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Abstract 
System-level design presents special simulation 

modeling challenges. System-level models address 
the architectural and functional performance of 
complex systems. Systems are decomposed into a 
series of interacting sub-systems. Architectures   
define subsystems, the interconnections between 
subsystems and contention for shared resources. 
Functions define the input and output behavior of 
subsystems. Mission-level studies explore system 
performance in the context of mission-level 
scenarios.  This paper demonstrates a variety of 
complex system simulation models ranging from a 
mission-level, satellite-based air traffic management 
system to a RISC processor built with MLDesigner, a 
system-level design tool. All of the case studies 
demonstrate system-level design techniques using 
Discrete Event simulation. 
 
 

1. The Challenge of Complex Systems  
 

Designing, implementing and managing complex 
systems represents a major challenge. Complex 
systems range from global systems, such as. 
telecommunications systems, the Internet, and 
military combat information systems, to everyday 
devices (e.g. cellular telephones, computers and 
automobiles), to the components used to create those 
devices (e.g., processors, embedded systems and 

sensors.) Complex systems can also be processes that 
describe complex production or workflow systems.  

Complex system design challenges include: 
• Dealing with complex architectures with 

complex functionality in each subsystem and a 
high degree of concurrent processing,  

• Dealing with dynamic Events with complex 
interaction between subsystems, 

• Dealing with data, task & architecture dependent 
interactions, and 

• Dealing with use cases and mission scenarios. 
Hines [1] has described the problems of complex 

system design from the Military/Aerospace 
perspective, citing large system examples such as 
ships, aircraft and satellite/satellite launch systems. 
However, complex systems come in small packages 
as well. Modern processors can incorporate multiple 
CPU cores, onboard memory caches, and buses. 
Systems on a chip incorporate processors, operating 
systems and applications.  These IC designs can 
contain the equivalent of millions of transistors.  

As IC complexity increases and feature size 
shrinks, the cost of bringing the chip to market 
increases dramatically (see Jones [2] and Mahoney 
[3]) as does the potential for design errors. System–
level design reduces the risk of design errors by 
testing the design early in the process where errors 
are easy to fix. Experts suggest that system-level 
design can determine as much as 80% of a system’s 
total cost, performance and time to market. 
Accordingly, interest in system level design and 
analysis techniques is growing rapidly.  



2. MLDesigner 
 

MLDesigner is a unique system-level simulation 
modeling platform that integrates both major system-
level modeling areas (architecture and function), and 
most simulation modeling domains, in a single tool. 
Modeling domains include Discrete Event, Finite 
State Machine, three types of Dataflow (Dynamic, 
Synchronous, and Boolean) and Continuous 
Time/Discrete Event. The domains can be used 
individually or used together for heterogeneous 
(multi-domain) models.  

MLDesigner provides a complete design 
environment for modeling complex systems. 
MLDesigner can be used for a wide variety of 
applications including processor and computer 
architectural performance analysis, System-on-a-
Chip (SOC) co-design (where a single MLDesigner 
model can represent hardware, software and 
operating system), wireless chip, handset and system 
design/analysis, and process system design and 
analysis. 

MLDesigner models are defined graphically as 
hierarchical block diagrams. Blocks have defined 
inputs and outputs that are connected via visible 
links or via shared memories. Control and 
information is passed between blocks via particles 
(tokens) that consist of either a simple trigger 
particle or a hierarchical data structure. Bottom level 
blocks contain primitives written in a form of C++ 
code. (Source code is provided for all primitives.) 
Higher-level blocks contain block diagrams. All 
blocks can be parameterized for easy “what if” 
analysis and to maximize block reusability  

MLDesigner libraries contain more than 2000 
design blocks (operators) and more than 400 
example systems. MLDesigner has a rich collection 
of debugging tools and dynamic control and display 
widgets. It is readily extensible: users can add new 
primitives, high level blocks, examples, new 
domains and links to other tools.  

This paper focuses on the MLDesigner Discrete 
Event domain as it has the broadest scope for 
system-level modeling and can model the full range 
of electronic communications systems from 
applications to wave forms. By contrast, Data Flow 
domains are used to model DSP devices and signal 
modulation systems such as W-CDMA and the 
continuous Time/Discrete Event Domain is used to 
model analog and mixed signal devices such as PLLs 
and sensors.  

The MLDesigner Discrete Event domain provides 
power abstraction tools: hierarchical data structures 
and resources. Hierarchical data structures carry 
functional information, protocol information, control 

information, costs information, and statistical 
information between blocks and can be used to 
abstract bit streams as messages or packets. 
Resources represent shared elements that must be 
acquired or accessed by an entity during a 
simulation. Quantity resources are “borrowed” for a 
while and then returned so they can be used by other 
model components. They are used to model entities 
such as buffers and memory. Server resources 
represent a constant flow of consumable resources 
such as CPU cycles.  

Data structures can carry “costs” to trigger 
resource availability, consumption and contention. 
For example, a data structure representing a 
computer instruction can contain a field specifying 
the cost of the operation (in CPU cycles.) When the 
instruction is processed by a server resource 
(representing the CPU), the Server Resource 
automatically records the cost (for CPU utilization 
statistics) and calculates the delay required to 
represent the CPU cycles required to process the 
instruction. Similarly, a network packet data 
structure can contain a message size field (e.g., N 
bytes). When the message is buffered (and the buffer 
is represented as a quantity resource), the size of the 
buffer is automatically reduced by “N” bytes until 
the message is released from the buffer and the 
memory is released.  

 
3. Example system models 
 

This paper presents four examples showing how 
MLDesigner has been used to model different types 
of complex systems.  All systems are modeled using 
the Discrete Event design domain of MLDesigner. 

The first example is a mission-level simulation 
model of a satellite-based global Air Traffic 
Management system. This example shows 
MLDesigner working dynamically with another 
simulation tool and shows how data structures can be 
used to dynamically represent communications 
nodes (here, aircraft.)  

The second example models a network of three 
multi-tasking computers connected in a switched 
Ethernet network. It shows how resources and data 
structures can be used to abstract CPUs, busses and 
cables. 

The third example, is a high-level architectural 
performance model of a multi-processor computer, 
shows techniques for abstracting hardware (a 
computer), operating system, and application in a 
single high-level model. 

The fourth example shows how MLDesigner can 
be used to develop a new application library to serve 



as a foundation for a whole series optical network 
designs and performance studies.  

 
3.1.  A mission-level Air Traffic 
Management system 

 
A mission-level model of a satellite-based Air 

Traffic Management (ATM) system uses an 
imaginary network of 20 Medium Earth orbit (MEO) 
satellites and 11 ground stations to move control and 
data traffic between ground control stations and 
aircraft.  

The ATM network carries messages for multiple 
services including Air Traffic Services, Airline 
Operation Control, Airline Administrative 
Communications, Airline Passenger 
Correspondence, Controller-Pilot Data Link, 
Datalink-Flight Information Services, and automated 
position reporting. A high-level diagram of the 
system is shown in Figure 1.  

 

ATN Fixed Network

Figure 2. Schematic of the ATM System 
Each message service has defined message scripts 

that include sender ID, message sizes and message 
frequencies. Flights are divided into 10 phases, each 
with a defined length (en-route times vary.) Each 
phase has a message service profile. Flights are 
defined with a data structure that includes flight 
name, departure and destination latitude and 
longitude, altitude, start time, flight duration, takeoff 
time, route sectors and reporting interval. 

In this model MLDesigner works in conjunction 
with SatLab, a design environment for mission and 
system level design, animation, and analysis of 
wireless mobile communication and navigation 
systems.  SatLab supplies the MLDesigner model 
with satellite and aircraft position information 
needed to calculate transmission delays. The two 
programs are connected dynamically via a socket 
interface. When MLDesigner starts, it directs SatLab 
to execute a predefined script, provides initialization 
data (e.g., time and date) and then periodically 

requests position data from SatLab during the 
simulation.  

Figure 2 shows the top-level view of the ATM 
model in the MLDesigner workspace (center of the 
GUI.).  Here the system is abstracted into an 
initialization block that loads all start-up data files, 
and a run module. The workspace also shows some 
of the top-level shared memories used to pass 
information between blocks. (They are the squares 
containing “M” at top center.) Other GUI windows 
show (clockwise from lower left) the model 
properties editor, the file manager, the data structure 
editor, the data structure member editor and, at the 
right bottom, the command window. The model 
properties window (lower left) is used to set 
parameters for the model shown in the design 
window. The data structure member editor (center 
right window) shows the some of the members/fields 
of the flight data structure including the name of the 
plane/flight, start/finish latitude and longitude, 
altitude, and flight start time. 

 
Figure 2. ATM model in MLDesigner 

Figure 3 shows the Run module from Figure 2.  

 
Figure 3. Top-level ATM system diagram 

showing top-level modules 
The blocks represent top-level functions 

(clockwise from lower left) loading flight data, 



dynamic aircraft (represented with data structures), 
transmission delay, the satellite system, transmission 
delay, ground stations and a control station.  Top 
center blocks maintain the link to SatLab; the upper 
right block handles statistics collection and 
reporting. With the exception of the SatLab clocks, 
all blocks shown are high-level blocks containing 
hierarchical block diagrams that describe their 
functions in greater detail. Shared memories are 
shown in the upper left corner. 

The model generates ground and aircraft 
messages for each phase of the flight and sends them 
through the system as data structures. SatLab 
generates the positions for the satellite constellation 
and provides data for calculating the distances 
between the aircraft, the available satellites, and the 
appropriate ground stations.  Built-in MLDesigner 
analysis blocks generate a variety of performance 
and behavior statistics.  

 
3.2. A network 
 

A small, special-purpose network (Figure 4) 
connects three computers through a layer 3 switch. 
Computers consist of CPUs connected to nodes via 
PCI buses. CPU1 is partitioned into two virtual 
machines (VM1 and VM2); VM1 executes two 
concurrent tasks or threads. This model demonstrates 
several MLDesigner DE abstraction tools. 
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Figure 4. Schematic for network model 

showing virtual machines, nodes, switch 
and threads. 

Hierarchical data structures carry messages 
between blocks (e.g., move routing table entries), 
represent the flow of data messages through the 
protocol stack (with support for encapsulation, 
addressing, etc.) and collect statistical data for 
performance analysis. Server resources are used to 
model the CPUs, PCI buses, and cables. Quantity 
resources are used to model memories and buffers. 

Shared memory makes information available to 
blocks simultaneously. 

The top-level MLDesigner model (Figure 5) uses 
custom icons for the CPUs, Nodes and Switch, 
Server resources (the small square blocks) to model 
the CPUs, the busses, buffers, and the Ethernet 
cables.  Statistical modules (the shaded blocks) 
collect and graph performance data. 

 
Figure 5. MLDesigner top-level network 

model 
Figure 6 shows CPU1. The top two 
ApplicationProcessData blocks generate messages 
(driven by periodic and Poisson model models) and 
pass them to NodeA to put on the network. The 
bottom Application Process Data Block receives 
network messages from NodeA.  The two-layer 
server resource (lower right) uses server resources to 
partition CPU1 resources into two virtual machines 
and VM1 resources into two tasks 

 
Figure 6. CPU 1 model  

3.3 A multi-processor computer  
 

This model demonstrates techniques for modeling 
the high-level functionality and performance of 
multi-processor computer architecture. The model 



uses independent software and hardware models that 
interact through a shared memory virtual connection. 
Parameters control key design elements such as 
Processor Speed, Instructions per time unit, Mean 
Memory Accesses Per Instruction, Cache Hit Rate, 
Bus Cycle Time, Number of Processors, and 
Memory Access Time. Probe blocks collect 
performance data and display it dynamically during 
execution or as post simulation summaries.  

The software module abstracts the operating 
system and application as a series of processor 
requests (instructions) to be executed by the 
computer. Processor requests are modeled with a 
data structure. That includes fields that specify the 
number of instructions to be executed and timing 
data describing the execution of the request. Shared 
memories (MemoryInProcessor and 
MemoryOutProcessor shone in the upper right in 
software, and lower left in hardware) pass processor 
request between the hardware and software modules. 

 
Figure 7. Software module for multi-

processor computer model 
The hardware model (Figure 8) has four Central 

Processing Units (CPUs), each with an associated 
Cache Memory, connected via a Bus.  

 
Figure 8. Top Level hardware model of a 

multi-processor computer 
Processor requests are received by the dispatcher, 

which monitors CPU availability. Requests are 
assigned to an idle processor for execution (and the 
CPU marked busy), or queued until a CPU is 

available. When the CPU completes processing the 
request, it is passed back to the Dispatcher (for return 
to the software module) and the CPU is either given 
another request or marked idle. Each CPU can 
independently send requests to the bus for accessing 
the Main Memory and can send/receive requests and 
responses to and from I/0 devices like disk and 
network controllers 

The CPU module decides (statistically) which 
instructions require Cache access, requests that 
number of memory accesses to the Cache module 
and waits for the Cache response. When the CPU 
module receives the Cache response, it inserts a CPU 
instruction delay to account for the CPU execution 
time for that instruction.  When all the instructions 
for a particular CPU have been executed, the 
Processor Request DS is returned to the Dispatch 
module as described above. 

The Cache decides if the memory request can be 
filled or requires main memory access based on the 
Cache hit ratio parameter. If main memory access is 
required, the request is passed to the bus; if not, the 
Cache adds a cache access delay and passes the 
memory request back to the CPU. 

The Bus receives and queues the cache line fill or, 
if the bus is free, the Bus module grabs the bus and 
sends a request (BusDS) to the main memory. This 
prevents other CPUs from accessing the bus until it 
is released. The Bus module holds the bus until it 
receives a response from the main memory, applies a 
bus delay then s module frees the bus and returns the 
BusDS to the Cache. 

The Memory receives cache line fill request 
(BusDS) from the Bus, inserts a memory access and 
then returns the BusDS data structure to the Bus.  

All delays are inserted into processor request data 
structure fields and collected for statistical analysis. 

 
3.4. An optical component library 
 

This example shows a library of optical 
component building blocks to e used to develop and 
evaluate alternative advanced avionics network 
designs.  Data structures are used to abstract the 
physical effects of optical communication 
components so they can be used for network-level 
simulation while still retaining the necessary level of 
accuracy. A special class of Optical Layer (OL) data 
structures defines all optical signals that pass through 
components in the optical network library.  The OL 
class definition is used to separate optical signals 
from others that may be used in the simulation (e.g. 
electrical, wireless, logical).   

Optical signals that are represented as a single 
wavelength within optical components (disregarding 



center frequency spread) are classified as members 
of the Single_OL class and are defined by 
characteristics such as Wavelength, 
Opt_Power_Level, Data and Number_Of_Bits.  
Optical signals of different wavelengths passing 
through a component at the same time are classified 
as wave-division multiplexed (WDM) signals and 
are members of the Multiple_OL class, which is 
composed of a vector of Single_OL members 

Version 1.0a of the library is contains 38 
primitive modules that perform basic functions such 
as laser source output and structure manipulations. 
The primitives are used to define 34 key optical 
networking components including optical couplers, 
splitters, amplifiers, add/drop multiplexers, filters, 
wavelength-tunable receivers and transmitters, and 
switches of various sizes. 

The library’s 2×4 Optical Coupler model is 
shown in Figure 9. When an OL data structure 
appears on one of the component’s two input ports, 
an input coupling loss is inserted and the structures 
are combined with an appropriate coupling ratio.  If 
both input structures employ a common wavelength 
then an error is generated.  Otherwise, an output 
coupling loss is assessed, the resulting WDM 
structure is replicated four times and the data 
structures are placed at each of the four output ports.  

Output Coupling Loss

Splitting RatiosCoupling Ratios

Input Coupling Loss

Output Coupling Loss

Splitting RatiosCoupling Ratios

Input Coupling Loss

 
Figure 9: Optical coupler model 

The library components currently model only 
simple physical-layer effects such as time delay and 
signal power-level attenuation or amplification.  
Future versions of the library will add component 
detail to distinguish between signal power and noise 
power so an optical signal-to-noise ratio (OSNR) can 
be calculated.  Noise sources and effects will be 
added by applying several straightforward formulae 
[4].  Ongoing research is investigating techniques for 
modeling higher-order physical layer effects such as 
amplified spontaneous emissions, crosstalk, 
dispersion, temperature effects, source chirping and 
4-wave mixing. 

MLDesigner and the Optical Network Component 
Library are currently being used to investigate 

concept architectures for a pixel bus network.  These 
networks consist of numerous graphics generators 
that create multiple display formats within the 
Digital Video Interface (DVI) standard.  The raw, 
encoded data bits are sent over a network from an 
aircraft’s Electronics Bay (EBay) to display heads in 
the cockpit that select the correct image and format 
from the streaming data.  Different types of a pixel 
bus network models (e.g., switch-based pixel bus, 
WDM-based pixel bus) are being developed to 
analyze cost, performance and scalability tradeoffs 
for next-generation unified avionics networks.  
Future models will support TDM as well as WDM 
networks. 

 
4. Summary 

 
Four system-level models were presented to 

demonstrate MLDesigner Discrete Event modeling 
and abstraction techniques for building high-level 
simulation models that have a high degree of 
flexibility and accuracy. Each model demonstrates a 
different type of system and different abstraction 
techniques. Abstraction techniques applied include: 
• Using resources to represent the costs of 

performing operations, 
• Using data structures to support dynamic 

instantiation of model elements, 
• Using data structures to abstract channel 

behavior, and 
• Using data structures and resources to model the 

execution of software instructions and 
applications on hardware. 
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