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ABSTRACT 

The helicopter rotor blade excites a vortex 

system, which consists of bound, trailed and shed 

vortices. The trailed and shed vortices rolled up to 

the blade tip vortex. This strong tip vortex has a 

remarkable induced velocity field, which can cause 

pregnant changes in the aerodynamic loads of the 

rotor blade. 

This tip vortex moves together with the ambient 

air masses. Arises a “Blade Vortex Interaction” 

(BVI) problem when this tip vortex moves closely 

to a rotor blade. In order to get physically real 

induced velocity field a real vortex model with 

finite core must be apply. 

Key Words: finite core, real vortex, vortex 

segment 

NOMENCLATURE 
The symbols for physical quantities and also 

their dimensions are the follows: 

e   [m]   flapping hinge offset 

ds   [m]   tangential vector 

J   [m
4
/s]  second moment of vorticity 

K   [m3
/s]  first moment of vorticity 

L   [m]   rotor blade length 

m   [kg]   rotor blade mass 

r   [m]   place vector or distance 

rc   [m]   vortex core radius 

t   [s]   time 

lx   [m]   coordinate along the rotor blade 

sx   [m]   centre of gravity of the blade 

)(rv  [m/s]  swirl (induced) velocity 

z   [m]   local coordinate 

w   [m/s]  induced velocity 

ρ   [m]   vector along the vortex line 

β   [deg]  angle between the vortex and  

the blade 

βl   [rad]  rotor blade flapping angle 

δ   [-]    eddy viscosity coefficient 

( )rcr,ϕ  [-]   core function 

ν   [m
2
/s]  kinematical viscosity 

ρ   [kg/m3
]  air density 

Γ   [m
2
/s]  circulation 

γ( lx ) [m/s]  distributed circulation 

ζ   [rad]  vortex age 

Θy  [kgm
2
]  inertial moment of the blade 

Ω   [1/s]   angular velocity of the rotor 

1. INTRODUCTION 
The most characteristic part of the helicopter is 

the main rotor. In flight the helicopter main rotor 

provides three basic functions: lift generation, 

propulsive force generation for forward flight and 

means to generating forces and moments to the 

control of the attitude and position of the helicopter. 

The rotor has rotor blades, which generate 

aerodynamic forces in order to produce lift, 

propulsive force and control moments. The rotor 

blade is a rotating wing, which works under 

complicated circumstances. The rotor blade motion 

determines the aerodynamic forces acting on the 



  

blade. But on the other hand the aerodynamic 

forces determine the rotor blade motion. This 

means that the forces and the motion of the blades 

are connected together. In the aerodynamic 

calculation of the helicopter rotor blades must be 

included the blade dynamic and control to. In order 

to show the blade vortex interaction problem the 

most simplest case was chosen: horizontal flight 

with constant flying velocity. 

The aerodynamic force generation means that 

the rotor blade produced a vortex-system (see Fig. 

6). Connected to the blade exists the bound vortex. 

From the changing of this bound vortex arise the 

trailed and the shed vortices. The trailed and the 

shed vortices quickly rolled up and from this 

precede the tip vortex of the rotor blade. The 

intensity of the tip vortex is high and this vortex has 

a long lifetime. This tip vortex moves together with 

the ambient air masses and causes blade vortex 

interaction (BVI) problems if coincide with a rotor 

blade of the helicopter.  

For the BVI problems the distance between the 

rotor blade and the vortex is very important. If this 

distance small (for example smaller than the twice 

vortex core radius) then an ideal vortex produces 

physically unrealistic induced velocities. In order to 

avoid this the real vortices with finite core was 

introduced. This finite vortex core gives the 

possibility to take account the vortex age too. 

2. VORTEX BEHAVIOUR 
The rotor flow field is laden with vortical 

structures. Experimentally, blade tip vortices have 

been found to be the most dominant structures in 

the flow field. Tip vortices form quickly behind the 

rotor blades as they rotate. Physically the tip 

vortices in the rotor wake are convected 

downstream of the rotor at the local flow field 

velocity. Unlike wing-tip vortices of fixed wing 

aircraft blade vortices remain close to the plane of 

the rotor, and have a powerful influence on the 

spatial and temporal variations in the aerodynamic 

loading on all the blades. The strengths and 

positions of these tip vortices are affected by many 

interrelated geometric parameters (e.g., number of 

blades, blade twist, blade plan form) and 

operational conditions (e.g., rotor thrust, advance 

ratio, climb velocity and tip path plane (TPP) angle 

of attack). 

Betz’s theory ([2],[12]) uses three conservation 

equations for ideal vortex systems to relate the 

structure of the vortex sheet behind an isolated half 

span wing or a rotor blade to the structure of a 

single, fully developed vortex. The three 

conservation laws that relate the circulation on the 

wing to that in the fully developed vortex (Γ) are 

then: 

I. The circulation is conserved: 

∫ ==Γ
L

ll constdxx
0

)(γ          (1) 

II. The first moment of vorticity is conserved 
(the centroid of vorticity remains at a fixed span- 
wise location) 

( )∫=
L

lll dxxxK
0

γ            (2) 

III. The second moment of vorticity is 
conserved: 

( )∫=
L

lll dxxxJ
0

2γ            (3) 

Applying these conservation laws the uprolled 

vortex position can be calculated at the end of the 

near wake. Since the rolling up process at 

helicopter rotor blades is very fast the effect of 

viscosity - in this process - can be neglected. 

Very high swirl velocities in the tip vortices can 

produce large spatial variations in induced 

velocities at each rotor blade, which can contribute 

significantly to the overall unsteadiness of the rotor 

flow field. In order to avoid the physically 

unrealistic high swirl velocities the viscous core 

structure of the vortices would be introduced. 

Modelling this core structure of lift-generated 

trailing vortices has been a continuing challenge in 

rotating wing aerodynamic problems. There are 

more vortex models, which include the effect of 

viscosity. The simplest model is the Rankine-model; 

the Kaufmann (Scully) model uses an algebraic 

velocity profile. Vatistas also proposed a family of 

desingularized algebraic swirl-velocity profile for 

stationary vortices. Another vortex model was given 

by Lamb and also by Oseen, this model is a solution 

to the one-dimensional simplified Navier-Stokes 

equations. This is an axisymmetric solution for the 

swirl velocity with the assumption that the axial 

and radial velocities are zero. The Lamb-Oseen 

model for the swirl velocity is: 
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The viscous core radius is the radial location 
where the swirl velocity is the maximum. 
Differentiating the above equation by the "r" and 
setting the derivative to zero, the viscous core 
radius (growing in the time) can be calculated as: 

teLambertWtrc νν 2
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Where LambertW(k,x) is the Lambert’s W 
function. The actual value of this function in this 
case: - 1.75643. Substituting this value into the 
equation above we get the well-known expression 
for the vortex core radius in laminar case: 

trc να4=   (α = 1.2564312.)    (6) 

The Lamb-Oseen model can be applied only for 
laminar flow. To generalise such a formula to the 
turbulent flow Squire proposed to introduce an 
“eddy” viscosity: δν. Therefore for turbulent flow 
the core radius becomes: 

( ) trc νδα4=            (7) 

For the calculation of the eddy viscosity 
coefficient the vortex Reynolds number can be 
introduced: 

νΓ=ΓRe    and:   Γ+= Re1 aδ  

The “ a ” is an empirical parameter. In our 
calculation (referring to [3]) its value is 0.0002. By 
using of this eddy viscosity and the vortex core 
radius the Lamb-Oseen model can be rewritten as: 

( ) 
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r
rv αδ

π
     (8)  

This modified Lamb-Oseen model is suitable 
for the swirl velocity calculation in the whole 
region around a vortex line and can take into 
account the vortex aging process too. This model 
has not a singular point, at the zero distance gives 
zero swirl velocity (see Fig. 4.). 

3. IDEAL VORTICES IN THREE DIMENSIONS 
The results of the Lamb-Oseen model including 

the “eddy” viscosity are applicable only for one-

dimensional flow, but we should turn to the three-

dimensional model. The induced velocity such a 

vortex can be calculated by Biot-Savart law: 

∫
×Γ

=
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w

π
            (9) 
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Figure 1. The induced velocity at point P 

In the simplest case if the vortex curve is a 

straight line then in plane perpendicular to the 

vortex line the problem reduces to one dimension 

and the induced velocity – the so called swirl 

velocity – can be calculated as: 

( )rv π2Γ=              (10) 

In case of ideal fluid when the kinematical 

viscosity is zero the result of Eqn. 4 is identical to 

Eqn. 10. This identity means that like Eqn. 10 in 

case of the real fluid the induced velocity can be 

calculated as the product of the induced velocity in 

inviscid  flow and function of  distance r. (This 

function is introduced later, in Eqn. 13.) 
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Figure 2. Geometrical relations of a vortex segment 

In the practice the vortex-curve “S” can be 

divided into straight-line segments (Fig.6). In ideal 

case according to [11] the induced velocity of the 

vortex lying along the straight-line interval can be 

calculated from Eqn.11: 
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The viscous core of the real vortices has a 

limited influence domain. In order to find this 

domain a constant induced velocity surface of a 

vortex segment (a length of “h”) can be defined. In 
the Fig. 3. a local coordinate system is defined. 
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Figure 3. Surfaces with constant swirl velocity 

The equation of the constant induced velocity 

surface can be find in this (r – z) local coordinate 

system. The swirl velocity component is readily 

found by substituting the geometrical parameters 

into Eqn. 11, that is: 

( )
Const

rhz
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rz
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r
w =















+−

−
−

+

Γ
=

2222

1

4π
ϕ  

(12) 

The swirl velocity achieves its maximum value 

at the vortex core radius. Choosing z=h/2 and 

maxrcrcr == the “Const” can easily calculate – so 

the curve of rc = rc(z) as the place of the maximum 

swirl velocities (Fig. 3.) can be drawn. This curve is 

the meridian segment of the maximum swirl 

velocity surface. In Fig. 3. this body of revolution is 

illustrated by the dotted line. 

4. VORTICES WITH VISCOUS CORE 
The induced velocities of a vortex segment with 

viscous core (Fig. 3. line AB) can be calculated by 

the combination of the equations 8 and 11: 
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Where: 

( ) 
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exp1
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zrc

r
αδϕ     (13) 

This core function ϕ was applied originally in 
the local coordinate system. In this system the 

induced velocity  vector has only tangential 

component and the other components are zero. This 

means, that the whole induced velocity vector must 
be reduced. Applying function ϕ in Eqn. 12 means 

that the components of the induced velocity are 

reduced. In this way the whole induced velocity is 

suitably reduced too. 
The effect of viscous core suddenly reduces to 

zero. We can also choose an outer surface, where 

the distance of point P is equal to 2.35 rc(z). When 

the point P is chosen outside of this influence 
region then the influence of the core effect is 

smaller then 0.1 % - in this case we can use Eqn. 

11. Further if the point P is inside of this region for 

the calculation we must use the Eqn. 12. 

In order to show the effect of the viscous core a 

numerical example is presented too. In this example 

a vortex segment of unit length moves closely to a 

helicopter rotor blade. The rotor blade belongs to a 

MD 500 type helicopter and the other data of the 

example refers to the real dataset of this type of 

helicopter rotor blade. In the Fig. 4 the lift 

coefficient changing is shown. 

 

Figure 4. Lift coefficient changing 

In the case shown in Fig. 4. the vortex angle (β) 

is zero and the vortex core radius is approximately 

equal to 0.1 m. The lift coefficient changing outside 
of the core influence region is the same in the ideal 

and real case too. In the core influence region the 

using of core function ϕ gives physically good 

results. The values of the lift coefficient changing 
in the ideal case are physically unrealistic. This 

means, that we have to apply a vortex model of 

viscous core. 

If the vortex segment has a non-zero β angle, 
namely the segment is not parallel to the length axis 

of the blade, then the effect of the vortex segment 

decreases. 



  

 

Figure 5. Effect of the vortex segment position 

In the Fig. 5 can be seen, that the lift coefficient 

changing is maximal, if the angle between the blade 

and vortex segment is equal to zero. The changing 

go to zero, if the angle going to 90 degrees but at 

smaller angles the changing of the lift coefficient is 

small. 

We can state that in the blade vortex interaction 

(BVI) problems not only the distance between the 

blade and the vortex, but the vortex position related 

to the blade has a significant role. 

5. THE FLAPPING MOTION OF THE ROTOR 
BLADES 

For the simplicity the lagging, feathering and 

elastic motions are neglected, only the flapping 

motion is taken into account. In the calculation we 

apply the classical linear form of the flapping 

equation. 

( ) ( )21 ΩΘ=++′′
yyll Mβεβ      (14) 

where: ( ) ys exm Θ=ε ; the Lock number 

The flapping motion is determined by the My 

aerodynamic moment but this moment depends on 

the flapping velocity. The Eqn. 14 is an ordinary 

differential equation which can be solved together 

with the induced velocity calculation.  

The helicopter rotor blades are controlled by 

cyclic and collective way. The values of the control 

parameters for the case of example are known from 

other calculations of this helicopter ([6], [7]). 

6. INVESTIGATION OF THE ROTOR OF A MD 
500 HELICOPTER 

The vortex model of the helicopter rotor plays 

very important role because the local interactions of 

the tip vortices with the blades have appearance in 

unsteady blade loads, vibration and noise. 

Interactions with the empennage and fuselage lead 

to the further complication in the flow environment 

and contributes to the vibratory air loads on the 

helicopter fuselage. 

In the working of helicopter rotor blades the 

distribution of the bound vortex is special: going to 

the tip of the rotor blade the strength of the bound 

vortex strongly increases and only near to the blade 

tip rapidly goes to zero. Follows that the free 

vortices in a short distance behind the rotor blade 

rolled up - forms the tip vortex (see Figure 6). In 

this article is assumed that at the vortex age of 72 

degrees the rolling up process is finished. The 

initial position of the vortex filament is given by 

three independent coordinates. These  determined 

by the Betz’s vortex laws (Equations 1, 2 and 3). 
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Figure 6. Vortex system of a rotor blade 

In this example a prescribed wake and a free 

wake model is applied. The free wake and the 

prescribed wake methods determine the rotor 

induced velocity field by the combination of the 

induced velocity contributions of all free vortices 

(trailed and shed vortices) in the wake and of the 

bound vortices represented the lifting blades at a 

given point in the flow field. It is accomplished 

with the evaluation of the Biot-Savart integral along 

the length of the vortex filaments. In the calculation 

was used the non-rotating coordinate system 

connected to the rotor hub. 

In our calculation the MD 500 helicopter flies 

horizontally with advance velocity of 144 [km/h]. 

During the calculation evolved the complex vortex 

system around the rotor and the rotor blade reaches 

an asymptotic dynamic equilibrium state. From the 

calculation the path of the blades and of the tip 



  

vortex are known. We can find the places, where 

the blade vortex interaction becomes.  

 

Figure 7. Typical blade vortex interaction 

Figure 7. illustrates the lift coefficient 

distribution along a rotor blade. In this figure the 

effect of blade vortex interaction is shown. In the 

calculated flying case the distance between the 

blade and the tip vortex is not to small, so the BVI 

effect is also restrained.  

7. SUMMARY 
The “real” vortex theory is an advanced method 

for the aerodynamic calculation of the helicopter 

rotor blades. By this method the unsteady effects, 

the BVI effects and the vortex interactions of other 

helicopter parts can be calculated. In the calculation 

with the induced velocities the distance measured 

from the vortex line has a very important role. A 

small inaccuracy of the vortex position can lead to a 

great error in the induced velocity value.  

Because the required accuracy the time demand 

of the calculation is quite big, so this method for 

real time simulations for the present is not suitable. 
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