
Code acceleration
with HMPP

Outcomes from HMPP training

2

HMPP in a nutshell
•  Language extension for hardware

accelerators
– For C, Fortran and C++ soon
– Based on compiler directives
– Easy to learn and to use

•  What OpenMP is for multi-thread
programming

3

HMPP rational
•  Hardware accelerators are hard to program

–  Mostly limited to C API and/or C extensions
–  Low-level programming
–  Hard to tune and to debug
–  Nightmare to maintain

•  What about portability?
–  Development environment
–  Hardware

4

HMPP answer
•  Compiler directives

–  No code “modifications”, just comments if not
recognised by the compiler

–  Mostly hardware independent
–  Can address different targets and strategies

•  Run time environment
–  Low-level optimisations undertaken by HMPP itself
–  Always a fallback possibility to pure CPU code

5

HMPP targets
•  Current:

–  CUDA for Nvidia GPU
–  CAL/IL or BROOK for ATI/AMD GPU
–  C for debugging purpose
–  SSE for SSE vectorisation
–  CELL for IBM Cell processors (limited support)

•  Future:
–  OPENCL for even more portability
–  …

6

HMPP basic: codelet/callsite
•  Paired directives

– codelet: routine implementation
– callsite: routine invocation

•  Unique label for referencing them
•  1 for 1 association in the code

– As many individual codelet (re)definitions as
actual callsite invocations

7

HMPP codelet example
#pragma hmpp label1 codelet, args[B].io=out, args

[C].io=inout, target=CUDA:CAL/IL
void myFunc(int n, int A[n], int B[n], int C[n])
{

 for(int i=0 ; i<n ; i++)
 {
 B[i] = A[i] * A[i];
 C[i] = C[i] * A[i];
 }

}

8

HMPP callsite example
for(int i=0 ; i<n ; i++)

 A[i] = C[i] = i;

for(int i=0 ; i<n ; i++)
{
#pragma hmpp label1 callsite

 myFunc(n, A, B, C);
}

9

More HMPP features
•  Hardware management

– allocate: reserve hardware and allocate
memory

–  release: opposite actions

•  Data transfer management
– advanceload: explicit host to device transfer
– delegatestore: explicit device to host transfer

10

HMPP allocate/release example
for(int i=0 ; i<n ; i++)

 A[i] = C[i] = i;
#pragma hmpp label1 allocate
for(int i=0 ; i<n ; i++)
{
#pragma hmpp label1 callsite

 myFunc(n, A, B, C);
}
#pragma hmpp label1 release

11

Even more features
•  Tones of memory management options
•  Asynchronous data transfers
•  Thread synchronisation
•  Codelet grouping
•  Conditional invocation
•  Advanced algorithmic optimisations

–  Loop parallelisation
–  Loop unrolling / jamming

12

Performances example

13

Conclusion
•  Easy to develop / maintain
•  Efficient
•  Cyclic approach to hardware acceleration
•  Hardware-portable
•  Possibly software-portable

