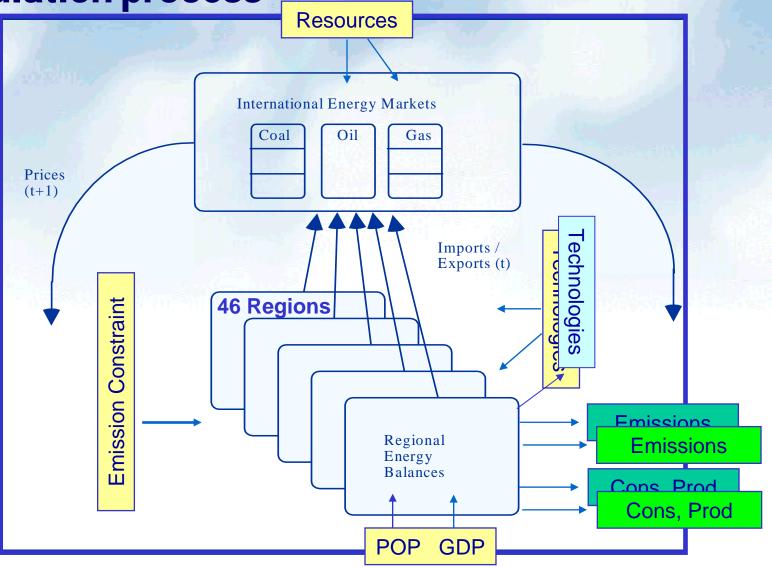

Emission Constraints and Induced Technical Change in the Energy Sector:

simulations with the POLES model

Patrick Criqui, Silvana Mima, Philippe Menanteau, FEEM, Milano, 18 February 2009

LEPII: research on Energy, and Environmental Policies



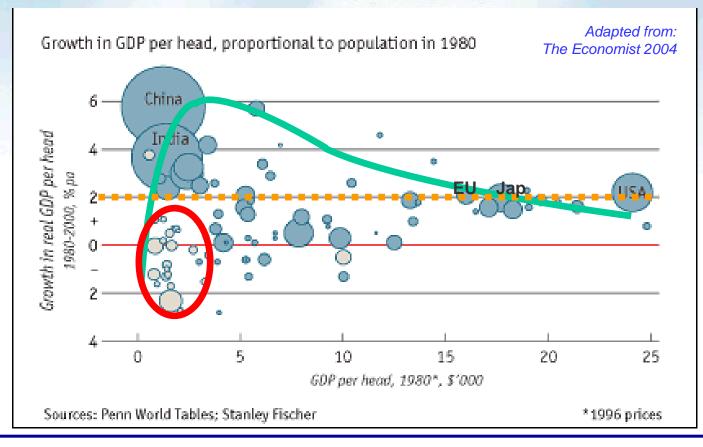
POLES V.5 : inputs, outputs, model structure

- Technical change: TECHPOL and the exogenous approach
- Technical change: Two Factor Learning Curves and the endogenous approach
- Endogenous TC with Increasing Returns to Adoption in MENGTECH

The POLES model year-by-year recursive simulation process

The POLES model regional disagregation (47)

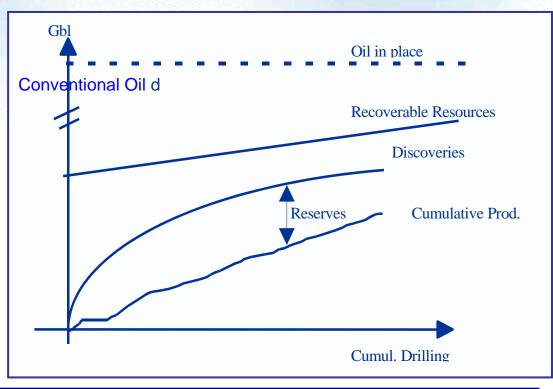
Region	Sub-Region	Countries
North America		Unites States, Canada
Europe	EU-15 EU-25 EU-27	Austria, Belgium, Denmark, Finland, France, Germany, Greece, Ireland, Italy, Netherlands, Portugal, Spain, Sweden, UK, Turkey
		Bulgaria, Czech Republic, Hungary, Poland, Romania, Slovak Republic
Japan – South Pacific	South Pacific	Japan, Australia & New Zealand
CIS		Russia, Ukraine
Latin America	Central America South America	Brazil, Mexico
Asia	South Asia South-East Asia	India, South Korea, China
Africa / Middle-East	North Africa Sub-saharian Africa Middle-East	Egypt


POLES : Energy demand modules

	Substituable Fuels	Electricity	Transport Fuels
Industry	B. TEL	1 Mile 100	Section 200
Steel industry	X	X	Same
Chemical industry	X	X	a a start and
Non Metallic Mineral	X	X	
Other industries	X	X	
Transport			- Sterrage
Road / passenger			X
Road / goods	ELS S		X
Rail / passenger		X	
Rail / goods		X	
Air transport			X
Other			X
Tertiary	X	X	
Residential	Х	X	
Agriculture	X	X	

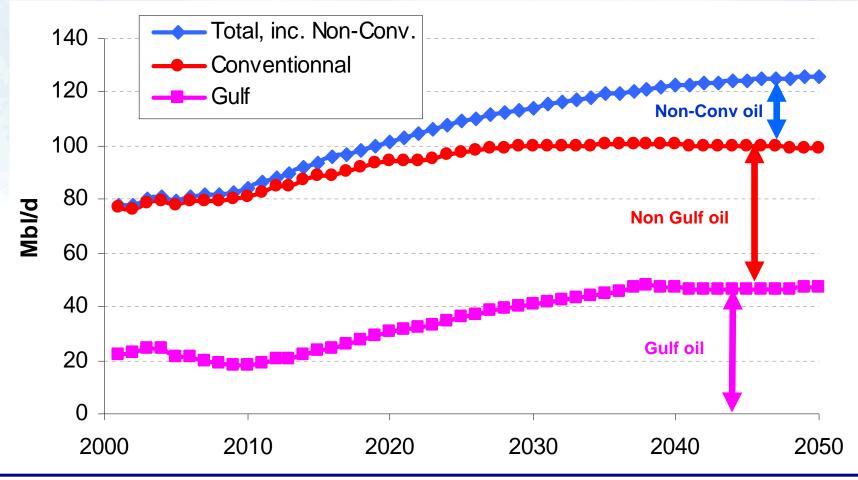
A view on economic growth & convergence

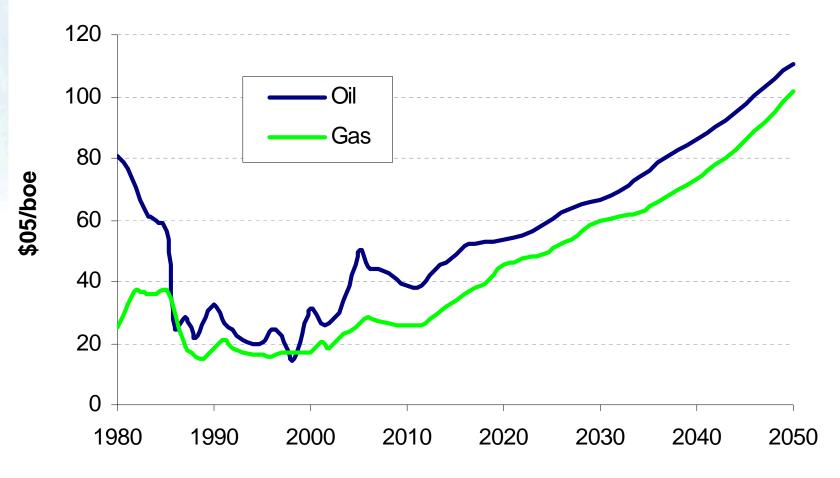
- Exogenous scenarios from CEPII or CIRED reflect a process of "conditional convergence in per capita GDP growth" :
 - Economic growth is extremely rapid in the emerging countries that come out of the "poverty trap", but then slows down when their economy becomes mature



POLES : simulation of Oil & Gas discovery

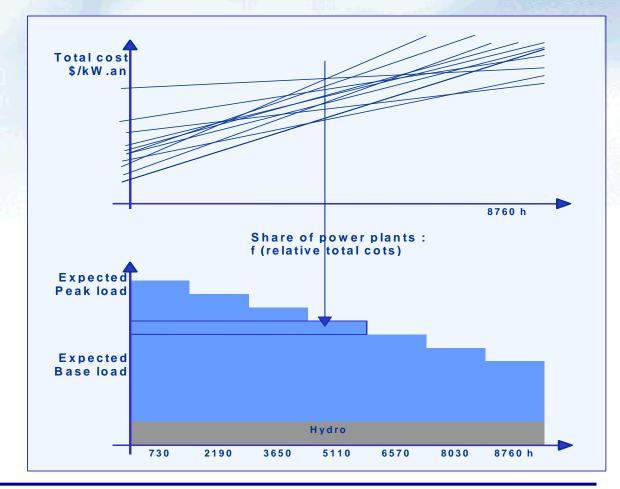
- Recoverable Resources = Oil in Place * Recovery Rate_t
- Discoveries increase with cumul. drilling (diminishing returns)
- Reserves = Discoveries Cumulative Production
- Oil Price = f(Capacity Utilisation, Reserve/Production)
- Non Conventional Oil development = f(oil price)




The endogenous « oil plateau » in WETO-H2

After 2030, the increase in oil consumption has to rely on « manufactured » non-conventional oil

Endogenous oil and gas price simulation in WETO-H2


POLES : Large scale power technologies

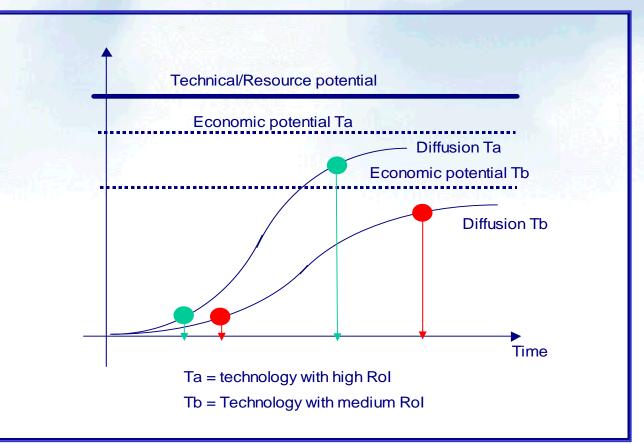
Large Scale Power Generation		
Advanced Thermodynamic Cycle	ATC	- All and the second
Super Critical Pulverised Coal	PFC	
Integrated Coal Gasif. Comb. Cycle	ICG	
Coal Conventional Thermal	ССТ	
Lignite Conventional Thermal	LCT	+ CCS technologies
Large Hydro	HYD	 PFC + CCS => PSS Pulverized fuel Supercritic
Nuclear LWR	NUC	with CCS
New Nuclear Design	NND	 ICG + CCS => CGS Integrated Coal Gasification
Gas Conventional Thermal	GCT	with CCS
Gas Turbines Combined Cycle	GGT	 GGC + CCS => GGS Gas powered Gas turbine in
Oil Conventional Thermal	ОСТ	combined cycle with CCS
Oil Fired Gas Turbines	OGT	

POLES : Power generation capacity planning

- Investment costs from CTS E3DB database
- Fuel costs endogenous to the model

Country-by-country « Screening Curve » models

POLES : New and Renewable technologies


	New and Renewable Technologies	
1.23		
-	Waste Incineration CHP	BF2
	Biomass Gasif. with Gas Turbines	BGT
	Combined Heat and Power	СНР
	Photovoltaics (windows)	DPV
	Proton Exch. Membr. Fuel Cell (Fixed)	MFC
	Solid Oxide Fuel Cell (Fixed Cogen.)	SFC
	Rural Photovoltaics	RPV
	Solar Thermal Powerplants	SPP
	Small Hydro	SHY
	Wind Turbines	WND
	Biofuels for transport	BF3
	Fuel Cell Vehicle (PEM)	FCV

POLES : New energy technology diffusion

 Market potential and speed of diffusion increase with cost-competitiveness

Country-by-country Improved « Fisher-Pry » models

WETO-H2 production technologies

	Hydrogen from Gas Steam Reforming	GSR
2	Gas Steam Reforming with CCS	GSS
3	Heavy Fuel Oil Partial Oxidation	OPO
4	Coal GAsification	CGA
5	Coal Gasification with CCS	CGS
5	Biomass GAsification	BGA
7	Biomass Gasification with CCS	BGS
3	Biomass PYrolysis	BPY
ð	Solar Methane Reforming	SMR
10	Solar thermal High-temperature Thermolysis	SHT
11	Nuclear thermal High-temperature Thermolysis	NHT
12	Electrolysis dedicated Nuclear power plant	WEN
13	Electrolysis dedicated Wind power plant	WEW
14	Electrolysis baseload electricity from Grid	WEG

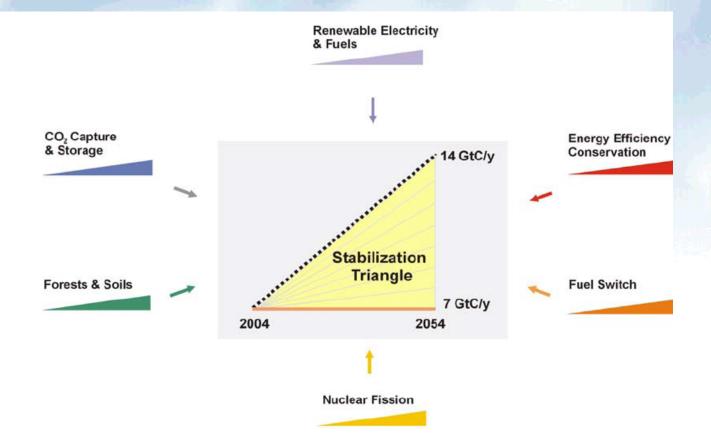
ULCOS: Ultra Low CO2 Steel-making, key technologies

OPen Hearth furnace	OPH
Blast Oxygen Furnace	BOF
Blast Oxygen Furnace Advanced	BOFA
Blast Oxygen Furnace with CCS	BOFS
Smelting Reduction Process	SRP
Smelting Reduction Process with CCS	SRPS
Smelting Redution Process, H2 based	SRPH
Electric Arc Furnace, conventional	EAF
Electric Arc Furnace, Advanced	EAFA
Direct Reduction Process	DRP
Direct Reduction Process, H2	DRPH

Low Emission Vehicles

Diversified technological options for Hydrogen in road transport, with biofuels mixed to gasoline for the residual liquid fuel demand:

- Conventional ICE vehicle ICE
- Pluggable hybrid vehicle (100km) HYB
- Battery electric car BEC
- Direct H2-ICE vehicle HCE
- Methanol Fuel-Cell Vehicle
- Hydrogen Fuel-Cell Vehicle
- FCVM FCVH



POLES V.5 : inputs, outputs, model structure

- Technical change: TECHPOL and the exogenous approach
- Technical change: Two Factor Learning Curves and the endogenous approach
- Endogenous TC with Increasing Returns to Adoption in MENGTECH

6 wedges: Pacala & Socolow (Science, V305 2004)

gure 2: Filling the Stabilization Triangle with seven "wedges." Six broad categories are identified.

The TECHPOL database

Content :

- 50 technologies : centralised power plants, decentralised and renewable power plants, H² production technologies ... with and without CO₂ capture
- 6 main attributes : overnight investment costs, electrical efficiency, load factor, VOM, FOM, lifetime, floor cost ... + other
- More than 300 different time-series for past and projected costs / performance plus a large number of selected data for specific projects or technologies

• Organisation :

- Four different files Centralised, Decentralised, Hydrogen, Carbon Capture and Transport Excel sheets – in which data are collected, processed and organised
- One complementary tool providing a standardized routine for the calculation of electricity / hydrogen levelised production costs and completes the validation process within an integrated framework

TECHPOL db: example for conventional coal plants

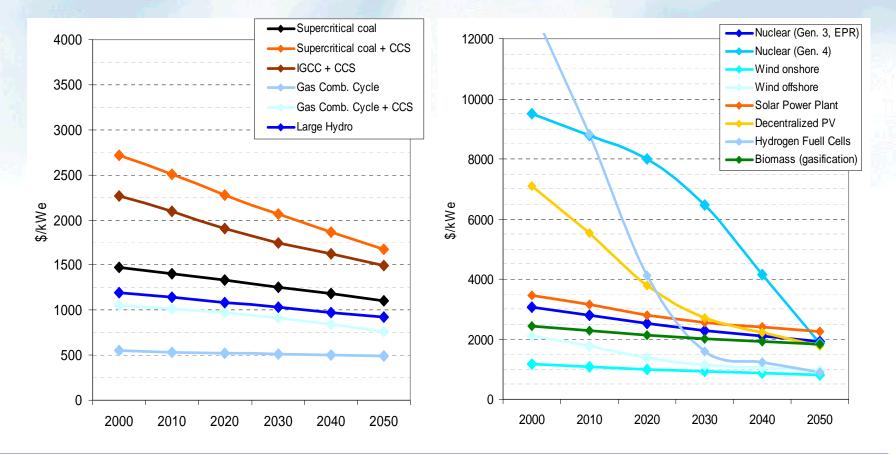
Data 🔫	Countr 🔫	Designation 🔫	Designation (Referen 🔫	Source 🚽	Yea 🗸	data prod.	Units	1990	2000	2010	2020	2030	2040	2050
Investment cost	Europe	Steam boiler - co	oal fired		IEA, 2004	2004	original data	\$02/kW		1149	1039	940	940		
Investment cost	Belgium	Pulverised Coal	Supercritical	600 MW	Commission Ampere, 2000	2000	original data	\$02/kW		1292,1					
Investment cost	Belgium	Pulverised Coal	Ultra-supercritic	600 MW	Commission Ampere, 2000	2000	original data	\$02/kW				1430			
Investment cost	OECD	Pulverised Coal			David & Herzog, 2001,	2000	diff. Sources	\$02/kW		1201	1154				
Investment cost	OECD	Pulverised Coal			David & Herzog, 2001,	2000	diff. Sources	\$02/kW		1201	1154				
Investment cost	OECD	Pulverised Coal		500 MW	Freund & Davison, 2002,	2002	from IEA GHG	\$02/kW		1066					
Investment cost	OECD	Pulverised Coal		500 MW	Freund & Davison, 2002,	2002	from IEA GHG	\$02/kW		1943					
Investment cost	OECD	Pulverised Coal			Freund & Davison, 2002,	2002	from EPRI	\$02/kW		1191					
Investment cost	OECD	Pulverised Coal			Freund & Davison, 2002,	2002	from EPRI	\$02/kW		2069					
Investment cost	USA	Coal steam elec	Supercritical	500 MW	Williams, 2004	2004	original data	\$02/kW		1194					
Investment cost	USA	Coal steam elec	Supercritical	500 MW	Williams, 2004	2004	original data	\$02/kW		2070					
Investment cost	USA	Coal steam elec	Ultra-supercritic	500 MW	Williams, 2004	2004	original data	\$02/kW		1213					
Investment cost	USA	Coal Ultra-super	Ultra-supercritic	500 MW	Williams, 2004	2004	original data	\$02/kW		2030					
Investment cost	USA	Coal		400 MW	GENSIM, 2002	2002	from DOE	\$02/kW							
Investment cost	USA	Coal		400 MW	GENSIM, 2002	2002	from Platt's	\$02/kW							
Investment cost	USA	Pulverized coal		600 MW	EIA, 2004	2003	original data	\$02/kW			1141	1106			
Investment cost	USA	Pulverized coal	Supercritical	600 MW	US NCEP, 2004	2004	from NorthBrid	\$02/kW							
Investment cost	OECD	Coal, steam cyc	le		Gielen & Podkanski, 2004	2004	original data	\$02/kW			1075	1025			
Investment cost	OECD	Coal, steam cyc	le		Gielen & Podkanski, 2004	2004	original data	\$02/kW			1850	1720			
Investment cost	OECD	Coal,	Ultra-supercritic	al	Gielen & Podkanski, 2004	2004	original data	\$02/kW				1260			
Investment cost	OECD	Coal,	Ultra-supercritic	al	Gielen & Podkanski, 2004	2004	original data	\$02/kW					1675		
Investment cost	OECD	Standard coal p	ow er plant		Riahi et al., 2004	2000	diff. Sources	\$02/kW		958					
Investment cost	OECD	Standard coal p	ow er plant		Riahi et al., 2004	2000	diff. Sources	\$02/kW		1676					
Investment cost	UK	Pulverized coal	Supercritical	1600 MW	RAE, 2004	2004	original data	€99/kW							
Investment cost	UK	Fluidized bed co	Circulating FBC	150 MW	RAE, 2004	2004	original data	€99/kW							
Investment cost	Germany	Coal steam pow	er production	600 MW	lkarus, 2003	2000	original data	€99/kW		894	889	904	894		
Investment cost	France	Pulverized coal	Supercritical	2 x 800 MW	MINEFI, 2003	2003	original data	€99/kW			1153,8				
Investment cost	France	Circulating fluidia	zed bed	400 MW	MINEFI, 2003	2003	original data	€99/kW			1135				
Investment cost	EU 15	Pulverized coal		> 500 MW	IPTS	2000	average	€99/kW	1205	1037	1037	1037	1037		
Investment cost	EU 15	Coal	Supercritical	650 MW	IPTS	2000	average	€99/kW	1647	1015	1033	1037	1040		
Investment cost	EU-15	Coal convention	al - CCT		EPE - Sapientia	2004	original data	€99/kW		1250	1210	1170	1130	1090	105
Investment cost	EU 15	Pulverised coal	Supercritical		EPE - Sapientia	2004	original data	€99/kW		1500	1380	1260	1160	1080	100
Investment cost	Belgique	Pulverised coal	Ultra-supercritic		Markal - BEL, 2001	2001	original data	€99/kW	1172	939,73					
Investment cost	EU 15	Pulverised coal	Ultra-supercritic	al	ECN, 1997	1997	original data	€99/kW	1429	1429,3	1429	1429	1429	1429	

TECHPOLdb: powergen

НҮР	1.1.1	2000	2025	2050
Nat Gas	\$/MBTU	3	8	12
Oil	\$/bl	25	50	75
Coal	\$/t	40	80	120
Carbon	€/tCO2	0	25	50

- Total investment decreases by 25 % in 2050, but CCS is an extra investment of 50 %
- Fuel costs are multiplied by almost 3 between 2000 and 2050
- In the no-CCS option, carbon costs represent almost half of 2050 cost
- Supercritical coal with CCS in 2050 is still about twice the current generation cost

				Margaria and						
	SUPERCRITICAL	COAL	W	ithout CO	s		With CCS			
	99€-95\$		2000	2025	2050	2000	2025	2050		
	Overn. Inv. Cost	€/kW	1200	1050	900	2153	1717	1328		
1	A 1997 I.A.	1.1								
	Technical lifetime	Years	35	35	35	35	35	35		
	Construction time	Years	3	3	3	4	4	4		
	Interest rate	%	5%	5%	5%	5%	5%	5%		
	Decommission share	%	10%	10%	10%	10%	10%	10%		
	Discount rate (%)	%	8%	8%	8%	8%	8%	8%		
	Total investment Cos	€kW	1330	1164	997	2443	1948	1507		
	Fixed annual cost	€kWy	114	100	86	210	167	129		
ł	FOM cost	€/kWy	40	38	36	47	44	42		
	Load. Factor	%	85%	85%	85%	85%	85%	85%		
	Uncertainty 1				-381.0010					
	Fixed cost	€MWh	21	19	16	34	28	23		
ĥ		-			10000	1.1.1				
	Fuel price	€toe	57	114	171	57	114	171		
	Carbon content	tCO2/toe	4	4	4	4	4	4		
	Carbon price	€ tCO2	0	25	50	0	25	50		
	Fuel efficiency	%	44%	48%	50%	35%	40%	42%		
	Fuel input	toe/kW	1,5	1,3	1,3	1,8	1,6	1,5		
	C&C rate	%		. –		85,0%	88,0%	90,0%		
		tCO ² /MWh	,	0,7	0,7	0,1	0,1	0,1		
	Fuel cost	€MWh	11	20	29	14	25	35		
	Carbon cost	€ MWh	0	18	34	0	3	4		
	VUncertainty 3	€/MWh	3,0	3,0	2,0	3,5	3,5	2,5		
	Variable cost	€/MWh	14	41	66	17	31	41		
	Capture cost	€/tCO ²	14	41	00	17 27	31 24	41 21		
	Production cost	€/ICO [_] €/MWh	35	60	82	52	24 59	∠⊺ 64		
			- 55	00	02	JZ	39	04		


TECHPOL db: some fundamentals of H2 production

Hydrogen Technologies		Steam M		eforming	Coal Pa				Biomass Pyrolysis			Electrolysis - dedicated			
			+ CCS			CCS						nuclear			
€2 000		2000	2025	2050	2000	2025	2050	2000	2025	2050	2000	2025	2050		
Floor costs			40		101	60			30			200			
Overn. Inv. Cost	€/M3d	70	61	59	181	166	123	112	98	70	1114	935	299		
Other costs	€/M3d		hinter -			f ang binn					1.1	100	100		
Technical lifetime	Years	35	35	35	35	35	35	35	35	35	25	25	25		
Construction time	Years	4	4	4	4	4	4	3	3	3	8	8	8		
Interest rate		5%	5%	5%	5%	5%	5%	5%	5%	5%	5%	5%	5%		
Decommission share		0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,7	0,7	0,7		
Discount rate (%)		8%	8%	8%	8%	8%	8%	8%	8%	8%	8%	8%	8%		
Total investment Cos	€/M3d	79	69	67	205	188	139	124	108	77	1510	1267	405		
Annualised inv. cost	€/M3d/y	7	6	6	18	16	12	11	9	7	141	119	38		
FOM cost	€/M3d/y	0,66	0,57	0,48	1,68	1,45	1,21	1,31	1,05	0,79	5	4	4		
Load. Factor	%	80%	83%	85%	80%	83%	85%	80%	83%	85%	80%	85%	85%		
Fixed cost	€toe	99	83	78	257	226	165	159	133	93	1947	1544	528		
Fuel price	€toe	120	200	400	57	71	100	150	170	190	20	22	25		
Carbon content	tCO2/toe	0,-	0,-	0,4	0,7	0,7	0,7								
Carbon price	€ tCO2	0	25	50	0	25	50								
Fuel efficiency	%	03 /0	00 /0	1370	2070	51 /0	41/0	65%	65%	65%	31%	36%	37%		
Fuel cost incl. Carbo	€toe	190	311	579	204	237	285	231	262	292	64	61	67		
VOM cost	€/toe	24	23	22	85	75	65	35	35	35	20	20	20		
Variable cost	€toe	214	334	601	289	312	350	266	297	327	84	81	87		
Production cost	€toe	314	417	678	546	537	515	425	429	420	2031	1625	616		
Production cost	€/GJ	8	10	16	13	13	12	10	10	10	49	39	15		

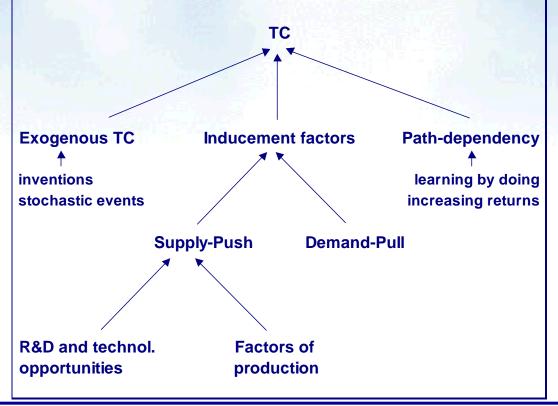
Exogenous technology cost projections in WETO-H2

The TECHPOL database provides harmonised data for conventional and new energy technologies

POLES V.5 : inputs, outputs, model structure

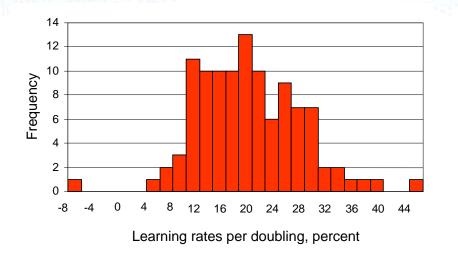
 Technical change: TECHPOL and the exogenous approach

Technical change: Two Factor Learning Curves and the endogenous approach


 Endogenous TC with Increasing Returns to Adoption in MENGTECH

The sources of Technical Change

Technical Change is the complex result of :


- exogenous events (scientific discoveries)
- inducement factors (R&D investment, relative prices...)
- and endogenous mechanisms (learning by doing ...)

 Endogenous technical change: learning rates
 Analyses of the experience effect show a link between cumulative production or capacities and costs: COST = A * CUMCAP-b

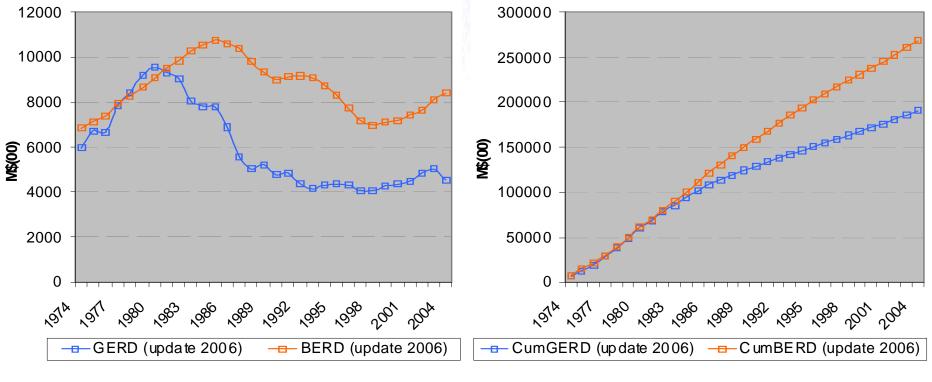
- The learning rate measures the cost decrease for each doubling of capacities: LR = (1 2^{-b})
- Field studies show the bulk of learning rates ranging from 10% to 30 %:

POLES : Endogenous technological progress

 In POLES Reference case, a « Two Factor Learning Curve », simulates cost decrease with cumulative installed capacities and cumulative R&D spending (public and private)

COST = A * CUMCAP^{-b} * CUMRD^{-c}

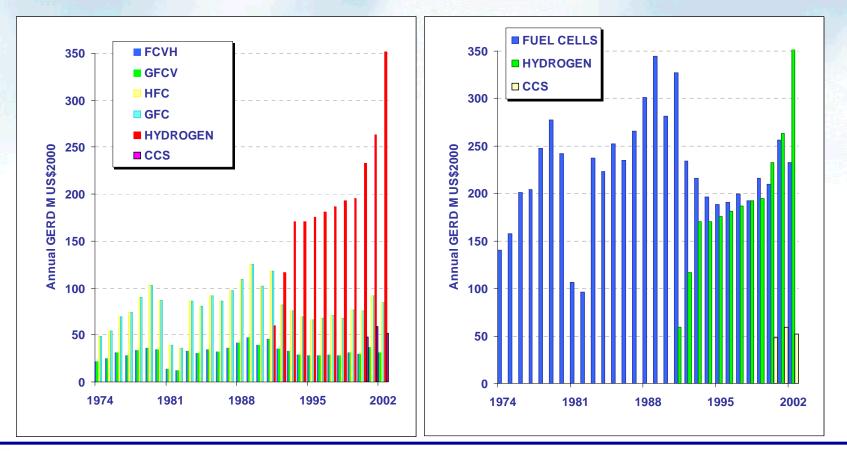
with: CUMRD = Government Energy R&D + Business Energy R&D


 Later definitions of the TFLC also include a « floor cost », because no technology goes down to zero cost

TECHPOL R&D db: Total expenditures

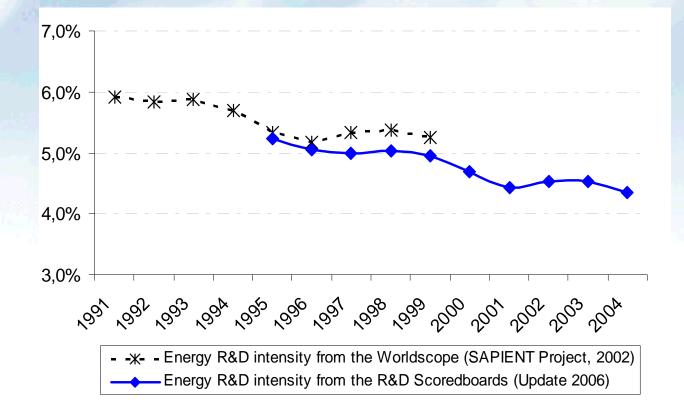
Between 1974 and the late 80s GERD has been more than halved, while BERD was kept at a higher level

Figure 1: Total and cumulative GERD and BERD



1. Source: TECHPOL database, 2008

TECHPOL R&D db: GERD for hydrogen


- Fuel-cells have benefitted of high amounts public of R&D earlier than H2
- Strong increase in H2 research in recent years
- R&D for CCS is just starting

TECHPOL R&D db: Business E R&D expenditures

Figure 1: Energy R&D intensity of industry (R&D / net sales)

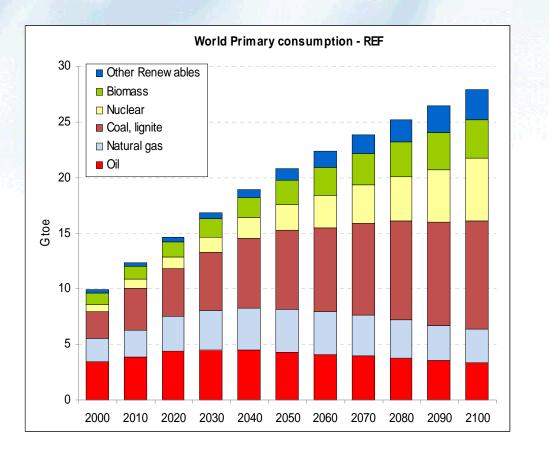
Source: TECHPOL database, 2008

POLES V.5 : inputs, outputs, model structure

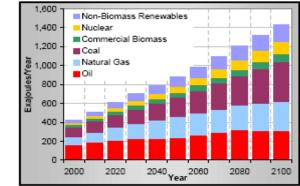
 Technical change: TECHPOL and the exogenous approach

 Technical change: Two Factor Learning Curves and the endogenous approach

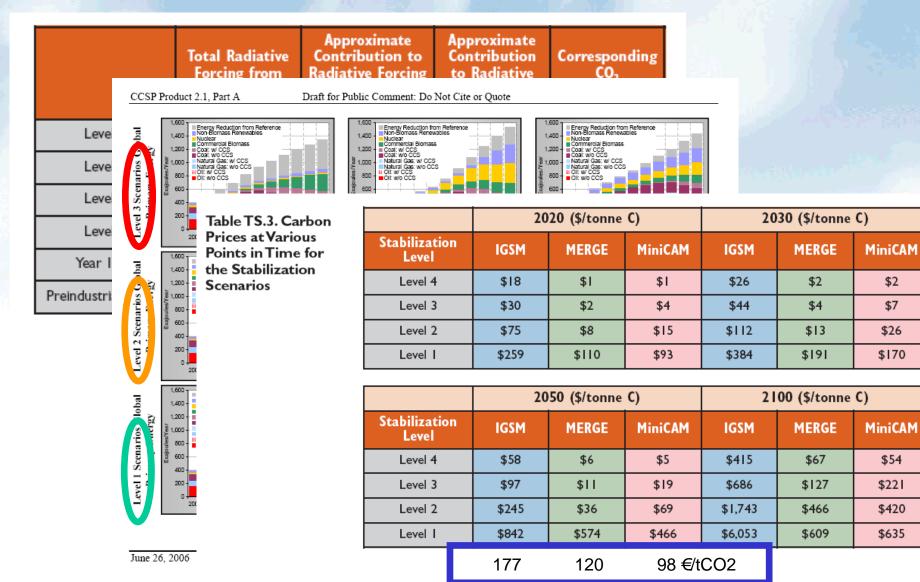
 Endogenous TC with Increasing Returns to Adoption in MENGTECH




Induced Technical Change scenarios in the MENGTECH project

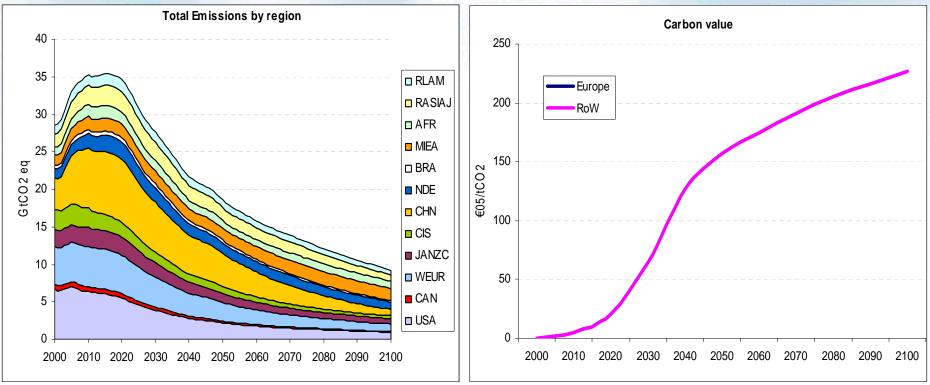

- The goal of the MENGTECH project (with NTUA, KUL, PSI ...) has been to extend the modelling framework in order to account for Increasing Returns to Adoption and irreversibilities in TC
- This was in particular in order to avoid the « mixedbasket » effect in the results of incremental TC simulations
- New specifications have been introduced for the diffusion functions of new techs (network effects) and breakthroughs are simulated through reductions of the technology floor costs in the TFLC

The POLES 2100 Reference compared to US-CCSP POLES₂₁₀₀ 28 Gtoe = 1200 EJ



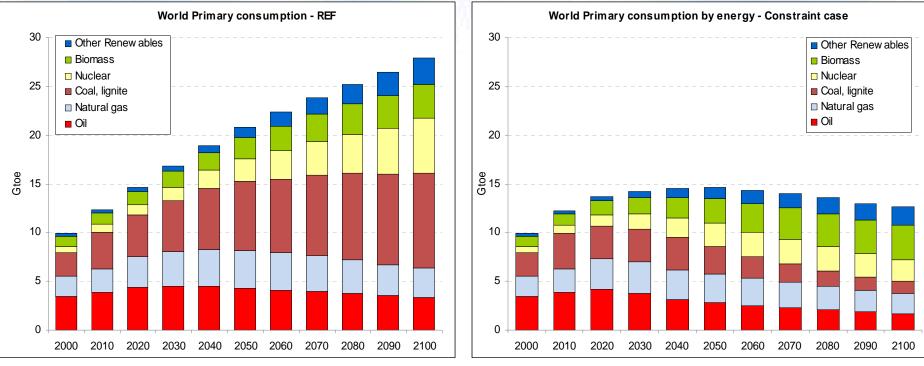
MiniCAM

POLES model: Emission Constraints and Induced Technical Change in Energy


US - Climate Change Science Program (2003-2008)

A 550 ppmv CO2e scenario (US-CCSP level 2, or Stern type, or IPCC-AR 4 type 3) The POLES carbon value is significantly higher than in the comparable CCSP case

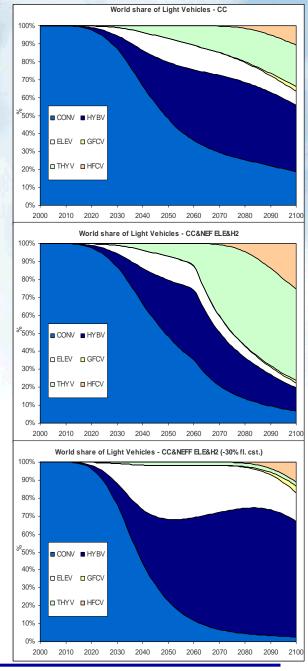
Figure 1 : Emission profile and corresponding carbon value in CCC


SOURCE : POLES 550 PPMV MENGHTECH

World energy consumption in the 550 ppmv case

- Total consumtion levels-off in 2050
- In spite of CCS the fossil consumption is divided by four in 2100
- Impacts on nuclear and particularly renewables are much more limited

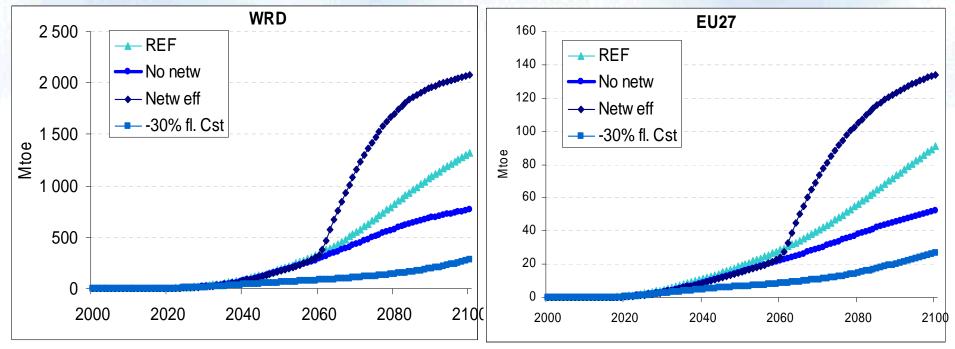
Figure 1 : Emission World Primary energy consumption by energy



Source : POLES-LEPII MENGTECH

Induced technical change with IRAs and breakthroughs

- Top simulation presents the POLES results for automotive technologies market in the standard case (mixed basket effect)
- Middle simulation corresponds to case with IRAs through network effects, with a first penetration of electrical vehicles and then a massive entry of hydrogen
- Bottom simulation also incorporates a breakthrough in both electrical and hydrogen vehicle, but results in a crowding-out effect of H2 vehicles



World and EU H2 production in 4 cases

The combination of IRAs and Breakthroughs introduces very contrasted model behaviours for H2

Figure 1 : Total hydrogen production in the REF, CC, CC NEF ELE&H2, CC and NEF ELE&H2 and 30% reduction in floor costs scenarios

Source : POLES-LEPII MENGTECH

State of the Art for endogenous technology modelling in POLES

- The characteristics of the model now allow to simulate with simple hypotheses non linear technology trajectories with irreversibility and crowding-out effects
- There is still cumbersome work to be maintained on TECHPOL db (particularly for GERD and BERD)
- And a rich research agenda on: improvement of TFLCs, identification of technological breakthroughs, understanding and modelling of adoption behaviours
- The next frontier for the POLES modelling is the introduction of variables concerning urban patterns and the impacts of land use and transport systems on behaviours, technology adoption and energy consumption

