
Introduction

Gecco 2006 Grammatical Evolution Tutorial

Conor Ryan

Biocomputing and Developmental Systems Group
Department of Computer Science and Information Systems

University of Limerick

8th July 2006

(University of Limerick) Grammatical Evolution 8th July 2006 1 / 81

Introduction

Outline

1 Introduction

2 Grammatical Evolution

3 Genetic Operators

4 GAuGE

5 Chorus

6 Degeneracy

7 Wrapping

8 Search Techniques

9 The Future

(University of Limerick) Grammatical Evolution 8th July 2006 2 / 81

Introduction

Issues with GP

Function/terminal set must have “closure”

Single types only

Trees grow, or “bloat”

(University of Limerick) Grammatical Evolution 8th July 2006 3 / 81

Introduction

Issues with GP

Function/terminal set must have “closure”

Single types only

Trees grow, or “bloat”

(University of Limerick) Grammatical Evolution 8th July 2006 3 / 81

Introduction

Issues with GP

Function/terminal set must have “closure”

Single types only

Trees grow, or “bloat”

(University of Limerick) Grammatical Evolution 8th July 2006 3 / 81

Introduction

Biological Phenomena

No simple one to one mapping
Genes produce proteins

Proteins combine to create phenotype

Linear strings
Genomes are always held on strings

Unconstrained search
Repair not performed

(University of Limerick) Grammatical Evolution 8th July 2006 4 / 81

Introduction

Biological Phenomena

No simple one to one mapping
Genes produce proteins

Proteins combine to create phenotype

Linear strings
Genomes are always held on strings

Unconstrained search
Repair not performed

(University of Limerick) Grammatical Evolution 8th July 2006 4 / 81

Introduction

Biological Phenomena

No simple one to one mapping
Genes produce proteins

Proteins combine to create phenotype

Linear strings
Genomes are always held on strings

Unconstrained search
Repair not performed

(University of Limerick) Grammatical Evolution 8th July 2006 4 / 81

Grammatical Evolution

Grammatical Evolution

Grammatical Evolution (GE)
GA to evolve programs
Morphogenetic Effect:

Genotype mapped to phenotype

Phenotype is a compilable program

Genome governs mapping of a BNF/attribute grammar definition
to the program

(University of Limerick) Grammatical Evolution 8th July 2006 5 / 81

Grammatical Evolution

Grammatical Evolution

Grammatical Evolution (GE)
GA to evolve programs
Morphogenetic Effect:

Genotype mapped to phenotype

Phenotype is a compilable program

Genome governs mapping of a BNF/attribute grammar definition
to the program

(University of Limerick) Grammatical Evolution 8th July 2006 5 / 81

Grammatical Evolution

Grammatical Evolution

Grammatical Evolution (GE)
GA to evolve programs
Morphogenetic Effect:

Genotype mapped to phenotype

Phenotype is a compilable program

Genome governs mapping of a BNF/attribute grammar definition
to the program

(University of Limerick) Grammatical Evolution 8th July 2006 5 / 81

Grammatical Evolution

Grammatical Evolution

Here genome (a binary string) is mapped to compilable C code

Can potentially evolve programs in any language, with arbitrary
complexity

Any structure than be specified with a grammar, e.g. graphs,
neural networks, etc.

(University of Limerick) Grammatical Evolution 8th July 2006 6 / 81

Grammatical Evolution Grammars

Language Definition

Backus Naur Form (BNF)
Notation for expressing a languages grammar as Production Rules

BNF Grammar consists of the tuple < T,N,P,S > where
T is Terminals set
N is Non-Terminals set
P is Production Rules set
S is Start Symbol (a member of N)

BNF Example

T = {Sin, Cos, Tan, Log,+,−, /, ∗, X , (,)}

S =< expr >

(University of Limerick) Grammatical Evolution 8th July 2006 7 / 81

Grammatical Evolution Grammars

Language Definition

Backus Naur Form (BNF)
Notation for expressing a languages grammar as Production Rules

BNF Grammar consists of the tuple < T,N,P,S > where
T is Terminals set
N is Non-Terminals set
P is Production Rules set
S is Start Symbol (a member of N)

BNF Example

T = {Sin, Cos, Tan, Log,+,−, /, ∗, X , (,)}

S =< expr >

(University of Limerick) Grammatical Evolution 8th July 2006 7 / 81

Grammatical Evolution Grammars

Language Definition

Backus Naur Form (BNF)
Notation for expressing a languages grammar as Production Rules

BNF Grammar consists of the tuple < T,N,P,S > where
T is Terminals set
N is Non-Terminals set
P is Production Rules set
S is Start Symbol (a member of N)

BNF Example

T = {Sin, Cos, Tan, Log,+,−, /, ∗, X , (,)}

S =< expr >

(University of Limerick) Grammatical Evolution 8th July 2006 7 / 81

Grammatical Evolution Grammars

BNF Definition

N = {expr , op, pre_op}

And P can be represented as:

(1) <expr> ::= <expr> <op> <expr> (A)
| (<expr> <op> <expr>) (B)
| <pre-op> (<expr>) (C)
| <var> (D)

(2) <op> ::= + (A)
| - (B)
| / (C)
| * (D)

(University of Limerick) Grammatical Evolution 8th July 2006 8 / 81

Grammatical Evolution Grammars

BNF Definition

(3) <pre-op> ::= Sin (A)
| Cos (B)
| Tan (C)

(4) <var> ::= X (A)

A Genetic Algorithm is used to control choice of production rule

(University of Limerick) Grammatical Evolution 8th July 2006 9 / 81

Grammatical Evolution Architecture

Architecture

(University of Limerick) Grammatical Evolution 8th July 2006 10 / 81

Grammatical Evolution Comparison

Related GP Systems
Name Genome Representation
Koza Tree Direct
Banzhaf et al Linear Direct
Gruau Tree Graph Grammar
Whigham Tree Derivation Tree
Wong & Leung Tree Logic Grammars
Paterson Linear Grammar

Repair mechanisms..

Koza - none needed
Banzhaf - required for syntactically legal individuals
Gruau - none needed
Whigham - all crossovers subject to repair
Wong & Leung - all crossovers subject to repair
Paterson - under/overspecification.
(University of Limerick) Grammatical Evolution 8th July 2006 11 / 81

Grammatical Evolution Comparison

Related GP Systems
Name Genome Representation
Koza Tree Direct
Banzhaf et al Linear Direct
Gruau Tree Graph Grammar
Whigham Tree Derivation Tree
Wong & Leung Tree Logic Grammars
Paterson Linear Grammar

Repair mechanisms..

Koza - none needed
Banzhaf - required for syntactically legal individuals
Gruau - none needed
Whigham - all crossovers subject to repair
Wong & Leung - all crossovers subject to repair
Paterson - under/overspecification.
(University of Limerick) Grammatical Evolution 8th July 2006 11 / 81

Grammatical Evolution Comparison

Repair

(University of Limerick) Grammatical Evolution 8th July 2006 12 / 81

Grammatical Evolution Comparison

Repair

(University of Limerick) Grammatical Evolution 8th July 2006 12 / 81

Grammatical Evolution Comparison

Repair

(University of Limerick) Grammatical Evolution 8th July 2006 12 / 81

Grammatical Evolution Comparison

Repair

(University of Limerick) Grammatical Evolution 8th July 2006 12 / 81

Grammatical Evolution Comparison

Repair

(University of Limerick) Grammatical Evolution 8th July 2006 13 / 81

Grammatical Evolution Comparison

Grammatical Evolution

In contrast GE uses
BNF - Paterson/Whigham/Wong etc.
Variable Length Linear Chromosomes - Koza/Gruau/Banzhaf
Genome encodes pseudo-random numbers
Degenerate Genetic Code

Several genes map to same phenotype

Wrap individuals

Use 8 bit codons
Each codon represents at least one Production Rule
Gene contains many codons

Pseudo-random numbers determine what production rule will be
used

(University of Limerick) Grammatical Evolution 8th July 2006 14 / 81

Grammatical Evolution Comparison

Grammatical Evolution

In contrast GE uses
BNF - Paterson/Whigham/Wong etc.
Variable Length Linear Chromosomes - Koza/Gruau/Banzhaf
Genome encodes pseudo-random numbers
Degenerate Genetic Code

Several genes map to same phenotype

Wrap individuals

Use 8 bit codons
Each codon represents at least one Production Rule
Gene contains many codons

Pseudo-random numbers determine what production rule will be
used

(University of Limerick) Grammatical Evolution 8th July 2006 14 / 81

Grammatical Evolution Comparison

Grammatical Evolution

Expression of a Codon results in an Amino Acid
(choice in the derivation sequence)

Amino acids can combine to form a functional protein (i.e.
Terminals such as +, X or Sin, can combine)

(University of Limerick) Grammatical Evolution 8th July 2006 15 / 81

Grammatical Evolution Comparison

Grammatical Evolution

Expression of a Codon results in an Amino Acid
(choice in the derivation sequence)

Amino acids can combine to form a functional protein (i.e.
Terminals such as +, X or Sin, can combine)

(University of Limerick) Grammatical Evolution 8th July 2006 15 / 81

Grammatical Evolution Example

Example Individual

To complete BNF definition for a function written in a subset of C
we include.....

<func> ::= <header>
<header> ::= float symb(float X) <body>
<body> ::= <declarations><code><return>
<declarations> ::= float a;
<code> ::= a = <expr>;
<return> ::= return (a);

Note implementation details.....
Function is limited to a single line of code

If required can get GE to generate multi-line functions.....modify
<code> ::= <line>;

| <line>; <code>

(University of Limerick) Grammatical Evolution 8th July 2006 16 / 81

Grammatical Evolution Example

Example Individual

To complete BNF definition for a function written in a subset of C
we include.....

<func> ::= <header>
<header> ::= float symb(float X) <body>
<body> ::= <declarations><code><return>
<declarations> ::= float a;
<code> ::= a = <expr>;
<return> ::= return (a);

Note implementation details.....
Function is limited to a single line of code

If required can get GE to generate multi-line functions.....modify
<code> ::= <line>;

| <line>; <code>

(University of Limerick) Grammatical Evolution 8th July 2006 16 / 81

Grammatical Evolution Example

Example Individual

In this subset of C all individuals of the form

float symb(float x)
{

float a;
a = <expr>;
return(a);

}

Only < expr > will be evolved

Each non-terminal is mapped to a terminal before any others
undergo a mapping process

(University of Limerick) Grammatical Evolution 8th July 2006 17 / 81

Grammatical Evolution Example

Example Individual

Given the individual
220 203 51 123 2 45what will happen?

<expr> has 4 production rules to choose from

(1) <expr> ::= <expr> <op> <expr> (A)
| (<expr> <op> <expr>) (B)
| <pre-op> (<expr>) (C)
| <var> (D)

Taking first codon 220 we get 220 MOD 4 = 0
Gives <expr>< op >< expr >

Next choice for the first <expr>
Taking next codon 203 we get 203 MOD 4 = 3
Gives <var>< op >< expr >

(University of Limerick) Grammatical Evolution 8th July 2006 18 / 81

Grammatical Evolution Example

Example Individual

Given the individual
220 203 51 123 2 45what will happen?

<expr> has 4 production rules to choose from

(1) <expr> ::= <expr> <op> <expr> (A)
| (<expr> <op> <expr>) (B)
| <pre-op> (<expr>) (C)
| <var> (D)

Taking first codon 220 we get 220 MOD 4 = 0
Gives <expr>< op >< expr >

Next choice for the first <expr>
Taking next codon 203 we get 203 MOD 4 = 3
Gives <var>< op >< expr >

(University of Limerick) Grammatical Evolution 8th July 2006 18 / 81

Grammatical Evolution Example

Example Individual

Given the individual
220 203 51 123 2 45what will happen?

<expr> has 4 production rules to choose from

(1) <expr> ::= <expr> <op> <expr> (A)
| (<expr> <op> <expr>) (B)
| <pre-op> (<expr>) (C)
| <var> (D)

Taking first codon 220 we get 220 MOD 4 = 0
Gives <expr>< op >< expr >

Next choice for the first <expr>
Taking next codon 203 we get 203 MOD 4 = 3
Gives <var>< op >< expr >

(University of Limerick) Grammatical Evolution 8th July 2006 18 / 81

Grammatical Evolution Example

Example Individual

Given the individual
220 203 51 123 2 45what will happen?

<expr> has 4 production rules to choose from

(1) <expr> ::= <expr> <op> <expr> (A)
| (<expr> <op> <expr>) (B)
| <pre-op> (<expr>) (C)
| <var> (D)

Taking first codon 220 we get 220 MOD 4 = 0
Gives <expr>< op >< expr >

Next choice for the first <expr>
Taking next codon 203 we get 203 MOD 4 = 3
Gives <var>< op >< expr >

(University of Limerick) Grammatical Evolution 8th July 2006 18 / 81

Grammatical Evolution Example

Example Individual

<var> involves no choice

Mapped to X...only one production
Now have X <op>< expr >

220 203 51 123 2 45

Read next codon to choose <op>

Next is third codon , value 51, so get 51 MOD 4 = 3
Now have X∗ <expr>

Next choice for <expr>
Next codon is 123 so get 123 MOD 4 = 3
Now have X∗ <var>

Again <var> involves no choice
Finally we get X ∗ X

The extra codons at end of genome are simply ignored in mapping
the genotype to phenotype

(University of Limerick) Grammatical Evolution 8th July 2006 19 / 81

Grammatical Evolution Example

Example Individual

<var> involves no choice

Mapped to X...only one production
Now have X <op>< expr >

220 203 51 123 2 45

Read next codon to choose <op>

Next is third codon , value 51, so get 51 MOD 4 = 3
Now have X∗ <expr>

Next choice for <expr>
Next codon is 123 so get 123 MOD 4 = 3
Now have X∗ <var>

Again <var> involves no choice
Finally we get X ∗ X

The extra codons at end of genome are simply ignored in mapping
the genotype to phenotype

(University of Limerick) Grammatical Evolution 8th July 2006 19 / 81

Grammatical Evolution Example

Example Individual

<var> involves no choice

Mapped to X...only one production
Now have X <op>< expr >

220 203 51 123 2 45

Read next codon to choose <op>

Next is third codon , value 51, so get 51 MOD 4 = 3
Now have X∗ <expr>

Next choice for <expr>
Next codon is 123 so get 123 MOD 4 = 3
Now have X∗ <var>

Again <var> involves no choice
Finally we get X ∗ X

The extra codons at end of genome are simply ignored in mapping
the genotype to phenotype

(University of Limerick) Grammatical Evolution 8th July 2006 19 / 81

Grammatical Evolution Mapping

Example Mapping Overview

Figure: Example Mapping Outline

<expr> :: = <expr><op><expr> |(<expr><op><expr>) |<pre-op>(<expr>)
|<var>

(University of Limerick) Grammatical Evolution 8th July 2006 20 / 81

Grammatical Evolution Mapping

Derivation Tree Structure

1 2 5 7
220 203 51 123 2 45

Not all nodes require a choice!

(University of Limerick) Grammatical Evolution 8th July 2006 21 / 81

Grammatical Evolution Mapping

Codons are polymorphic

When mapping < expr >, we calculate

220 mod 4

However, if we were mapping < pre − op > with 220, we would
calculate

220 mod 3

because there are just three choices

Meaning of a codon depends on its context

(University of Limerick) Grammatical Evolution 8th July 2006 22 / 81

Grammatical Evolution Mapping

Codons are polymorphic

When mapping < expr >, we calculate

220 mod 4

However, if we were mapping < pre − op > with 220, we would
calculate

220 mod 3

because there are just three choices

Meaning of a codon depends on its context

(University of Limerick) Grammatical Evolution 8th July 2006 22 / 81

Grammatical Evolution Mapping

Mapping Process

No simple one to one mapping in GE
Mapping Process to generate programs

Separate Search and Solution Spaces
Ensure validity of individuals
Remove language dependency
Maintain diversity

(University of Limerick) Grammatical Evolution 8th July 2006 23 / 81

Grammatical Evolution Mapping

Genetic Code Degeneracy

Figure: The Degenerate Genetic Code

(University of Limerick) Grammatical Evolution 8th July 2006 24 / 81

Grammatical Evolution Mapping

Genetic Code Degeneracy

Neutral Mutations
Mutations having no effect on Phenotype Fitness

Help preserve individual validity
Gradual accumulation of mutations without harming functionality

Revisit later

(University of Limerick) Grammatical Evolution 8th July 2006 25 / 81

Grammatical Evolution Initialisation

Initialisation

Individuals are strings of random numbers
No guarantee that they will terminate
Individuals can be very short.

<expr> ::= <expr> <op> <expr>
| (<expr> <op> <expr>)
| <pre-op> (<expr>)
| <var>

Production

<expr>-><var>

always leads to termination

<expr>
is the start symbol

On average, a quarter of all individuals are just one point

(University of Limerick) Grammatical Evolution 8th July 2006 26 / 81

Grammatical Evolution Initialisation

Initialisation

Individuals are strings of random numbers
No guarantee that they will terminate
Individuals can be very short.

<expr> ::= <expr> <op> <expr>
| (<expr> <op> <expr>)
| <pre-op> (<expr>)
| <var>

Production

<expr>-><var>

always leads to termination

<expr>
is the start symbol

On average, a quarter of all individuals are just one point

(University of Limerick) Grammatical Evolution 8th July 2006 26 / 81

Grammatical Evolution Initialisation

Sensible Initialisation

Generate a spread of individual sizes.
Based on Ramped Half and Half initialisation in GP

For all tree depths from 2 to maximum size
Generate an equal number of trees of that size
Use full for 50%
Use grow for 50%

Similar in GE, but generate derivation trees of equivalent size

(University of Limerick) Grammatical Evolution 8th July 2006 27 / 81

Grammatical Evolution Initialisation

Sensible Initialisation - 2

Record which number choice was made for each step
Perform an “unmod” on list of choices

Produce a number between 0 and 255 that produces the original
number when moded by the number of choices for that
productionrule

Ensures that all individuals are valid

Reduces the number of clones (easier to detect)

Eliminates single point individuals (if desired)

(University of Limerick) Grammatical Evolution 8th July 2006 28 / 81

Grammatical Evolution Initialisation

Sensible Initialisation - 2

Record which number choice was made for each step
Perform an “unmod” on list of choices

Produce a number between 0 and 255 that produces the original
number when moded by the number of choices for that
productionrule

Ensures that all individuals are valid

Reduces the number of clones (easier to detect)

Eliminates single point individuals (if desired)

(University of Limerick) Grammatical Evolution 8th July 2006 28 / 81

Genetic Operators

Genetic Operators

Perform unconstrained Evolutionary Search
GE employs standard operators of Genetic Algorithms

Point mutation, one-point crossover etc.

Sometimes modified version of one-point crossover, Sensible
Crossover, is used:

Effective length
Actual length

(University of Limerick) Grammatical Evolution 8th July 2006 29 / 81

Genetic Operators

Genetic Operators

Perform unconstrained Evolutionary Search
GE employs standard operators of Genetic Algorithms

Point mutation, one-point crossover etc.

Sometimes modified version of one-point crossover, Sensible
Crossover, is used:

Effective length
Actual length

(University of Limerick) Grammatical Evolution 8th July 2006 29 / 81

Genetic Operators Crossover

Crossover

What actually happens in crossover?

Preliminary : Visualisation.

Crossover is performed at genotypic level

(University of Limerick) Grammatical Evolution 8th July 2006 30 / 81

Genetic Operators Crossover

Crossover

What actually happens in crossover?

Preliminary : Visualisation.

Crossover is performed at genotypic level

(University of Limerick) Grammatical Evolution 8th July 2006 30 / 81

Genetic Operators Crossover

Crossover

What actually happens in crossover?

Preliminary : Visualisation.

Crossover is performed at genotypic level

(University of Limerick) Grammatical Evolution 8th July 2006 30 / 81

Genetic Operators Crossover

Crossover

What actually happens in crossover?

Preliminary : Visualisation.

Crossover is performed at genotypic level

(University of Limerick) Grammatical Evolution 8th July 2006 30 / 81

Genetic Operators Crossover

Crossover

What actually happens in crossover?

Preliminary : Visualisation.

Crossover is performed at genotypic level

(University of Limerick) Grammatical Evolution 8th July 2006 30 / 81

Genetic Operators Ripple Crossover

Ripple Crossover

Analyse 1-point crossover in terms of derivation & syntax trees

Use a closed grammar

E::= (+ E E) {0}
|(- E E) {1}
|(- E E) {2}
|(- E E) {3}
|X {4}
|Y {5}

No polymorphism, because there is only one non-terminal, i.e.
one context

(University of Limerick) Grammatical Evolution 8th July 2006 31 / 81

Genetic Operators Ripple Crossover

Ripple Crossover

Analyse 1-point crossover in terms of derivation & syntax trees

Use a closed grammar

E::= (+ E E) {0}
|(- E E) {1}
|(- E E) {2}
|(- E E) {3}
|X {4}
|Y {5}

No polymorphism, because there is only one non-terminal, i.e.
one context

(University of Limerick) Grammatical Evolution 8th July 2006 31 / 81

Genetic Operators Ripple Crossover

Different Views of Crossover

(University of Limerick) Grammatical Evolution 8th July 2006 32 / 81

Genetic Operators Ripple Crossover

Different Views of Crossover

(University of Limerick) Grammatical Evolution 8th July 2006 32 / 81

Genetic Operators Ripple Crossover

Different Views of Crossover

(University of Limerick) Grammatical Evolution 8th July 2006 32 / 81

Genetic Operators Ripple Crossover

Different Views of Crossover

(University of Limerick) Grammatical Evolution 8th July 2006 32 / 81

Genetic Operators Ripple Crossover

Different Views of Crossover

(University of Limerick) Grammatical Evolution 8th July 2006 32 / 81

Genetic Operators Ripple Crossover

Rebuilding individuals

Parent left with “spine”

Tail swapped with other parent
4 5 9 4 5 2 0 5 2 2

Unmapped E terms must be mapped

Use tail from other parent

(University of Limerick) Grammatical Evolution 8th July 2006 33 / 81

Genetic Operators Ripple Crossover

Rebuilding individuals

Parent left with “spine”

Tail swapped with other parent
4 5 9 4 5 2 0 5 2 2

Unmapped E terms must be mapped

Use tail from other parent

(University of Limerick) Grammatical Evolution 8th July 2006 33 / 81

Genetic Operators Ripple Crossover

Intrinsic Polymorphism

With more than one non-terminal, a codon could be used
differently in the offspring

(University of Limerick) Grammatical Evolution 8th July 2006 34 / 81

Genetic Operators Ripple Crossover

Intrinsic Polymorphism

With more than one non-terminal, a codon could be used
differently in the offspring

(University of Limerick) Grammatical Evolution 8th July 2006 34 / 81

Genetic Operators Ripple Crossover

Intrinsic Polymorphism

With more than one non-terminal, a codon could be used
differently in the offspring

(University of Limerick) Grammatical Evolution 8th July 2006 34 / 81

Genetic Operators Ripple Crossover

Intrinsic Polymorphism

With more than one non-terminal, a codon could be used
differently in the offspring

(University of Limerick) Grammatical Evolution 8th July 2006 34 / 81

Genetic Operators Ripple Crossover

Effects of Ripple Crossover

Symbolic Regression Grammars

Closed Grammar

E ::= x
| (+ E E) | (* E E)
| (- E E) | (/ E E)

And the context free grammar:

Exp ::= Var | Exp Op Exp
Var ::= x
Op ::= + | * | - | /

(University of Limerick) Grammatical Evolution 8th July 2006 35 / 81

Genetic Operators Ripple Crossover

Effects (contd.)

Santa Fe ant trail grammars

Closed grammar

E ::= move() | left() | right()
| iffoodahead(E E) | prog2(E, E)

Context free grammar:

Code ::= Line | prog2(Line, Code)
Line ::= Condition | Action
Action ::= move() | right() | left()
Condition ::= iffoodahead(Code, Code)

(University of Limerick) Grammatical Evolution 8th July 2006 36 / 81

Genetic Operators Ripple Crossover

Symbolic Regresssion Success Rates

Both ripple crossovers start more slowly, but reach higher fitness.

(University of Limerick) Grammatical Evolution 8th July 2006 37 / 81

Genetic Operators Ripple Crossover

Santa Fe Success Rates

Both ripple crossovers again start more slowly, but reach similar
fitness.

(University of Limerick) Grammatical Evolution 8th July 2006 38 / 81

Genetic Operators Ripple Crossover

Santa Fe - Extended Run

Success rates on the Santa Fe ant trail problem, averaged over 100
runs, for 250 generations. Ripple crossovers start slowly, but reach
higher fitness.

(University of Limerick) Grammatical Evolution 8th July 2006 39 / 81

Genetic Operators Alternative Crossovers

Other types of Crossover?

Homologous Crossover
Try not to cross in identical areas

Uniform

Same size homologous

Same size two point

(University of Limerick) Grammatical Evolution 8th July 2006 40 / 81

Genetic Operators Alternative Crossovers

Homologous Crossover - First point

Record rule histories for each individual

Align rule histories of parents

(University of Limerick) Grammatical Evolution 8th July 2006 41 / 81

Genetic Operators Alternative Crossovers

Homologous Crossover - First point

Record rule histories for each individual

Align rule histories of parents

(University of Limerick) Grammatical Evolution 8th July 2006 41 / 81

Genetic Operators Alternative Crossovers

Homologous Crossover - Second Point

Choose second point outside of area of similarity

(University of Limerick) Grammatical Evolution 8th July 2006 42 / 81

Genetic Operators Alternative Crossovers

Crossover comparisons (Cumulative Freq. Success)

1pt/2pt best, uniform worst.
(University of Limerick) Grammatical Evolution 8th July 2006 43 / 81

Genetic Operators Alternative Crossovers

Productivity of Operators (Ratio of successes)

(University of Limerick) Grammatical Evolution 8th July 2006 44 / 81

Genetic Operators Alternative Crossovers

Relative size of crossover fragments

Ratio of the average fragment size being swapped and the average
chromosome length at each generation averaged over 20 runs.

(University of Limerick) Grammatical Evolution 8th July 2006 45 / 81

Genetic Operators Alternative Crossovers

Headless Chicken - Crossover or Macromutation

Appears Crossover works

50% material exchange with 1-point over entire runs

If useful material exchanged then swapping random fragments
should degrade performance?

(University of Limerick) Grammatical Evolution 8th July 2006 46 / 81

Genetic Operators Alternative Crossovers

Headless Chicken Comparison

It does!
(University of Limerick) Grammatical Evolution 8th July 2006 47 / 81

Genetic Operators Explanation

Why does crossover work?

Take a cue from GP crossover - The “Eve” Effect :
All individuals in the final generation tend to evolve from the same
ancestor

The upper parts of individuals tend to come from the same
individual

(University of Limerick) Grammatical Evolution 8th July 2006 48 / 81

Genetic Operators Explanation

Why does crossover work?

Take a cue from GP crossover - The “Eve” Effect :
All individuals in the final generation tend to evolve from the same
ancestor

The upper parts of individuals tend to come from the same
individual

(University of Limerick) Grammatical Evolution 8th July 2006 48 / 81

Genetic Operators Explanation

GE View of Eve Effect?

Individuals grow from left to right

(University of Limerick) Grammatical Evolution 8th July 2006 49 / 81

Genetic Operators Explanation

Size of region of similarity increases over time

Area immediately beyond region of similarity is “region of
discovery” :

(University of Limerick) Grammatical Evolution 8th July 2006 50 / 81

Genetic Operators Explanation

Size of region of similarity increases over time

Area immediately beyond region of similarity is “region of
discovery” :

(University of Limerick) Grammatical Evolution 8th July 2006 50 / 81

Genetic Operators Explanation

Size of region of similarity increases over time

Area immediately beyond region of similarity is “region of
discovery” :

(University of Limerick) Grammatical Evolution 8th July 2006 50 / 81

GAuGE Introduction

The GAuGE System

Genetic Algorithms using Grammatical Evolution

Purpose:

Position independent genetic algorithm;

No under- or over-specification;

Independent of search engine.

Based on mapping process (similar to GE):

Specify position and value of each variable at genotypic level;

Map genotype strings into functional phenotype strings.

(University of Limerick) Grammatical Evolution 8th July 2006 51 / 81

GAuGE Introduction

The GAuGE System

Genetic Algorithms using Grammatical Evolution

Purpose:

Position independent genetic algorithm;

No under- or over-specification;

Independent of search engine.

Based on mapping process (similar to GE):

Specify position and value of each variable at genotypic level;

Map genotype strings into functional phenotype strings.

(University of Limerick) Grammatical Evolution 8th July 2006 51 / 81

GAuGE Mapping

Mapping in the GAuGE System

Transform binary string into integer string:

Problem has 4 variables (` = 4), with range 0 . . . 7;

Choose position field size (pfs = 2);

Choose value field size (vfs = 4);

Calculate binary string length:

L = (pfs + vfs)× ` = (2 + 4)× 4 = 24 bits

(University of Limerick) Grammatical Evolution 8th July 2006 52 / 81

GAuGE Mapping

Mapping in the GAuGE System

Transform binary string into integer string:

Problem has 4 variables (` = 4), with range 0 . . . 7;

Choose position field size (pfs = 2);

Choose value field size (vfs = 4);

Calculate binary string length:

L = (pfs + vfs)× ` = (2 + 4)× 4 = 24 bits

(University of Limerick) Grammatical Evolution 8th July 2006 52 / 81

GAuGE Mapping

Mapping in the GAuGE System

Transform binary string into integer string:

Problem has 4 variables (` = 4), with range 0 . . . 7;

Choose position field size (pfs = 2);

Choose value field size (vfs = 4);

Calculate binary string length:

L = (pfs + vfs)× ` = (2 + 4)× 4 = 24 bits

(University of Limerick) Grammatical Evolution 8th July 2006 52 / 81

GAuGE Mapping

Mapping in the GAuGE System

Transform binary string into integer string:

Problem has 4 variables (` = 4), with range 0 . . . 7;

Choose position field size (pfs = 2);

Choose value field size (vfs = 4);

Calculate binary string length:

L = (pfs + vfs)× ` = (2 + 4)× 4 = 24 bits

0 0 1 0 0 1 1 0 1 1 0 1 0 1 0 1 0 0 0 1 0 0 1 0

0 9 2 13 1 4 1 2

Binary string

Integer string

(University of Limerick) Grammatical Evolution 8th July 2006 52 / 81

GAuGE Mapping

Calculating Phenotype

p v p v p v vp

0 9 2 13 1 4 1 2

Integer string

0 1 2 3

???Phenotype ?

(University of Limerick) Grammatical Evolution 8th July 2006 53 / 81

GAuGE Mapping

Calculating Phenotype

p v p v p v vp

0p: 0 % =

1

0 9 2 13 1 4 1 2

v: 9 % =

Integer string

0 1 2 3

1 ???Phenotype

4

8

(University of Limerick) Grammatical Evolution 8th July 2006 54 / 81

GAuGE Mapping

Calculating Phenotype

p v p v p v vp

0 9 2 13 1 4 1 2

Integer string

p: 2 % =

v:13 % =

2

6

1 ??Phenotype
210

6

8

3

(University of Limerick) Grammatical Evolution 8th July 2006 55 / 81

GAuGE Mapping

Calculating Phenotype

p v p v p v vp

0 9 2 13 1 4 1 2

Integer string

1 ?Phenotype
10

6

p: 1 % =

v: 4 % = 4

1

4

8

2

(University of Limerick) Grammatical Evolution 8th July 2006 56 / 81

GAuGE Mapping

The GAuGE System

p v p v p v vp

0 9 2 13 1 4 1 2

Integer string

1Phenotype
0

6

p: 1 % =

4

v: 2 % =

0

2

2

8

1

(University of Limerick) Grammatical Evolution 8th July 2006 57 / 81

GAuGE Summary

Where is Gauge useful?

GAuGE adapts the representation to the problem
Useful where interactions between genes not known

GAuGE is cheap
Far less complicated than algorithms that try to model gene
interactions/relationships

GAuGE discovers saliency
Most important genes end up on left side of strings

(University of Limerick) Grammatical Evolution 8th July 2006 58 / 81

Chorus Introduction

Chorus

Mapping Independent Codons - no ripple effect

Codon % Total number of rules in the grammar

Competition between the Genes

Concentration Table

Variable length binary strings

8 bit codons

(University of Limerick) Grammatical Evolution 8th July 2006 59 / 81

Chorus Introduction

Grammar specification

S= <expr>
(0) <expr> ::= <expr> <op> <expr>
(1) | (<expr> <op> <expr>)
(2) | <pre-op> (<expr>)
(3) | <var>
(4) <op> ::= +
(5) | -
(6) | *
(7) | /
(8) <pre-op>::= Sin
(9) | Cos
(A) | Exp
(B) | Log
(C) <var> ::= 1.0
(D) | X

(University of Limerick) Grammatical Evolution 8th July 2006 60 / 81

Chorus Introduction

Mapping - 1

Four non-terminals:

<expr> 0..3, <op> 4..7, <pre-op> 8..B, <var> C..D

209 102 190 55 65 15 255 87
D 4 8 D 9 1 3 3

0 1 2 3 4 5 6 7 8 9 A B C D
<e> 0 0 0 0 0 0 0 0 0 0 0 0 0 0

(University of Limerick) Grammatical Evolution 8th July 2006 61 / 81

Chorus Introduction

Mapping - 2

Four non-terminals:

<expr> 0..3, <op> 4..7, <pre-op> 8..B, <var> C..D

209 102 190 55 65 15 255 87
D 4 8 D 9 1 3 3

0 1 2 3 4 5 6 7 8 9 A B C D
<e> 0 0 0 0 0 0 0 0 0 0 0 0 0 0
<e><o><e> 0 0 0 0 1 0 0 0 1 1 0 0 0 2

(University of Limerick) Grammatical Evolution 8th July 2006 62 / 81

Chorus Introduction

Mapping - 3

Four non-terminals:

<expr> 0..3, <op> 4..7, <pre-op> 8..B, <var> C..D

209 102 190 55 65 15 255 87
D 4 8 D 9 1 3 3

0 1 2 3 4 5 6 7 8 9 A B C D
<e> 0 0 0 0 0 0 0 0 0 0 0 0 0 0
<e><o><e> 0 0 0 0 1 0 0 0 1 1 0 0 0 2
<v><o><e> 0 0 0 0 1 0 0 0 1 1 0 0 0 2

(University of Limerick) Grammatical Evolution 8th July 2006 63 / 81

Chorus Introduction

Mapping - 4

Four non-terminals:

<expr> 0..3, <op> 4..7, <pre-op> 8..B, <var> C..D

209 102 190 55 65 15 255 87
D 4 8 D 9 1 3 3

0 1 2 3 4 5 6 7 8 9 A B C D
<e> 0 0 0 0 0 0 0 0 0 0 0 0 0 0
<e><o><e> 0 0 0 0 1 0 0 0 1 1 0 0 0 2
<v><o><e> 0 0 0 0 1 0 0 0 1 1 0 0 0 2
X<o><e> 0 0 0 0 1 0 0 0 1 1 0 0 0 1

(University of Limerick) Grammatical Evolution 8th July 2006 64 / 81

Chorus Introduction

Mapping - 5

Four non-terminals:

<expr> 0..3, <op> 4..7, <pre-op> 8..B, <var> C..D

209 102 190 55 65 15 255 87
D 4 8 D 9 1 3 3

0 1 2 3 4 5 6 7 8 9 A B C D
<e> 0 0 0 0 0 0 0 0 0 0 0 0 0 0
<e><o><e> 0 0 0 0 1 0 0 0 1 1 0 0 0 2
<v><o><e> 0 0 0 0 1 0 0 0 1 1 0 0 0 2
X<o><e> 0 0 0 0 1 0 0 0 1 1 0 0 0 1
X+<e> 0 0 0 0 0 0 0 0 1 1 0 0 0 1

(University of Limerick) Grammatical Evolution 8th July 2006 65 / 81

Chorus Introduction

Mapping - 6

Four non-terminals:

<expr> 0..3, <op> 4..7, <pre-op> 8..B, <var> C..D

209 102 190 55 65 15 255 87
D 4 8 D 9 1 3 3

0 1 2 3 4 5 6 7 8 9 A B C D
<e> 0 0 0 0 0 0 0 0 0 0 0 0 0 0
<e><o><e> 0 0 0 0 1 0 0 0 1 1 0 0 0 2
<v><o><e> 0 0 0 0 1 0 0 0 1 1 0 0 0 2
X<o><e> 0 0 0 0 1 0 0 0 1 1 0 0 0 1
X+<e> 0 0 0 0 0 0 0 0 1 1 0 0 0 1
X+<v> 0 0 0 0 0 0 0 0 1 1 0 0 0 1

(University of Limerick) Grammatical Evolution 8th July 2006 66 / 81

Chorus Introduction

Mapping - 7

Four non-terminals:

<expr> 0..3, <op> 4..7, <pre-op> 8..B, <var> C..D

209 102 190 55 65 15 255 87
D 4 8 D 9 1 3 3

0 1 2 3 4 5 6 7 8 9 A B C D
<e> 0 0 0 0 0 0 0 0 0 0 0 0 0 0
<e><o><e> 0 0 0 0 1 0 0 0 1 1 0 0 0 2
<v><o><e> 0 0 0 0 1 0 0 0 1 1 0 0 0 2
X<o><e> 0 0 0 0 1 0 0 0 1 1 0 0 0 1
X+<e> 0 0 0 0 0 0 0 0 1 1 0 0 0 1
X+<v> 0 0 0 0 0 0 0 0 1 1 0 0 0 1
X+X 0 0 0 0 0 0 0 0 1 1 0 0 0 0

(University of Limerick) Grammatical Evolution 8th July 2006 67 / 81

Degeneracy Performance

Cumulative Freq. with and without degeneracy

No huge difference : Normal, 4- and 6-bit top three in both

(University of Limerick) Grammatical Evolution 8th July 2006 68 / 81

Degeneracy Variety

Mean Variety - Any degeneracy helps!

(University of Limerick) Grammatical Evolution 8th July 2006 69 / 81

Degeneracy Variety

Unique Individuals

(University of Limerick) Grammatical Evolution 8th July 2006 70 / 81

Degeneracy Variety

Conclusions

Conclusions:
Improves genetic diversity
Improves frequency of success on Santa Fe ant trail
Tuneable/Evolvable Degeneracy a good idea?

(University of Limerick) Grammatical Evolution 8th July 2006 71 / 81

Wrapping Number of individuals wrapped

Number of individuals wrapped

Wrap Count & Invalid Individuals

Figure: Number of individuals wrapped on the symbolic regression and Santa
Fe trail problems.

(University of Limerick) Grammatical Evolution 8th July 2006 72 / 81

Wrapping Number of individuals wrapped

Wrapping and Invalid Individuals

Figure: The number of invalid individuals for each generation in the presence
and absence of wrapping.

(University of Limerick) Grammatical Evolution 8th July 2006 73 / 81

Wrapping Performance

Performance

Freq. of Success

Figure: Figure shows the cumulative frequency of success measures on both
problems with and without the presence of wrapping.

(University of Limerick) Grammatical Evolution 8th July 2006 74 / 81

Wrapping Genome Lengths

Lengths (Some Definitions)

Actual length
Entire length of individual

Effective length
Number of codons used
(Note! Can be less than or greater than actual length)

(University of Limerick) Grammatical Evolution 8th July 2006 75 / 81

Wrapping Genome Lengths

Genome Lengths

(University of Limerick) Grammatical Evolution 8th July 2006 76 / 81

Wrapping Summary

Summary

For SR (left) wrapping off has the longest actual length

Effective length virtually the same

For SF (right) wrapping on longer in both cases.
Conclusions:

Wrapping improves frequency of success on Santa Fe ant trail
No effect on Symbolic Regression cumulative frequency
Provides some constraint on genome lengths

(University of Limerick) Grammatical Evolution 8th July 2006 77 / 81

Wrapping Wrapping & Degeneracy

Wrapping & Degeneracy

Removing both....
Cumulative frequency of success degrades
Genome lengths increase over 60% on Symbolic Regression
Genetic diversity no worse than without degeneracy alone

(University of Limerick) Grammatical Evolution 8th July 2006 78 / 81

Search Techniques Other Algorithms

Search Techniques

Other techniques
Simulated Annealing
Hill Climbing
Random Search

(University of Limerick) Grammatical Evolution 8th July 2006 79 / 81

Search Techniques Comparison

Comparison

Three standard GP problems
Santa Fe trail
Symbolic Integration (integrate Cos(x) + 2x + 1)
Symbolic regression x4 + x3 + x2 + x

Metaheuristic
Problem RS HC SA GA
Santa Fe 54% 7% 14% 81%
Symbolic Integration 66% 4% 3% 100%
Symbolic Regression 0% 0% 0% 59%

(University of Limerick) Grammatical Evolution 8th July 2006 80 / 81

The Future

The Future

The Grammar (Attribute Grammars)

Search & Evolutionary Dynamics

Applications
Newest Code Release

http://waldo.csisdmz.ul.ie/libGE/

(University of Limerick) Grammatical Evolution 8th July 2006 81 / 81

	Introduction
	Grammatical Evolution
	Grammars
	Architecture
	Comparison
	Example
	Mapping
	Initialisation

	Genetic Operators
	Crossover
	Ripple Crossover
	Alternative Crossovers
	Explanation

	GAuGE
	Introduction
	Mapping
	Summary

	Chorus
	Introduction
	Mapping
	Mapping
	Mapping
	Mapping
	Mapping
	Mapping
	Mapping

	Degeneracy
	Performance
	Variety

	Wrapping
	Number of individuals wrapped
	Performance
	Genome Lengths
	Summary
	Wrapping & Degeneracy

	Search Techniques
	Other Algorithms
	Comparison

	The Future

