(ICHEC

{§§'§§ Irish Centre for High-End Computing

Code acceleration
with HMPP

Outcomes from HMPP training

g

Y

V4
V.
M
i
hlte
A
,l,,.l.r

{§.§'§§. Irish Centre for High-End Computing

HMPP in a nutshell

e Language extension for hardware
accelerators
— For C, Fortran and C++ soon
— Based on compiler directives
— Easy to learn and to use

e What OpenMP is for multi-thread
programming

(ICHEC

{§§'§§ Irish Centre for High-End Computing

HMPP rational

e Hardware accelerators are hard to program
— Mostly limited to C API and/or C extensions
— Low-level programming
— Hard to tune and to debug
— Nightmare to maintain

e What about portability?
— Development environment
— Hardware

g

Y

V<3
V.
M
e
hlte
ey
,l,,.l.r

{§.§'§§. Irish Centre for High-End Computing

HMPP answer

e Compiler directives

— No code “"madifications”, just comments if not
recognised by the compiler

— Mostly hardware independent
— Can address different targets and strategies

e Run time environment
— Low-level optimisations undertaken by HMPP itself
— Always a fallback possibility to pure CPU code

(ICHEC

{§§'§§' Irish Centre for High-End Computing

HMPP targets

e Current:
— CUDA for Nvidia GPU
— CAL/IL or BROOK for ATI/AMD GPU
— C for debugging purpose
— SSE for SSE vectorisation
— CELL for IBM Cell processors (limited support)

e Future:
— OPENCL for even more portability

e

Y

V<3
Y.
i
ke
hlte
ey
A

i'i.i.i.g. Irish Centre for High-End Computing

Wy
W

HMPP basic: codelet/callsite

e Paired directives
— codelet: routine implementation
— callsite: routine invocation

e Unique label for referencing them

e 1 for 1 association in the code

— As many individual codelet (re)definitions as
actual callsite invocations

(ICHEC

{ﬁ'ﬁ Irish Centre for High-End Computing

HMPP codelet example

#pragma hmpp labell codelet, args[B].io=out, args
[C].io=inout, target=CUDA:CAL/IL

void myFunc(int n, int A[n], int B[n], int C[n])
{

for(int i=0 ; i<n ; i++)
{
B[i] = ALi] * ALi];
CLi] = C[i] * A[i];
y
} 7

ICHEC

\'\ Irish Centre for High-End Computing

HMPP callsite example

for(int i=0 ; i<n ; i++)
Ali] = C[i] = i;

for(int i=0 ; i<n ; i++)

{

#pragma hmpp labell callsite
myFunc(n, A, B, C);

¥

/7’%
Y 4
W
il
hlte
oty
,l,.:lr

{§.§'§§. Irish Centre for High-End Computing

More HMPP features

e Hardware management

— allocate: reserve hardware and allocate
memory

— release: opposite actions
e Data transfer management

— advanceload: explicit host to device transfer
— delegatestore: explicit device to host transfer

(ICHEC

gii'i'i Irish Centre for High-End Computing

lln

HMPP allocate/release example

for(int i=0 ; i<n ; i++)
Ali] = C[i] = i;
#pragma hmpp labell allocate
for(int i=0 ; i<n ; i++)
{
#pragma hmpp labell callsite
myFunc(n, A, B, C);
)

#pragma hmpp labell release

10

(ICHEC

{§§'§§ Irish Centre for High-End Computing

Even more features

e Tones of memory management options
e Asynchronous data transfers

e Thread synchronisation

e Codelet grouping

e Conditional invocation

e Advanced algorithmic optimisations
— Loop parallelisation
— Loop unrolling / jamming

11

H f#He@e@@QQ \?

le+06 ¢ T T T T T T T T T LA B B B T T T T T T T3
100000 |- __
10000 | __
wn 1000 =
a L
O
_l -
(I
= 100 | __
10 - / —
i sgemml HMPP_CUDA —+— |
1 L sgemm2_HMPP_CUDA_COM -
- sgemm3_HMPP_CUDA_GEN —%— -
L sgemm4_GUARD —&— |
0.1 1 1 TR SR T B | 1 1 I S N N B | 1 1 TR SR T N B |
10 100 1000 1000C

Number of elements

| 123.051, 21.3978
12

(ICHEC

{§§'§§ Irish Centre for High-End Computing

Conclusion

e Easy to develop / maintain

o Efficient

e Cyclic approach to hardware acceleration
e Hardware-portable

e Possibly software-portable

13

