

System-Level Simulation Modeling with MLDesigner

Gunar Schorcht
MLDesign Technologies

Inc.
gunar@mldesigner.com

Ian Troxel
HCS Lab, University of

Florida
ian@hcs.ufl.edu

Keyvan Farhangian
KVON Technologies

Keyvan_Farhangian@hot
mail. com

Peter Unger
Ilmenau Technical

University
Punger@gmx.de

Daniel Zinn
Ilmenau Technical

University
Daniel@mldesigner.com

Colin K. Mick
MLDesign Technologies

Inc
colin@mldesigner.com

Alan George
HCS Lab, University of

Florida
george@hcs.ufl.edu

Horst Salzwedel
MLDesign Technologies

Inc.
horst@mldesigner.com

Abstract
System-level design presents special simulation

modeling challenges. System-level models address
the architectural and functional performance of
complex systems. Systems are decomposed into a
series of interacting sub-systems. Architectures
define subsystems, the interconnections between
subsystems and contention for shared resources.
Functions define the input and output behavior of
subsystems. Mission-level studies explore system
performance in the context of mission-level
scenarios. This paper demonstrates a variety of
complex system simulation models ranging from a
mission-level, satellite-based air traffic management
system to a RISC processor built with MLDesigner, a
system-level design tool. All of the case studies
demonstrate system-level design techniques using
Discrete Event simulation.

1. The Challenge of Complex Systems

Designing, implementing and managing complex
systems represents a major challenge. Complex
systems range from global systems, such as.
telecommunications systems, the Internet, and
military combat information systems, to everyday
devices (e.g. cellular telephones, computers and
automobiles), to the components used to create those
devices (e.g., processors, embedded systems and

sensors.) Complex systems can also be processes that
describe complex production or workflow systems.

Complex system design challenges include:
• Dealing with complex architectures with

complex functionality in each subsystem and a
high degree of concurrent processing,

• Dealing with dynamic Events with complex
interaction between subsystems,

• Dealing with data, task & architecture dependent
interactions, and

• Dealing with use cases and mission scenarios.
Hines [1] has described the problems of complex

system design from the Military/Aerospace
perspective, citing large system examples such as
ships, aircraft and satellite/satellite launch systems.
However, complex systems come in small packages
as well. Modern processors can incorporate multiple
CPU cores, onboard memory caches, and buses.
Systems on a chip incorporate processors, operating
systems and applications. These IC designs can
contain the equivalent of millions of transistors.

As IC complexity increases and feature size
shrinks, the cost of bringing the chip to market
increases dramatically (see Jones [2] and Mahoney
[3]) as does the potential for design errors. System–
level design reduces the risk of design errors by
testing the design early in the process where errors
are easy to fix. Experts suggest that system-level
design can determine as much as 80% of a system’s
total cost, performance and time to market.
Accordingly, interest in system level design and
analysis techniques is growing rapidly.

2. MLDesigner

MLDesigner is a unique system-level simulation
modeling platform that integrates both major system-
level modeling areas (architecture and function), and
most simulation modeling domains, in a single tool.
Modeling domains include Discrete Event, Finite
State Machine, three types of Dataflow (Dynamic,
Synchronous, and Boolean) and Continuous
Time/Discrete Event. The domains can be used
individually or used together for heterogeneous
(multi-domain) models.

MLDesigner provides a complete design
environment for modeling complex systems.
MLDesigner can be used for a wide variety of
applications including processor and computer
architectural performance analysis, System-on-a-
Chip (SOC) co-design (where a single MLDesigner
model can represent hardware, software and
operating system), wireless chip, handset and system
design/analysis, and process system design and
analysis.

MLDesigner models are defined graphically as
hierarchical block diagrams. Blocks have defined
inputs and outputs that are connected via visible
links or via shared memories. Control and
information is passed between blocks via particles
(tokens) that consist of either a simple trigger
particle or a hierarchical data structure. Bottom level
blocks contain primitives written in a form of C++
code. (Source code is provided for all primitives.)
Higher-level blocks contain block diagrams. All
blocks can be parameterized for easy “what if”
analysis and to maximize block reusability

MLDesigner libraries contain more than 2000
design blocks (operators) and more than 400
example systems. MLDesigner has a rich collection
of debugging tools and dynamic control and display
widgets. It is readily extensible: users can add new
primitives, high level blocks, examples, new
domains and links to other tools.

This paper focuses on the MLDesigner Discrete
Event domain as it has the broadest scope for
system-level modeling and can model the full range
of electronic communications systems from
applications to wave forms. By contrast, Data Flow
domains are used to model DSP devices and signal
modulation systems such as W-CDMA and the
continuous Time/Discrete Event Domain is used to
model analog and mixed signal devices such as PLLs
and sensors.

The MLDesigner Discrete Event domain provides
power abstraction tools: hierarchical data structures
and resources. Hierarchical data structures carry
functional information, protocol information, control

information, costs information, and statistical
information between blocks and can be used to
abstract bit streams as messages or packets.
Resources represent shared elements that must be
acquired or accessed by an entity during a
simulation. Quantity resources are “borrowed” for a
while and then returned so they can be used by other
model components. They are used to model entities
such as buffers and memory. Server resources
represent a constant flow of consumable resources
such as CPU cycles.

Data structures can carry “costs” to trigger
resource availability, consumption and contention.
For example, a data structure representing a
computer instruction can contain a field specifying
the cost of the operation (in CPU cycles.) When the
instruction is processed by a server resource
(representing the CPU), the Server Resource
automatically records the cost (for CPU utilization
statistics) and calculates the delay required to
represent the CPU cycles required to process the
instruction. Similarly, a network packet data
structure can contain a message size field (e.g., N
bytes). When the message is buffered (and the buffer
is represented as a quantity resource), the size of the
buffer is automatically reduced by “N” bytes until
the message is released from the buffer and the
memory is released.

3. Example system models

This paper presents four examples showing how
MLDesigner has been used to model different types
of complex systems. All systems are modeled using
the Discrete Event design domain of MLDesigner.

The first example is a mission-level simulation
model of a satellite-based global Air Traffic
Management system. This example shows
MLDesigner working dynamically with another
simulation tool and shows how data structures can be
used to dynamically represent communications
nodes (here, aircraft.)

The second example models a network of three
multi-tasking computers connected in a switched
Ethernet network. It shows how resources and data
structures can be used to abstract CPUs, busses and
cables.

The third example, is a high-level architectural
performance model of a multi-processor computer,
shows techniques for abstracting hardware (a
computer), operating system, and application in a
single high-level model.

The fourth example shows how MLDesigner can
be used to develop a new application library to serve

as a foundation for a whole series optical network
designs and performance studies.

3.1. A mission-level Air Traffic
Management system

A mission-level model of a satellite-based Air

Traffic Management (ATM) system uses an
imaginary network of 20 Medium Earth orbit (MEO)
satellites and 11 ground stations to move control and
data traffic between ground control stations and
aircraft.

The ATM network carries messages for multiple
services including Air Traffic Services, Airline
Operation Control, Airline Administrative
Communications, Airline Passenger
Correspondence, Controller-Pilot Data Link,
Datalink-Flight Information Services, and automated
position reporting. A high-level diagram of the
system is shown in Figure 1.

ATN Fixed Network

Figure 2. Schematic of the ATM System
Each message service has defined message scripts

that include sender ID, message sizes and message
frequencies. Flights are divided into 10 phases, each
with a defined length (en-route times vary.) Each
phase has a message service profile. Flights are
defined with a data structure that includes flight
name, departure and destination latitude and
longitude, altitude, start time, flight duration, takeoff
time, route sectors and reporting interval.

In this model MLDesigner works in conjunction
with SatLab, a design environment for mission and
system level design, animation, and analysis of
wireless mobile communication and navigation
systems. SatLab supplies the MLDesigner model
with satellite and aircraft position information
needed to calculate transmission delays. The two
programs are connected dynamically via a socket
interface. When MLDesigner starts, it directs SatLab
to execute a predefined script, provides initialization
data (e.g., time and date) and then periodically

requests position data from SatLab during the
simulation.

Figure 2 shows the top-level view of the ATM
model in the MLDesigner workspace (center of the
GUI.). Here the system is abstracted into an
initialization block that loads all start-up data files,
and a run module. The workspace also shows some
of the top-level shared memories used to pass
information between blocks. (They are the squares
containing “M” at top center.) Other GUI windows
show (clockwise from lower left) the model
properties editor, the file manager, the data structure
editor, the data structure member editor and, at the
right bottom, the command window. The model
properties window (lower left) is used to set
parameters for the model shown in the design
window. The data structure member editor (center
right window) shows the some of the members/fields
of the flight data structure including the name of the
plane/flight, start/finish latitude and longitude,
altitude, and flight start time.

Figure 2. ATM model in MLDesigner

Figure 3 shows the Run module from Figure 2.

Figure 3. Top-level ATM system diagram

showing top-level modules
The blocks represent top-level functions

(clockwise from lower left) loading flight data,

dynamic aircraft (represented with data structures),
transmission delay, the satellite system, transmission
delay, ground stations and a control station. Top
center blocks maintain the link to SatLab; the upper
right block handles statistics collection and
reporting. With the exception of the SatLab clocks,
all blocks shown are high-level blocks containing
hierarchical block diagrams that describe their
functions in greater detail. Shared memories are
shown in the upper left corner.

The model generates ground and aircraft
messages for each phase of the flight and sends them
through the system as data structures. SatLab
generates the positions for the satellite constellation
and provides data for calculating the distances
between the aircraft, the available satellites, and the
appropriate ground stations. Built-in MLDesigner
analysis blocks generate a variety of performance
and behavior statistics.

3.2. A network

A small, special-purpose network (Figure 4)
connects three computers through a layer 3 switch.
Computers consist of CPUs connected to nodes via
PCI buses. CPU1 is partitioned into two virtual
machines (VM1 and VM2); VM1 executes two
concurrent tasks or threads. This model demonstrates
several MLDesigner DE abstraction tools.

Switch Node B
(3 sockets)

Node A
(3 sockets)

Node C
(3 sockets)

CPU 2
VM3
T4

CPU 3
VM 4
S3

T5 & T6

CPU 1
S1

PCI Bus

VM 1
S2

T1 & T2

VM2
T3

P
C

I B
us

PCI Bus

FD
 E

th
er

ne
t

FD
 E

th
er

ne
t

FD EthernetSchedulers
S1 --VM1, VM2

S2--T1, T2
S3--T5, T6

Traffic flows
T1-T3 (UDP PPS)

T2--T4,T5 IP Multicast
T4-6 TCP

Figure 4. Schematic for network model

showing virtual machines, nodes, switch
and threads.

Hierarchical data structures carry messages
between blocks (e.g., move routing table entries),
represent the flow of data messages through the
protocol stack (with support for encapsulation,
addressing, etc.) and collect statistical data for
performance analysis. Server resources are used to
model the CPUs, PCI buses, and cables. Quantity
resources are used to model memories and buffers.

Shared memory makes information available to
blocks simultaneously.

The top-level MLDesigner model (Figure 5) uses
custom icons for the CPUs, Nodes and Switch,
Server resources (the small square blocks) to model
the CPUs, the busses, buffers, and the Ethernet
cables. Statistical modules (the shaded blocks)
collect and graph performance data.

Figure 5. MLDesigner top-level network

model
Figure 6 shows CPU1. The top two
ApplicationProcessData blocks generate messages
(driven by periodic and Poisson model models) and
pass them to NodeA to put on the network. The
bottom Application Process Data Block receives
network messages from NodeA. The two-layer
server resource (lower right) uses server resources to
partition CPU1 resources into two virtual machines
and VM1 resources into two tasks

Figure 6. CPU 1 model

3.3 A multi-processor computer

This model demonstrates techniques for modeling
the high-level functionality and performance of
multi-processor computer architecture. The model

uses independent software and hardware models that
interact through a shared memory virtual connection.
Parameters control key design elements such as
Processor Speed, Instructions per time unit, Mean
Memory Accesses Per Instruction, Cache Hit Rate,
Bus Cycle Time, Number of Processors, and
Memory Access Time. Probe blocks collect
performance data and display it dynamically during
execution or as post simulation summaries.

The software module abstracts the operating
system and application as a series of processor
requests (instructions) to be executed by the
computer. Processor requests are modeled with a
data structure. That includes fields that specify the
number of instructions to be executed and timing
data describing the execution of the request. Shared
memories (MemoryInProcessor and
MemoryOutProcessor shone in the upper right in
software, and lower left in hardware) pass processor
request between the hardware and software modules.

Figure 7. Software module for multi-

processor computer model
The hardware model (Figure 8) has four Central

Processing Units (CPUs), each with an associated
Cache Memory, connected via a Bus.

Figure 8. Top Level hardware model of a

multi-processor computer
Processor requests are received by the dispatcher,

which monitors CPU availability. Requests are
assigned to an idle processor for execution (and the
CPU marked busy), or queued until a CPU is

available. When the CPU completes processing the
request, it is passed back to the Dispatcher (for return
to the software module) and the CPU is either given
another request or marked idle. Each CPU can
independently send requests to the bus for accessing
the Main Memory and can send/receive requests and
responses to and from I/0 devices like disk and
network controllers

The CPU module decides (statistically) which
instructions require Cache access, requests that
number of memory accesses to the Cache module
and waits for the Cache response. When the CPU
module receives the Cache response, it inserts a CPU
instruction delay to account for the CPU execution
time for that instruction. When all the instructions
for a particular CPU have been executed, the
Processor Request DS is returned to the Dispatch
module as described above.

The Cache decides if the memory request can be
filled or requires main memory access based on the
Cache hit ratio parameter. If main memory access is
required, the request is passed to the bus; if not, the
Cache adds a cache access delay and passes the
memory request back to the CPU.

The Bus receives and queues the cache line fill or,
if the bus is free, the Bus module grabs the bus and
sends a request (BusDS) to the main memory. This
prevents other CPUs from accessing the bus until it
is released. The Bus module holds the bus until it
receives a response from the main memory, applies a
bus delay then s module frees the bus and returns the
BusDS to the Cache.

The Memory receives cache line fill request
(BusDS) from the Bus, inserts a memory access and
then returns the BusDS data structure to the Bus.

All delays are inserted into processor request data
structure fields and collected for statistical analysis.

3.4. An optical component library

This example shows a library of optical
component building blocks to e used to develop and
evaluate alternative advanced avionics network
designs. Data structures are used to abstract the
physical effects of optical communication
components so they can be used for network-level
simulation while still retaining the necessary level of
accuracy. A special class of Optical Layer (OL) data
structures defines all optical signals that pass through
components in the optical network library. The OL
class definition is used to separate optical signals
from others that may be used in the simulation (e.g.
electrical, wireless, logical).

Optical signals that are represented as a single
wavelength within optical components (disregarding

center frequency spread) are classified as members
of the Single_OL class and are defined by
characteristics such as Wavelength,
Opt_Power_Level, Data and Number_Of_Bits.
Optical signals of different wavelengths passing
through a component at the same time are classified
as wave-division multiplexed (WDM) signals and
are members of the Multiple_OL class, which is
composed of a vector of Single_OL members

Version 1.0a of the library is contains 38
primitive modules that perform basic functions such
as laser source output and structure manipulations.
The primitives are used to define 34 key optical
networking components including optical couplers,
splitters, amplifiers, add/drop multiplexers, filters,
wavelength-tunable receivers and transmitters, and
switches of various sizes.

The library’s 2×4 Optical Coupler model is
shown in Figure 9. When an OL data structure
appears on one of the component’s two input ports,
an input coupling loss is inserted and the structures
are combined with an appropriate coupling ratio. If
both input structures employ a common wavelength
then an error is generated. Otherwise, an output
coupling loss is assessed, the resulting WDM
structure is replicated four times and the data
structures are placed at each of the four output ports.

Output Coupling Loss

Splitting RatiosCoupling Ratios

Input Coupling Loss

Output Coupling Loss

Splitting RatiosCoupling Ratios

Input Coupling Loss

Figure 9: Optical coupler model

The library components currently model only
simple physical-layer effects such as time delay and
signal power-level attenuation or amplification.
Future versions of the library will add component
detail to distinguish between signal power and noise
power so an optical signal-to-noise ratio (OSNR) can
be calculated. Noise sources and effects will be
added by applying several straightforward formulae
[4]. Ongoing research is investigating techniques for
modeling higher-order physical layer effects such as
amplified spontaneous emissions, crosstalk,
dispersion, temperature effects, source chirping and
4-wave mixing.

MLDesigner and the Optical Network Component
Library are currently being used to investigate

concept architectures for a pixel bus network. These
networks consist of numerous graphics generators
that create multiple display formats within the
Digital Video Interface (DVI) standard. The raw,
encoded data bits are sent over a network from an
aircraft’s Electronics Bay (EBay) to display heads in
the cockpit that select the correct image and format
from the streaming data. Different types of a pixel
bus network models (e.g., switch-based pixel bus,
WDM-based pixel bus) are being developed to
analyze cost, performance and scalability tradeoffs
for next-generation unified avionics networks.
Future models will support TDM as well as WDM
networks.

4. Summary

Four system-level models were presented to

demonstrate MLDesigner Discrete Event modeling
and abstraction techniques for building high-level
simulation models that have a high degree of
flexibility and accuracy. Each model demonstrates a
different type of system and different abstraction
techniques. Abstraction techniques applied include:
• Using resources to represent the costs of

performing operations,
• Using data structures to support dynamic

instantiation of model elements,
• Using data structures to abstract channel

behavior, and
• Using data structures and resources to model the

execution of software instructions and
applications on hardware.

References

1. Hines, John. “We Don’t Do Design Correctly.”
Keynote presentation from the 2001 MASCOTS
conference.

2. Jones, Handel, “Analysis of the relationship between
EDA expenditures and competitive positioning of IC
vendors. International Business Strategies, Inc. 2002.

3. Mahoney, Jerry. “Sticker shock for photomasks.”
Electronic Business. 1 May, 2003.

4. Miller and E. Friedman, Optical Communications
Rules of Thumb, McGraw-Hill, New York, NY, 2003.

Acknowledgements

Work on example 1 was sponsored by EADS/Astrium.
Work on example 4 was sponsored in part by Rockwell

Collins, Inc.

