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Introduction

Experimental work on the mechanism of protein folding has been greatly influenced
by Levinthal’s famous paper of 1969 (1), in which he pointed out that a polypeptide
chain would require an astronomical time to explore at random all possible con-
formations in order to finally reach the native state. This motivated the search for
partially folded intermediates guiding the protein to the native state. Although many
proteins have been found to fold through transient intermediates (for reviews see
refs 2-10), more recent theoretical studies have sparked off a discussion on their role
in the folding process. Simplified models for polypeptide chains, in combination with
energy landscape theory, suggested that the Levinthal paradox could be resolved by
a small energy bias against locally unfavourable conformations (11). This would reduce
folding rates to the experimentally observed timescales. As a common representation
of the theoretical work, funnel-like folding landscapes were proposed (12-19) in which
the polypeptide chain has a vast number of different possible ways of reaching the
native state. Partially folded states observed in these models mainly represent mis-
folded states trapped in local energy minima rather than obligatory folding inter-
mediates. It is suggested that the polypeptide chain does not encounter major energy
barriers for the actual folding process and that the rate of folding is limited by a
region in the folding funnel where the gain in energy cannot compensate for the loss
in conformational entropy (14, 15). Thus, the folding kinetics are proposed to be
determined mainly by entropic barriers.

In this chapter we shall first present an overview of the experimental results from
kinetic studies on protein folding and unfolding reactions over the past 30 years. By
analogy to the treatment of simple chemical reactions, the existence was assumed of
well-defined pathways involving a limited number of kinetic species. In combination
with transition-state theory, these studies aimed at detecting and characterizing
intermediates and the transition states in the folding process. In the second part of
the chapter we shall treat alternative reaction-rate theories, which may provide more
realistic descriptions of protein-folding reactions, and we shall see how the experi-
mental data can be interpreted in terms of such models.
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Analysis of protein-folding reactions using simple
kinetic models

In studies of reaction kinetics the aim is to try to find the minimal model capable of
describing the experimental data. It is thereby assumed that the mechanism involves
a finite number of kinetic species which are separated by energy barriers significantly
larger than the thermal energy (>5kgT), but each kinetic species may consist of differ-
ent conformations in rapid equilibrium. This allows the transitions between two
species (X; and X;) to be described with microscopic rate constants for the forward (ky)
and reverse (k;) reactions:

[1]

General treatment of kinetic data

Experimental studies on the mechanism of protein folding focused mainly on mono-
meric proteins as model systems. This has the major advantage that all observed
reactions are of the first order. As a consequence, the time-dependent change in in-
tensity (P) of an observed signal can be represented as a sum of n exponentials with
relaxation times 7;(=1/X\;) and corresponding amplitudes (A;)

P —P.=3A e 2]
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where P, is the observed intensity at time f, and P..is the intensity at t—c. The appar-
ent rate constants, \;, are generally functions of all microscopic rate constants, k which
depend on external parameters such as temperature, pressure, and denaturant
concentration. The amplitudes, A;, depend additionally on the initial concentrations
of the kinetic species. There is a general relationship between the number of apparent
rate constants and the number of kinetic species, n. Any kinetic mechanism with n
different species connected by first-order reactions results in n — 1 observable rate
constants. Applied to protein folding with fixed initial (U) and final (N) states, the
observation of n — 1 apparent rate constants thus indicates the presence of n — 2
transiently populated intermediate states (a more detailed treatment of the analysis of

kinetic data in protein folding is given in ref. 20 and general overviews are described
in 21 and 22).

Kinetics of two-state folding

Experimental investigations have revealed simple two-state folding without detect-
able intermediates for more than 20 small proteins (for an overview see ref. 23):

k¢
U=—=N [3]
ky
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where k; and k, are the microscopic rate constants for the folding and unfolding re-
actions, respectively. The single observable macroscopic rate constant (A) for this
mechanism is readily derived as:
The equilibrium of the reaction is determined by the flows from the native state N to
the unfolded state U and vice versa:

kf [U]eq = ku [N]eq [5]

and the equilibrium constant (K) for folding is

Ul &

The most striking (and straightforward) parameter to be inferred from two-state
behaviour is the free energy for folding (AG®) which is connected by the van’t Hoff
relation with the equilibrium constant (K):

N k
[ }q) = —RTln(—f). [7]

[ eq ku

Thus the stability can be measured in two different ways, either by equilibrium
methods or by kinetic measurements. It is worth noting that, in the case of a protein
that follows two-state folding behaviour, the free energies for folding inferred from
the two methods have to agree.

[6]

eq

AG° = —RTInK = —RTIn

Transition-state analysis for two-state folding

The commonly applied analysis of two-state folding is based mainly on concepts
from transition-state theory (TST). TST connects a rate constant, k, to the free energy
of activation (AG*) for forming the transition or activated state ($). which is assumed
to be the point of highest free energy along the reaction coordinate (24)

keT -Ac
%e RT [8a]

kg is the Boltzmann constant, i the Planck constant, and k is a transmission factor
with an upper limit of 1. The absolute value of (AG**) depends strongly on the correct
pre-exponential factor, which reflects the maximum rate of the reaction in the absence
of free-energy barriers. This problem will be discussed in the second part of the chapter
(see also Chapter 5). To simplify the treatment of kinetic data, the conventional
transition-state theory (CTST) is used, in which k is assumed to be 1, given by

kT _AGYY

k:—'h—e L [Sb]

Experimental analyses of kinetic and equilibrium folding data have revealed linear

k=«
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free-energy relationships between AG{*, AGS*, AG®, and the concentration [D] of a
chemical denaturant such as urea or guanidinium chloride (4, 25-27).
AGg (D) = AGY* (1,0) + m, [D]
AGP* (D) = AGP* (1,0) + mf [D] [9]
AG® (D) = AG® (1,0) + m [D] .
where (1,0) denotes the values in the absence of denaturant and (D) those at a given
denaturant concentration [D]. Thus, according to eqns 4, 8a, and 9, a plot of In\
versus denaturant concentration yields a V-shaped curve for two-state folders (a

chevron plot, Fig. 1), which allows k; and k, to be determined over the entire range of
denaturant concentration. Substituting eqn 8b in eqn 6, using eqn 9, yields

AG® (H,0) = AGS* (H0) +AGS* (1H,0) [10]

Oumrw (deg cm2 dmol-1)

In(A/s-1)

[GdmCI] (M)

Fig. 1. (A) GdmCl-induced unfolding transition of tendamistat at pH 2 and (B) the GdmCI dependence of the
apparent rate constant (A\) under the same conditions. The GdmCl-dependence of In\ is dominated by Ink: below
3 M GdmCl and by Ink, above 6 M GdmCI. The solid line represents a fit of the data according to eqns 4, 8 and 9.
This yields Ink; and Ink, over the complete range of GdmCI concentrations (- ---). (Pappenberger and Kiefhaber,
unpublished results.)
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free energy

reaction coordinate

Fig. 2. The relationships between the free energies of activation for folding, AGf*, and unfolding, AGS*, and of the
equilibrium free energy, AG®, using conventional transition-state theory.

and

m = mf — mt. [11]

The relationship between AG®, AGf"*, and AG,, is shown in Fig. 2.

Characterization of the transition states in protein
folding

Transition-state theory allows the use of classical concepts from physical chemistry
to characterize the rate-limiting steps in protein-folding reactions. The Gibbs funda-
mental equation of chemical thermodynamics:

dG = Vdp — 8dT + X, pudn; [12]
can be adapted to protein-folding transitions, including the effect of a chemical de-
naturant, D, on protein stability:

AG® = AVedp — AS°dT + md[D]. [13]

Using CTST and eqn 13 yields the free energies of activation for the folding and un-
folding reactions

AG®* = AV°*dp — AS°*dT + m*d[D]. [14]

Thus, AV°*, AS%*, and m* can be obtained by varying the pressure, the temperature, or
the denaturant concentration, respectively.

Denaturant dependence of folding kinetics

The equilibrium m-value is found to correlate with the difference in solvent-accessible
surface area (SASA) between the native and unfolded protein (4, 26). By analogy the
kinetic m-values, mf and mf, are thought to reflect changes in SASA between the un-
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folded and transition states and the native and transition states, respectively (4).
Comparison of the value of mf for the folding reaction with the equilibrium value m
can thus be used to draw conclusions about the degree of organization (= m?/m) of
the transition state. Kuwajima and co-workers characterized the transition state of
folding of a-lactalbumin and apo-a-lactalbumin and concluded that the structural
organization of the activated state in this protein is about 65% native-like in respect
of its exposure to GAmCI (28). For most two-state folders, a-values lie between 0.6
and 0.9, indicating a rather compact and native-like transition state.

Temperature dependence of folding kinetics

Pohl (29) was the first to apply the Eyring formalism to the temperature dependence
of protein folding and unfolding kinetics. From eqn 14 we see that the change in AG°*
with temperature (at constant pressure and GdmCI concentration) corresponds to
AS°*. We can use eqn 8b to apply this relation to the temperature dependence of rate
constants. Since the pre-exponential factor in CTST contains the temperature (eqn
8b), it is more convenient to divide the rate constant by the temperature T and use the
equation:

E _ l(_B —AGO¥/RT _ _k_B AS®¥/R | o—AHO¥/RT

7=, e p e e . [15]

Studies on several proteins, including chymotrypsin (29), chymotrypsin inhibitor

CI2 (30), cold-shock protein (31), tendamistat (32), and protein L (33), have shown that
AH** and AS°*are temperature dependent, indicating that Ac} # 0. Thus the relation-
ships

AHY(T) = AHHT,) + ACE- (T + T,) [16]
AS*H(T) = AS(T,) + ACE - In(T/T,) [17]

where T represents a given temperature and T, an arbitrary reference temperature,
commonly 25°C, are used to rewrite eqn 15 as:

ko ok 1 T
In— ——|AH*(T,) — *Ty) + ACE-(T— T, — TIn—)|. 1
lnT n 5 TR AHX(T,) — TASX(T,) + AC} - (T — T, 1nT ) [18]

(o}

Consequently, a plot of In(k/T) against 1/ T (Eyring plot) yields AC}, AH%*, and AS>*
(Fig. 3). The observed temperature effects for protein-folding reactlons match the
temperature dependence of hydrophobic interactions (34, 35), indicating that water
could play a crucial role in the rate-limiting steps.

Pressure dependence of folding kinetics

In protein folding, formation of the native state is usually accompanied by an in-
crease in volume, which has contributions from volume changes associated with
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Fig. 3. Eyring plots of the temperature dependence of the microscopic rate constants for (A) the refolding (k;), and
(B) the unfolding (k,) reactions of tendamistat. Both plots show a pronounced curvature indicating a finite AC‘; for
both reactions. Analysis of the data by applying eqn 18 at T,.= 298.15 K yields for refolding a AH®* of 6.68 *
0.06 kcal/mol, a TAS** of -8.36 = 0.06 kcal/mol and a AC of —0.49 = 0.01 kcal/(molK), and for unfolding a
AH®* of 28.80 * 1.49 kcal/mol, a TAS®* of 5.36 = 1.40 kcal/mol and a AC}, of 0.60 = 0.03 kcal/(molK). Data
are taken from ref. 77.

released water molecules (36-38) and with the atoms of the polypeptide chain (39, 40)
on forming a solvent-inaccessible core. In addition, packing deficiencies in the native
state add to the observed effects (41). The pressure dependence of folding and unfold-
ing rates can therefore give valuable information on the structure and the hydration
properties of the transition state. Planck (42) was the first to note that the pressure
dependence of a chemical equilibrium reflects the difference in volume between the
initial and final states. From eqn 14 we can relate the pressure dependence of AG**
to the activation volume, AV, i.e. the volume change between the initial state of a
reaction and the transition state. At constant temperature and denaturant concen-

tration:
IAGH
= —AV°*, [19]
dp /D)
Using CTST (eqn 8), this is equivalent to:
dlnk AV°*
il [ 94 [20]
ap 7,D] RT

Thus AV®* can be determined by measuring the pressure dependence of the micro-
scopic rate constants for folding and unfolding.
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Volume changes in protein folding are commonly around 20-100cm?/mol for
small monomeric proteins (36), which represents 1-2% of the total protein volume.
Pressure-jump experiments on the refolding and unfolding kinetics of several pro-
teins have revealed that the volume of the transition state is commonly native-like
(43, 44). The volume profile of the folding of tendamistat was investigated with high-
pressure stopped-flow experiments over a broad range of GAmCI concentrations. The
results showed strong and compensating effects of the denaturant on the activation
volumes for both refolding and the unfolding reactions (45). As a consequence, the
reaction volume remains constant over the accessible range of GdmCl concentra-
tions, but the volume of the transition state becomes increasingly native-like with
increasing denaturant concentrations. Above 5M GdmCl the volume of the transition
state even exceeds the volume of the native state, arguing for a solvent-shielded
transition state with packing deficiencies under these conditions.

Complex folding kinetics

For simple, two-state folding reactions the microscopic rate constants are readily
obtained from the chevron plot (Fig. 1) and the reactions can be analysed using
transition-state theory. However, for most proteins, folding is more complex and non-
linear chevron plots are observed. These non-linearities can have different origins. The
transient population of partially folded intermediates frequently occurs under native-
like solvent conditions, i.e. atlow denaturant concentrations. This will lead to a change
in the folding mechanism and thus to a change in the slope of In\ versus denaturant
concentration, concomitant with the appearance of additional kinetic phases (46) (see
Section 4.2). Nevertheless, a change in the folding mechanism can also occur without
transiently populated intermediates (see Section 4.5). Kinetic coupling between two-
state folding and slow equilibration processes in the unfolded state provides a third
source for non-linear chevron plots (47) (Section 4.1). Since these possible origins for
complex folding kinetics have far-reaching effects on the molecular interpretation of
the kinetic data, it is crucial to be able to discriminate between them.

Heterogeneity in the unfolded state

The unfolded state of a protein consists of a large ensemble of different conforma-
tions which are in rapid equilibrium, and can thus be treated as a single kinetic
species as long as their interconversion is faster than the kinetic reactions leading to
the native state. On the other hand, slow interconversion reactions between the dif-
ferent unfolded conformations lead to kinetic heterogeneity. This was first observed
by Garel and Baldwin (48), who showed that both fast- and slow-refolding molecules
exist in unfolded ribonuclease A (RNase A). This was interpreted in terms of cis—trans
isomerization of Xaa-Pro peptide bonds by Brandts and co-workers in 1975 (49), a
proposal that has been confirmed for several proteins (50-52). Whenever folding and
proline isomerization have similar rates, or when folding is slower than isomeriza-
tion, a pronounced curvature is observed in the refolding limb of the chevron plot,
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which looks similar to the effect of transiently populated intermediates (20, 47). The
effect of prolyl isomerization on folding kinetics and its identification as a rate-
limiting step is discussed in detail in Chapter 8. The effect on chevron plots is treated
quantitatively in ref. 47.

Another cause of kinetic heterogeneity in the unfolded state was identified in
cytochrome ¢, where parallel pathways were shown to be due to the exchange of the
haem ligands in the unfolded state (53-55) (see Chapter 3).

Transiently populated intermediates

Multi-exponential kinetics are observed when partially folded states accumulate
transiently during the folding process. As discussed above, the number of kinetic
species, 1, is related to the number, n—1, of observable rate constants and, with un-
folded and native state as the initial and final states, the number of intermediates is
given by n-2. Thus, for a single observable rate constant there are no intermediates,
corresponding to two-state folding. The observation of two apparent rate constants
indicates a single intermediate, etc. It should be noted that these considerations only
apply if there is a kinetically homogeneous unfolded state with rapidly interconvert-
ing conformations. In the case of heterogeneous populations of unfolded molecules,
the number of observable rate constants is additionally correlated with the number
of unfolded species.

The first step, therefore, in elucidating a folding mechanism should be the deter-
mination of the number of exponentials needed to describe the data. To this end,
kinetics are usually monitored using a number of different probes. In addition, it is
crucial to look for burst-phase reactions, i.e. for processes occurring within the experi-
mental deadtime. These reactions are observed for many proteins during refolding and
are caused by a considerable compaction of the polypeptide chain (56) (see Chapters
3 and 5). Whether rapid collapse represents a distinct step on a folding pathway, or
whether it is the response of the unfolded state to the change in solvent conditions
upon refolding, is currently under investigation. Results on the folding of a-lactalbu-
min (57, 58) and apomyoglobin (59) suggest that there is at least some cooperativity
in burst-phase intermediates with a limited number of specific interactions.

kUI kIN
Us——=—1<—=N A
kIU kNl ( )
I s (B)
T ku Tk

[Scheme 1]
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The next step is to locate the intermediates in the folding process. In the simplest
case, with a single intermediate, two apparent rate constants will be observed for
all possible three-state mechanisms, independently of the number of microscopic
rate constants (Scheme 1). The analysis for mechanisms A and B simplifies when
equilibration between U and I occurs on a much faster time scale than folding to the
native state (60, 61). Formation of the intermediate can then be treated as a rapid pre-
equilibrium. The apparent rate constants for mechanism A (on-pathway intermedi-
ate) can thus be approximated by:

1 .
)\1 = kUI + kIU and )\2 = ]Ti’/K—LH . kIN ~+ kNI Wlth KUI = K,U [21]
and for mechanism B (off-pathway intermediate) as:
1
)\1 = kUI + kIU and )\2 = (1 - m) * kIN + kNI [22]

where 1/(1+ (1/Kyy)) represents the fraction of intermediate (f(I)) in the pre-equilib-
rium. Since I is productive in mechanism A and non-productive in mechanism B, the
rate of formation of N depends on f(I) and 1-£(I), respectively. Due to the commonly
observed strong denaturant dependencies of the microscopic rate constants, the
simplifications made above might not be valid in a certain range of denaturant con-
centrations. Therefore, the simplified treatment of the data should only be performed
if formation of the intermediate is too fast to be measured. In all other cases, the exact
solutions of the three-state model should be used to fit the data. These solutions are
available from most kinetic textbooks. A particularly useful source for the analytical
solution of a vast number of different kinetic mechanisms is the excellent article by
Szabo (21).

Under conditions where the simplifications in eqns 20 and 21 hold, they provide a
tool for identifying off-pathway intermediates. Destabilization of the intermediate
leads to a larger fraction of productive (unfolded) molecules in the off-pathway model.
Thus, addition of denaturant will speed up folding when the resulting destabilization
of the intermediate exceeds the deceleration of the N —U reaction. As a consequence,
an increase in the folding rate with increasing concentrations of denaturant points to
the transient accumulation of an off-pathway intermediate. This behaviour has been
observed for intermediates trapped by non-native disulphide bonds (62), by non-
native proline isomers (63), and by non-specific aggregation (64).

A case study: the mechanism of folding of lysozyme

To illustrate the need for rigorous treatment of the kinetic data in order to determine
the folding mechanism we shall discuss the folding of hen egg-white lysozyme.
Lysozyme consists of two structural subdomains, the a-domain with exclusively «-
helical structure and the B-domain with predominantly B-structure (65, 66). Starting
from GdmCl-unfolded, disulphide-intact protein, large changes in far-UV CD and
fluorescence signals are observed within the first millisecond of refolding (67-70).
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Time-resolved small-angle X-ray scattering experiments show that this burst-phase
reaction leads to a globular state, with a significantly smaller radius of gyration (Ry)
than the unfolded protein (56). In a subsequent reaction, with a time constant of 30
ms (at pH 5.2 and 20°C), a well-defined intermediate state is formed, as observed by
strong quenching in tryptophan fluorescence to a level below that of the native state
(56, 70), by a decrease in the far-UV ellipticity (67-69), and by a further compaction of
the polypeptide chain (56). Pulsed hydrogen/deuterium-exchange experiments
show that this intermediate has native-like helical structure in the a-domain whereas
the B-sheet structures are not formed (69). The intermediate converts to the native
state with a relaxation time of about 400 ms. There have been controversial reports as
to the role of this intermediate in the folding process (69, 70) and it remained unclear
whether it is an obligatory intermediate on the folding pathway for all lysozyme
molecules.

The observation of two apparent rate constants (treating the burst phase, rapid
collapse as a pre-equilibrium uncoupled from the slower reactions) cannot rule out
any of the mechanisms shown in Scheme 1. However, comparing mechanism A with
mechanisms B and C offers a simple means of distinguishing obligatory from non-
obligatory folding intermediates. In the case of an obligatory intermediate, all folding
molecules have to fold through this state, resulting in a lag phase in the formation of
native molecules. However, direct spectroscopic measurements, or measurements of
changes in R, are not able to monitor formation of native lysozyme directly, since
changes in spectroscopic and geometric properties usually occur in all folding steps.
In addition, the use of inhibitor binding to detect the formation of active lysozyme
did not give any clear-cut results, since binding is too slow under the applied experi-
mental conditions (70, 71). An experimental approach to determining the amount of
native molecules and of folding intermediates at any point during a refolding
reaction was described by Schmid and first applied to distinguish between parallel
and sequential pathways in the prolyl isomerization-limited folding of RNase A (72).
These experiments consist of two consecutive mixing steps. In a first step, refolding is
initiated from completely unfolded protein. The folding reaction is allowed to pro-
ceed for a certain time (#) and then the solution is transferred to a high concentration
of denaturant. This results in the unfolding of all native molecules and of partially
folded states which have accumulated in the refolding step. Each state (N or I) is
characterized by a specific unfolding rate constant at high concentrations of de-
naturant, where unfolding is virtually irreversible, so that little kinetic coupling
occurs. The amplitudes of the observed unfolding reactions consequently reflect the
amounts of the respective species present at time (t) when refolding was interrupted.
Thus, varying the time (f) allowed for refolding gives the time course of the popula-
tions of native lysozyme and of the intermediate during the folding process.

In the folding of lysozyme, two unfolding reactions are observed in interrupted
refolding experiments (71, 73). One of them corresponds to the well-characterized
unfolding reaction of native lysozyme, and a second, much faster one corresponds to
unfolding of the intermediate. The collapsed state unfolds too fast under all con-
ditions to be measured by stopped-flow mixing. The results show that the inter-
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Fig. 4. (A) Time course of formation of native molecules (®) and of a folding intermediate (O) during the folding of
lysozyme. (B) The early time region of the kinetics shows that the faster process (t =30 ms) produces both native
molecules and the partially folded intermediate. The lag expected for a linear on-pathway mechanism (----) is
not observed. Data are taken from refs 71 and 73.

mediate is not obligatory for lysozyme folding, since no lag phase in forming native
lysozyme is observed (Fig. 4). Rather, formation of I and formation of 20% of the
native molecules both occur with the faster kinetic phase (r = 30ms). The slower
process (1 = 400ms) reflects the interconversion of the intermediate to the native
state, resulting in the remaining 80% of the molecules folding to the native state (71).
As discussed above, identical apparent rate constants for forming the intermediate
and native molecules on a fast pathway are expected, since any three-state model
gives rise to only two observable rate constants.

These results rule out a linear on-pathway three-state model (mechanism A in
scheme 1), but they cannot distinguish between mechanisms B and C. Performing a
least-squares fit of the denaturant-dependence of the two apparent rate constants to
the analytical solutions of both models revealed that only the triangular model was
able to describe the data (73). In the case of the off-pathway model, unfolding of the
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Fig. 5. GdmCl-dependence of the two apparent rate-constants for lysozyme folding (O, A) and least-squares fits
to the analytical solutions of the triangular model (—; Scheme 1, mechanism C) and to the linear off-pathway
model (........ ; Scheme 1, mechanism B). The fits show that the off-pathway model is not able to describe the data
at low GdmCI concentrations. Data are taken from ref. 73.

intermediate becomes the rate-limiting step for folding at very low denaturant con-
centrations. This would predict an increase in the folding rate with increasing
denaturant concentration, which is, however, not observed (Fig. 5). Fitting the data to
the circular three-state model allowed all six microscopic rate-constants to be deter-
mined (Fig. 6). These rate constants can be analysed using CTST to yield the relative
free energies of the three kinetic species and of the transition states connecting them
(73).

This case study demonstrates the need for methods capable of detecting the time
course of individual kinetic species during the folding process. Direct spectroscopic
measurements will, in most cases, not be able to provide this information. In addition,
the folding of lysozyme shows that for complex reactions it is usually impossible to
assign experimentally observed rate constants directly to individual steps on folding
pathways, since they are complex functions of several microscopic rate constants. In
order to determine the microscopic rate constants it is essential to elucidate the
folding mechanism, which is facilitated by the use of interrupted refolding assays to
specifically monitor the time course of individual kinetic species. This method can
also be applied to more complex folding mechanisms with more than one inter-
mediate (74).

On the practical level, it should be noted that it is essential to plot the data on a
linear time scale when looking for lag phases, since even simple exponential kinetics
show a sigmoidal time course on a logarithmic time scale.
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Fig. 6. Folding mechanism of lysozyme obtained by combining a large number of experimental data, using the
various methods described in refs 69, 71, 73, and 56.

Significance of small differences in rates observed with
different probes

Small differences in the rate constants are often observed when the folding process is
monitored by different probes, such as fluorescence and far-UV CD. It has been argued
that this might indicate consecutive steps on a linear pathway or parallel pathways
for formation of secondary and tertiary structure. As discussed above, the apparent
rate constants in protein-folding reactions are usually complex functions of all micro-
scopic rate constants and thus do not generally reflect individual folding steps. To
demonstrate this, we simulated folding kinetics involving two intermediates with
very different spectroscopic parameters, located either on a sequential or a parallel
pathway. We assumed that one signal, e.g. fluorescence, changes completely in form-
ing one intermediate (I;) with no change for the other signal, e.g. far-UV CD. Form-
ation of a second intermediate (I,) occurs with a slightly different rate constant and is
accompanied by signal changes in the far-UV CD, but not in fluorescence. We then
simulated the observed time course of both intermediates and the resulting changes
in fluorescence and CD for the consecutive (Fig. 7A-C) and parallel pathways (Fig.
7D-E). As expected, the simulations show three apparent rate constants for both
four-state mechanisms. The consecutive mechanism (Fig. 7A) shows a significant
lag phase in formation of the second intermediate (I,), also observed if folding is
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Fig. 7. Simulation of a sequential mechanism (A-C) and of a parallel mechanism (D-F) for folding involving two
intermediates with very different CD and fluorescence properties. Panels B and E display the early regions of the
time course of the two intermediates. Panels C and F show the corresponding fluorescence and CD changes,
assuming the spectroscopic properties described in the text.

monitored by far-UV CD (Figs 7B and C). In the case of parallel pathways, both
intermediates are formed in the fastest reaction, which has a larger rate constant than
any of the microscopic rate constants, due to kinetic coupling (Fig. 7E). The inter-
mediates are, however, formed to different extents, reflecting the differences in the
microscopic rate constants for their formation. This is to be expected for competing
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reactions (22). Thus, CD and fluorescence measurements will show the same rate con-
stants but different amplitudes (Fig. 7F). These simulations demonstrate that caution
has to be taken in assigning apparent rate constants to individual folding steps and
argue against the significance of small differences in rate constants monitored by
different probes. Such differences in most cases reflect errors, often caused by
slightly different conditions in different experiments.

Complex transition barriers

For simple two-state systems Ink, and Ink; typically show linear dependencies on the
denaturant concentration. In some cases, however, non-linearity in the denaturant
dependence of Ink, has been observed in the absence of populated intermediates and
without contributions from prolyl isomerization reactions (75-81). For these proteins
the slope of Ink, versus [D] decreases with increasing denaturant concentration. Two
explanations have been offered for this behaviour. The curvature in the chevron plots
of spliceosomal protein U1A (81) and CI2 (80) was interpreted in terms of Hammond
behaviour, which has been observed for several reactions in organic chemistry (82).
Hammond behaviour states that the transition state of a reaction moves structurally
towards that state to which it moves closer in energy. In terms of protein folding,
destabilization of the native state with increasing concentrations of denaturant (45,
80) or by mutation (83) will result in the movement of the transition state to a more
native-like structure. This can explain the decrease in slope of Ink, with increasing
denaturant concentration. An alternative interpretation of the same results is to
suggest a rough transition-state barrier containing a large number of local minima
(80, 84) corresponding to high-energy intermediates. Similar barriers have been
observed in theoretical studies (85, 86) and shown to accelerate protein folding due to
a favourable entropic contribution to the free energy of activation (87). The trans-
itions between the various intermediates are assumed to be denaturant dependent,
leading to a change in the rate-limiting transition with varying denaturant concen-
tration. This model is supported by results on the unfolding of various proteins,
which show a clear kink rather than a rollover in the chevron plot (76, 77, 79). This
behaviour can be explained by the presence of a single, non-populated, high-energy
intermediate in the transition barrier.

In addition to local minima in the barrier, many theoretical models have predicted
a large number of parallel pathways giving rise to a multidimensional barrier region.
For n parallel pathways a single apparent rate constant, A, which is the sum of the
forward and reverse rate constants, will be observed for all pathways, as long as no
intermediates are populated:

A= (k. + k). (23]
i-1

As a consequence, two-state folding will still be observed and the complexity cannot
be detected experimentally.
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5.

Folding without barriers

Theoretical models have been proposed in which the actual folding reaction is an
energetically downhill process limited only by entropic barriers (15). Zwanzig treated
protein folding as a rapid, barrier-less equilibration reaction between many unfolded
conformations linked to a barrier-less escape process, which can only take place from
a limited number of unfolded conformations or ‘escape states’ (88), similar to the
flow out of a bath tub. Simulation of the dynamic behaviour of such a system shows
that single exponential kinetics result when the transitions between the different un-
folded states are fast and the number of escape states is small compared to the total
number of unfolded conformations. This process can thus not be distinguished experi-
mentally from two-state folding kinetics with an energy barrier. A more general
treatment of the effect of entropy barriers on chemical dynamics shows that single
exponential kinetics are always observed (at least for reactions in solution) in the
absence of energetic (enthalpic) barriers, as long as entropic barriers exist (89). These
considerations highlight the difficulties in discriminating between different folding
models on the basis of single exponential behaviour, since the same experimentally
observed kinetics can result from considerably different folding landscapes.

Non-exponential kinetics

Non-exponential kinetics were first reported by Kohlrausch (90) for the relaxation of
glass fibres after stretching. He described a broad distribution of relaxation times
covering timescales of several orders of magnitude. Such non-exponential kinetics
can be treated with a stretched exponential term of the kind:

A=A, e *kP [24]

The stretch factor 8 indicates a time-dependent change in the rate constant k, with
B = 1 corresponding to the special case of single exponential kinetics. The kinetics
become increasingly stretched with decreasing B. Stretched exponential behaviour,
which has also been referred to as ‘strange” kinetics (91), has recently gained atten-
tion both in theoretical (92, 93) and in experimental work on biological systems. The
best-studied experimental model is the structural relaxation of myoglobin at low
temperature (94) or at high solvent viscosity (95). A prerequisite for strange kinetics
is a rough energy landscape with significant barriers between a large number of local
minima (92). Thus, it was argued that protein-folding reactions might exhibit stretched
behaviour, under conditions where local minima on the folding landscape become
stabilized (e.g. at low temperature). Up to now there has been only one experimental
report on strange kinetics in protein folding, which describes the refolding of ubiquitin
and phosphoglycerate kinase at low temperature on the ws timescale (96). The
difficulty of unambiguously assigning the observed kinetics to stretched behaviour
may be seen from the fact that the kinetics only cover about 2.5 magnitudes of life-
times and can also be described by the sum of two or three exponentials. Nevertheless,
these first indications of non-exponential behaviour in protein folding on the very
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fast timescale provide an interesting new aspect to the understanding of the energy
landscapes for protein folding (see Chapter 5 for further discussion of non-
exponential kinetics).

Theories of reaction rates

Transition landscapes for protein folding are often complex and may involve
sequential and parallel barrier-crossing events, even in the absence of populated
intermediates. In addition, folding occurs in an aqueous environment, which con-
tributes significantly to the folding process, as seen in the temperature dependence of
protein stability and folding rates. For these scenarios, transition-state theory will not
be useful in the quantitative analysis of kinetic data. In the following sections we shall
discuss briefly some basic theories relating the rate constant of a reaction to an energy
barrier, in order to find a theory more appropriate for protein-folding reactions.

The van’t Hoff-Arrhenius equation

In 1884 van’t Hoff published a pioneering textbook on chemical dynamics (97) in
which he discussed the temperature dependence of chemical equilibria. In this work
he proposed several possible equations to describe the temperature dependence of
rate constants. Based on these considerations, Arrhenius argued in 1889 (98) that ex-
pressing the rate constant as a function of inverse temperature B (3! = kgT) on a
logarithmic scale is physically most meaningful and in accordance with experimental
results. In this treatment the rate of escape, k, from a metastable state in a chemical
reaction is the product of a temperature-independent pre-exponential factor A and
an exponential contribution, which depends on inverse temperature and on the
activation energy, E_:

k=A-exp(—B-E,). [25]

This equation explained the commonly observed strong temperature dependence
of chemical reactions, which could not be accounted for solely by an increase in
molecular translational energies. Although experimental data were often better de-
scribed by using a temperature-dependent pre-exponential factor (99), the van't
Hoff-Arrhenius equation (eqn 25) was generally considered to be best suited to
relate a rate constant to an energy barrier. However, the formulation of a satisfactory
treatment of the pre-exponential factor, A, caused considerable difficulty and ham-
pered the molecular interpretation of the van’'t Hoff-Arrhenius equation. It took
more than 40 years before Eyring (24, 100) and, independently, Evans and Polanyi
(101, 102) in 1935 developed a simple and general formulation of how small mol-
ecules escape from a metastable state (the transition-state theory). This work was
based on the pioneering contributions to fluctuation theories by Lord Rayleigh (103),
Einstein (104, 105), von Smoluchowski (106-109), Fokker (110), Planck (111), Ornstein
(112), and many others.
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7.2

7.3

Conventional transition-state theory

Transition-state theory assumes that the state with the highest energy (the transition
state or activated state) can be treated as a distinct and well-defined state in equilib-
rium with the reactant, with a quasi-equilibrium constant, K¥ (24). The rate of escape,
k, thus depends on the Gibbs free energy of activation, AG°¥, and on a pre-
exponential factor reflecting the maximum rate for the reaction in the absence of free-
energy barriers:

_ Kk-kgT

k
h

e P = ke [26]
The parameter k was originally introduced by Eyring as an ad hoc fudge factor or
transmission coefficient which corrects for those reactive particles that re-cross the
transition state (24). Clearly this fact always reduces the reaction rate and therefore
k =1. Setting k = 1 results in what is commonly known as the conventional
transition-state theory (CTST). Comparison of transition-state theory with the van't
Hoff-Arrhenius equation and using the relationship AG* = AH®t — TAS®f shows
that the pre-exponential factor (A) in the Arrhenius equation corresponds to
k- kgT/h - @SRRI g that E, = AH%F + RT.

CTST was initially developed for gas-phase reactions (24) and only later extended to
reactions in solution (100). It describes the escape rate of locally trapped small
molecules over a potential barrier along a simple linear reaction coordinate. All the
reactions considered involve making and breaking covalent bonds and the pre-
exponential factor was therefore assumed to correspond to the vibrational motion of a
chemical bond, which is of the order of 6 X 105! at room temperature. Considering
the complexity of protein-folding reactions, which involve motion of the polypeptide
chain in solution and simultaneous making and breaking of many non-covalent intra-
and intermolecular interactions, it is immediately obvious that TST is not adequate for
their treatment. For these reasons, a reaction-rate theory based on diffusional motions
inaqueous solvents should be better suited to describe protein folding.

Kramers’ theory

In 1940 Kramers published a famous paper entitled “Brownian motion in a field of
force and the diffusion model of chemical reactions’ (113). He considered a particle
trapped in a one-dimensional potential well separated by a barrier from a second,
deeper well. Kramers’ problem was to find the rate of escape of the particle from the
well over the barrier. He envisaged the escape process of the particle immersed in a
medium as the consequence of Brownian motion driven by thermal forces. The
medium exerts a friction on the particle but the thermal forces can, in turn, activate
the particle via the fluctuation-dissipation theorem to gain enough energy to escape
from the well. The motion of the particle is described by the Langevin equation:
dx dx dV

—+y—+—=F_(t 27
mdtz ’Ydt dx ext() [ ]
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where m denotes the particle mass; x(t), the coordinate; V(x), the potential energy
surface of the particle; v, the friction coefficient; and F.(t) represents the external
thermal excitation from the bath (solvent).

Kramers observed three different regions for the effect of viscosity on the rate of a
barrier-crossing event. In the low-friction limit, the rate actually increases with in-
creasing friction, since the system is only weakly coupled to the medium and an
equilibrium distribution of reactants cannot be maintained. In other words, the
medium cannot efficiently activate the reaction because there are too few interactions
with the reactants. With increasing viscosity, friction eventually becomes high
enough to maintain an equilibrium distribution of energized reactants, but not yet to
perturb the barrier-crossing event. Under these conditions (the intermediate friction
limit) the rate of the reaction is independent of solvent friction and the results from
Kramers’ theory and from CTST approach each other. At even higher friction, which
is applicable to reactions in solution, the rate of a reaction decreases with solvent
friction, due to barrier re-crossing events before the products are formed (the high
friction limit). Kramers demonstrated that, in the high friction limit, transition-state
theory seriously overestimates the true rate of escape in most cases. He showed, by
solving the Smoluchowski diffusion equation, that the solution for the rate of escape
in the high friction limit is simply

ko % -exp(—B - AG*). [28]

Thus, Kramers’ theory predicts a viscosity dependence of the rate constants for re-
actions in solution. It has been applied successfully to the description of a large
number of dynamic processes since it was first formulated. Extensions of Kramers’
theory and its application to the treatment of various systems are described in a excel-
lent review by Hanngi et al. (114). Since Kramers’ theory makes no ad hoc assump-
tions as to the nature of the barrier-crossing events and regards diffusive events as
elementary steps in a dynamic process, it should be well suited for the treatment of
protein-folding reactions (115). This is supported by the strong viscosity dependence
of folding reactions observed experimentally for several proteins (116-118).

Application of Kramers’ theory to protein folding

Following Kramers’ theory, the escape rates for two-state folding, k, and k;, are given
by the expressions

ky=v,-exp(—B-AGY)
and ke = ve- exp(—B - AG¥), [29]
where v, and v; are the Kramers pre-exponential factors for the unfolding and
refolding reactions, respectively. In the high friction limit the pre-exponential factors

are inversely proportional to the solvent viscosity, n. The dynamics in native and
unfolded proteins are influenced by the friction imposed by the solvent and by an
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internal friction, e.g. chain stiffness or hindered motions in native or partially folded
states. Assuming that these contributions to overall friction are additive, the pre-
exponential factors, v, can be written in the following form (119):

@
vy=— [30]
(nsolvent + UN)
G
Vg

(T] solvent + GU)

where C, and C; are constants which depend on the potential energy surface, n is the
solvent viscosity, and o is the internal viscosity arising from internal friction. Since
the equilibrium of a reaction is always determined by the escape rates for folding and
unfolding (eqn 6) the free energy for folding, AG®°, becomes

AG® = —p1- ln(g) =—p"1 I

u

- exp{~B(AGE — AGE)

u

= =B In[exp{~BAGH + B In(v,/v,) — AGZ)]
= AGP* + AGS — AGY! [31]
where we defined a free energy contribution from the pre-exponential factors as
AGY =" In(v,/vy). [32]

As a consequence of eqn 32, AG® does generally not reflect the difference in the
free-energy barriers for folding and unfolding, AG¢* and AG2¥ respectively (Fig. 8).
There is an inherent contribution from the pre-exponential factors which cannot be
determined by equilibrium methods. Equation 31 simplifies, however, if the pre-
exponential factors for the forward and the backward reaction are identical and AG?
becomes zero. If we assume the constants C, and C; to be equal, we can easily derive
an upper limit for the contribution of AG to protein stability:

i
AGﬁ _ B_l ‘In (nsolvent GU) = Bﬁl -In - _B—l ‘ 11'1(1 + UN)' [33]

TMsolvent + oN

1+0’N

Folding starts from a solvated polypeptide chain in water with little internal
friction compared to solvent friction (120) and thus we neglect oy, for the refolding
reaction. For the unfolding reaction, starting from native protein, the internal vis-
cosity oy will be significant due to the restricted motion of the polypeptide chain. For
sperm whale myoglobin, the internal viscosity, o, at room temperature was
measured to be 4.1*13cP (119). This gives an estimate of the pre-exponential
contribution to the overall stability of sperm whale myoglobin of approximately
~1keal/mol. These considerations show that in the case of myoglobin the difference
in the pre-exponential factors for unfolding and refolding will contribute maximally
lkcal/mol to the equilibrium stability of the native protein. The free-energy barrier
for unfolding is overestimated by the same amount when transition-state theory is
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free energy

reaction coordinate

Fig. 8. Effects of different pre-exponential factors for the refolding and unfolding reactions on the free-energy
changes in a two-state folding reaction (cf. eqns 29-33). The dashed line represents the free-energy profile
assuming identical pre-exponential factors for the folding and unfolding reaction. The solid lines assumes
differences in the pre-exponential factors, resulting in an additional contribution, AGS to the free energy of
folding, AG°.

applied. This value represents an upper limit, since the internal friction increases
along the reaction coordinate of the folding process and the effective internal friction
for refolding might be higher. However, the strong viscosity dependence of the fold-
ing reaction of several two-state proteins suggests that solvent viscosity indeed
dominates over internal viscosity (117, 118). Due to the lack of data for the internal
viscosity in folded states of other proteins, the magnitude of the contribution may
vary slightly.

In general, we cannot expect the pre-exponential factors for the unfolding rate v,
and for the folding rate v to be independent of the solvent conditions such as de-
naturant concentration [D], temperature, and pressure. This will contribute to the ex-
perimentally determined m-values and the activation parameters (AH®*, AS°¥, AV*,
and AV}

The pre-exponential factor for protein-folding
reactions

An adequate pre-exponential factor for protein folding should contain contributions
from solvent and internal friction. However, these considerations are not able to give
absolute values for the pre-exponential factors, which are crucial for the determin-
ation of the absolute scale of the free-energy barriers. A realistic estimate for a pre-
exponential factor must consider the elementary steps of a protein-folding reaction,
which should be closely related to the motions of the polypeptide chain. During
folding the polypeptide chain searches the conformational space for energetically
favourable states by making contacts between different parts of the chain. In this
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scenario intrachain diffusion can be regarded as the elementary process in protein
folding. Free diffusion in solutions was treated extensively almost 100 years ago (106,
121, 122) but until recently, little was known about the absolute rates of diffusion
restricted by chain motions in polypeptides. Numerous theoretical studies have been
made to investigate the process of intrachain diffusion in polymers (17, 123-126).
Using a first passage time approach, Szabo et al. (124) predicted single exponential
behaviour for intrachain contact formation, when the interconversion between
individual conformations is fast and when the relative number of conformations
allowing end-to-end contact is small. (This is similar to Zwanzig’s results discussed
above on barrier-free protein folding via escape states (88).) These studies were not
able to give absolute numbers, but they predicted that the rate of contact formation
scales with N™'* for intrachain diffusion processes in polymers, where N is the num-
ber of polymer building blocks, viz. the number of amino acids in the case of a poly-
peptide chain. This value is in agreement with the earlier treatment of a similar pro-
cess by Jacobsen and Stockmayer (123).

Early experimental work on polypeptide chain dynamics was aimed at determining
average diffusion constants for polypeptide motion. Haas and co-workers studied
chain dynamics using resonance-energy transfer (singlet energy transfer) between
donor and acceptor groups attached at the ends of short peptides (127). These
experiments are sensitive for relative motions between the donor and the acceptor at
distances near the characteristic transfer distance (R,) for a given donor/acceptor
pair—22 A for the chosen system. The resulting diffusion constants were in the range
of 2.6 X 107 to 6.4 X 107cm?s™ for donor-acceptor separations between 5 and 9
peptide bonds, which converts into time constants between 9 and 3ns for contact
formation at van der Waals distance. Since resonance-energy transfer should be
sensitive for a broad spectrum of motions near R,, it is not clear whether these results
can be applied directly to contact formation. They still, however, give a very good
estimate for the timescales of peptide motion.

Photochemical triggering and nanosecond-resolved optical spectroscopy were
used by Eaton and co-workers to measure intrachain diffusion directly in reduced
cytochrome c at high concentrations of denaturant (128, 129). They obtained a time
constant of about 40 ps for haem binding to methionine residues located 50-60
residues further along the polypeptide chain. Since extrinsic methionine binds to
haem in a nearly diffusion-controlled process, the 40 us reaction was proposed to
reflect the rate of intrachain diffusion between the two chain segments. Use of the
scaling law given by Szabo et al. (124) allowed extrapolation of this rate to shorter
distances, yielding an estimate of 1 s for the time constant of contact formation at a
distance of 10 peptide bonds. This is thought to be the distance at which contact
formation is fastest, due to increasing chain stiffness in shorter chain segments (18,
130, 131). Since the system is not completely diffusion controlled and contact
formation between an amino acid and the very large haem group was being moni-
tored, it is not clear whether these rate constants reflect the process of intrachain
diffusion.

The first direct experimental data on maximum rates of intrachain diffusion
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between different parts of a polypeptide chain were obtained by Bieri et al. (120)
using triplet-triplet energy transfer. Energy transfer between an excited triplet donor
and an acceptor proceeds by a two-electron transfer mechanism (Dexter mechanism),
which requires van der Waals contact between the two groups (132). A series of
short, unstructured peptides were synthesized in which the distance between a
triplet donor and a triplet acceptor was varied by insertion of 1 to 4 glycine-serine
pairs. Due to the special properties of glycine, these peptides are particularly flexible
and exhibit short end-to-end distances (133), making them good model systems for
evaluating the maximum rate of intrachain diffusion. The results show that contact
formation fits well to single-exponential kinetics and the rate increases with
decreasing chain length (N), even for the shortest peptides. The rates decrease with
an N3 *92 dependence in this limited region, which is well within the range of the
predicted values of k~N° (123, 124). Intrachain contact formation in the peptide
models is strongly viscosity dependent, showing that solvent friction is the limiting
factor (120). The maximum rate of contact formation was 10-20ns at a viscosity of 1
cP for the shortest peptides, in which donor and acceptor are separated by three
peptide bonds. This should represent the upper limit at which local structural
elements can form and allows an estimate of the height of the free-energy barrier for
protein-folding reactions. These rates are only slightly smaller for less-flexible
peptides, which do not contain Gly residues (Bieri et al., unpublished).

Using these values for the pre-exponential factor in eqn 29, we can calculate the
height of the free-energy barrier for experimentally determined folding reactions. The
fastest experimentally determined folding reactions are of the order of 10°-10*s™..
Assuming a pre-exponential factor of 10%s™ gives AG°* of 5-6kcal/mol at room
temperature, which corresponds to 9-11kgT. For comparison, using CTST, the same
rate constants will result in AG* of 12-14 kcal / mol or 2022 ksT.

The pre-exponential factor for the unfolding reaction will be strongly correlated
with the motions of the polypeptide chain in the native state, which have been shown
to contain significant contributions from internal viscosity (o) (119). Using the maxi-
mum rate of chain motion in the unfolded state and its viscosity dependence (120), in
combination with experimentally determined oy values for native proteins, we can
calculate the pre-exponential factor for unfolding using eqn 30. The oy value of 4.1 cP
measured for native myoglobin results in a pre-exponential factor of about 2 X 107s™!
for the unfolding process. Since the mechanism of unfolding is not well understood,
there might be significant contributions to the barrier-crossing events from other
processes, like the entry of water into the hydrophobic core.

Conclusions and outlook

A quantitative treatment of folding kinetics is a prerequisite for elucidating mech-
anisms of protein folding. Even simple kinetics, like single exponential behaviour,
can be caused by a variety of different folding landscapes. Therefore the interplay
between theoretical models and experimental results is essential in the effort to
understand protein folding. We have seen that concepts from classical reaction-rate
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theory developed for simple chemical reactions can be applied to protein folding,
since the energy landscapes for most proteins seem to contain partially folded inter-
mediates, even if they do not become populated. However, it is also obvious that re-
sults obtained using transition-state theory have to be treated with caution. A much
better model for analysing protein-folding reactions is provided by Kramers’ theory.
The aim of future experimental work will be to gain a better understanding of the
very early steps of folding reactions and of the complexity of the transition barriers
separating native from unfolded proteins.
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