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Introduction

Issues with GP

Function/terminal set must have “closure”

Single types only

Trees grow, or “bloat”
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Introduction

Biological Phenomena

No simple one to one mapping
Genes produce proteins

Proteins combine to create phenotype

Linear strings
Genomes are always held on strings

Unconstrained search
Repair not performed
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Grammatical Evolution

Grammatical Evolution

Grammatical Evolution (GE)
GA to evolve programs
Morphogenetic Effect:

Genotype mapped to phenotype

Phenotype is a compilable program

Genome governs mapping of a BNF/attribute grammar definition
to the program
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Grammatical Evolution

Grammatical Evolution

Here genome (a binary string) is mapped to compilable C code

Can potentially evolve programs in any language, with arbitrary
complexity

Any structure than be specified with a grammar, e.g. graphs,
neural networks, etc.
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Grammatical Evolution Grammars

Language Definition

Backus Naur Form (BNF)
Notation for expressing a languages grammar as Production Rules

BNF Grammar consists of the tuple < T,N,P,S > where
T is Terminals set
N is Non-Terminals set
P is Production Rules set
S is Start Symbol (a member of N)

BNF Example

T = {Sin, Cos, Tan, Log,+,−, /, ∗, X , (, )}

S =< expr >
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Grammatical Evolution Grammars

BNF Definition

N = {expr , op, pre_op}

And P can be represented as:

(1) <expr> ::= <expr> <op> <expr> (A)
| ( <expr> <op> <expr> ) (B)
| <pre-op> ( <expr> ) (C)
| <var> (D)

(2) <op> ::= + (A)
| - (B)
| / (C)
| * (D)
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Grammatical Evolution Grammars

BNF Definition

(3) <pre-op> ::= Sin (A)
| Cos (B)
| Tan (C)

(4) <var> ::= X (A)

A Genetic Algorithm is used to control choice of production rule
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Grammatical Evolution Architecture

Architecture
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Grammatical Evolution Comparison

Related GP Systems
Name Genome Representation
Koza Tree Direct
Banzhaf et al Linear Direct
Gruau Tree Graph Grammar
Whigham Tree Derivation Tree
Wong & Leung Tree Logic Grammars
Paterson Linear Grammar

Repair mechanisms..

Koza - none needed
Banzhaf - required for syntactically legal individuals
Gruau - none needed
Whigham - all crossovers subject to repair
Wong & Leung - all crossovers subject to repair
Paterson - under/overspecification.
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Grammatical Evolution Comparison

Repair
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Grammatical Evolution Comparison

Grammatical Evolution

In contrast GE uses
BNF - Paterson/Whigham/Wong etc.
Variable Length Linear Chromosomes - Koza/Gruau/Banzhaf
Genome encodes pseudo-random numbers
Degenerate Genetic Code

Several genes map to same phenotype

Wrap individuals

Use 8 bit codons
Each codon represents at least one Production Rule
Gene contains many codons

Pseudo-random numbers determine what production rule will be
used
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Grammatical Evolution Comparison

Grammatical Evolution

Expression of a Codon results in an Amino Acid
(choice in the derivation sequence)

Amino acids can combine to form a functional protein (i.e.
Terminals such as +, X or Sin, can combine)
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Grammatical Evolution Example

Example Individual

To complete BNF definition for a function written in a subset of C
we include.....

<func> ::= <header>
<header> ::= float symb(float X) <body>
<body> ::= <declarations><code><return>
<declarations> ::= float a;
<code> ::= a = <expr>;
<return> ::= return (a);

Note implementation details.....
Function is limited to a single line of code

If required can get GE to generate multi-line functions.....modify
<code> ::= <line>;

| <line>; <code>
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Grammatical Evolution Example

Example Individual

In this subset of C all individuals of the form

float symb(float x)
{

float a;
a = <expr>;
return(a);

}

Only < expr > will be evolved

Each non-terminal is mapped to a terminal before any others
undergo a mapping process
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Grammatical Evolution Example

Example Individual

Given the individual
220 203 51 123 2 45 ....what will happen?

<expr> has 4 production rules to choose from

(1) <expr> ::= <expr> <op> <expr> (A)
| ( <expr> <op> <expr> ) (B)
| <pre-op> ( <expr> ) (C)
| <var> (D)

Taking first codon 220 we get 220 MOD 4 = 0
Gives <expr>< op >< expr >

Next choice for the first <expr>
Taking next codon 203 we get 203 MOD 4 = 3
Gives <var>< op >< expr >
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Grammatical Evolution Example

Example Individual

<var> involves no choice

Mapped to X...only one production
Now have X <op>< expr >

220 203 51 123 2 45

Read next codon to choose <op>

Next is third codon , value 51, so get 51 MOD 4 = 3
Now have X∗ <expr>

Next choice for <expr>
Next codon is 123 so get 123 MOD 4 = 3
Now have X∗ <var>

Again <var> involves no choice
Finally we get X ∗ X

The extra codons at end of genome are simply ignored in mapping
the genotype to phenotype
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Grammatical Evolution Mapping

Example Mapping Overview

Figure: Example Mapping Outline

<expr> :: = <expr><op><expr> |(<expr><op><expr>) |<pre-op>(<expr>)
|<var>
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Grammatical Evolution Mapping

Derivation Tree Structure

1 2 5 7
220 203 51 123 2 45

Not all nodes require a choice!
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Grammatical Evolution Mapping

Codons are polymorphic

When mapping < expr >, we calculate

220 mod 4

However, if we were mapping < pre − op > with 220, we would
calculate

220 mod 3

because there are just three choices

Meaning of a codon depends on its context
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Grammatical Evolution Mapping

Mapping Process

No simple one to one mapping in GE
Mapping Process to generate programs

Separate Search and Solution Spaces
Ensure validity of individuals
Remove language dependency
Maintain diversity
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Grammatical Evolution Mapping

Genetic Code Degeneracy

Figure: The Degenerate Genetic Code
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Grammatical Evolution Mapping

Genetic Code Degeneracy

Neutral Mutations
Mutations having no effect on Phenotype Fitness

Help preserve individual validity
Gradual accumulation of mutations without harming functionality

Revisit later
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Grammatical Evolution Initialisation

Initialisation

Individuals are strings of random numbers
No guarantee that they will terminate
Individuals can be very short.

<expr> ::= <expr> <op> <expr>
| ( <expr> <op> <expr> )
| <pre-op> ( <expr> )
| <var>

Production

<expr>-><var>

always leads to termination

<expr>
is the start symbol

On average, a quarter of all individuals are just one point
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Grammatical Evolution Initialisation

Sensible Initialisation

Generate a spread of individual sizes.
Based on Ramped Half and Half initialisation in GP

For all tree depths from 2 to maximum size
Generate an equal number of trees of that size
Use full for 50%
Use grow for 50%

Similar in GE, but generate derivation trees of equivalent size

(University of Limerick) Grammatical Evolution 8th July 2006 27 / 81



Grammatical Evolution Initialisation

Sensible Initialisation - 2

Record which number choice was made for each step
Perform an “unmod” on list of choices

Produce a number between 0 and 255 that produces the original
number when moded by the number of choices for that
productionrule

Ensures that all individuals are valid

Reduces the number of clones (easier to detect)

Eliminates single point individuals (if desired)
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Genetic Operators

Genetic Operators

Perform unconstrained Evolutionary Search
GE employs standard operators of Genetic Algorithms

Point mutation, one-point crossover etc.

Sometimes modified version of one-point crossover, Sensible
Crossover, is used:

Effective length
Actual length
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Genetic Operators Crossover

Crossover

What actually happens in crossover?

Preliminary : Visualisation.

Crossover is performed at genotypic level
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Genetic Operators Ripple Crossover

Ripple Crossover

Analyse 1-point crossover in terms of derivation & syntax trees

Use a closed grammar

E::= (+ E E) {0}
|(- E E) {1}
|(- E E) {2}
|(- E E) {3}
|X {4}
|Y {5}

No polymorphism, because there is only one non-terminal, i.e.
one context
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Genetic Operators Ripple Crossover

Different Views of Crossover
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Genetic Operators Ripple Crossover

Rebuilding individuals

Parent left with “spine”

Tail swapped with other parent
4 5 9 4 5 2 0 5 2 2

Unmapped E terms must be mapped

Use tail from other parent
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Genetic Operators Ripple Crossover

Intrinsic Polymorphism

With more than one non-terminal, a codon could be used
differently in the offspring
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Genetic Operators Ripple Crossover

Effects of Ripple Crossover

Symbolic Regression Grammars

Closed Grammar

E ::= x
| (+ E E) | (* E E)
| (- E E) | (/ E E)

And the context free grammar:

Exp ::= Var | Exp Op Exp
Var ::= x
Op ::= + | * | - | /
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Genetic Operators Ripple Crossover

Effects (contd.)

Santa Fe ant trail grammars

Closed grammar

E ::= move() | left() | right()
| iffoodahead(E E) | prog2(E, E)

Context free grammar:

Code ::= Line | prog2(Line, Code)
Line ::= Condition | Action
Action ::= move() | right() | left()
Condition ::= iffoodahead(Code, Code)
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Genetic Operators Ripple Crossover

Symbolic Regresssion Success Rates

Both ripple crossovers start more slowly, but reach higher fitness.
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Genetic Operators Ripple Crossover

Santa Fe Success Rates

Both ripple crossovers again start more slowly, but reach similar
fitness.
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Genetic Operators Ripple Crossover

Santa Fe - Extended Run

Success rates on the Santa Fe ant trail problem, averaged over 100
runs, for 250 generations. Ripple crossovers start slowly, but reach
higher fitness.
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Genetic Operators Alternative Crossovers

Other types of Crossover?

Homologous Crossover
Try not to cross in identical areas

Uniform

Same size homologous

Same size two point
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Genetic Operators Alternative Crossovers

Homologous Crossover - First point

Record rule histories for each individual

Align rule histories of parents
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Genetic Operators Alternative Crossovers

Homologous Crossover - Second Point

Choose second point outside of area of similarity
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Genetic Operators Alternative Crossovers

Crossover comparisons (Cumulative Freq. Success)

1pt/2pt best, uniform worst.
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Genetic Operators Alternative Crossovers

Productivity of Operators (Ratio of successes)
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Genetic Operators Alternative Crossovers

Relative size of crossover fragments

Ratio of the average fragment size being swapped and the average
chromosome length at each generation averaged over 20 runs.
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Genetic Operators Alternative Crossovers

Headless Chicken - Crossover or Macromutation

Appears Crossover works

50% material exchange with 1-point over entire runs

If useful material exchanged then swapping random fragments
should degrade performance?
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Genetic Operators Alternative Crossovers

Headless Chicken Comparison

It does!
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Genetic Operators Explanation

Why does crossover work?

Take a cue from GP crossover - The “Eve” Effect :
All individuals in the final generation tend to evolve from the same
ancestor

The upper parts of individuals tend to come from the same
individual

(University of Limerick) Grammatical Evolution 8th July 2006 48 / 81



Genetic Operators Explanation

Why does crossover work?

Take a cue from GP crossover - The “Eve” Effect :
All individuals in the final generation tend to evolve from the same
ancestor

The upper parts of individuals tend to come from the same
individual

(University of Limerick) Grammatical Evolution 8th July 2006 48 / 81



Genetic Operators Explanation

GE View of Eve Effect?

Individuals grow from left to right
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Genetic Operators Explanation

Size of region of similarity increases over time

Area immediately beyond region of similarity is “region of
discovery” :
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GAuGE Introduction

The GAuGE System

Genetic Algorithms using Grammatical Evolution

Purpose:

Position independent genetic algorithm;

No under- or over-specification;

Independent of search engine.

Based on mapping process (similar to GE):

Specify position and value of each variable at genotypic level;

Map genotype strings into functional phenotype strings.
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GAuGE Mapping

Mapping in the GAuGE System

Transform binary string into integer string:

Problem has 4 variables (` = 4), with range 0 . . . 7;

Choose position field size (pfs = 2);

Choose value field size (vfs = 4);

Calculate binary string length:

L = (pfs + vfs)× ` = (2 + 4)× 4 = 24 bits
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GAuGE Mapping

Mapping in the GAuGE System

Transform binary string into integer string:

Problem has 4 variables (` = 4), with range 0 . . . 7;

Choose position field size (pfs = 2);

Choose value field size (vfs = 4);

Calculate binary string length:

L = (pfs + vfs)× ` = (2 + 4)× 4 = 24 bits

0 0 1 0 0 1 1 0 1 1 0 1 0 1 0 1 0 0 0 1 0 0 1 0

0 9 2 13 1 4 1 2

Binary string

Integer string
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GAuGE Mapping

Calculating Phenotype

p v p v p v vp

0 9 2 13 1 4 1 2

Integer string

0 1 2 3

???Phenotype ?
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GAuGE Mapping

Calculating Phenotype

p v p v p v vp

0p: 0 %   =

1

0 9 2 13 1 4 1 2

v: 9 %   =

Integer string

0 1 2 3

1 ???Phenotype

4

8
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GAuGE Mapping

Calculating Phenotype

p v p v p v vp

0 9 2 13 1 4 1 2

Integer string

p: 2 %   =

v:13 %   =

2

6

1 ??Phenotype
210

6

8

3
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GAuGE Mapping

Calculating Phenotype

p v p v p v vp

0 9 2 13 1 4 1 2

Integer string

1 ?Phenotype
10

6

p: 1 %   =

v: 4 %   = 4

1

4

8

2
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GAuGE Mapping

The GAuGE System

p v p v p v vp

0 9 2 13 1 4 1 2

Integer string

1Phenotype
0

6

p: 1 %   =

4

v: 2 %   =

0

2

2

8

1
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GAuGE Summary

Where is Gauge useful?

GAuGE adapts the representation to the problem
Useful where interactions between genes not known

GAuGE is cheap
Far less complicated than algorithms that try to model gene
interactions/relationships

GAuGE discovers saliency
Most important genes end up on left side of strings
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Chorus Introduction

Chorus

Mapping Independent Codons - no ripple effect

Codon % Total number of rules in the grammar

Competition between the Genes

Concentration Table

Variable length binary strings

8 bit codons
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Chorus Introduction

Grammar specification

S= <expr>
(0) <expr> ::= <expr> <op> <expr>
(1) | ( <expr> <op> <expr> )
(2) | <pre-op> ( <expr> )
(3) | <var>
(4) <op> ::= +
(5) | -
(6) | *
(7) | /
(8) <pre-op>::= Sin
(9) | Cos
(A) | Exp
(B) | Log
(C) <var> ::= 1.0
(D) | X
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Chorus Introduction

Mapping - 1

Four non-terminals:

<expr> 0..3, <op> 4..7, <pre-op> 8..B, <var> C..D

209 102 190 55 65 15 255 87
D 4 8 D 9 1 3 3

0 1 2 3 4 5 6 7 8 9 A B C D
<e> 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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Chorus Introduction

Mapping - 2

Four non-terminals:

<expr> 0..3, <op> 4..7, <pre-op> 8..B, <var> C..D

209 102 190 55 65 15 255 87
D 4 8 D 9 1 3 3

0 1 2 3 4 5 6 7 8 9 A B C D
<e> 0 0 0 0 0 0 0 0 0 0 0 0 0 0
<e><o><e> 0 0 0 0 1 0 0 0 1 1 0 0 0 2
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Chorus Introduction

Mapping - 3

Four non-terminals:

<expr> 0..3, <op> 4..7, <pre-op> 8..B, <var> C..D

209 102 190 55 65 15 255 87
D 4 8 D 9 1 3 3

0 1 2 3 4 5 6 7 8 9 A B C D
<e> 0 0 0 0 0 0 0 0 0 0 0 0 0 0
<e><o><e> 0 0 0 0 1 0 0 0 1 1 0 0 0 2
<v><o><e> 0 0 0 0 1 0 0 0 1 1 0 0 0 2
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Chorus Introduction

Mapping - 4

Four non-terminals:

<expr> 0..3, <op> 4..7, <pre-op> 8..B, <var> C..D

209 102 190 55 65 15 255 87
D 4 8 D 9 1 3 3

0 1 2 3 4 5 6 7 8 9 A B C D
<e> 0 0 0 0 0 0 0 0 0 0 0 0 0 0
<e><o><e> 0 0 0 0 1 0 0 0 1 1 0 0 0 2
<v><o><e> 0 0 0 0 1 0 0 0 1 1 0 0 0 2
X<o><e> 0 0 0 0 1 0 0 0 1 1 0 0 0 1
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Chorus Introduction

Mapping - 5

Four non-terminals:

<expr> 0..3, <op> 4..7, <pre-op> 8..B, <var> C..D

209 102 190 55 65 15 255 87
D 4 8 D 9 1 3 3

0 1 2 3 4 5 6 7 8 9 A B C D
<e> 0 0 0 0 0 0 0 0 0 0 0 0 0 0
<e><o><e> 0 0 0 0 1 0 0 0 1 1 0 0 0 2
<v><o><e> 0 0 0 0 1 0 0 0 1 1 0 0 0 2
X<o><e> 0 0 0 0 1 0 0 0 1 1 0 0 0 1
X+<e> 0 0 0 0 0 0 0 0 1 1 0 0 0 1
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Chorus Introduction

Mapping - 6

Four non-terminals:

<expr> 0..3, <op> 4..7, <pre-op> 8..B, <var> C..D

209 102 190 55 65 15 255 87
D 4 8 D 9 1 3 3

0 1 2 3 4 5 6 7 8 9 A B C D
<e> 0 0 0 0 0 0 0 0 0 0 0 0 0 0
<e><o><e> 0 0 0 0 1 0 0 0 1 1 0 0 0 2
<v><o><e> 0 0 0 0 1 0 0 0 1 1 0 0 0 2
X<o><e> 0 0 0 0 1 0 0 0 1 1 0 0 0 1
X+<e> 0 0 0 0 0 0 0 0 1 1 0 0 0 1
X+<v> 0 0 0 0 0 0 0 0 1 1 0 0 0 1
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Chorus Introduction

Mapping - 7

Four non-terminals:

<expr> 0..3, <op> 4..7, <pre-op> 8..B, <var> C..D

209 102 190 55 65 15 255 87
D 4 8 D 9 1 3 3

0 1 2 3 4 5 6 7 8 9 A B C D
<e> 0 0 0 0 0 0 0 0 0 0 0 0 0 0
<e><o><e> 0 0 0 0 1 0 0 0 1 1 0 0 0 2
<v><o><e> 0 0 0 0 1 0 0 0 1 1 0 0 0 2
X<o><e> 0 0 0 0 1 0 0 0 1 1 0 0 0 1
X+<e> 0 0 0 0 0 0 0 0 1 1 0 0 0 1
X+<v> 0 0 0 0 0 0 0 0 1 1 0 0 0 1
X+X 0 0 0 0 0 0 0 0 1 1 0 0 0 0
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Degeneracy Performance

Cumulative Freq. with and without degeneracy

No huge difference : Normal, 4- and 6-bit top three in both
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Degeneracy Variety

Mean Variety - Any degeneracy helps!
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Degeneracy Variety

Unique Individuals
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Degeneracy Variety

Conclusions

Conclusions:
Improves genetic diversity
Improves frequency of success on Santa Fe ant trail
Tuneable/Evolvable Degeneracy a good idea?
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Wrapping Number of individuals wrapped

Number of individuals wrapped

Wrap Count & Invalid Individuals

Figure: Number of individuals wrapped on the symbolic regression and Santa
Fe trail problems.
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Wrapping Number of individuals wrapped

Wrapping and Invalid Individuals

Figure: The number of invalid individuals for each generation in the presence
and absence of wrapping.
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Wrapping Performance

Performance

Freq. of Success

Figure: Figure shows the cumulative frequency of success measures on both
problems with and without the presence of wrapping.
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Wrapping Genome Lengths

Lengths (Some Definitions)

Actual length
Entire length of individual

Effective length
Number of codons used
(Note! Can be less than or greater than actual length)
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Wrapping Genome Lengths

Genome Lengths
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Wrapping Summary

Summary

For SR (left) wrapping off has the longest actual length

Effective length virtually the same

For SF (right) wrapping on longer in both cases.
Conclusions:

Wrapping improves frequency of success on Santa Fe ant trail
No effect on Symbolic Regression cumulative frequency
Provides some constraint on genome lengths
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Wrapping Wrapping & Degeneracy

Wrapping & Degeneracy

Removing both....
Cumulative frequency of success degrades
Genome lengths increase over 60% on Symbolic Regression
Genetic diversity no worse than without degeneracy alone
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Search Techniques Other Algorithms

Search Techniques

Other techniques
Simulated Annealing
Hill Climbing
Random Search
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Search Techniques Comparison

Comparison

Three standard GP problems
Santa Fe trail
Symbolic Integration (integrate Cos(x) + 2x + 1)
Symbolic regression x4 + x3 + x2 + x

Metaheuristic
Problem RS HC SA GA
Santa Fe 54% 7% 14% 81%
Symbolic Integration 66% 4% 3% 100%
Symbolic Regression 0% 0% 0% 59%
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The Future

The Future

The Grammar (Attribute Grammars)

Search & Evolutionary Dynamics

Applications
Newest Code Release

http://waldo.csisdmz.ul.ie/libGE/
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