/Counter 1 1
MOVD P, A Output A to Expander port 1 2 e EN TCNTI Er}able Tl-rner/Counter Interrupt 1 1
ANLD P, A And A to Expander port 3 > DIS TCNTI Disable Timer/Counter Interrupt 1 1
ORLD P, A Or A to Expander port 1 2
ENI Enable external interrupt 1 1
g INC R Increment register 1 1 _ DIS| Disable ex‘ternal interrupt 1 1
% INC GR Increment data memory 1 1 g SEL RBO Select register bank 0 1 1
gz DECR Decrement register 1 1 g SEL RB1 Select register bank 1 1 1
o« O SEL MBO Select memory bank 0 1 1
SEL MB1 Select memory bank 1 1 1
JMP addr Jump unconditional 2 2 ENTO CLK Enable Clock output on T0 1 1
JMPP @A Jump indirect 1 2
DJNZ R, addr Decrement register and skip 2 2 i
JC addr Jump on Carry = 1 2 2 NOP No Operation ! !
JNC addr Jump on Carry = 0 2 2
J Z addr Jump on A Zero 2 2
JNZ addr Jump on A not Zero 2 2
:E JTO addr JumponTO=1 2 2
@ JNTO addr JumponTQ=0 2 2
@ JT1 addr JumponT1=1 2 2
JNT1 addr JumponT1 =0 2 2
JFO addr Jump on FO =1 2 2
JF 1 addr Jumpon F1 =1 2 2
JTF addr Jump on timer flag 2 2
JNI addr Jump on INT=0 2 2
JBb addr Jump on Accumulator Bit 2 2

Mnemonics copyright Intel Corporation 1976, 1977, 1978

intel
8021 -

SINGLE COMPONENT 8-BIT MICROCOMPUTER

a 8-Bit CPU, ROM, RAM, /O in Single x 1K x 8 ROM
28-Pin Package 64 x 8 RAM
21 1/10 Lines

= Single 5V Supply (+4.5V 10 6.5V) ® Interval Timer/Event Counter

= 10 usec Cycle; All Instructions m Clock Generated With Single Resistor
1 or 2 Cycles or Inductor

s Instructions —8748 Subset m Zero-Cross Detection Capability

m High Current Drive Capability=—2 Pins m Easily Expandable /O

The Intel® 8021 is a totally self-sufficient B-bit parallel computer fabricated on a single silicon chip using Intel’s N-channe!
silicon gate MOS process. The features of the 8021 include a subset of the 8048 optimized for low cost, high volume appli-
cations, plus additional 1/Q flexibility and power.

The 8021 containsa 1K X 8 program memory, a 64 X 8 data memory, 21 1/O lines, and an 8-bit timer/event counter, in addi-
tion to on-board oscillator and clock circuits. For systems that require extra /O capability, the 8021 can be expanded using
the 8243 or discrete logic.

This microprocessor is designed to be an efficient controller as well as an arithmetic processor. The 8021 has bit handling
capability as well as facilities for both binary and BCD arithmetic. Efficient use of program memory results from an instruc-
tion set consisting mostly of single byte instructions and no instructions over two bytes in length.

To minimize development problems and maximize flexibility, an 8021 system can be easily designed using the 8021 emuia-
tion board, EMB-21. The EMB-21 contains a 40-pin socket which can accommodate either the 8748 shipped with the board
or an ICE-48 plug. Also, the necessary discrete logic to reproduce the 8021's additional 1/0 features is included.

PIN CONFIGURATION LOGIC SYMBOL BLOCK DIAGRAM
P2z (1 ~ 2803 vge —]
P2z]2 2770 e XTALi n ng
PROG] 3 2637 p20 — 1024WORDS 64 WORDS
poo [] 4 5[0 P17 PORT cLock PROGRAM DATA
Po1 s 247 P16 =1 MEMORY MEMORY
poz (] 6 23] pi5 RESET —] PORT
Po3 []7 8021 22[1 P14 8021 R % Do
Po4 []8 2t[] pi3 TEST —]
Pos (]9 203 P12 ADDRESS v
Pos [10 19 a P11 ™ LATCH
PO7 11 181 P10 ENABLE 8-8IT
ALE] 12 17 [RESET PORT cpu .
11 1z 160 xTAL 2 | EXPANDER |
vgs CF 14 15 3 XTAL 3 STROBE L
8BIT 7
Evswvhégﬁfr\nm 170 LINES

intal

8041/8741
UNIVERSAL PERIPHERAL INTERFACE
8-BIT MICROCOMPUTER

a Fully Compatibnle with MCS-80™, = Pin Compatible ROM and EPROM '
MCS-85™ and MCS-48™ Microproces- Versions
sor Families

a 1K x 8 ROM/EPROM, 64 x 8 RAM, 18

m Single Level interrupt Programmable I/O Pins

m 8-Bit CPU plus ROM, RAM, /O, Timer
and Clock in a Single Package m Asynchronous Data Register for

= Single 5V Supply Interface to Master Processor

m Alternative to Custom LSI m Expandable /0

The Intel® 8041/8741 is a general purpose, programmable interface device designed for use with a variety of 8-bit
microprocessor systems. It contains a low cost microcomputer with program memory, datamemory, 8-bit CPU, 1/0 ports,
timer/counter, and clock in asingle 40-pin package. Interface registers are included to enable the UPI device to function as
a peripheral controller in MCS-80™, MCS-85™, MCS-48™, and other 8-bit systems.

The UPI-41™ has 1K words of program memory and 64 words of data memory on-chip. To allow full user flexibility the
program memory is available as ROM in the 8041 version or as UV-erasable EPROM in the 8741 version. The 8741 and the
8041 are fully pin compatible for easy transition from prototype to production level designs.

The device has two 8-bit, TTL compatible {/O ports and two test inputs. Individual portlines can function as eitherinputs or
outputs under software control. /O can be expanded with the 8243 device which is directly compatible and has 18 1/0 lines.
An 8-bit programmabile timer/counter is included in the UP! device for generating timing sequences or counting external
inputs. Additional UP| features include: single 5V supply, low power standby mode (in the 8041), single-step mode for
debug(in the 8741),single leve!l interrupt, and dual working register banks.

Because it's a complete microcomputer, the UPI provides more flexibility for the designer than conventional LSl interface
devices. it is designed to be an efficient controtier as well as an arithmetic processor. Applications inciude keyboard
scanning, printer control, display multiplexing and similar functions which involve interfacing peripheral devices to
microprocessor systems.

PIN CONFIGURATION BLOCK DIAGRAM
INTERNAL
BUS
e
\J STATUS
To 11 40 [Jvee AEGISTER "
i
T PROGRAM ! b
a2 » e I
X2 3 38 :]Pz‘i | [- BUFFER Py7
RESE:E 4 i DATA BUS I | “ CMoR
55 s 36 [1P2s Po- BUFFER <: ? . MEMORY
j— 7 REGISTER
cs [6 35 :]PZQ § REG BANK 1 "E:.\D,(EENT
EA[] 7 34 0Opy MASTER ; 2 STACK RAM ARRAY
. SVSTEAM i REG BANK O
. i
RDE: 8 33 jP16 INTERFACE WJ 1 MULTIPLEXER
RO———=Q - INSTRUCTION '
s 32 [Pss = .d < DECODER :
wit]io goa1 3t1{dPu o | - TTERFACE
CONTROL
sync(11 8741 30[dpy . LoGIc S <‘f Paus
og[] 12 29 (P2 SYNG - l - 4> 4> BUFFER <:>’20‘
§ —q P23
D[] 13 28 [Py ROG - oo
o2 14 272 [P AFSET ———=3 EXPANDER
Da[] 15 26 [Jvon <“:;‘> w"ua
PROM
Dal] 18 25 [1PROG PROGRAM
cRYSTAL, | x, —n o MEMORY coneimionar T To
Ds[] 17 24 [1P23 LC, OR i TIMING BRANCH
Ds[} 18 2300P2 CLOCK | Xp ——= LOGIC ——
D2[19 22 [P ;> ’
vss [20 21[P2 Vpp ————= PROM PROGRAM SUPPLY PROGRAM
POWER { Vo — = +5 SUPPLY COUNTER
CER—- J 0L
EVENT COUNTER
L
o 1978
% Intel Corporation, 1978 February,

7-143

