Gecco 2006 Grammatical Evolution Tutorial

Conor Ryan

Biocomputing and Developmental Systems Group
Department of Computer Science and Information Systems
University of Limerick

8th July 2006

Outline

(9) Introduction
(2) Grammatical Evolution
(3) Genetic Operators
(4) GAuGE
(5) Chorus

6 Degeneracy
(7) Wrapping

Issues with GP

- Function/terminal set must have "closure"
- Single types only
- Trees grow, or "bloat"

Issues with GP

- Function/terminal set must have "closure"

- Single types only
- Trees grow, or "bloat"

Issues with GP

- Function/terminal set must have "closure"

- Single types only
- Trees grow, or "bloat"

Biological Phenomena

- No simple one to one mapping
- Genes produce proteins
- Proteins combine to create phenotype
- Linear strings
- Genomes are always held on strings
- Unconstrained search
- Repair not performed

Biological Phenomena

- No simple one to one mapping
- Genes produce proteins
- Proteins combine to create phenotype
- Linear strings
- Genomes are always held on strings
- Unconstrained search
- Repair not performed

Biological Phenomena

- No simple one to one mapping
- Genes produce proteins
- Proteins combine to create phenotype
- Linear strings
- Genomes are always held on strings
- Unconstrained search
- Repair not performed

Grammatical Evolution

- Grammatical Evolution (GE)
- GA to evolve programs
- Morphogenetic Effect:
- Genotype mapped to phenotype
- Phenotype is a compilable program
- Genome governs mapping of a BNF/attribute grammar definition to the program

Grammatical Evolution

- Grammatical Evolution (GE)
- GA to evolve programs
- Morphogenetic Effect:
- Genotype mapped to phenotype
- Phenotype is a compilable program
- Genome governs mapping of a BNF/attribute grammar definition to the program

Grammatical Evolution

- Grammatical Evolution (GE)
- GA to evolve programs
- Morphogenetic Effect:
- Genotype mapped to phenotype
- Phenotype is a compilable program
- Genome governs mapping of a BNF/attribute grammar definition to the program

Grammatical Evolution

- Here genome (a binary string) is mapped to compilable C code
- Can potentially evolve programs in any language, with arbitrary complexity
- Any structure than be specified with a grammar, e.g. graphs, neural networks, etc.

Language Definition

- Backus Naur Form (BNF)
- Notation for expressing a languages grammar as Production Rules
- BNF Grammar consists of the tuple $<$ T,N,P,S $>$ where
- T is Terminals set
- N is Non-Terminals set
- P is Production Rules set
- S is Start Symbol (a member of N)
- BNF Example

Language Definition

- Backus Naur Form (BNF)
- Notation for expressing a languages grammar as Production Rules
- BNF Grammar consists of the tuple $<$ T,N,P,S $>$ where
- T is Terminals set
- N is Non-Terminals set
- P is Production Rules set
- S is Start Symbol (a member of N)
- BNF Example
$T=\{$ Sin, Cos, Tan, Log,

Language Definition

- Backus Naur Form (BNF)
- Notation for expressing a languages grammar as Production Rules
- BNF Grammar consists of the tuple $<$ T,N,P,S $>$ where
- T is Terminals set
- N is Non-Terminals set
- P is Production Rules set
- S is Start Symbol (a member of N)
- BNF Example

$$
T=\{\operatorname{Sin}, \operatorname{Cos}, \operatorname{Tan}, \log ,+,-, /, *, X,(,)\}
$$

$$
S=<\text { expr }>
$$

BNF Definition

$$
N=\{\text { expr,op,pre_op }\}
$$

- And P can be represented as:

$$
\begin{align*}
& \text { (1) <expr> ::= <expr> <op> <expr> } \tag{A}\\
& \text { (<expr> <op> <expr>) } \tag{B}\\
& \text { <pre-op> (<expr>) (C) } \tag{C}\\
& \text { <var> (D) } \\
& \text { (2) <op> : := + (A) } \\
& \text { - (B) } \\
& \text { / (C) } \\
& \text { * (D) }
\end{align*}
$$

BNF Definition

(4) <var> ::= X (A)

- A Genetic Algorithm is used to control choice of production rule

Architecture

Related GP Systems

Name	Genome	Representation
Koza	Tree	Direct
Banzhaf et al	Linear	Direct
Gruau	Tree	Graph Grammar
Whigham	Tree	Derivation Tree
Wong \& Leung	Tree	Logic Grammars
Paterson	Linear	Grammar

- Repair mechanisms.
- Koza - none needed
- Ranzhaf - required for syntactically legal individuals
- Gruau - none needed
- Whigham - all crossovers subject to repair
- Wong \& Leung - all crossovers subiect to renair
- Paterson - under/overspecification.

Related GP Systems

Name	Genome	Representation
Koza	Tree	Direct
Banzhaf et al	Linear	Direct
Gruau	Tree	Graph Grammar
Whigham	Tree	Derivation Tree
Wong \& Leung	Tree	Logic Grammars
Paterson	Linear	Grammar

- Repair mechanisms..
- Koza - none needed
- Banzhaf - required for syntactically legal individuals
- Gruau - none needed
- Whigham - all crossovers subject to repair
- Wong \& Leung - all crossovers subject to repair
- Paterson - under/overspecification.

Repair

Repair

Repair

Repair

Repair

Grammatical Evolution

- In contrast GE uses
- BNF - Paterson/Whigham/Wong etc.
- Variable Length Linear Chromosomes - Koza/Gruau/Banzhaf
- Genome encodes pseudo-random numbers
- Degenerate Genetic Code
- Several genes map to same phenotype
- Wrap individuals
- Use 8 bit codons
- Each codon represents at least one Production Rule
- Gene contains many codons
- Pseudo-random numbers determine what production rule will be used

Grammatical Evolution

- In contrast GE uses
- BNF - Paterson/Whigham/Wong etc.
- Variable Length Linear Chromosomes - Koza/Gruau/Banzhaf
- Genome encodes pseudo-random numbers
- Degenerate Genetic Code
- Several genes map to same phenotype
- Wrap individuals
- Use 8 bit codons
- Each codon represents at least one Production Rule
- Gene contains many codons
- Pseudo-random numbers determine what production rule will be used

Grammatical Evolution

- Expression of a Codon results in an Amino Acid (choice in the derivation sequence)
- Amino acids can combine to form a functional protein (i.e. Terminals such as,$+ X$ or Sin, can combine)

Grammatical Evolution

- Expression of a Codon results in an Amino Acid (choice in the derivation sequence)
- Amino acids can combine to form a functional protein (i.e. Terminals such as,$+ X$ or Sin, can combine)

Example Individual

- To complete BNF definition for a function written in a subset of C we include.....

```
<func> ::= <header>
<header> ::= float symb(float X) <body>
<body> ::= <declarations><code><return>
<declarations> ::= float a;
<code> ::= a = <expr>;
<return> ::= return (a);
```

- Note implementation details.....
- Function is limited to a single line of code
- If required can get GE to generate multi-line functions.....modify <code> ::= <line>;

Example Individual

- To complete BNF definition for a function written in a subset of C we include.....

```
<func> ::= <header>
<header> ::= float symb(float X) <body>
<body> ::= <declarations><code><return>
<declarations> ::= float a;
<code> ::= a = <expr>;
<return> ::= return (a);
```

- Note implementation details.....
- Function is limited to a single line of code
- If required can get GE to generate multi-line functions.....modify

$$
\begin{aligned}
& \text { <code> : : }=\text { <line>; } \\
& \mid \text { <line>; <code> }
\end{aligned}
$$

Example Individual

- In this subset of C all individuals of the form

```
float symb(float x)
```

\{
float a;
a = <expr>;
return(a);
\}

- Only < expr > will be evolved
- Each non-terminal is mapped to a terminal before any others undergo a mapping process

Example Individual

- Given the individual

220	203	51	123	2	45

<expr> has 4 production rules to choose from

- Taking first codon 220 we get 220 MOD $4=0$
- Gives <expr><op><expr
- Next choice for the first <expr>
- Taking next codon 203 we get 203 MOD $4=3$
- Gives <var><op >< expr

Example Individual

- Given the individual

220	203	51	123	2	45

- <expr> has 4 production rules to choose from
(1) <expr> ::= <expr> <op> <expr>
(<expr> <op> <expr>)
<pre-op> (<expr>)
<var> (D)
- Taking first codon 220 we get 220 MOD $4=0$
- Gives
expr><op
expr
- Next choice for the first <expr>
- Taking next codon 203 we get 203 MOD $4=3$
- Gives <var><op><expr

Example Individual

- Given the individual

220	203	51	123	2	45

- <expr> has 4 production rules to choose from
(1) <expr> ::= <expr> <op> <expr>
(<expr> <op> <expr>)
<pre-op> (<expr>)
<var> (D)
- Taking first codon 220 we get 220 MOD $4=0$
- Gives <expr><op><expr>
- Taking next codon 203 we get 203 MOD $4=3$
- Gives

Example Individual

- Given the individual

220	203	51	123	2	45

- <expr> has 4 production rules to choose from
(1) <expr> ::= <expr> <op> <expr>
(<expr> <op> <expr>)
<pre-op> (<expr>)
<var> (D)
- Taking first codon 220 we get 220 MOD $4=0$
- Gives <expr><op><expr>
- Next choice for the first <expr>
- Taking next codon 203 we get 203 MOD $4=3$
- Gives <var><op ><expr >

Example Individual

- < $\underline{\text { var }>~ i n v o l v e s ~ n o ~ c h o i c e ~}$
- Mapped to X...only one production
- Now have X <op><expr >

\section*{| 220 | 203 | 51 | 123 | 2 | 45 |
| :--- | :--- | :--- | :--- | :--- | :--- |}

- Read next codon to choose <op
- Next is third codon, value 51, so get 51 MOD $4=3$
- Now have X* <expr>
- Next choice for <expr>
- Next codon is 123 so get 123 MOD $4=3$
- Now have $X *<\underline{v a r}$
- Again $<$ var $>$ involves no choice
- Finally we get $X * X$
- The extra codons at end of genome are simply ignored in mapping the genotype to phenotype

Example Individual

- < $\underline{\text { var }}>$ involves no choice
- Mapped to X...only one production
- Now have X <op><expr >

220	203	$\underline{51}$	123	2	45

- Read next codon to choose <op>
- Next is third codon, value 51 , so get 51 MOD $4=3$
- Now have $X *$ <expr>
- Next choice for <expr>
- Next codon is 123 so get 123 MOD $4=3$
- Now have $X *<\underline{\text { var }}$
- Again <var> involves no choice
- Finally we get $X * X$
- The extra codons at end of genome are simply ignored in mapping the genotype to phenotype

Example Individual

- < $\underline{\text { var }}>$ involves no choice
- Mapped to X...only one production
- Now have $X<$ op $><$ expr $>$

220	203	$\underline{51}$	123	2	45

- Read next codon to choose <op>
- Next is third codon, value 51 , so get 51 MOD $4=3$
- Now have $X *$ <expr>
- Next choice for <expr>
- Next codon is 123 so get 123 MOD $4=3$
- Now have $X *<\underline{\text { var }}>$
- Again $<\underline{\text { var }}>$ involves no choice
- Finally we get $X * X$
- The extra codons at end of genome are simply ignored in mapping the genotype to phenotype

Example Mapping Overview

Figure: Example Mapping Outline

```
<expr> :: = <expr><op><expr> | (<expr><op><expr>) |<pre
|<var>

\section*{Derivation Tree Structure}
\begin{tabular}{|c|c|c|c|c|c|}
\hline 1 & 2 & 5 & 7 & & \\
\hline 220 & 203 & 51 & 123 & 2 & 45 \\
\hline
\end{tabular}

- Not all nodes require a choice!

\section*{Codons are polymorphic}
- When mapping \(<\) expr \(>\), we calculate
\(220 \bmod 4\)
- However, if we were mapping < pre - op > with 220, we would calculate \(220 \bmod 3\)
because there are just three choices
- Meaning of a codon depends on its context

\section*{Codons are polymorphic}
- When mapping \(<\) expr \(>\), we calculate

\section*{\(220 \bmod 4\)}
- However, if we were mapping < pre - op \(>\) with 220 , we would calculate
\[
220 \bmod 3
\]
because there are just three choices
- Meaning of a codon depends on its context

\section*{Mapping Process}
- No simple one to one mapping in GE
- Mapping Process to generate programs
- Separate Search and Solution Spaces
- Ensure validity of individuals
- Remove language dependency
- Maintain diversity

\section*{Genetic Code Degeneracy}
```

GENETIC CODE PARTIAL PHENOTYPE
CODON AMINO ACID
(A group of 3 Nuclectides)
(Protein Component)
GGC
GGA}\longrightarrow\mathrm{ Glycine
GGG
GE GENE GE RULE
00000010
00010010 > <line>
0 0 1 0 0 0 1 0

```

For Rule where
<code> :: = <line> (0)
l <code><line> (1)
i.e. (GE Gene Integer Value) MOD \(2=\) Rule Number

Every second value gives the same phenotype
Figure: The Degenerate Genetic Code

\section*{Genetic Code Degeneracy}
- Neutral Mutations
- Mutations having no effect on Phenotype Fitness
- Help preserve individual validity
- Gradual accumulation of mutations without harming functionality
- Revisit later

\section*{Initialisation}
- Individuals are strings of random numbers
- No guarantee that they will terminate
- Individuals can be very short.

- Production
<expr>-><var>
always leads to termination
is the start symbol
- On average, a quarter of all individuals are just one point

\section*{Initialisation}
- Individuals are strings of random numbers
- No guarantee that they will terminate
- Individuals can be very short.
```

<expr> ::= <expr> <op> <expr>
(<expr> <op> <expr>)
<pre-op> (<expr>)
<var>

```
- Production
<expr>-><var>
always leads to termination
- <expr>
is the start symbol
- On average, a quarter of all individuals are just one point

\section*{Sensible Initialisation}
- Generate a spread of individual sizes.
- Based on Ramped Half and Half initialisation in GP
- For all tree depths from 2 to maximum size
- Generate an equal number of trees of that size
- Use full for \(50 \%\)
- Use grow for \(50 \%\)
- Similar in GE, but generate derivation trees of equivalent size

\section*{Sensible Initialisation - 2}
- Record which number choice was made for each step
- Perform an "unmod" on list of choices
- Produce a number between 0 and 255 that produces the original number when moded by the number of choices for that productionrule
- Ensures that all individuals are valid
- Reduces the number of clones (easier to detect)
- Eliminates single point individuals (if desired)

\section*{Sensible Initialisation - 2}
- Record which number choice was made for each step
- Perform an "unmod" on list of choices
- Produce a number between 0 and 255 that produces the original number when moded by the number of choices for that productionrule
- Ensures that all individuals are valid
- Reduces the number of clones (easier to detect)
- Eliminates single point individuals (if desired)

\section*{Genetic Operators}
- Perform unconstrained Evolutionary Search
- GE employs standard operators of Genetic Algorithms
- Point mutation, one-point crossover etc.
- Sometimes modified version of one-point crossover, Sensible Crossover, is used:
- Effective length
- Actual length

\section*{Genetic Operators}
- Perform unconstrained Evolutionary Search
- GE employs standard operators of Genetic Algorithms
- Point mutation, one-point crossover etc.
- Sometimes modified version of one-point crossover, Sensible Crossover, is used:
- Effective length
- Actual length
\[
\begin{array}{|l|l|l|l|l|l|l|l|l|l|l|l|}
\hline \mathrm{a} & \mathrm{~b} & \mathrm{c} & \mathrm{~d} & \mathrm{e} & \mathrm{f} & \mathrm{~g} & \mathrm{~h} & \mathrm{i} & \mathrm{j} & & \\
\hline
\end{array}
\]

\section*{Crossover}
- What actually happens in crossover?
- Preliminary : Visualisation.
- Crossover is performed at genotypic level

\section*{Crossover}
- What actually happens in crossover?
- Preliminary : Visualisation.

\begin{tabular}{|l|l|l|l|l|l|}
\hline A & B & C & D & E & F \\
\hline
\end{tabular}
- Crossover is performed at genotypic level

\section*{Crossover}
- What actually happens in crossover?
- Preliminary : Visualisation.

- Crossover is performed at genotypic level

\section*{Crossover}
- What actually happens in crossover?
- Preliminary : Visualisation.

- Crossover is performed at genotypic level

\section*{Crossover}
- What actually happens in crossover?
- Preliminary : Visualisation.

- Crossover is performed at genotypic level

\section*{Ripple Crossover}
- Analyse 1-point crossover in terms of derivation \& syntax trees
- Use a closed grammar
\[
\begin{aligned}
& \mathrm{E}::=(+\mathrm{E} E)\{0\} \\
& \text { ( (-E E) \{1\} } \\
& \text { (-E E) }\{2\} \\
& \text { ( }-\mathrm{E} E \text { ) }\{3\} \\
& \begin{array}{ll}
\mid X & \{4\} \\
\mid Y & \{5\}
\end{array}
\end{aligned}
\]
- No polymorphism, because there is only one non-terminal, i.e. one context

\section*{Ripple Crossover}
- Analyse 1-point crossover in terms of derivation \& syntax trees
- Use a closed grammar
\[
\begin{aligned}
& \text { E: : = (+ E E) \{0\} } \\
& \text { |(-E E) \{1\} } \\
& \text { (-EE) }\{2\} \\
& \text { (-EE) }\{3\} \\
& \text { X } \begin{array}{l}
\text { X }
\end{array} \\
& \text { Y } \quad\{5\}
\end{aligned}
\]
- No polymorphism, because there is only one non-terminal, i.e. one context

\section*{Different Views of Crossover}


\section*{Rebuilding individuals}
- Parent left with "spine"

- Tail swapped with other parent 4594520522
- Unmanned \(E\) terms must be mapped
- Use tail from other parent

\section*{Rebuilding individuals}
- Parent left with "spine"

- Tail swapped with other parent

4594520522
- Unmapped \(E\) terms must be mapped
- Use tail from other parent

\section*{Intrinsic Polymorphism}
- With more than one non-terminal, a codon could be used differently in the offspring
\[
\begin{array}{llllllllllllllllll}
1 & 0 & 0 & 2 & 0 & 1 & & 1 & 0 & 0 & 2 & 0 & 1 & & 1 & 0 & 0 & 2
\end{array} 0
\]
\[
\begin{aligned}
& \text { expr }::=\text { var } \mid \text { expr op expr } \\
& \text { opr }::=+|*|-\mid \% \\
& \text { var }::=\mathrm{x} \mid \mathrm{y}
\end{aligned}
\]

\section*{Intrinsic Polymorphism}
- With more than one non-terminal, a codon could be used differently in the offspring
10020
\(\begin{array}{llllll}1 & 0 & 0 & 2 & 0 & 1\end{array}\)
10002011

\[
\begin{aligned}
& \text { expr }::=\text { var | expr op expr } \\
& \text { opr }::=+|*|-\mid \% \\
& \text { var }::=x \mid y
\end{aligned}
\]

\section*{Intrinsic Polymorphism}
- With more than one non-terminal, a codon could be used differently in the offspring
\[
\begin{array}{lllllllllllllllllll}
1 & 0 & 0 & 2 & 0 & 1 & & 1 & 0 & 0 & 2 & 0 & 1 & & 1 & 0 & 0 & 2 & 0
\end{array} 1
\]

\[
\begin{aligned}
& \text { var } \\
& \text { y } \\
& \text { expr }::=\text { var l expr op expr } \\
& \text { opr }::=+|*|-\mid \% \\
& \text { var }::=x \mid y
\end{aligned}
\]

\section*{Intrinsic Polymorphism}
- With more than one non-terminal, a codon could be used differently in the offspring

\section*{Effects of Ripple Crossover}
- Symbolic Regression Grammars

Closed Grammar
E : : = x
\[
\left\lvert\, \begin{array}{l|l}
(+E E) & \left(\begin{array}{lll}
* & E
\end{array}\right) \\
(-E E) & (/ E E E)
\end{array}\right.
\]

And the context free grammar:
\[
\begin{aligned}
& \text { Exp }::=\operatorname{Var} \mid \text { Exp Op Exp } \\
& \operatorname{Var}::=x \\
& \text { Op }::=+|*|-\mid /
\end{aligned}
\]

\section*{Effects (contd.)}
- Santa Fe ant trail grammars

\section*{Closed grammar}
```

E ::= move() | left() | right()
| iffoodahead(E E) | prog2(E, E)

```

Context free grammar:
```

Code ::= Line | prog2(Line, Code)
Line ::= Condition | Action
Action ::= move() | right() | left()
Condition ::= iffoodahead(Code, Code)

```

\section*{Symbolic Regresssion Success Rates}


Both ripple crossovers start more slowly, but reach higher fitness.

\section*{Santa Fe Success Rates}


Both ripple crossovers again start more slowly, but reach similar fitness.

\section*{Santa Fe - Extended Run}


Success rates on the Santa Fe ant trail problem, averaged over 100 runs, for 250 generations. Ripple crossovers start slowly, but reach higher fitness.

\section*{Other types of Crossover?}
- Homologous Crossover
- Try not to cross in identical areas
- Uniform
- Same size homologous
- Same size two point

\section*{Homologous Crossover - First point}
- Record rule histories for each individual
\begin{tabular}{rcccccccccc} 
Codon Integers & 2 & 13 & 40 & 1 & 3 & 240 & 100 & 23 & & PARENT 1 \\
Rules & 0 & 1 & 0 & 1 & 1 & 3 & 0 & 3 & \\
& & & & & & & & & \\
& & & & & & & & & \\
Codon Integers & 2 & 13 & 40 & 7 & 4 & 5 & 1 & 100 & \\
Rules & 0 & 1 & 0 & 4 & 0 & 2 & 1 & 0 & &
\end{tabular}
- Align rule histories of parents

\section*{Homologous Crossover - First point}
- Record rule histories for each individual

- Align rule histories of parents


\section*{Homologous Crossover - Second Point}
- Choose second point outside of area of similarity


\section*{Crossover comparisons (Cumulative Freq. Success)}



\section*{Productivity of Operators (Ratio of successes)}



\section*{Relative size of crossover fragments}


Ratio of the average fragment size being swapped and the average chromosome length at each generation averaged over 20 runs.

\section*{Headless Chicken - Crossover or Macromutation}
- Appears Crossover works
- 50\% material exchange with 1-point over entire runs
- If useful material exchanged then swapping random fragments should degrade performance?

\section*{Headless Chicken Comparison}



\section*{Why does crossover work?}
- Take a cue from GP crossover - The "Eve" Effect :
- All individuals in the final generation tend to evolve from the same ancestor

- The upper parts of individuals tend to come from the same individual

\section*{Why does crossover work?}
- Take a cue from GP crossover - The "Eve" Effect :
- All individuals in the final generation tend to evolve from the same ancestor

- The upper parts of individuals tend to come from the same individual

\section*{GE View of Eve Effect?}
- Individuals grow from left to right

Inds.


Decreasing prob. of identical decoded values

\section*{Size of region of similarity increases over time}
- Area immediately beyond region of similarity is "region of discovery":


\section*{Region of Region of Similarity Discovery}

\section*{Size of region of similarity increases over time}
- Area immediately beyond region of similarity is "region of discovery":


\section*{Size of region of similarity increases over time}
- Area immediately beyond region of similarity is "region of discovery":


\section*{The GAuGE System}

\section*{Genetic Algorithms using Grammatical Evolution}

Purpose:
- Position independent genetic algorithm;
- No under- or over-specification;
- Independent of search engine.

Based on mapping process (similar to GE):
- Specify position and value of each variable at genotypic level;
- Map genotype strings into functional phenotype strings.

\section*{The GAuGE System}

\section*{Genetic Algorithms using Grammatical Evolution}

Purpose:
- Position independent genetic algorithm;
- No under- or over-specification;
- Independent of search engine.

Based on mapping process (similar to GE):
- Specify position and value of each variable at genotypic level;
- Map genotype strings into functional phenotype strings.

\section*{Mapping in the GAuGE System}

Transform binary string into integer string:
- Problem has 4 variables \((\ell=4)\), with range \(0 \ldots 7\);
- Choose position field size (pfs = 2);
- Choose value field size (vfs = 4);
- Calculate binary string length:
\[
L=(p f s+v f s) \times \ell=(2+4) \times 4=24 \text { bits }
\]

\section*{Mapping in the GAuGE System}

Transform binary string into integer string:
- Problem has 4 variables \((\ell=4)\), with range \(0 \ldots 7\);
- Choose position field size (pfs =2);
- Choose value field size (vfs = 4);
- Calculate binary string length:
\[
L=(p f s+v f s) \times \ell=(2+4) \times 4=24 \text { bits }
\]

\section*{Mapping in the GAuGE System}

Transform binary string into integer string:
- Problem has 4 variables \((\ell=4)\), with range \(0 \ldots 7\);
- Choose position field size (pfs =2);
- Choose value field size (vfs = 4);
- Calculate binary string length:
\[
L=(p f s+v f s) \times \ell=(2+4) \times 4=24 \text { bits }
\]

\section*{Mapping in the GAuGE System}

Transform binary string into integer string:
- Problem has 4 variables \((\ell=4)\), with range \(0 \ldots 7\);
- Choose position field size (pfs \(=2\) );
- Choose value field size (vfs = 4);
- Calculate binary string length:
\[
L=(p f s+v f s) \times \ell=(2+4) \times 4=24 \text { bits }
\]

Binary string
\(\left.\begin{array}{|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|}\hline 0 & 0 & 1 & 0 & 0 & 1 & 1 & 0 & 1 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 0 & 0 & 1 & 0\end{array}\right)\)

Integer string

\section*{Calculating Phenotype}
Integer string
\begin{tabular}{|c|c|c|cc|c|c|c|c|}
\hline P & V & P & V & P & V & P & V \\
\hline 0 & 9 & 2 & 13 & 1 & 4 & 1 & 2 \\
\hline
\end{tabular}
Phenotype \begin{tabular}{|c|c|c|c|}
\(?\) & \(?\) & \(?\) & \(?\) \\
\hline 0 & 1 & 2 & 3
\end{tabular}

\section*{Calculating Phenotype}


\section*{Calculating Phenotype}


\section*{Calculating Phenotype}


\section*{The GAuGE System}
\[
\begin{aligned}
& \text { Integer string } \\
& p: 1 \div 1=0 \\
& \text { v: } 2 \div 8=2 \\
& \text { Phenotype } \begin{array}{|l|l|l|l|}
\hline 1 & 2 & 4 & 6 \\
\hline
\end{array}
\end{aligned}
\]

\section*{Where is Gauge useful?}
- GAuGE adapts the representation to the problem
- Useful where interactions between genes not known
- GAuGE is cheap
- Far less complicated than algorithms that try to model gene interactions/relationships
- GAuGE discovers saliency
- Most important genes end up on left side of strings

\section*{Chorus}
- Mapping Independent Codons - no ripple effect
- Codon \% Total number of rules in the grammar
- Competition between the Genes
- Concentration Table
- Variable length binary strings
- 8 bit codons

\section*{Grammar specification}
```

S= <expr>
(0) <expr> ::= <expr> <op> <expr>
(1) | (<expr> <op> <expr>)
(2) | <pre-op> (<expr>)
(3) | <var>
(5)
(9) Cos
(A) Exp
(B) | Log
(D) | X

```

\section*{Mapping - 1}

\section*{Four non-terminals:}
- <expr>0..3, <op \(>4 . .7,<\) pre-op \(>8 . . B,<\operatorname{var}>\) C..D
\[
\begin{array}{llllllll}
209 & 102 & 190 & 55 & 65 & 15 & 255 & 87 \\
\mathrm{D} & 4 & 8 & \mathrm{D} & 9 & 1 & 3 & 3
\end{array}
\]
\begin{tabular}{ccccc|cccc|cccc|cc} 
& 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & \(A\) & \(B\) & \(C\) & \(D\) \\
\hline\(<\mathrm{e}>\) & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{tabular}

\section*{Mapping - 2}

Four non-terminals:
- <expr>0..3, <op \(>4 . .7,<\) pre-op \(>8 . . B,<\) var \(>\) C..D
```

209 102 190 55 65 15 255 87
D 4 8 D 9 1 3 3

```
\begin{tabular}{lcccc|cccc|cccc|cc} 
& 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & A & B & C & D \\
\hline\(<\mathrm{e}>\) & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\(<\mathrm{e}><\mathrm{o}><\mathrm{e}>\) & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 2
\end{tabular}

\section*{Mapping - 3}

Four non-terminals:
- <expr>0..3, <op \(>4 . .7,<\) pre-op \(>8 . . B,<v a r>C . . D\)
```

209 102 190 55 65 15 255 87
D 4 8 D 9 1 3 3

```
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & A & B & C & D \\
\hline <e> & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline \(<\mathrm{e}><0><\mathrm{e}>\) & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 2 \\
\hline \(<\mathrm{v}><0><\mathrm{e}>\) & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 2 \\
\hline
\end{tabular}

\section*{Mapping - 4}

\section*{Four non-terminals:}
- <expr>0..3, <op \(>4 . .7,<\) pre-op \(>8 . . B,<v a r>C . . D\)
```

209 102 190 55 65 15 255 87
D 4 8 D 9 1 3 3

```
\begin{tabular}{lllll|llll|llll|ll} 
& 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & A & B & C & D \\
\hline\(<\mathrm{e}>\) & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\(<\mathrm{e}><\mathrm{o}><\mathrm{e}>\) & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 2 \\
\(<\mathrm{V}><\mathrm{O}><\mathrm{e}>\) & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 2 \\
\(\mathrm{X}<\mathrm{O}><\mathrm{e}>\) & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 1
\end{tabular}

\section*{Mapping - 5}

Four non-terminals:
- <expr>0..3, <op \(>4 . .7,<\) pre-op \(>8 . . B,<v a r>C . . D\)
```

209 102 190 55 65 15 255 87
D 4 8 D 9 1 3}

```
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & A & B & C & D \\
\hline <e> & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline \(<\mathrm{e}><0><\mathrm{e}>\) & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 2 \\
\hline \(<\mathrm{v}><\mathrm{o}><\mathrm{e}>\) & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 2 \\
\hline \(\mathrm{X}<0><\mathrm{e}>\) & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 1 \\
\hline X + <e> & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 1 \\
\hline
\end{tabular}

\section*{Mapping - 6}

Four non-terminals:
- <expr>0..3, <op \(>4 . .7,<\) pre-op \(>8 . . B,<v a r>C . . D\)
```

209 102 190 55 65 15 255 87
D 4 8 D 9 1 3 3

```
\begin{tabular}{lllll|llll|llll|ll} 
& 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & A & B & C & D \\
\hline\(<\mathrm{e}>\) & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\(<\mathrm{e}><\mathrm{o}><\mathrm{e}>\) & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 2 \\
\(<\mathrm{V}><0><\mathrm{e}>\) & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 2 \\
\(\mathrm{X}<\mathrm{O}><\mathrm{e}>\) & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 1 \\
\(\mathrm{X}+<\mathrm{e}>\) & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 1 \\
\(\mathrm{X}+<\mathrm{V}>\) & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 1
\end{tabular}

\section*{Mapping - 7}

Four non-terminals:
- <expr>0..3, <op \(>4 . .7,<\) pre-op \(>8 . . B,<v a r>C . . D\)
```

209 102 190 55 65 15 255 87
D 4 8 D 9 1 3 3

```
\begin{tabular}{lllll|llll|llll|ll} 
& 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & A & B & C & D \\
\hline\(<\mathrm{e}>\) & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\(<\mathrm{e}><\mathrm{o}><\mathrm{e}>\) & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 2 \\
\(<\mathrm{V}><0\rangle<\mathrm{e}>\) & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 2 \\
\(\mathrm{X}<\mathrm{O}><\mathrm{e}>\) & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 1 \\
\(\mathrm{X}+<\mathrm{e}>\) & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 1 \\
\(\mathrm{X}+<\mathrm{V}>\) & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 1 \\
\(\mathrm{X}+\mathrm{X}\) & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 0
\end{tabular}

\section*{Cumulative Freq. with and without degeneracy}


- No huge difference : Normal, 4- and 6-bit top three in both

\section*{Mean Variety - Any degeneracy helps!}



\section*{Unique Individuals}



\section*{Conclusions}
- Conclusions:
- Improves genetic diversity
- Improves frequency of success on Santa Fe ant trail
- Tuneable/Evolvable Degeneracy a good idea?

\section*{Number of individuals wrapped}
- Wrap Count \& Invalid Individuals


Figure: Number of individuals wrapped on the symbolic regression and Santa Fe trail problems.

\section*{Wrapping and Invalid Individuals}


Figure: The number of invalid individuals for each generation in the presence and absence of wrapping.

\section*{Performance}
- Freq. of Success


Figure: Figure shows the cumulative frequency of success measures on both problems with and without the presence of wrapping.

\section*{Lengths (Some Definitions)}
- Actual length
- Entire length of individual
- Effective length
- Number of codons used
- (Note! Can be less than or greater than actual length)

\section*{Genome Lengths}


\section*{Summary}
- For SR (left) wrapping off has the longest actual length
- Effective length virtually the same
- For SF (right) wrapping on longer in both cases.
- Conclusions:
- Wrapping improves frequency of success on Santa Fe ant trail
- No effect on Symbolic Regression cumulative frequency
- Provides some constraint on genome lengths

\section*{Wrapping \& Degeneracy}
- Removing both....
- Cumulative frequency of success degrades
- Genome lengths increase over 60\% on Symbolic Regression
- Genetic diversity no worse than without degeneracy alone

\section*{Search Techniques}

- Other techniques
- Simulated Annealing
- Hill Climbing
- Random Search

\section*{Comparison}
- Three standard GP problems
- Santa Fe trail
- Symbolic Integration (integrate \(\operatorname{Cos}(x)+2 x+1\) )
- Symbolic regression \(x^{4}+x^{3}+x^{2}+x\)
\begin{tabular}{|l|l|l|l|l|}
\hline & \multicolumn{4}{|l|}{ Metaheuristic } \\
\hline Problem & RS & HC & SA & GA \\
\hline Santa Fe & \(54 \%\) & \(7 \%\) & \(14 \%\) & \(81 \%\) \\
Symbolic Integration & \(66 \%\) & \(4 \%\) & \(3 \%\) & \(100 \%\) \\
Symbolic Regression & \(0 \%\) & \(0 \%\) & \(0 \%\) & \(59 \%\) \\
\hline
\end{tabular}

\section*{The Future}
- The Grammar (Attribute Grammars)
- Search \& Evolutionary Dynamics
- Applications
- Newest Code Release
- http://waldo.csisdmz.ul.ie/libGE/```

