
Linear and Non-Linear Dimensional Reduction via Class Representatives for
Text Classification

Dimitrios Zeimpekis
Computer Engineering & Informatics Dept.

University of Patras, 26500, Greece
dsz@hpclab.ceid.upatras.gr

Efstratios Gallopoulos
Computer Engineering & Informatics Dept.

University of Patras, 26500, Greece
stratis@ceid.upatras.gr

Abstract

We address the problem of building fast and effective text
classification tools. We describe a “representatives method-
ology” related to feature extraction and illustrate its per-
formance using as vehicles a centroid based method and
a method based on clustered LSI that were recently pro-
posed as useful tools for low rank matrix approximation and
cost effective alternatives to LSI. The methodology is very
flexible, providing the means for accelerating existing algo-
rithms. It is also combined with kernel techniques to enable
the analysis of data for which linear techniques are insuf-
ficient. Numerous classification examples indicate that the
proposed technique is effective and efficient with an over-
all performance superior than existing linear and nonlinear
LSI-based approaches.

1 Introduction and motivation

An important component of Information Retrieval (IR)
concerns effective “text classification (TC)” or “automated
text categorization” [19]1. In TC, an initial dataset of pre-
classified documents is partitioned into a training dataset
and a test dataset that are subsequently used to construct
and evaluate classifiers. For high dimensional TC prob-
lems, it becomes critical to apply effective dimensional-
ity reduction techniques (DR), including feature selection
and extraction. LSI has been emerging as a powerful DR
tool for TC [10, 11, 18, 14, 21, 29], specifically either as
global or local preprocessing technique for feature extrac-
tion and in combination with any VSM-based classifier. In
the “global LSI” approach, compression is applied on the
entire training dataset, whereas, in “local LSI” compression

1Ensuing discussion assumes the Vector Space Model (VSM): Docu-
ments are characterized by a set of features/terms and are encoded asm-
dimensional vectors so that a collection ofn documents is encoded as an
m× n term-document matrix, “tdm” for short.

is applied separately on subsets of documents belonging to
each class so as to take into account classification informa-
tion. To this end, state-of-the-art local LSI methods aug-
ment the local region of each class by considering negative
examples and weighting appropriately (cf. [14]). The com-
putational kernel2 in LSI is singular value decomposition
(SVD) whose straightforward application (even for sparse
datasets) becomes very costly as the dimensionality of the
problem increases, thus motivating the quest for more ef-
fective approximations.

To this end, inspired by initial ideas in [6, 16] and our
work in [27] we investigate and show the effectiveness, for
TC, of a general DR framework, we call “representatives
methodology”. The framework operates as follows: First
the dataset is partitioned (e.g. by means of clustering), then
representatives are selected from each partition and col-
lectively used to capture the entire collection. Early work
showed that centroid representatives (hereafter denoted by
CM) are quite effective [6, 16], and often superior to the
SVD, producing better reduced dimensional representations
of text for retrieval. It was also shown recently that a few
leading left singular vectors from each partition offer an at-
tractive and more flexible, alternative set of representatives
[27]; see also [3, 8]. Both approaches were compared for
low rank matrix approximation and text retrieval applica-
tions in [27]. Both approaches can be cast in a convenient
“rank reduction” framework; cf. [27] for more details. Wor-
thy of note is the affinity of the methodology with sampling
techniques [1, 7] (the sample being the representatives) and
the potential for handling distributed data or for using dis-
tributed computing resources in the context of LSI or for
using massive datasets in conveniently sized blocks [13]. In
fact, the latter property was the justification used by some
authors to present such techniques in the first place [12, 17].

In this paper we show that the representatives method-
ology, especially based on singular vectors, naturally lends

2Not to be confused with “kernel” in “kernel based methods” discussed
below.

1

stratis
Note
 Proc. 6th Int'l. conf. on Data Mining (ICDM'06), pp. 1172-1177, IEEE Computer Society, Los Alamitos, Dec. 2006. Revised from TR HPCLAB-SCG 11/07-06, CEID, University of Patras, July 2006.

itself to TC and outperforms other LSI-based methods. The
algorithmic vehicle for our discussion will be CLSI, stand-
ing for “clustered LSI” and introduced by the authors in
[27] as a method for low rank matrix approximation and
text mining. The representatives methodology for TC does
not require the application of LSI on the entire dataset, as
global LSI does, in fact it takes advantage of the classifica-
tion of the training set. Moreover, it uses the same projector
for all test documents and so outperforms the local LSI ap-
proaches. We also show that the representatives methodol-
ogy can be deployed to improve the performance of LLSF,
an interesting TC technique originally proposed in [24]; cf.
[20, 22, 26].

Our second contribution is the combination of CLSI with
kernel-based techniques ([5, 4]) so as to allow it to be used
to resolve nonlinearities in spaces of higher dimension; this
complements work in [15] and can be the basis for a uni-
fied treatment of the kernelized representative methodol-
ogy, that can lower the high computational and memory de-
mands of Latent Semantic Kernels [5]. We show through
experiments3 the effectiveness and efficiency of the repre-
sentatives approach and compare it with other classification
techniques. Note that even though we only present results
with k-nearest neighbor (abbreviated as kNN) and Rocchio
classifiers, our techniques can be combined with any other
VSM-based classifier, e.g. support vector machines [4].

2 Representatives methodology for TC

Table 1 shows the typical steps of the proposed method-
ology as applied in the context of matrix approximation.
The target rank is denoted byk; the above steps produce
an orthogonal basis,Q, for the subspace spanned by the
representatives, as well as the compressed representation,
Y , for the documents in the input tdm. Thek-dimensional
subspace spanned byQ will be used as an approximation of
range(A).

In step I, the algorithm performs a partitioning of the
training tdm intol groupsAi. This partitioning phase could
be the result of clustering (e.g. using Skmeans as in [6])
or some other method. In TC this step is void, since the
columns of the training tdm are already labeled, and parti-
tions correspond to classes. Step II sets the number of rep-
resentatives, at least one, for each partition. We can enforce
the use of a single representative for each partition (k = l),
or utilize more than one representatives for one or more of
the partitions (k > l). We fall under the temptation to draw
an analogy with the U.S. Congress, thus referring to the for-
mer case as “Senate” and the latter as “House” representa-
tion. In the latter case the algorithm also needs a strategy for
selecting the exact number,ki, of representatives to select

3These represent only a small sample of extensive work to be reported
in the full version of this paper.

Table 1. The representatives methodology.
Input : m × n training tdmA, number of classesl,

integerk such thatl ≥ l (rank of approximation)
Output : Orthogonal basisQ for the subspace of

representatives approximatingrange(A),
Y = Q⊤A ∈ R

k×n

I. Partition the tdmA = [A1, A2, . . . , Al] so thatAi

corresponds to classi;
II. Set the number of representatives (cf. Section 2):

if (k = l) then set allki = 1
else set{ki}

l
i=1 so that

∑
i ki = k

III. Selectki representatives[z(i)
1 , . . . , . . . , z

(i)
ki

]
from each class and form:

U = [z
(1)
1 , ..., z

(1)
k1

, z
(2)
1 , ..., z

(2)
k2

, ..., z
(l)
1 , ..., z

(l)
kl

]

IV. Compute orthogonal basisQU for range(U), e.g.
usingQR: U = QURU

V. SetQ = QUandY = Q⊤
UA;

for each partition under the constraint that
∑l

i=1 ki = k.
To this end, denoting byqi the objective function of classi
used by Skmeans [6], we use the formula

f(Ai) =
α‖Ai‖

2
F /‖A‖2

F

(1 − α)qi/
∑l

j=1 qj

,

where the numerator measures the relative contribution of
Ai into range(A), since‖A‖2

F = σ2
1 + . . . + σ2

rank(A), and
the denumerator measures the tightness of classi. Param-
eterα ∈ [0, 1] determines the relative importance assigned
to each one of the aforementioned measures. In our exper-
iments,α = 0.5 consistently led to better results, so we
use this in Section 3. Therefore, whenk > l, the selection
strategy is summarized as follows: First,l columns ofU
are filled with the maximum left singular vector of eachAi;
thenfi = f(Ai)/

∑
i f(Ai), i = 1: l are computed. Ob-

serve thatfi ∈ [0, 1] and
∑l

i=1 fi = 1. Next, the remaining
columns ofU are filled usinground((l − k)fi), i = 1: l
leading left singular vectors, whereround is the ceiling or
floor rounding function. Step III selects the representatives,
and Step IV computes the corresponding orthogonal basis.

Representatives in the kernel learning framework: La-
tent Semantic Kernels (LSK) were proposed as a general-
ization of LSI and as a global nonlinear method for TC
[5]. LSK applies the same steps as LSI for̄A, whose
columns result from the application of a general (non)linear
(kernel) functionφ : R

m → F , to A’s columns, result-
ing in a more informative representation in a new (pos-
sibly infinite dimensional) feature space. The SVD ofĀ
can be directly obtained from the eigendecomposition of
the Gramian,G := Ā⊤Ā. Using appropriate symmetric

2

kernel functions, that satisfy Mercer’s theorem [4], inner
products in the new feature space can be computed without
forming the new feature vectors, via the “kernel trick”. For
specific types of data, LSK provides better accuracy than
LSI. In addition to the computational constraints of LSI,
however, LSK involves further memory overhead, because
the GramianG is full. Our methodology alleviates these
problems because both CLSI and CM can be formulated in
terms of inner products, computed via the kernel trick. We
focus on the kernel variant of CLSI and refer to [15] for
CM. Let Āi denote the matrix with columns obtained af-
ter applying the kernel function,φ, on the columns ofAi.
We make use of the fact that the local partial SVD analy-
sis for eachĀi is equivalent to partial eigenanalysis of the
correspondingGi := Ā⊤

i Āi. From this analysis follows
an implicit representation for the leading left singular vec-
tors ofĀi from ĀiV̄

(i)
ki

, whereV̄
(i)
ki

contains the leadingki

eigenvectors ofGi, equivalently the right singular vectors4

of Āi. These are collected intōU . To implement the ker-
nel version we make use of̄G := Ū⊤Ū . Assuming that
Ḡ is positive definite, its Cholesky decomposition returns
the R-factor of itsQR decomposition, while theQ-factor
of theQR decomposition of̄U is implicitly represented as
Q̄ = ŪR̄−1. The lower dimensional representation of the
columns isY = (R̄−1)⊤Ā⊤Ā, while a query vector can
be represented byX(Ā)⊤q̄, whereX = (R̄−1)⊤Ū⊤ andq̄
the mapping ofq into F . Just as CLSI brought several ad-
vantages in LSI, its kernel version does similarly for LSK.
Moreover, there is an additional gain, a side benefit of the
special form of the factor̄V := diag[V̄

(1)
k1

, . . . , V̄
(l)
kl

], and
thus the computation of̄G = Ū⊤Ū can be done blockwise,
requiring onlyO(n2

max) space, wherenmax is the number
of columns in the “widest”Ai, that isnmax = maxi{ni}.

Numerical performance: We next comment on some
issues regarding numerical robustness and computational
costs, even though a detailed discussion falls outside the
scope of this paper5. Specifically, we have implicitly as-
sumed that the matrix of representatives,U , has full rank.
This allows us to compute the basisQ using standardQR
decomposition, as was done in Table 1 for CLSI as well as
in [27, 6, 16] for CM. IfU is not full rank, we can no longer
expect the straightforwardQR algorithm to safely provide
a basis forrange(U), and we need to use an alternative,
such as pivoted or rank revealingQR [9]. In that case are
forced to either reduce the target value ofk or augment the
representatives with additional elements that are not linearly
dependent. The training matrix,A, might not be full rank,

4To economize in notation, we omit the premultiplication ofĀiV̄
(i)
ki

with a diagonal scaling factor consisting of the inverse of the ki leading
singular values of̄Ai.

5It is worth taking this opportunity to call for more studies of numerical
robustness of algorithms proposed in the IR literature.

in which case it might also be the case that one or moreAi’s
is not full rank either. Indeed, it might also occur that the
dimension of the column space of someAi is smaller than
the correspondingki, in which case some of the trailing left
singular vector representatives ofAi used inU will corre-
spond to zero singular values and will be parts of the basis
for the null space ofA⊤

i . This can be easily avoided by test-
ing for zeros amongst the leading singular values ofAi and
not using the corresponding left singular vectors toU but
opting to use more singular vectors from some other group,
or even reduce the valuek.

It is also worth noting that tdm’s are usually very sparse,
therefore the centroid representation used by CM is also
expected to be sparse. This is not the case for the matrix
of representatives obtained via CLSI, since singular vectors
of sparse matrices rarely possess any particular zero struc-
ture. We observed, however, that a very large percentage of
the elements of these singular vectors is very small (around
90% in our experiments). Therefore, it is likely that we
could employ sparsification, e.g. via thresholding, to “thin-
out” small elements and use some approximateQR factor-
ization. For large collections, it would also be appropriate
to utilized sparseQR algorithms, Gram-Schmidt orthogo-
nalization or even variants as in [2].

A brief description of the costs involved in CLSI is pro-
vided in [27]. CLSI alleviates the cost of computing the
truncated SVD decomposition since it exchanges the calcu-
lation of leading singular vectors ofA with computations of
leading singular vectors of much thinner matrices.

Accelerating Linear Least Squares Fit: Linear Least
Squares Fit (LLSF) is a statistical classification method
based on the SVD of the training tdm [24] that has been
found to lead to performance competitive to kNN and supp-
port vector machines [25]. It uses a matrix encoding of the
training documents in order to produce a term-class ma-
trix, used subsequently to map new documents to classes.
Specifically, denoting byZ the class-document matrix, i.e.
ζij = 1 or 0 based on whether documentj belongs to class
i, LLSF solvesminX ‖XA − Z‖2

F . In the original version
of LLSF, the least squares solution isX = BA†, where
A† = VrΣ

−1
r U⊤

r is the pseudoinverse ofA andUr, Σr, Vr

contain ther := rank(A) leading singular triplets ofA. X
models the association of terms to classes. In the test phase,
each test documenty is multiplied byX and is assigned to
class(es) based on the maximum values ofŷ := Xy. For
the multi-label case some thresholding strategy is used.The
computational and memory costs involved in computing the
pseudoinverse make the direct application of LLSF pro-
hibitive for large problems. One way to address this obsta-
cle is to apply truncated SVD, in approximatingX [22]. An
alternative that emerges naturally in our context is to deploy
the representatives methodology to approximate the trun-

3

cated SVD. LetQ be the basis obtained from our methodol-
ogy (Table 1) andY = Q⊤A the coefficients of the projec-
tions ofA ontorange(Q). Let alsoY = Û Σ̂V̂ be the SVD
of Y . Since the columns ofQ and Û are orthogonal and
have unit length,(QÛ)Σ̂V̂ ⊤ is the SVD ofQQ⊤A. Using
(QÛ)Σ̂V̂ ⊤ in place of the truncated SVD ofA, we reduce
the cost involved in computing the truncated SVD involved
in LLSF. In Section 3 we present results that demonstrate
that our proposed approach achieves high quality results
compared to using the SVD.

3 Experiments

We have conducted extensive numerical experiments
with the representatives methodology. We next present
some of these results and evaluate the performance of the
methodology, mostly focussing on CLSI, comparing with
other global and local LSI-based approaches for TC. Codes
were developed in MATLAB 7.0 running Windows XP on
a 2.8GHz Pentium-IV having 512MB RAM.QR and par-
tial SVD were computed using MATLAB’s nativeqr and
svds functions, the latter being based on a well-known it-
erative method for large sparse eigenvalue problems.

Datasets, classification algorithms and quality mea-
sures: We use two publicly available datasets:i) Reuters-
215786, andii) Ohsumed, a subset of the medical abstract
dataset used in the TREC-9 filtering track7. For our pur-
poses we used two subsets of each dataset; these we call
SMODAPTE, SOHSUMED and MMODAPTE, MOHSUMED

whereS andM stand for single and multi-label case respec-
tively. All collections contained at least one training and
one test document for each category. That resulted in 6,495
training and 2,557 test documents classified in 52 categories
for SMODAPTE, 634 training and 3,038 test documents from
63 categories forSOHSUMED, 7,672 training and 2,998 test
documents classifed in 85 categories forMMODAPTE and
7,953 training and 31,027 test documents from 25 cate-
gories for MOHSUMED. To generate the tdm’s we used
TMG ([28]), and applied stemming, stopword elimination,
and removal of terms that appeared in only one document.
Based on results from [28], we used logarithmic and inverse
document frequency (IDF) local and global term weighting
respectively with column normalization for training docu-
ments, and binary and probabilistic weightings for test doc-
uments. For our experiments we used the well known kNN
and Rocchio classifiers. For kNN,k varied depending on
the collection and the nature of the dataset (single or multi-
label). For single-label collections each document was as-
signed to the class with maximum score, while for multi-
label collections we use the ScutFBR.1 method [23]. For

6http://www.daviddlewis.com/resources/testcollections/reuters21578/
7http://trec.nist.gov/data/t9filtering.html

Rocchio, we used the centroid as representative which we
found to give good results and did not notice any improve-
ments when we took into account negative examples from
each class. Finally, to evaluate the methods we used both
macro and micro-averaged F1 measure [23].

Results: In the sequel, we present comparisons of the rep-
resentatives methodology to basic VSM, LSI and two lo-
cal LSI methods from [14], namely L-LSI and its weighted
counterpart LWR-LSI. For LSI we usedk = l :2l factors,
wherel stands for the number of classes for each dataset,
while for local LSI methods we usedk = 10:10:50. We
compared those with CLSI for which we tried all values
k = l : 2l. In LWR-LSI, we used the parameter setting
reported in [14] as the best one. Finally, we tried vari-
ous values for thek parameter of kNN classifier, namely
k = 1, 3, 5 for the single-label datasets andk = 10, 30, 45
and k = 5, 10, 15 for MMODAPTE and MOHSUMED re-
spectively, driven by the maximum number of classes for
a single test document for each dataset (14 and 4). Op-
timal fbr values were first set by fixing all other parame-
ters for each algorithm, and used for the remaining experi-
ments. Runtimes for the multi-label datasets do not include
the time consumed by the thresholding phase. Note that lo-
cal methods gave better results, when combined with an ini-
tial global preprocessing step (i.e. a hybrid LSI approach).

Table 2 summarizes the highest macro and micro-
averaged F1 values for each method. We note that the kNN
classifier did not seem to be sensitive to the choice ofk.
The representatives methodology appears to return the best
accuracies for both classifiers and all datasets. In particu-
lar, CLSI and CM always improve the basic VSM, while
outperforming both global and local LSI methods. The im-
provement is higher for the kNN classifier for the single-
label datasets, while results in the multi-label case appear
to be significantly improved for both kNN and Rocchio
classifiers. For single-label datasets, CM gives the best re-
sults, while CLSI returned better results for the multi-label
datasets. Both CLSI and CM clearly outperformed all other
LSI-based TC methods. Overall, therefore, CLSI and CM
gave better accuracy and F1 values for every combination
of dataset and classifier.

Fig. 1 (diagrams at the left and center columns) de-
picts classification quality and timings for the preprocess-
ing steps required by CLSI, CM, LSI and L-LSI vs. ap-
proximation rank for kNN and LLSF. The corresponding
plots demonstrate clearly that CLSI and CM are signifi-
cantly faster. Both require much less memory. The differ-
ences are especially acute when comparing with local LSI
methods. The memory problem is not seen in the diagrams
but follows from the need to storel separate bases for the
l subspaces associated with each class. The diagrams, in-
stead, show that CLSI gives roughly similar quality results

4

Table 2. Macro and micro averaged F 1 for VSM, CLSI, CM, LSI, L-LSI and LWR-LSI. Boldface and
underlined denote best macro and micro-averaged F 1 values for each method and dataset (kNN and
Rocchio).

Collection SMODAPTE SOHSUMED MMODAPTE MOHSUMED

Algorithm Measure kNN Rocchio kNN Rocchio kNN Rocchio kNN Rocchio

VSM
Macro-F1 0.65 0.66 0.76 0.83 0.47 0.47 0.58 0.56
Micro-F1 0.84 0.87 0.82 0.88 0.81 0.75 0.59 0.56

CLSI
Macro-F1 0.74 0.66 0.82 0.82 0.62 0.59 0.70 0.66
Micro-F1 0.94 0.87 0.87 0.88 0.86 0.80 0.71 0.66

CM
Macro-F1 0.74 0.66 0.83 0.83 0.61 0.58 0.70 0.67
Micro-F1 0.92 0.87 0.88 0.88 0.85 0.81 0.71 0.67

LSI
Macro-F1 0.55 0.47 0.77 0.81 0.42 0.40 0.65 0.59
Micro-F1 0.90 0.78 0.84 0.87 0.81 0.71 0.65 0.56

L-LSI
Macro-F1 0.52 0.44 0.77 0.81 0.44 0.41 0.57 0.57
Micro-F1 0.89 0.75 0.81 0.87 0.82 0.65 0.57 0.57

LWR-LSI
Macro-F1 0.53 0.44 0.76 0.81 0.45 0.42 0.58 0.57
Micro-F1 0.89 0.75 0.83 0.87 0.82 0.66 0.58 0.57

for all values of the approximation rank, therefore memory
does not become an issue, neither of course for CM, where
the memory requirement is constant. These facts, com-
bined with the improved accuracy of CLSI and CM make
them both more suitable for TC than global, local and hy-
brid LSI. Finally, regarding LLSF, for a given approxima-
tion rank, both CLSI and CM returned results of superior
quality than truncated SVD. Furthermore, the preprocess-
ing times needed for the CM and CLSI based LLSF clearly
outperformed LLSF based on truncated SVD. In all cases
we used aggressiven = 7, 672 training documents, imply-
ing a pruning of 98% of the factors. It is natural to expect
that a larger number of factors would improve the accuracy
of the truncated SVD approach but at significantly higher
computational cost. Classifications using LLSF with CLSI
and CM were better, with improvements being more pro-
nounced for the macro-averaged F1. Because testing time
for LLSF is relatively small, LLSF combined with CLSI or
CM appears to be competitive to kNN and Rocchio. Fig. 1
(upper and lower right diagrams) depict the attained macro
and micro-averaged F1 and runtimes for the kernel variants
of CM and CLSI (denoted as KCM and KCLSI) and LSK
for SMODPATE and SOHSUMED. For both datasets, CM
and CLSI outperform LSK in terms of classification quality,
while KCLSI has better performance forSMODAPTE and
KCM for SOHSUMED, just as in the linear case. CLSI and
CM are more efficient than LSK, especially for large values
of approximation rank. Due to memory limitations, LSK
was not able to run for the larger matrices corresponding to
multi-label datasets. Overall, results for these two datasets
appear to be slightly inferior than the results obtained from
the linear algorithms. They show, however, that the kernel
variants improve the performance of LSK, and so become

good candidates for TC when the data requires the applica-
tion of non-linear methods.

We conclude that the representatives methodology is a
powerful tool for TC; in that context, CLSI provides a flex-
ible and effective algorithmic substrate for its implementa-
tion.

Acknowledgments: We thank Professor Y. Yang for her kind help
regarding thresholding and I. Antonellis for helpful discussions. Research
supported in part by a University of Patras “Karatheodori” grant. Zeim-
pekis also thanks IPAM for his participation at the summer school “Intelli-
gent Extraction of Information from Graphs and High Dimensional Data”
and the Bodossaki Foundation for partial support.

References

[1] D. Achlioptas and F. McSherry. Fast computation of low rank matrix
approximations. InIn Proc. 33rd Annual ACM STOC, pp. 611–618,
2001.

[2] M. W. Berry, S. A. Pulatova, and G. W. Stewart. Algorithm 844:
Computing sparse reduced-rank approximations to sparse matrices.
ACM Trans. Math. Softw., 31(2):252–269, 2005.

[3] V. Castelli, A. Thomasian, and C.-S. Li. CSVD: Clustering and
singular value decomposition for approximate similarity search in
high-dimensional spaces.IEEE Trans. Knowledge and Data Engin.,
15(3):671–685, 2003.

[4] N. Cristianini and J. Shawe-Taylor.An Introduction to Support Vec-
tor Machines. Cambridge University Press, 2000.

[5] N. Cristianini, J. Shawe-Taylor, and H. Lodhi. Latent semantic ker-
nels. In C. Brodley and A. Danyluk, editors,Proc. 18th ICMLA, pp.
66–73. Morgan Kaufmann, San Francisco, 2001.

[6] I. S. Dhillon and D. S. Modha. Concept decompositions forlarge
sparse text data using clustering.Machine Learning, 42(1):143–175,
Jan 2001.

[7] P. Drineas, R. Kannan, and M. Mahoney. Fast Monte Carlo algo-
rithms for matrices III: Computing a compressed approximate ma-
trix decomposition. Technical Report, TR-1270, Computer Science
Dept., Yale Univ., February 2004.

[8] J. Gao and J. Zhang. Clustered SVD strategies in latent semantic
indexing. Information Processing and Management, 431:10511063,
2005.

5

25 30 35 40 45 50

0.58

0.6

0.62

0.64

0.66

0.68

0.7

approximation rank

m
ac

ro
−

av
er

ag
ed

 F
1

Macro−averaged F
1
 for knn (k=15) versus

approximation rank of LSI, CLSI for MOHSUMED

LSI
CLSI
CM
VSM

25 30 35 40 45 50 55 60 65 70
0.5

0.52

0.54

0.56

0.58

0.6

0.62

0.64

0.66

0.68

0.7

approximation rank

F
1

F
1
 for LLSF versus approximation rank of SVD, CLSI for MOHSUMED

CM (micro−F
1
)

CLSI (micro−F
1
)

SVD (micro−F
1
)

CM (macro−F
1
)

CLSI (macro−F
1
)

SVD (macro−F
1
)

50 60 70 80 90 100 110
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

approximation rank

qu
al

ity
 m

ea
su

re

SMODAPTE dataset

CM (micro−F1)
CLSI (micro−F1)
LSK (micro−F1)
CM (macro−F1)

CLSI (macro−F1)

LSK (macro−F1)

50 60 70 80 90 100 110
0

20

40

60

80

100

120

140

approximation rank

tim
e

(s
ec

)

Preprocessing time versus
approximation rank of LSI, CLSI, L−LSI for SMODAPTE

LSI
CLSI
CM
L−LSI

85 90 95 100 105 110 115 120 125 130
20

30

40

50

60

70

80

90

approximation rank

tim
e

(s
ec

)

Preprocessing time for LLSF versus approximation rank of SVD, CLSI for MMODAPTE

CM
CLSI
SVD

50 60 70 80 90 100 110
0

10

20

30

40

50

60

70

80

approximation rank

tim
e

(s
ec

)

SMODAPTE dataset

CM
CLSI
LSK

Figure 1. Classification quality and runtimes vs. approxima tion rank: i) Left and center: LSI, L-
LSI, CLSI for kNN (left) and LLSF (center). CM and VSM include d for comparison purposes. ii) Right:
Classification quality (upper) and runtimes (lower) vs. app roximation rank for (kernel) CLSI-CM, LSK.

[9] G. Golub and C. Van Loan.Matrix Computations. The Johns Hop-
kins University Press, Baltimore, 3d edition, 1996.

[10] D. Hull. Information retrieval using statistical classification. PhD
thesis, Dept. Statistics, Stanford University, Palo Alto,Nov. 1994.

[11] D. Hull. Improving text retrieval for the routing problem using latent
semantic indexing. InProc. 17th ACM SIGIR, pages 282–291, New
York, NY, USA, 1994. Springer-Verlag New York, Inc.

[12] H. Kargupta, W. Huang, K. Sivakumar, and E. Johnson. Distributed
clustering using collective principal component analysis. Knowledge
and Information Systems, 3(4):422–448, 2001.

[13] D. Littau and D. Boley. Clustering very large data sets with prin-
cipal direction divisive partitioning. In J. Kogan, C. Nicholas, and
M. Teboulle, editors,Grouping Multidimensional Data: Recent Ad-
vances in Clustering, pp. 99–126. Springer, Berlin, 2006.

[14] T. Liu, Z. Chen, B. Zhang, W. Ma, and G. Wu. Improving textclassi-
fication using local latent semantic indexing. InProc. ICDM’04, pp.
162–169, Washington, 2004. IEEE Computer Society.

[15] C. Park and H. Park. Nonlinear feature extraction basedon centroids
and kernel functions.Pattern Recognition, 37(4):801–810, 2004.

[16] H. Park, M. Jeon, and J. Rosen. Lower dimensional representation of
text data based on centroids and least squares.BIT, 43(2):427–448,
2003.

[17] Y. Qu, G. Ostrouchov, N. F. Samatova, and A. Geist. Principal com-
ponent analysis for dimension reduction in massive distributed data
sets. InWorkshop on High Performance Data Mining held with 2nd
SIAM Int’l. Conf. Data Mining, pp. 4–9, 2002.

[18] H. Schütze, D. Hull, and J. Pedersen. A comparison of classifiers
and document representations for the routing problem. InProc. 18th
ACM SIGIR, pp. 229–237, New York, 1995.

[19] F. Sebastiani. Machine learning in automated text categorization.
ACM Comput. Surveys, 34(1):1–47, 2002.

[20] M.-W. Wang and J.-Y. Nie. A latent semantic structure model for text
classification. InWorkshop on Mathematical/Formal Methods in IR
(MFIR), held during ACM-SIGIR’03, 2003.

[21] E. Wiener, J. Pedersen, and A. Weigend. A neural networkapproach
to topic spotting. InProc. SDAIR-95, 4th Annual Symposium on Doc-
ument Analysis and Information Retrieval, pp. 317–332, Las Vegas,
US, 1995.

[22] Y. Yang. Noise reduction in a statistical approach to text categoriza-
tion. In Proc. 18th ACM SIGIR, pp. 256–263, New York, 1995.

[23] Y. Yang. A study of thresholding strategies for text categorization.
In Proc. 24th ACM SIGIR, pp. 137–145, New York, 2001.

[24] Y. Yang and C. Chute. A linear least squares fit mapping method for
information retrieval from natural language texts. InProc. 14th Conf.
Computational Linguistics, pp. 447–453, Morristown, NJ, USA,
1992. Association for Computational Linguistics.

[25] Y. Yang and X. Liu. A re-examination of text categorization methods.
In Proc. 22nd ACM SIGIR, pp. 42–49, New York, 1999. ACM Press.

[26] Y. Yang, J. Zhang, and B. Kisiel. A scalability analysisof classifiers
in text categorization. InProc. SIGIR ’03, pp. 96–103, New York,
2003.

[27] D. Zeimpekis and E. Gallopoulos. CLSI: A flexible approximation
scheme from clustered term-document matrices. InProc. 5th SIAM
Int’l. Conf. Data Mining, pp. 631–635, Newport Beach, California,
2005.

[28] D. Zeimpekis and E. Gallopoulos. TMG: A MATLAB toolbox for
generating term-document matrices from text collections.In J. Ko-
gan, C. Nicholas, and M. Teboulle, editors,Grouping Multidimen-
sional Data: Recent Advances in Clustering, pp. 187–210. Springer,
Berlin, 2006.

[29] S. Zelikovitz and H. Hirsh. Using LSI for text classification in the
presence of background text. InProc. CIKM ’01, pages 113–118,
New York, 2001. ACM Press.

6

	Proc:
	 6th Int'l:
	 conf:
	 on Data Mining (ICDM'06), pp:
	 1172-1177, IEEE Computer Society, Los Alamitos, Dec:
	 2006:
	 Revised from TR HPCLAB-SCG 11/07-06, CEID, University of Patras, July 2006:

