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Abstract
A quasiperiodic covering of a plane by regular decagons is described, and an

analogous structure in three dimensions is deduced. This consists of a pattern of
interpenetrating congruent triacontahedral clusters, related to the ½ 3 in¯ation rule
for quasiperiodic Ammann tiling patterns. The overlap regions are
triacontrahedron faces, oblate hexahedra, rhombic dodecahedra and rhombic
icosahedra. The structure leads to a plausible model for T2 icosahedral
quasicrystalline phases.

} 1. Introduction
Since the ®rst discovery of a quasicrystalline alloy (Schechtman et al. 1984), the

number and variety of quasicrystals has become quite extensive. The elucidation of
the detailed atomic arrangements in these materials posed problems for which tradi-
tional concepts of crystallography were inadequate: even such basic concepts as
lattices and their unit cells are inapplicable. Two theoretical approaches have proved
valuable. In the `tiling’ approach, the tiles of a quasiperiodic tiling pattern are
`decorated’, in analogy with the way in which the structure of a periodic crystal
can be described in terms of a decoration of the unit cell by atoms. The archetypal
quasiperiodic tiling patterns are the tilings of the plane by Penrose’s (1978) two
rhombic tiles. The structures of decagonal quasicrystals have been described in
terms of decorated Penrose tilings in layers perpendicular to the periodic axis. An
excellent example of this approach is the structure of the decagonal Al±Mn phase
presented by Li (1995), which consists of ¯at and puckered layers, each kind of layer
described essentially as a decorated Penrose tiling.

A basic conceptual di� culty in the tiling approach has always been the arti®ci-
ality of the matching rules that ensure the quasiperiodicity. The tiles, obviously, do
not correspond in any way to the actual subunits that combine in the formation of a
quasicrystal. It was recognized very early that clusters of atoms, with icosahedral
symmetry (such as the 54-atom Mackay (1962) icosahedron or the 44-atom Bergman
cluster or Pauling triacontahedron (Bergman et al. 1957)) are responsible for the
peculiar features of the quasicrystal phenomenon. See Mackay’s (1987) article,
appropriately entitled `What has Penrose tiling to do with icosahedral phases?’
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} 2. Clustering
Quasicrystals occur together with crystalline (i.e., periodic) phases, with which

they share grain boundaries. These `approximants’ are characterized by large unit
cells and icosahedral clusters of atoms. It is clear that a quasicrystalline phase and its
approximants must have closely related microstructures. Knowledge of the detailed
atomic structure of approximants has played a crucial role in the deduction of
structural models of quasicrystals. Early examples of this approach are the deduction
by Elser and Henley (1985) of a structural model for the icosahedral phase of Al±
Mn±Si from the structure of a-(Al±Mn±Si), which essentially is a bcc arrangement of
Mackay icosahedra, and the model suggested by Guyot and Audier (1985), consist-
ing essentially of aluminium icosahedra with octahedral linkages along their three-
fold axes.

In the process of formation of a quasicrystal, we can imagine clusters of atoms
growing by accretion from an initiating 12- or 13-atom icosahedral `seed’, successive
shells of atoms attaching themselves to it until outer atoms of the growing clusters
begin to act as new centres for further accretion. Romeau and Aragon (1993) have
investigated this scenario by simulation techniques, and have produced realistic
models of decagonal and icosahedral quasicrystalline structures.

The clusters can be thought of as `bonded’ to each other, the bonds being regions
of interpenetration (sharing of atoms) of the clusters. Janot (1997) has drawn atten-
tion to the way in which clusters, bonded in this manner, can be considered to be in
some sense analogous to individual atoms, but on a larger scale. Janot has shown
how electronic and other properties of quasicrystalline materials can be understood
in terms of large clusters `mimicking’ the behaviour of individual atoms.

} 3. Decagonal clusters
Two-dimensional analogues of clustering models have been presented by various

authors. A visually obvious feature of the Penrose rhomb patterns is the ubiquitous
occurrence of regular decagons, each containing ®ve `fat’ tiles and ®ve `thin’ tiles.
Moreover, the decagons are built from their constituent tiles in just two ways, and
any two contiguous decagons share either an edge, or a thin tile, or a hexagon
consisting of a fat tile and two thin tiles. The Penrose patterns are thus closely related
to quasiperiodic coverings of the plane by decagons. This aspect of the Penrose
tilings, and some generalizations, have been studied by Sasisekharan (1986).

In ®gure 1 the decagons of the Penrose tilings have been decorated by inserting
31 points in each. We get a two-dimensional (2D) clustering model. In the next
section we shall describe a three-dimensional (3D) analogue of this pattern and
discuss its relevance to quasicrystal structure.

Burkov (1992) demonstrated a model for the decagonal Al±Cu±Co and Al±Ni±
Co phases, based on a covering of the plane by decorated decagonal patches. In this
model contiguous decagons can only share either an edge or a hexagonal region. The
atomic positions for overlapping clusters correspond exactly: every atom in an over-
lap region is a coincidence site.

A remarkable covering of the plane by decagons was discovered by Gummelt
(1974), whose decagonal patch is partitioned into black and white regions as in ®gure
2. The assembly of the pattern is governed by the simple matching rule: `black on
black, white on white’. This forces quasiperiodicity. As Gummelt showed, the result-
ing patterns are equivalent to Penrose tiling patterns, in the sense that the application
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Figure 1. Decagonal clusters related to the Penrose patterns.

Figure 2. Gummelt’s decagon.



of an unambiguous procedure can convert a Gummelt pattern into a Penrose pat-
tern, and vice versa.

Steinhardt and Jeong (1996; see also Steinhardt et al. 1998 and Urban 1998) have
demonstrated a very convincing structural model for the decagonal Al±Ni±Co phase
based on a decoration, by atomic positions, of the Gummelt decagon.

} 4. Triacontahedral clusters
As long ago as 1935 Kowalewski (Coxeter 1963) discovered that a rhombic

triacontahedron (dual of the icosidodecahedron) can be assembled from twenty
subunits: ten oblate hexahedra and ten prolate hexahedra. These subunits are in
fact the two tiles of the quasiperiodic Ammann patterns that are the 3D analogues
of Penrose rhombic tilings.

Penrose’s patterns have a ½ in¯ation rule (GruÈ nbaum and Shephard 1987). The
Ammann patterns have a ½3 in¯ation rule. The principal features of the relation
between the pattern with unit edge length and the in¯ated pattern with edge length

½ 3 have been described by Audier and Guyot (1998) . On the basis of this relationship
these authors suggested a model for the structure of the icosahedral T2-(Al±Li±Cu)
phase. A di� erent model for the T2 phase arises from a consideration of the 3D
equivalent of ®gure 1, as we shall see.

The 31 sites in the decagonal patch of ®gure 1 can be obtained by projection of
the 32 vertices of a ®ve-dimensional (5D) hypercube (two of the hypercube vertices
project to the centre of the decagon). In the standard projection method for obtain-
ing a Penrose pattern from a 5D hypercubic lattice, only six of the 21 internal sites
occur. Similarly, a projection of a six-dimensional (6D) hypercube on to a 3D sub-
space yields 64 sites, occupying the 32 vertices of a rhombic triacontahedron and 32
`internal’ sites.

To be speci®c, we may consider the six 3D vectors e1; . . . ; e6 given by the columns
of

0 ½ ½ 0 ¡1 1

1 0 0 1 ½ ½

½ 1 ¡1 ¡½ 0 0

0

B@

1

CA; ½ ˆ …1 ‡
p

5†=2:

The position vectors for the 32 sites can be taken to be the various sums formed from
these six vectors. Introducing an abridged notation in which, for example,
e1 ‡ e2 ‡ e5 is denoted by 125, the 32 vertices of the triacontahedron (of edge length

® ˆ p…2 ‡ ½†† are:

twenty threefold vertices: 1 2 3 4 5 123 234 345 451 512
126 236 346 456 516 12346 23456 34516 45126 51236

twelve ®vefold vertices: 0 12 23 34 45 51
1236 2346 3456 4516 5126 123456.

The 32 internal sites are the vertices of a `small’ icosahedron and a `small’ dodeca-
hedron, both of edge length 2=½ . The external vertices of the `large’ triacontahedron
are stellation points of these polyhedra.

This pattern of 64 sites is the basic cluster of our quasiperiodic pattern. These
clusters can be bonded by sharing of sites. We consider four types of interpenetration
of a pair of triacontahedral clusters:
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type 2 0: sharing a faceÐbond directed along a twofold symmetry axis;
type 2: sharing a rhombic dodecahedronÐbond directed along a twofold axis;
type 3: sharing an oblate hexahedronÐbond directed along a ®vefold axis; and
type 5: sharing a rhombic icosahedronÐbond directed along a ®vefold axis.

Bondings of types 2, 3, and 5 are illustrated in ®gure 3 and relevant data for the four
types of bond are summarized in table 1.

The quasiperiodic distribution of sites that arises from this 3D analogue of the
pattern in ®gure 1 can be described as follows. Consider an Ammann tiling pattern
of edge length ½ 3®. Call it the ½ 3 pattern. There are two centres of the triacontahedral
clusters on every edge, at the golden mean positions on that edge. These two clusters
have type-5 bonding and each has a vertex at a vertex of the ½3 pattern. Also two
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(a)

(b) (c)

Figure 3. Two rhombic triacontahedra sharing (a) a single oblate unit, (b) a rhombic
dodecahedron, and (c) a rhombic icosahedron.

Table 1. Data for the four ways in which two of the triacontahedra can combine:
® ˆ …2 ‡ ½†1=2

.

Distance between Number of
Bond direction Overlap region centres coincidence sites

2 0 face 2½ 2 4
2 rhombic dodecahedron 2½ 16
3 oblate unit ½2 £ 31=2 8
5 rhombic icosahedron ® 32



clusters have centres on the long diagonal of every ½ 3 prolate unit, at the golden
mean positions. These pairs have type-3 bonding.

The resulting structure of interpenetrating triacontahedra is not a complete cov-
ering of space: every ½ 3 oblate unit has a prolate unit along its short diagonal that
remains uncovered by any of the triacontahedra. The network of bonds is indicated
in ®gure 4.

} 5. Development of the model
Our considerations so far have been purely geometrical. We regard the pattern

we have described as a skeleton framework for the development of models of qua-
sicrystal structures. A plausible structural model for the T2 phase (di� erent from
that of Audier and Guyot, who placed triacontahedral clusters at the vertices of the
½ 3 pattern) is obtained by introducing further `sites’ into our basic 64-atom cluster.
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(a)

(b) (c)

Figure 4. Lines of centres for overlapping pairs of 30-hedra, occurring in the ½3 units: (a) a
face of a ½3 unit (edge length is ®½3); (b) ½3 prolate unit; and (c) ½ 3 oblate unit. Bonds
that have been omitted for clarity are obtained from those shown by the ·33 symmetry of
the unit.



The model has been described in detail elsewhere (Lord et al. 2000). The set of 32
internal sites can be converted to a Bergman unit by placing twelve additional sites
over the faces of the `small’ dodecahedron, converting it to a small triacontahedron
of edge length ®=½ . The 136-atom cluster of the periodic R-(Al±Cu±Li) phase is
obtained if a shell of 60 sites (vertices of an Archimedean (5.62)Ð`soccer ball’ or
fullerene C60 structure) is sandwiched between the inner triacontahedron and the
outer triacontahedron. In the R phase these clusters are centred at bcc positions,
with each coordinated to eight others by type-3 bonding and to six others by type-2 0

bonding.
In the suggested elaboration of our quasiperiodic pattern, further coincidences

(or near-coincidences) arise and a model for the T2 phase, based on interpenetrating
triacontahedral clusters, emerges. A surprising feature of the model (in which the
basic cluster is a Bergman unit) is that substructures in the form of Mackay icosa-
hedra are also present. These are centred at the centres of `star polyhedra’ consisting
of twenty ½ 3 prolate units. The occurrence of both Bergman-type and Mackay-type
clusters in the same structure has also been noted in a model based on overlapping
icosidodecahedral clusters (Janot et al. 1998).
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