UPPER MISSISSIPPI RIVER – ILLINOIS WATERWAY SYSTEM LOCKS & DAMS

US Army Corps of Engineers® Mississippi Valley Division

THE LOCK & DAM SYSTEM

The Upper Mississippi River – Illinois Waterway System includes 37 locks and 1,200 miles of navigable waterway in Illinois, lowa, Minnesota, Missouri, and Wisconsin. The 9-foot Channel Navigation Project was largely constructed in the 1930's and extends down the Upper Mississippi River from Minneapolis-St. Paul to its confluence with the Ohio River and up the Illinois Waterway to the Thomas J. O'Brien Lock in Chicago. The maintenance needs of the aging infrastructure are increasing at a rate much greater than the operations and maintenance funding provided for the system.

INDEX OF LOCKS & DAMS

Mississippi River

<u>Page</u>

St. Paul District (Current Maintenance Needs = \$103,385,000)

Upper St. Anthony Falls – Minneapolis, Minnesota	3
Lock and Dam 1 – Minneapolis, Minnesota	5 7
Lock and Dam 2 – Hastings, Minnesota	9
Lock and Dam 3 – Welch, Minnesota	11
Lock and Dam 4 – Alma, Minnesota	13
Lock and Dam 5 – Minnesota City, Minnesota	15
Lock and Dam 5A – Fountain City, Minnesota	17
Lock and Dam 6 – Trempealeau, Minnesota	19
Lock and Dam 7 – La Crescent, Minnesota	21
Lock and Dam 8 – Genoa, Wisconsin	23
Lock and Dam 9 – Lynxville, Wisconsin	25
Lock and Dam 10 – Guttenburg, Iowa	27

Rock Island District (Current Maintenance Needs = \$425,240,000)

Lock and Dam 11 – Dubuque, Iowa	29
Lock and Dam 12 – Bellevue, Iowa	31
Lock and Dam 13 – Fulton, Illinois	33
Locks and Dam 14 – Pleasant Valley, Iowa	35
Locks and Dam 15 – Rock Island, Illinois	37
Lock and Dam 16 – Muscatine, Iowa	39
Lock and Dam 17 – New Boston, Illinois	41
Lock and Dam 18 – Gladstone, Illinois	43
Lock and Dam 19 – Keokuk, Iowa	45
Lock and Dam 20 – Canton, Missouri	47
Lock and Dam 21 – Quincy, Illinois	49
Lock and Dam 22 – Saverton, Missouri	51

St. Louis District (Current Maintenance Needs = \$ 53,650,000)

Lock and Dam 24 – Clarksville, Missouri	53
Lock and Dam 25 – Winfield, Missouri	55
Melvin Price Locks and Dam – Alton, Illinois	57
Locks and Dam 27 – Granite City, Illinois	59

Illinois River & Waterway

Rock Island District (Current Maintenance Needs = \$371,150,000)

Thomas J. O'Brien – Chicago, Illinois	61
Lockport – Lockport, Illinois	63
Brandon Road – Joliet, Illinois	65
Dresden Island – Morris, Illinois	67
Marseilles – Marseilles, Illinois	69
Starved Rock – Ottawa, Illinois	71
Peoria – Creve Coeur, Illinois	73
LaGrange – Versailles, Illinois	75

The Upper Mississippi River Basin USGS Hydrologic Unit Code (HUC) 07 Map

UPPER ST. ANTHONY FALLS (MINNEAPOLIS, MINNESOTA) MISSISSIPPI RIVER

Construction: Lock: 1959-1963 Dam: 1951 Congressional District: MN-5

Upper St. Anthony Falls (USAF) Lock and Dam is located at Mississippi River Mile 853.9, in Minneapolis, Minnesota, and is the northern most lock.

USAF Lock is located near the right descending bank and consists of a single lock chamber 56 feet wide by 400 feet long. The upper pool elevation is 799.2, tailwater elevation is 750.1, and the vertical lift is 49.1 feet. In addition to four lock miter gates, there is an upstream lock Tainter gate for passing flow through the lock chamber during high water. There is no auxiliary lock or provisions for one. There is a Visitor/Observation Center atop the central control station.

On the left descending bank there is a horseshoe dam with a chord dam downstream of the horseshoe and a concrete overflow spillway owned by Xcel Energy Center that ties into the Lock. On the right descending bank the Corps has a short non-overflow concrete dam between the Lock and the bank.

The lock was put into operation in September 1963. In 1937, Congress authorized a 4.6 mile extension of the 9-foot channel at its upstream end and two additional complexes were built in Minneapolis: the Lower St. Anthony Falls Lock and Dam, and the Upper St. Anthony Falls Lock and Dam. The construction of these complexes, also known as the Upper Minneapolis Harbor Development, extended the 9-foot channel over the St. Anthony Falls. Below the St. Anthony Falls, the narrow gorge of the Upper Mississippi River only allowed for a relatively small river terminal. By extending the 9-foot channel, the Upper Mississippi Harbor Development project permitted the construction of larger and more suitable river terminal sites above the falls.

St. Anthony Falls has a fall of 74 feet, and had historically been used to furnish waterpower for sawmills and flour mills in the area. To ascend the falls the Corps needed a 25-foot lift at the lower lock, and a 49.1-foot lift at the upper lock. The Lower St. Anthony Falls Lock and Dam project also replaced the original Northern States Power Company Dam, which had been built in 1897.

The Upper St. Anthony Falls Lock and Dam fixed concrete dam was built in 1951, when an existing timber dam was destroyed by flood. The timber dam had been constructed in the 1870s in an effort to protect the St. Anthony Falls from upstream progression. Since the concrete dam was in place, the Corps only needed to construct a navigation lock. But, with a rise of 49.1 feet, the lock was the highest lift on the river and an engineering challenge costing more than \$18 million to build.

(More Information On The Reverse Side)

AMERICA'S WATERSHED U.S. Army Corps of Engineers BUILDING STRONG®

HISTORY/SIGNIFICANCE

Year	<u>Tons</u>	Year	<u>Tons</u>
1999	2,062,800	2004	1,494,539
2000	2,238,564	2005	1,154,000
2001	1,826,375	2006	1,315,770
2002	2,042,700	2007	998,770
2003	1,942,747	2008	942,300
	Year 1999 2000 2001 2002 2003	YearTons19992,062,80020002,238,56420011,826,37520022,042,70020031,942,747	YearTonsYear19992,062,800200420002,238,564200520011,826,375200620022,042,700200720031,942,7472008

Coal	107,100	Subtotals:	
Petroleum	0		
Chemicals	18,000	Grain	0
Crude Materials	789,000	Steel	15,000
Manufactured Goods	15,000		
Farm Products	0	Lockages:	
Manufactured Machinery	11,700	-	
Waste Material	0	Boats:	3,367
Unknown	1,500	Cuts:	2,436

CURRENT MAINTENANCE ISSUES – UPPER ST. ANTHONY FALLS

Item (Critical Rank Order)

Electrical Rehabilitation

TOTAL ESTIMATED COST \$3,000,000

The maintenance needs of the aging infrastructure are increasing at a rate much greater than the operations and maintenance funding provided for the system. This is adversely affecting reliability of the system. Long-established programs for preventative maintenance of major lock components have essentially given way to a fix-as-fail strategy, with repairs sometimes requiring weeks or months to complete. Depending on the nature of a lock malfunction, extended repairs can have major consequences for shippers, manufacturers, consumers, and commodities investors.

The existing 9-foot Channel Navigation Project was largely constructed in the 1930s and extends down the Upper Mississippi River from Minneapolis-St. Paul to its confluence with the Ohio River and up the Illinois Waterway to the Thomas J. O'Brien Lock in Chicago. It includes 37 Locks and approximately 1,200 miles of navigable waterway in Illinois, Iowa, Minnesota, Missouri, and Wisconsin.

More than 580 manufacturing facilities, terminals, and docks ship and receive tonnage in the Upper Mississippi River basin. In 2005, the system moved more than 160 million tons of commercial cargo worth roughly \$28.5 billion. Grains (corn and soybeans) dominate traffic on the system. Other commodities, mainly cement and concrete products, comprise the second largest group. A modern 15-barge tow transports the equivalent of 1,050 large semi-trucks (26,250 cargo tons, 875,000 bushels, or 17,325,000 gallons). Annually, the project generates an estimated \$1 billion of transportation cost savings compared with the operation and maintenance costs of approximately \$115 million.

POINT OF CONTACT

St. Paul District Public Affairs Office Phone number: 651-290-5200 Fax number: 651-290-5752 E-mail address: cemvp-pa@usace.army.mil

September 2009

LOWER ST. ANTHONY FALLS (MINNEAPOLIS, MINNESOTA) MISSISSIPPI RIVER

Construction: 1950-1956 Congressional District: MN-5

Lower St. Anthony Falls (LSAF) Lock and Dam is located at Mississippi River Mile 853.3, in Minneapolis, Minnesota.

LSAF Lock is located along the right descending bank and consists of a single lock chamber 56 feet wide by 400 feet long with an upper pool elevation of 750.1, a tailwater elevation of 725.1, and a vertical lift of 25 feet. The lock uses miter gates on the downstream side and a lock Tainter gate on the upstream side for the purpose of passing flow through the lock chamber during high water. There is a partial auxiliary lock consisting of an upstream Tainter gate and short concrete riverwall section.

The movable dam has three Tainter gates (24 feet high by 56 feet long) and an auxiliary lock submersible Tainter gate (24 feet high by 56 feet long). Completing the dam system is a concrete non-overflow wall owned by the Corps and a short, earth embankment owned by Xcel Energy, both on the left descending bank.

HISTORY/SIGNIFICANCE

The Lock was put into operation in September 1956. In 2007, the I-35 bridge tragedy occurred at the Lower St. Anthony Falls location.

In 1937, Congress authorized a 4.6 mile extension of the 9-foot channel at its upstream end and two additional complexes were built in Minneapolis: the Lower St. Anthony Falls Lock and Dam, and the Upper St. Anthony Falls Lock and Dam. The construction of these complexes, also known as the Upper Minneapolis Harbor Development, extended the 9-foot channel over the St. Anthony Falls. Below the St. Anthony Falls, the narrow gorge of the Upper Mississippi River only allowed for a relatively small river terminal. By extending the 9-foot channel, the Upper Mississippi Harbor Development project permitted the construction of larger and more suitable river terminal sites above the falls.

St. Anthony Falls has a fall of 74 feet, and had historically been used to furnish waterpower for sawmills and flour mills in the area. To ascend the falls the Corps needed a 25-foot lift at the lower lock, and a 49.1-foot lift at the upper lock. The Lower St. Anthony Falls Lock and Dam project also replaced the original Northern States Power Company Dam, which had been built in 1897.

(MORE INFORMATION ON THE REVERSE SIDE)

Annual Tonnage (10-Year Historical)	Year	<u>Tons</u>	Year	<u>Tons</u>
	1999	2,067,100	2004	1,483,317
	2000	2,237,267	2005	1,158,096
	2001	1,814,488	2006	1,316,764
	2002	2,041,840	2007	993,963
	2003	1,930,812	2008	929,600

Coal	110,100	Subtotals:	
Petroleum	0		
Chemicals	18,000	Grain	0
Crude Materials	778,500	Steel	12,000
Manufactured Goods	12,000		
Farm Products	0	Lockages:	
Manufactured Machinery	9,500	-	
Waste Material	0	Boats:	2,651
Unknown	1,500	Cuts:	1,956

CURRENT MAINTENANCE ISSUES – LOWER ST. ANTHONY FALLS

Item (Critical Rank Order)

Electrical Rehabilitation Repair Lock Wall Dam End Sill Repair Dam Bridge and Gate Painting Horizontal Concrete Repair Reconstruct Roadway between Locks

TOTAL ESTIMATED COST \$8,570,000

The maintenance needs of the aging infrastructure are increasing at a rate much greater than the operations and maintenance funding provided for the system. This is adversely affecting reliability of the system. Long-established programs for preventative maintenance of major lock components have essentially given way to a fix-as-fail strategy, with repairs sometimes requiring weeks or months to complete. Depending on the nature of a lock malfunction, extended repairs can have major consequences for shippers, manufacturers, consumers, and commodities investors.

The existing 9-foot Channel Navigation Project was largely constructed in the 1930s and extends down the Upper Mississippi River from Minneapolis-St. Paul to its confluence with the Ohio River and up the Illinois Waterway to the Thomas J. O'Brien Lock in Chicago. It includes 37 Locks and approximately 1,200 miles of navigable waterway in Illinois, Iowa, Minnesota, Missouri, and Wisconsin.

More than 580 manufacturing facilities, terminals, and docks ship and receive tonnage in the Upper Mississippi River basin. In 2005, the system moved more than 160 million tons of commercial cargo worth roughly \$28.5 billion. Grains (corn and soybeans) dominate traffic on the system. Other commodities, mainly cement and concrete products, comprise the second largest group. A modern 15-barge tow transports the equivalent of 1,050 large semi-trucks (26,250 cargo tons, 875,000 bushels, or 17,325,000 gallons). Annually, the project generates an estimated \$1 billion of transportation cost savings compared with the operation and maintenance costs of approximately \$115 million.

POINT OF CONTACT

St. Paul District Public Affairs Office Phone number: 651-290-5200 Fax number: 651-290-5752 E-mail address: cemvp-pa@usace.army.mil

September 2009

LOCK & DAM 1 (MINNEAPOLIS, MINNESOTA) MISSISSIPPI RIVER

Construction: 1907-1917 (original 6-foot channel lock) 1930-1932 (9-foot channel lock) Congressional Districts: MN-5; MN-6

DESCRIPTION

Lock and Dam 1 is located at Mississippi River Mile 847.9, in Minneapolis, Minnesota. The original Lock construction was completed in 1917, reconstructed in 1929 with the main lock completed in May 1932. It was the only twin lock in the district.

The main lock is located along the right descending bank and consists of a lock chamber 56 feet wide by 400 feet long with an upper pool elevation of 725.1, a tailwater elevation of 687.2, and a maximum vertical lift of 37.9 feet. The auxiliary lock is immediately adjacent to the main lock but has only 7.5-foot of clearance over the downstream sill, and has been abandoned.

The dam consists of an Ambursen concrete overflow structure 574 feet long with a two-foot-high inflatable rubber dam along the top and a hydro power station located at the left descending bank abutment. The hydro power facility and rubber dam are both owned and operated by Brookfield Renewable Power.

HISTORY/SIGNIFICANCE

The Corps of Engineers began constructing this installation in 1894 as part of the 5-foot channel project. The complex was later modified during the 1907 6-foot channel project. A hydroelectric plant located at the dam's east end provides power to a nearby Ford automobile factory.

The lock and dam complex is also referred to as the Twin Cities (Ford) Lock and Dam.

Tons Tons ANNUAL TONNAGE Year Year (10-YEAR HISTORICAL) 1999 2,071,900 2004 1,510,040 2000 2,257,182 2005 1,159,356 1,829,855 2006 1,307,990 2001 2,045,895 989,706 2002 2007 2003 1,958,970 964,681 2008

(More Information On The Reverse Side)

Coal	107,100	Subtotals:	
Petroleum	0		
Chemicals	18,000	Grain	0
Crude Materials	799,000	Steel	10,500
Manufactured Goods	12,000		
Farm Products	0	Lockages:	
Manufactured Machinery	25,281		
Waste Material	0	Boats:	5,177
Unknown	3,300	Cuts:	2,684

CURRENT MAINTENANCE ISSUES – LOCK & DAM 1

Item (Critical Rank Order)

Riverward Lock Closure Pedestrian Bridge Painting

TOTAL ESTIMATED COST: \$3,500,000

The maintenance needs of the aging infrastructure are increasing at a rate much greater than the operations and maintenance funding provided for the system. This is adversely affecting reliability of the system. Long-established programs for preventative maintenance of major lock components have essentially given way to a fix-as-fail strategy, with repairs sometimes requiring weeks or months to complete. Depending on the nature of a lock malfunction, extended repairs can have major consequences for shippers, manufacturers, consumers, and commodities investors.

The existing 9-foot Channel Navigation Project was largely constructed in the 1930s and extends down the Upper Mississippi River from Minneapolis-St. Paul to its confluence with the Ohio River and up the Illinois Waterway to the Thomas J. O'Brien Lock in Chicago. It includes 37 Locks and approximately 1,200 miles of navigable waterway in Illinois, Iowa, Minnesota, Missouri, and Wisconsin.

More than 580 manufacturing facilities, terminals, and docks ship and receive tonnage in the Upper Mississippi River basin. In 2005, the system moved more than 160 million tons of commercial cargo worth roughly \$28.5 billion. Grains (corn and soybeans) dominate traffic on the system. Other commodities, mainly cement and concrete products, comprise the second largest group. A modern 15-barge tow transports the equivalent of 1,050 large semi-trucks (26,250 cargo tons, 875,000 bushels, or 17,325,000 gallons). Annually, the project generates an estimated \$1 billion of transportation cost savings compared with the operation and maintenance costs of approximately \$115 million.

POINT OF CONTACT

St. Paul District Public Affairs Office Phone number: 651-290-5200 Fax number: 651-290-5752 E-mail address: cemvp-pa@usace.army.mil

September 2009

LOCK & DAM 2 (Hastings, Minnesota) MISSISSIPPI RIVER

Construction: 1928-1930 (original riverward lock) 1941-1948 (new, landward lock) Congressional District: MN-2

DESCRIPTION

Lock and Dam 2 is upstream of Hastings, Minnesota, and is 815.2 miles above the confluence of the Mississippi and Ohio rivers.

The lock is 110 feet wide by 600 feet long. The dam consists of a concrete structure 722 feet long with 19 Tainter gates, 30 feet long. The dam has 4.4 megawatt power plant owned and operated by the city of Hastings. The site includes 3,000 feet of earth embankment.

E The Corps remained committed to open-water navigation on the Upper Mississippi in 1925 when plans were made for a lock and dam complex at Hastings, Minnesota. However, this structure did not leave as much room for open-water maneuvering as the Moline and LeClaire installations. The Hastings complex, now known as Lock and Dam 2, only included a 100-foot-wide navigable pass adjacent to the lock. It also included 20 Tainter gates. In narrowing the space reserved for open-river navigation and using Tainter gates for the first time on the Upper Mississippi River, the Hastings Lock and Dam acted "as a sort of engineering link" between the Corps' 6-foot channel structures and philosophy and its mature 9-foot channel structures and philosophy.

The original, riverward lock chamber was 110 feet by 500 feet and constructed from 1928-1930. Due to foundation conditions, some rotation of the original lock walls took place, which also affected the operation of the miter gates. Due to the foundation settlement problems, wall tilting and that the original lock chamber was of a non standard size, construction of a 110-foot by 600-foot landward lock chamber commenced in 1941. The new lock chamber was not completed until 1948 due to the suspension of all civil construction during World War II.

	Year	<u>Tons</u>	Year	<u>Tons</u>
ANNUAL TONNAGE				
(10.VEAR HISTORICAL)	1999	11,539,700	2004	7,828,603
(IO-TEARTISTORICAL)	2000	10,860,047	2005	7,291,721
	2001	8,583,954	2006	7,341,784
	2002	10,574,988	2007	7,051,488
	2003	8,861,479	2008	4,729,252

(MORE INFORMATION ON THE REVERSE SIDE)

AMERICA'S WATERSHED U.S. Army Corps of Engineers BUILDING STRONG®

HISTORY/SIGNIFICANCE

Coal	264,893	Subtotals:	
Petroleum	213,841		
Chemicals	1,019,267	Grain	1,019,913
Crude Materials	1,719,981	Steel	38,611
Manufactured Goods	247,720		
Farm Products	1,177,168	Lockages:	
Manufactured Machinery	70,653		
Waste Material	0	Boats:	5,496
Unknown	15,729	Cuts:	2,910

CURRENT MAINTENANCE ISSUES – LOCK & DAM 2

Item (Critical Rank Order)

Vault Lead Paint and Mold Abatement Embankment Rehabilitation - Non-Structural Dam Bridge and Gate Painting Tainter Valve Replacement

TOTAL ESTIMATED COST: \$9,300,000

The maintenance needs of the aging infrastructure are increasing at a rate much greater than the operations and maintenance funding provided for the system. This is adversely affecting reliability of the system. Long-established programs for preventative maintenance of major lock components have essentially given way to a fix-as-fail strategy, with repairs sometimes requiring weeks or months to complete. Depending on the nature of a lock malfunction, extended repairs can have major consequences for shippers, manufacturers, consumers, and commodities investors.

The existing 9-foot Channel Navigation Project was largely constructed in the 1930s and extends down the Upper Mississippi River from Minneapolis-St. Paul to its confluence with the Ohio River and up the Illinois Waterway to the Thomas J. O'Brien Lock in Chicago. It includes 37 Locks and approximately 1,200 miles of navigable waterway in Illinois, Iowa, Minnesota, Missouri, and Wisconsin.

The system's 600-foot locks do not accommodate today's modern tows without splitting and passing through the lock in two operations. This procedure requires uncoupling barges at midpoint which triples lockage times and exposes deckhands to increased accident rates.

More than 580 manufacturing facilities, terminals, and docks ship and receive tonnage in the Upper Mississippi River basin. In 2005, the system moved more than 160 million tons of commercial cargo worth roughly \$28.5 billion. Grains (corn and soybeans) dominate traffic on the system. Other commodities, mainly cement and concrete products, comprise the second largest group. A modern 15-barge tow transports the equivalent of 1,050 large semi-trucks (26,250 cargo tons, 875,000 bushels, or 17,325,000 gallons). Annually, the project generates an estimated \$1 billion of transportation cost savings compared with the operation and maintenance costs of approximately \$115 million.

POINT OF CONTACT

St. Paul District Public Affairs Office Phone number: 651-290-5200 Fax number: 651-290-5752 E-mail address: cemvp-pa@usace.army.mil

September 2009

LOCK & DAM 3 (Welch, Minnesota) MISSISSIPPI RIVER

General Contractors:

Lock: Spencer, White & Prentis, Inc. New York, New York Dam: A. Gutherie Co., St. Paul, Minnesota and Hallett Construction Co., Crosby, Minnesota **Construction:** 1935-1940 **Congressional Districts:** MN-2, WI-3

DESCRIPTION

Lock and Dam 3 is located at Mississippi River Mile 796.9 six miles upstream from Red Wing, Minnesota.

The main lock is located along the right descending bank and consists of a single lock chamber 110 feet wide by 600 feet long with an upper pool elevation of 675.0, a tailwater elevation of 667.0, and a vertical lift of 8.0 feet. There are miter gates at each end of the lock chamber. There is a partial auxiliary lock consisting of an upstream set of miter gates and a short concrete riverwall section. The lock foundations are set in sand, silt and clay.

The movable dam is 365 feet long and consists of four submersible roller gates (20 feet high by 80 feet long). The gates submerge to a depth of five feet and each gate has its own independent hoist machinery. Completing the dam system is a series of spot dikes along the left descending bank (Wisconsin side) and an earthen embankment approximately 2,200 feet long, located between the main lock and high ground on the Minnesota side. The gates and operating machinery were constructed and delivered to the site by Lakeside Bridge and Steel Company of Milwaukee, Wisconsin. The dam foundations are set in sand.

HISTORY/SIGNIFICANCE The lock opened in July 1938. Specific items of engineering significance include the exclusive use of submersible roller gates in the movable dam; the use of "Z" sheet piling in the abutment walls; and the replacement of all dam substrata. Prior to the construction of the dam, the Corps replaced approximately 200,000 cubic yards of unstable substrata with 130,000 cubic yards of river sand in order to provide a more stable foundation for the dam structure. The lock and dam elements of the complex were completed at a cost of \$3,730,000. Fifty-three injuries took place during construction; no fatalities occurred.

	Year	Tons	Year	Tons
ANNUAL TONNAGE				
(10.YEAR HISTORICAL)	1999	11,549,600	2004	7,824,551
(IO I LARTISTORICAL)	2000	10,865,655	2005	7,300,671
	2001	8,545,300	2006	7,338,218
	2002	10,591,946	2007	7,057,358
	2003	8,835,187	2008	4,732,120

(More Information On The Reverse Side)

Coal	266,837	Subtotals:	
Petroleum	213,841		
Chemicals	1,021,072	Grain	1,019,713
Crude Materials	1,723,140	Steel	38,561
Manufactured Goods	247,670		
Farm Products	1,176,968	Lockages:	
Manufactured Machinery	64,263	-	
Waste Material	0	Boats:	10,382
Unknown	18,329	Cuts:	4,187

CURRENT MAINTENANCE ISSUES – LOCK & DAM 3

Item (Critical Rank Order)

Vault Lead Paint and Mold Abatement Embankment Rehabilitation – Structural Embankment Rehabilitation - Non-Structural Guidewall Rehabilitation Dam Bridge and Gate Painting

TOTAL ESTIMATED COST: \$9,800,000

The Lock 3 facility has one of the worst outdraft conditions throughout the inland waterways system. A total of 65 outdraft-related navigation accidents have occurred at Lock and Dam 3 since 1963. On 11 occasions, these accidents have resulted in tows colliding with the gated part of the dam. The frequent collisions with the dam structure and the substandard structural embankments result in exposure to high risks related to the safety of towboat staff and related to potential environmental damages should the embankments fail. With FY 09 ARRA funding in the amount of \$70,240,000, the Corps is in the process of addressing these issues by extending the upper guidewall 800 feet, modifying the channel, and strengthening the upper and lower embankments. This work is scheduled to be completed by September 2011.

The maintenance needs of the aging infrastructure are increasing at a rate much greater than the operations and maintenance funding provided for the system. This is adversely affecting reliability of the system. Long-established programs for preventative maintenance of major lock components have essentially given way to a fix-as-fail strategy, with repairs sometimes requiring weeks or months to complete. Depending on the nature of a lock malfunction, extended repairs can have major consequences for shippers, manufacturers, consumers, and commodities investors.

The existing 9-foot Channel Navigation Project was largely constructed in the 1930s and extends down the Upper Mississippi River from Minneapolis-St. Paul to its confluence with the Ohio River and up the Illinois Waterway to the Thomas J. O'Brien Lock in Chicago. It includes 37 Locks and approximately 1,200 miles of navigable waterway in Illinois, Iowa, Minnesota, Missouri, and Wisconsin.

The system's 600-foot locks do not accommodate today's modern tows without splitting and passing through the lock in two operations. This procedure requires uncoupling barges at midpoint which triples lockage times and exposes deckhands to increased accident rates.

More than 580 manufacturing facilities, terminals, and docks ship and receive tonnage in the Upper Mississippi River basin. In 2005, the system moved more than 160 million tons of commercial cargo worth roughly \$28.5 billion. Grains (corn and soybeans) dominate traffic on the system. Other commodities, mainly cement and concrete products, comprise the second largest group. A modern 15-barge tow transports the equivalent of 1,050 large semi-trucks (26,250 cargo tons, 875,000 bushels, or 17,325,000 gallons). Annually, the project generates an estimated \$1 billion of transportation cost savings compared with the operation and maintenance costs of approximately \$115 million.

POINT OF CONTACT

St. Paul District Public Affairs Office Phone number: 651-290-5200 Fax number: 651-290-5752 E-mail address: cemvp-pa@usace.army.mil

September 2009

LOCK & DAM 4 (Alma, Minnesota) MISSISSIPPI RIVER

General Contractors: Lock: Ouillmette Construction & Engineering Co., Chicago, Illinois Dam: United Construction Co., Winona, Minnesota Construction: 1931-1938 Congressional Districts: MN-1, WI-3

DESCRIPTION

Lock and Dam 4 is located at Mississippi River Mile 752.8 in Alma, Wisconsin, about 90 miles below Minneapolis.

The main lock is located along the left descending bank and consists of a single lock chamber, 110 feet wide by 600 feet long with an upper pool elevation of 667.0, a tailwater elevation of 660.0, and a vertical lift of 7.0 feet. There are miter gates at each end of the lock chamber. There is a partial auxiliary lock consisting of an upstream set of miter gates and short concrete riverwall section. The foundation is piles in sand and gravel.

The dam consists of a concrete structure 1,357 feet long with six roller gates and 22 Tainter gates. The movable dam has six roller gates (20 feet high by 60 feet long), 18 non-submersible Tainter gates (15 feet high by 35 feet long), and four submersible Tainter gates (15 feet high by 35 feet long). Completing the dam system is an earthen embankment approximately 5,500 feet long, located between the movable dam and high ground on the Minnesota side of the river. The dam foundation consists of piles in sand and gravel.

HISTORY/SIGNIFICANCE The lock was put in operation in May 1935. At the time it was built, the dam's combination of roller and Tainter gates was believed to have been the first of its type to be constructed. Cold weather created several problems during construction of the complex. Approximately 120 timber pilings split and had to be pulled and replaced; engineers speculated that sap freezing in the green pilings may have caused the splitting. Ten major injuries, 296 minor injuries, and three deaths were reported during the construction of the dam.

Year	Tons	Year	Tons
1999	12,350,700	2004	8,575,017
2000	11,798,328	2005	8,054,094
2001	9,355,461	2006	8,238,928
2002	11,536,928	2007	7,842,780
2003	9,897,604	2008	5,314,060
	<u>Year</u> 1999 2000 2001 2002 2003	YearTons199912,350,700200011,798,32820019,355,461200211,536,92820039,897,604	YearTonsYear199912,350,7002004200011,798,328200520019,355,4612006200211,536,928200720039,897,6042008

(More Information On The Reverse Side)

Coal	276,517	Subtotals:	
Petroleum	216,841		
Chemicals	1,028,016	Grain	1,447,233
Crude Materials	1,842,793	Steel	43,061
Manufactured Goods	255,270		
Farm Products	1,610,523	Lockages:	
Manufactured Machinery	67,281		
Waste Material	0	Boats:	9,522
Unknown	16,829	Cuts:	3,774

CURRENT MAINTENANCE ISSUES – LOCK & DAM 4

Item (Critical Rank Order)

Vault Lead Paint and Mold Abatement Main Lock Apron Repairs Embankment Rehabilitation – Structural Riprap Repair Above & Below Dam Guidewall Rehabilitation Concrete Repairs

TOTAL ESTIMATED COST: \$5,260,000

The maintenance needs of the aging infrastructure are increasing at a rate much greater than the operations and maintenance funding provided for the system. This is adversely affecting reliability of the system. Long-established programs for preventative maintenance of major lock components have essentially given way to a fix-as-fail strategy, with repairs sometimes requiring weeks or months to complete. Depending on the nature of a lock malfunction, extended repairs can have major consequences for shippers, manufacturers, consumers, and commodities investors.

The existing 9-foot Channel Navigation Project was largely constructed in the 1930s and extends down the Upper Mississippi River from Minneapolis-St. Paul to its confluence with the Ohio River and up the Illinois Waterway to the Thomas J. O'Brien Lock in Chicago. It includes 37 Locks and approximately 1,200 miles of navigable waterway in Illinois, Iowa, Minnesota, Missouri, and Wisconsin.

The system's 600-foot locks do not accommodate today's modern tows without splitting and passing through the lock in two operations. This procedure requires uncoupling barges at midpoint which triples lockage times and exposes deckhands to increased accident rates.

More than 580 manufacturing facilities, terminals, and docks ship and receive tonnage in the Upper Mississippi River basin. In 2005, the system moved more than 160 million tons of commercial cargo worth roughly \$28.5 billion. Grains (corn and soybeans) dominate traffic on the system. Other commodities, mainly cement and concrete products, comprise the second largest group. A modern 15-barge tow transports the equivalent of 1,050 large semi-trucks (26,250 cargo tons, 875,000 bushels, or 17,325,000 gallons). Annually, the project generates an estimated \$1 billion of transportation cost savings compared with the operation and maintenance costs of approximately \$115 million.

POINT OF CONTACT

St. Paul District Public Affairs Office Phone number: 651-290-5200 Fax number: 651-290-5752 E-mail address: cemvp-pa@usace.army.mil

September 2009

LOCK & DAM 5 (MINNESOTA CITY, MINNESOTA) MISSISSIPPI RIVER

General Contractors: Lock: Edward E. Gillen Co., Milwaukee, Wisconsin Dam: Merritt-Chapman & Whitney Corp., Cleveland, Ohio Construction: 1933-1939 Congressional Districts: MN-1, WI-3

DESCRIPTION

Lock and Dam 5 is located at Mississippi River Mile 738.1 in Minnesota City, Minnesota, 5.5 miles upstream of Fountain City, Wisconsin.

The main lock is located along the right descending bank and consists of a single lock chamber 110 feet wide by 600 feet long with an upper pool elevation of 660.0, a tailwater elevation of 651.0, and a vertical lift of 9.0 feet. There are miter gates at each end of the lock chamber. There is a partial auxiliary lock consisting of an upstream set of miter gates and short concrete riverwall section. The foundation consists of piles in sand and gravel.

The movable dam has six roller gates (20 feet high by 60 feet long), 24 nonsubmersible Tainter gates (15 feet high by 35 feet long), and four submersible Tainter gates (15 feet high by 35 feet long). The dam consists of a concrete structure 1,619 feet long and an earthen embankment approximately 18,500 feet long, located between the movable dam and high ground on the Wisconsin side of the river. The dam foundation is set on piles in sand.

HISTORY/SIGNIFICANCE

The lock was put into operation in May 1935. Lock and Dam 5 was a group "A" priority, and the second installation completed in the St. Paul District. Typical of other 9-foot channel installations, the roller gates on Dam 5 were located in the main channel, where they could handle the greatest flooding and heavy ice flow conditions. One fatal accident, involving a private craft, occurred during the construction of the dam. In 1934, the site hosted a presidential visit by Franklin Roosevelt.

Year	Tons	Year	Tons
1999	12,771,200	2004	9,066,765
2000	12,048,853	2005	8,496,606
2001	9,487,157	2006	8,864,957
2002	11,791,323	2007	8,490,491
2003	10,085,159	2008	5,741,647
	<u>Year</u> 1999 2000 2001 2002 2003	YearTons199912,771,200200012,048,85320019,487,157200211,791,323200310,085,159	YearTonsYear199912,771,2002004200012,048,853200520019,487,1572006200211,791,3232007200310,085,1592008

(MORE INFORMATION ON THE REVERSE SIDE)

Coal	684,594	Subtotals:	
Petroleum	216,841		
Chemicals	1,027,076	Grain	1,456,233
Crude Materials	1,850,483	Steel	44,561
Manufactured Goods	260,770		
Farm Products	1,619,523	Lockages:	
Manufactured Machinery	64,031		
Waste Material	0	Boats:	5,220
Unknown	18,329	Cuts:	2,722

CURRENT MAINTENANCE ISSUES – LOCK & DAM 5

Item (Critical Rank Order)

Vault Lead Paint and Mold Abatement Main Lock Apron Repairs Embankment Rehabilitation - Non-Structural Dam Bridge and Gate Painting Guidewall Rehabilitation Reinstall Riprap at Guidewall Repair Vertical Wall Joints Outside Lock Chamber Install Alignment System

TOTAL ESTIMATED COST: \$10,580,000

The maintenance needs of the aging infrastructure are increasing at a rate much greater than the operations and maintenance funding provided for the system. This is adversely affecting reliability of the system. Long-established programs for preventative maintenance of major lock components have essentially given way to a fix-as-fail strategy, with repairs sometimes requiring weeks or months to complete. Depending on the nature of a lock malfunction, extended repairs can have major consequences for shippers, manufacturers, consumers, and commodities investors.

The existing 9-foot Channel Navigation Project was largely constructed in the 1930s and extends down the Upper Mississippi River from Minneapolis-St. Paul to its confluence with the Ohio River and up the Illinois Waterway to the Thomas J. O'Brien Lock in Chicago. It includes 37 Locks and approximately 1,200 miles of navigable waterway in Illinois, Iowa, Minnesota, Missouri, and Wisconsin.

The system's 600-foot locks do not accommodate today's modern tows without splitting and passing through the lock in two operations. This procedure requires uncoupling barges at midpoint which triples lockage times and exposes deckhands to increased accident rates.

More than 580 manufacturing facilities, terminals, and docks ship and receive tonnage in the Upper Mississippi River basin. In 2005, the system moved more than 160 million tons of commercial cargo worth roughly \$28.5 billion. Grains (corn and soybeans) dominate traffic on the system. Other commodities, mainly cement and concrete products, comprise the second largest group. A modern 15-barge tow transports the equivalent of 1,050 large semi-trucks (26,250 cargo tons, 875,000 bushels, or 17,325,000 gallons). Annually, the project generates an estimated \$1 billion of transportation cost savings compared with the operation and maintenance costs of approximately \$115 million.

POINT OF CONTACT

St. Paul District Public Affairs Office Phone number: 651-290-5200 Fax number: 651-290-5752 E-mail address: cemvp-pa@usace.army.mil

September 2009

LOCK & DAM 5A (FOUNTAIN CITY, WISCONSIN) MISSISSIPPI RIVER

General Contractors: Lock: McCarthy Improvement Co., Davenport, Iowa Dam: United Construction Co. Winona, Minnesota Construction: 1934-1938

Congressional Districts: MN-1, WI-3

DESCRIPTION

HISTORY/SIGNIFICANCE

City, Wisconsin, three miles above Winona, Minnesota.

Lock and Dam No. 5A is located at Mississippi River Mile 728.5 below Fountain

The main lock is located along the right-descending bank and consists of a single lock chamber 110 feet wide by 600 feet long with an upper pool elevation of 651.0, a tailwater elevation of 645.5, and a vertical lift of 5.5 feet. There are miter gates at each end of the lock chamber. A partial auxiliary lock consists of an upstream set of miter gates and a short concrete riverwall section.

The movable dam is a concrete structure 682 feet long with five roller gates (20 feet high by 80 feet long) and five non-submersible Tainter gates (15 feet high by 35 feet long), located between the main lock and the railroad line along the left-descending bank. Completing the dam system is an earthen embankment approximately 22,000 feet long, between the main lock and high ground on the Minnesota side of the river, with a concrete overflow spillway 1,000 feet long.

The lock was put in operation in 1936. At the time of construction, the site consisted of low, swampy ground separated by three sloughs: Blackbird, Straight and Crooked sloughs. Many small lakes were in the area, interrupted by sections of relatively high ground. The site, located in the middle of the river channel, incorporated a number of islands into its earth dike system. The location of the complex in a slough in the left side of Islands 67 and 68 allowed for the main channel to serve an exclusive spillway function.

The original plan for the 9-foot channel system did not include this installation. However, due to pooling problems projected as a result of the construction of Lock and Dam No. 6 in conjunction with the City of Winona, this installation was designed and given a "B" priority.

	Year	Tons	Year	Tons
ANNUAL TONNAGE		<u></u>	<u></u>	<u></u>
	1999	12,761,300	2004	9,056,299
(IO-IEARTISTORICAL)	2000	12,130,247	2005	8,495,316
	2001	9,500,382	2006	8,845,481
	2002	11,764,608	2007	8,534,287
	2003	10,098,714	2008	5,720,567

(More Information On The Reverse Side)

Coal	684,594	Subtotals:	
Petroleum	216,841		
Chemicals	1,027,076	Grain	1,456,233
Crude Materials	1,833,983	Steel	44,561
Manufactured Goods	256,770		
Farm Products	1,619,523	Lockages:	
Manufactured Machinery	64,951	_	
Waste Material	0	Boats:	7,103
Unknown	16,829	Cuts:	3,364

CURRENT MAINTENANCE ISSUES – LOCK & DAM 5A

Item (Critical Rank Order)

Vault Lead Paint and Mold Abatement Main Lock Apron Repairs Embankment Rehabilitation – Structural Embankment Rehabilitation - Non-Structural Dam Bridge and Gate Painting Guidewall Rehabilitation Install Alignment System

TOTAL ESTIMATED COST: \$11,250,000

The maintenance needs of the aging infrastructure are increasing at a rate much greater than the operations and maintenance funding provided for the system. This is adversely affecting reliability of the system. Long-established programs for preventative maintenance of major lock components have essentially given way to a fix-as-fail strategy, with repairs sometimes requiring weeks or months to complete. Depending on the nature of a lock malfunction, extended repairs can have major consequences for shippers, manufacturers, consumers, and commodities investors.

The existing 9-foot Channel Navigation Project was largely constructed in the 1930s and extends down the Upper Mississippi River from Minneapolis-St. Paul to its confluence with the Ohio River and up the Illinois Waterway to the Thomas J. O'Brien Lock in Chicago. It includes 37 Locks and approximately 1,200 miles of navigable waterway in Illinois, Iowa, Minnesota, Missouri, and Wisconsin.

The system's 600-foot locks do not accommodate today's modern tows without splitting and passing through the lock in two operations. This procedure requires uncoupling barges at midpoint which triples lockage times and exposes deckhands to increased accident rates.

More than 580 manufacturing facilities, terminals, and docks ship and receive tonnage in the Upper Mississippi River basin. In 2005, the system moved more than 160 million tons of commercial cargo worth roughly \$28.5 billion. Grains (corn and soybeans) dominate traffic on the system. Other commodities, mainly cement and concrete products, comprise the second largest group. A modern 15-barge tow transports the equivalent of 1,050 large semi-trucks (26,250 cargo tons, 875,000 bushels, or 17,325,000 gallons). Annually, the project generates an estimated \$1 billion of transportation cost savings compared with the operation and maintenance costs of approximately \$115 million.

POINT OF CONTACT

St. Paul District Public Affairs Office Phone number: 651-290-5200 Fax number: 651-290-5752 E-mail address: cemvp-pa@usace.army.mil

September 2009

LOCK & DAM 6 (TREMPEALEAU, WISCONSIN) MISSISSIPPI RIVER

General Contractors: Lock and Dam: Spencer, White & Prentix, Inc., New York, New York Construction: 1933-1938 Congressional Districts: MN-1, WI-3

DESCRIPTION

Lock and Dam 6 is located at Mississippi River Mile 714.1 at Trempealeau, Wisconsin, 139 miles below Minneapolis.

The main lock is located along the left descending bank and consists of a single lock chamber 110 feet wide by 600 feet long with an upper pool elevation of 645.5, a tailwater elevation of 639.0, and a vertical lift of 6.5 feet. There are miter gates at each end of the lock chamber. A partial auxiliary lock consists of an upstream set of miter gates and a short concrete riverwall section.

The movable dam consists of an 893-foot-long concrete structure with five roller gates (20 feet high by 80 feet long) and 10 non-submersible Tainter gates (15 feet high by 35 feet long), and is located adjacent to the auxiliary lock. Completing the dam system is an earthen embankment approximately 1,600 feet long, located between the movable dam and high ground on the Minnesota side of the river, with a concrete overflow spillway 1,000 feet long.

HISTORY/SIGNIFICANCE The lock was put in operation in June of 1936. The Tainter gates in Dam 6 were the first in the St. Paul District to employ independent operating machinery instead of hoist car systems. During construction, the frozen river was sometimes used as a work base, as the ice was often 12 to 18 inches thick. Piles were dragged over the ice by teams of draft animals. The construction of Lock and Dam 6 also resulted in innovations in pile driving. Timber pilings – elm, maple, hickory, ash, oak, yellow birch, and pine – were driven by new, skid-type, pile drivers built on the job site by a contractor. A new method of keeping the pile drivers level was also developed by the contractor.

	Year	Tons	Year	Tons
ANNUAL TONNAGE				
(10.VEAR HISTORICAL)	1999	15,791,200	2004	10,754,999
(IO-IEAR HISTORICAL)	2000	14,877,036	2005	10,381,229
	2001	11,956,278	2006	10,965,857
	2002	14,449,692	2007	10,421,860
	2003	12,250,381	2008	7,240,756

(MORE INFORMATION ON THE REVERSE SIDE)

Coal	794,217	Subtotals:	
Petroleum	219,876		
Chemicals	1,311,836	Grain	2,415,732
Crude Materials	1,971,253	Steel	44,677
Manufactured Goods	270,972		
Farm Products	2,588,022	Lockages:	
Manufactured Machinery	67,039		
Waste Material	0	Boats:	4,988
Unknown	17,041	Cuts:	2,943

CURRENT MAINTENANCE ISSUES – LOCK & DAM 6

Item (Critical Rank Order)

Vault Lead Paint and Mold Abatement Main Lock Apron Repairs Embankment Rehabilitation – Structural Embankment Rehabilitation - Non-Structural Guidewall Rehabilitation

TOTAL ESTIMATED COST: \$6,150,000

The maintenance needs of the aging infrastructure are increasing at a rate much greater than the operations and maintenance funding provided for the system. This is adversely affecting reliability of the system. Long-established programs for preventative maintenance of major lock components have essentially given way to a fix-as-fail strategy, with repairs sometimes requiring weeks or months to complete. Depending on the nature of a lock malfunction, extended repairs can have major consequences for shippers, manufacturers, consumers, and commodities investors.

The existing 9-foot Channel Navigation Project was largely constructed in the 1930s and extends down the Upper Mississippi River from Minneapolis-St. Paul to its confluence with the Ohio River and up the Illinois Waterway to the Thomas J. O'Brien Lock in Chicago. It includes 37 Locks and approximately 1,200 miles of navigable waterway in Illinois, Iowa, Minnesota, Missouri, and Wisconsin.

The system's 600-foot locks do not accommodate today's modern tows without splitting and passing through the lock in two operations. This procedure requires uncoupling barges at midpoint which triples lockage times and exposes deckhands to increased accident rates.

More than 580 manufacturing facilities, terminals, and docks ship and receive tonnage in the Upper Mississippi River basin. In 2005, the system moved more than 160 million tons of commercial cargo worth roughly \$28.5 billion. Grains (corn and soybeans) dominate traffic on the system. Other commodities, mainly cement and concrete products, comprise the second largest group. A modern 15-barge tow transports the equivalent of 1,050 large semi-trucks (26,250 cargo tons, 875,000 bushels, or 17,325,000 gallons). Annually, the project generates an estimated \$1 billion of transportation cost savings compared with the operation and maintenance costs of approximately \$115 million.

POINT OF CONTACT

St. Paul District Public Affairs Office Phone number: 651-290-5200 Fax number: 651-290-5752 E-mail address: cemvp-pa@usace.army.mil

September 2009

LOCK & DAM 7 (LA CRESCENT, MINNESOTA) MISSISSIPPI RIVER

General Contractors:

Lock: Nolan Brothers and Minneapolis Dredging Co., Minneapolis, Minnesota, and Dearborn Electrical Construction Company, Chicago, Illinois Dam: Warner Construction Company, Chicago, Illinois **Construction:** 1933-1940 **Congressional Districts:** MN-1, WI-3

DESCRIPTION

Lock and Dam 7 is located at Mississippi River Mile 702.5 near La Crescent, Minnesota, 4.5 miles above LaCrosse, Wisconsin.

The main lock is located along the right descending bank and consists of a single lock chamber 110 feet wide by 600 feet long with an upper pool elevation of 639.0, a tailwater elevation of 631.0, and a vertical lift of 8.0 feet. There are miter gates at each end of the lock chamber. There is a partial auxiliary lock consisting of an upstream set of miter gates and short concrete riverwall section.

The movable dam consists of a concrete structure 940 feet long with five roller gates (20 feet high by 80 feet long), nine non-submersible Tainter gates (15 feet high by 35 feet long), and two submersible Tainter gates (15 feet high by 35 feet long), and is located adjacent to the auxiliary lock. Completing the dam system are two earthen embankment segments: the French Island embankment approximately 7,000 feet long, located between the movable dam and French Island, with a concrete overflow spillway 1,000 feet long; and the Onalaska embankment approximately 1,600 feet long, located between French Island and Onalaska, with a concrete overflow spillway 677 feet long.

HISTORY/SIGNIFICANCE

The Lock was put in operation in April 1937.

Originally scheduled to be nearer to LaCrosse, this complex was relocated because of water level problems connected with the LaCrosse site. The design of the complex was heavily influenced by French Island, which was incorporated into the design as a natural dike, and the Dresbach Slough, which was reopened to provide the upper approach to the lock. The complex was built at a cost of \$6,776,000.

	Year	Tons	Year	Tons
Annual Tonnage				
(10-YEAR HISTORICAL)	1999	15,857,400	2004	10,786,169
(ICTEARTISTORICAL)	2000	14,809,119	2005	10,391,612
	2001	11,981,487	2006	10,931,036
	2002	14,460,872	2007	10,429,410
	2003	12,297,061	2008	7,258,768

(More Information On The Reverse Side)

Coal	785,717	Subtotals:	
Petroleum	219,876		
Chemicals	1,319,972	Grain	2,433,732
Crude Materials	1,949,901	Steel	44,677
Manufactured Goods	270,972		
Farm Products	2,606,022	Lockages:	
Manufactured Machinery	90,267		
Waste Material	0	Boats:	7,925
Unknown	16,041	Cuts:	3,636

CURRENT MAINTENANCE ISSUES – LOCK & DAM 7

Item (Critical Rank Order)

Vault Lead Paint and Mold Abatement Embankment Rehabilitation – Structural Fixed Crest Ogee Crest Joint & Endsill Repair Embankment Rehabilitation - Non-Structural Guidewall Rehabilitation Install Alignment System

TOTAL ESTIMATED COST: \$6,325,000

The maintenance needs of the aging infrastructure are increasing at a rate much greater than the operations and maintenance funding provided for the system. This is adversely affecting reliability of the system. Long-established programs for preventative maintenance of major lock components have essentially given way to a fix-as-fail strategy, with repairs sometimes requiring weeks or months to complete. Depending on the nature of a lock malfunction, extended repairs can have major consequences for shippers, manufacturers, consumers, and commodities investors.

The existing 9-foot Channel Navigation Project was largely constructed in the 1930s and extends down the Upper Mississippi River from Minneapolis-St. Paul to its confluence with the Ohio River and up the Illinois Waterway to the Thomas J. O'Brien Lock in Chicago. It includes 37 Locks and approximately 1,200 miles of navigable waterway in Illinois, Iowa, Minnesota, Missouri, and Wisconsin.

The system's 600-foot locks do not accommodate today's modern tows without splitting and passing through the lock in two operations. This procedure requires uncoupling barges at midpoint which triples lockage times and exposes deckhands to increased accident rates.

More than 580 manufacturing facilities, terminals, and docks ship and receive tonnage in the Upper Mississippi River basin. In 2005, the system moved more than 160 million tons of commercial cargo worth roughly \$28.5 billion. Grains (corn and soybeans) dominate traffic on the system. Other commodities, mainly cement and concrete products, comprise the second largest group. A modern 15-barge tow transports the equivalent of 1,050 large semi-trucks (26,250 cargo tons, 875,000 bushels, or 17,325,000 gallons). Annually, the project generates an estimated \$1 billion of transportation cost savings compared with the operation and maintenance costs of approximately \$115 million.

POINT OF CONTACT

St. Paul District Public Affairs Office Phone number: 651-290-5200 Fax number: 651-290-5752 E-mail address: cemvp-pa@usace.army.mil

September 2009

LOCK & DAM 8 (GENOA, WISCONSIN) MISSISSIPPI RIVER

General Contractors: Lock: Jutton-Kelly Company, Milwaukee, Wisconsin Dam: Siems-Helmers, Inc., St. Paul, Minnesota Construction: 1933-1938 Congressional Districts: MN-1, WI-3

DESCRIPTION

Lock and Dam 8 is located at Mississippi River Mile 679.2 near Genoa, Wisconsin, 173.4 miles below Minneapolis.

The main lock is located along the left descending bank and consists of a single lock chamber 110 feet wide by 600 feet long with an upper pool elevation of 631.0, a tailwater elevation of 620.0, and a vertical lift of 11.0 feet. There are miter gates at each end of the lock chamber. There is a partial auxiliary lock consisting of an upstream set of miter gates and short concrete riverwall section. The foundation material consists of piles in sand, gravel and broken clay.

The movable dam consists of a concrete structure 934 feet long with five roller gates (20 feet high by 80 feet long), eight non-submersible Tainter gates (15 feet high by 35 feet long), and two submersible Tainter gates (15 feet high by 35 feet long), and is located adjacent to the auxiliary lock. Completing the dam system is an earthen embankment approximately 15,000 feet long, located between the movable dam and high ground on the Minnesota side of the river, with two submersible sheetpile cell spillways, 938 and 1,338 feet long, respectively. The foundation consists of piles in sand and gravel.

HISTORY/SIGNIFICANCE

The Lock was put in operation in April 1937.

The design of Lock and Dam 8 was not dictated by unusual river hydrology so much as for the need for a lock and dam system at that point of the river so that the 9-foot channel system might function properly. Eighty-six accidents and one fatality occurred during dam construction; no accidents or fatalities were reported during construction of the lock. The complex was completed at an estimated cost of \$7,728,000.

Year	Tons	Year	Tons
<u> </u>		<u></u>	<u></u>
1999	16,826,200	2004	11,569,495
2000	15,877,048	2005	11,090,000
2001	12,773,176	2006	11,712,327
2002	15,331,794	2007	11,077,630
2003	13,160,824	2008	7,928,446
	Year 1999 2000 2001 2002 2003	YearTons199916,826,200200015,877,048200112,773,176200215,331,794200313,160,824	YearTonsYear199916,826,2002004200015,877,0482005200112,773,1762006200215,331,7942007200313,160,8242008

(MORE INFORMATION ON THE REVERSE SIDE)

Coal	833,139	Subtotals:	
Petroleum	213,276		
Chemicals	1,348,196	Grain	2,683,262
Crude Materials	2,129,012	Steel	118,801
Manufactured Goods	429,458		
Farm Products	2,860,052	Lockages:	
Manufactured Machinery	95,272	-	
Waste Material	0	Boats:	4,529
Unknown	20,041	Cuts:	2,546

CURRENT MAINTENANCE ISSUES – LOCK & DAM 8

Item (Critical Rank Order)

Vault Lead Paint and Mold Abatement Embankment Rehabilitation – Structural Lower Guidewall - Riprap Protection Embankment Rehabilitation - Non-Structural Dam Gate Painting Guidewall Rehabilitation Install Alignment System

TOTAL ESTIMATED COST: \$10,050,000

The maintenance needs of the aging infrastructure are increasing at a rate much greater than the operations and maintenance funding provided for the system. This is adversely affecting reliability of the system. Long-established programs for preventative maintenance of major lock components have essentially given way to a fix-as-fail strategy, with repairs sometimes requiring weeks or months to complete. Depending on the nature of a lock malfunction, extended repairs can have major consequences for shippers, manufacturers, consumers, and commodities investors.

The existing 9-foot Channel Navigation Project was largely constructed in the 1930s and extends down the Upper Mississippi River from Minneapolis-St. Paul to its confluence with the Ohio River and up the Illinois Waterway to the Thomas J. O'Brien Lock in Chicago. It includes 37 Locks and approximately 1,200 miles of navigable waterway in Illinois, Iowa, Minnesota, Missouri, and Wisconsin.

The system's 600-foot locks do not accommodate today's modern tows without splitting and passing through the lock in two operations. This procedure requires uncoupling barges at midpoint which triples lockage times and exposes deckhands to increased accident rates.

More than 580 manufacturing facilities, terminals, and docks ship and receive tonnage in the Upper Mississippi River basin. In 2005, the system moved more than 160 million tons of commercial cargo worth roughly \$28.5 billion. Grains (corn and soybeans) dominate traffic on the system. Other commodities, mainly cement and concrete products, comprise the second largest group. A modern 15-barge tow transports the equivalent of 1,050 large semi-trucks (26,250 cargo tons, 875,000 bushels, or 17,325,000 gallons). Annually, the project generates an estimated \$1 billion of transportation cost savings compared with the operation and maintenance costs of approximately \$115 million.

POINT OF CONTACT

St. Paul District Public Affairs Office Phone number: 651-290-5200 Fax number: 651-290-5752 E-mail address: cemvp-pa@usace.army.mil

September 2009

LOCK & DAM 9 (LYNXVILLE, WISCONSIN) MISSISSIPPI RIVER

General Contractors: Lock: Walter W. Magee Company, St. Paul, Minnesota Dam: United Construction Company, Winona, Minnesota Construction: 1936-1940 Congressional Districts: IA-4, WI-3

DESCRIPTION

Lock and Dam 9 is located at Mississippi River Mile 647.9 near Lynxville, Wisconsin, 205.1 miles below Minneapolis.

The main lock is located along the left descending bank and consists of a single lock chamber 110 feet wide by 600 feet long with an upper pool elevation of 620.0, a tailwater elevation of 611.0, and a vertical lift of 9.0 feet. There are miter gates at each end of the lock chamber. There is a partial auxiliary lock consisting of an upstream set of miter gates and short concrete riverwall section.

The movable dam consists of concrete structure 811 feet long with five roller gates (20-feet high by 80-feet long), six non-submersible Tainter gates (15 feet high by 35 feet long), and two submersible Tainter gates (15 feet high by 35 feet long), and is located adjacent to the auxiliary lock. Completing the dam system is an earthen embankment approximately 7,200 feet long, located between the movable dam and high ground on the lowa side of the river, with a submersible sheetpile cell spillway 1,350 feet long.

HISTORY/SIGNIFICANCE

The Lock was put in operation in July 1937.

Due to a good 6-foot channel and relatively trouble-free engineering and environmental characteristics, Lock and Dam 9 was a group "B" priority, and the second-to-last complex built by the St. Paul District. The complex was completed at an estimated cost of \$8,287,000.

	Year	Tons	Year	Tons
ANNUAL TONNAGE				
(10-YEAR HISTORICAL)	1999	18,820,900	2004	13,256,894
(IO-IEAR IIISIORICAL)	2000	17,742,027	2005	13,395,636
	2001	14,549,356	2006	13,923,104
	2002	17,352,121	2007	13,354,186
	2003	14,995,775	2008	10,368,822

(More Information On The Reverse Side)

Coal	3,265,530	Subtotals:	
Petroleum	213,276		
Chemicals	1,348,939	Grain	2,681,017
Crude Materials	2,115,531	Steel	120,573
Manufactured Goods	439,300		
Farm Products	2,877,433	Lockages:	
Manufactured Machinery	91,772		
Waste Material	0	Boats:	4,170
Unknown	17,041	Cuts:	3,087

CURRENT MAINTENANCE ISSUES – LOCK & DAM 9

Item (Critical Rank Order)

Vault Lead Paint and Mold Abatement Embankment Rehabilitation – Structural Fixed Crest Spillway Repairs Embankment Rehabilitation - Non-Structural Dam Gate Painting Guidewall Rehabilitation

TOTAL ESTIMATED COST: \$11,050,000

The maintenance needs of the aging infrastructure are increasing at a rate much greater than the operations and maintenance funding provided for the system. This is adversely affecting reliability of the system. Long-established programs for preventative maintenance of major lock components have essentially given way to a fix-as-fail strategy, with repairs sometimes requiring weeks or months to complete. Depending on the nature of a lock malfunction, extended repairs can have major consequences for shippers, manufacturers, consumers, and commodities investors.

The existing 9-foot Channel Navigation Project was largely constructed in the 1930s and extends down the Upper Mississippi River from Minneapolis-St. Paul to its confluence with the Ohio River and up the Illinois Waterway to the Thomas J. O'Brien Lock in Chicago. It includes 37 Locks and approximately 1,200 miles of navigable waterway in Illinois, Iowa, Minnesota, Missouri, and Wisconsin.

The system's 600-foot locks do not accommodate today's modern tows without splitting and passing through the lock in two operations. This procedure requires uncoupling barges at midpoint which triples lockage times and exposes deckhands to increased accident rates.

More than 580 manufacturing facilities, terminals, and docks ship and receive tonnage in the Upper Mississippi River basin. In 2005, the system moved more than 160 million tons of commercial cargo worth roughly \$28.5 billion. Grains (corn and soybeans) dominate traffic on the system. Other commodities, mainly cement and concrete products, comprise the second largest group. A modern 15-barge tow transports the equivalent of 1,050 large semi-trucks (26,250 cargo tons, 875,000 bushels, or 17,325,000 gallons). Annually, the project generates an estimated \$1 billion of transportation cost savings compared with the operation and maintenance costs of approximately \$115 million.

POINT OF CONTACT

St. Paul District Public Affairs Office Phone number: 651-290-5200 Fax number: 651-290-5752 E-mail address: cemvp-pa@usace.army.mil

September 2009

LOCK & DAM 10 (GUTTENBURG, IOWA) MISSISSIPPI RIVER

General Contractors: Lock: Hanlon and Oakes, St. Paul, Minnesota Dam: McCarthy Improvement Company, Davenport, Iowa Construction: 1934-1937 Congressional Districts: IA-1, WI-3

DESCRIPTION

Lock and Dam 10 is located at Mississippi River Mile 615.0 in Guttenberg, Iowa.

The main lock is located along the right descending bank and consists of a single lock chamber 110 feet wide by 600 feet long with an upper pool elevation of 611.0, a tailwater elevation of 603.0, and a vertical lift of 8.0 feet. There are miter gates at each end of the lock chamber. There is a partial auxiliary lock consisting of an upstream set of miter gates and a short concrete riverwall section.

The movable dam consists of a concrete dam 763 feet long with four roller gates (20 feet high by 80 feet long), six non-submersible Tainter gates (20 feet high by 40 feet long), and two submersible Tainter gates (20 feet high by 40 feet long), and is located adjacent to the auxiliary lock. Completing the dam system is an earthen embankment approximately 4,600 feet long, located between the movable dam and high ground on the Wisconsin side of the river, with a concrete overflow spillway 1,200 feet long.

HISTORY/SIGNIFICANCE

The Lock was put in operation in November 1937.

Built under the supervision and direction of the Rock Island District, Lock and Dam No. 10 was transferred to the St. Paul District's jurisdiction on October 1, 1939. The complex was completed at an estimated cost of \$6,647,000.

	Year	Tons	Year	Tons
Annual Tonnage	<u></u>		<u></u>	<u></u>
(10.VEAR HISTORICAL)	1999	22,006,600	2004	15,185,622
(IO-TEAR HISTORICAL)	2000	19,911,214	2005	15,820,251
	2001	16,509,914	2006	16,426,337
	2002	20,528,892	2007	15,642,174
	2003	17,623,231	2008	11,851,569

(More Information On The Reverse Side)

Coal	3,239,342	Subtotals:	
Petroleum	207,276		
Chemicals	1,399,142	Grain	3,937,317
Crude Materials	2,223,337	Steel	120,684
Manufactured Goods	436,511		
Farm Products	4,223,894	Lockages:	
Manufactured Machinery	94,282	_	
Waste Material	0	Boats:	4,534
Unknown	27,785	Cuts:	3,098

CURRENT MAINTENANCE ISSUES – LOCK & DAM 10

Item (Critical Rank Order)

Embankment Rehabilitation – Structural Embankment Rehabilitation - Non-Structural Dam Gate Painting Guidewall Rehabilitation Install Alignment System

TOTAL ESTIMATED COST \$8,550,000

The maintenance needs of the aging infrastructure are increasing at a rate much greater than the operations and maintenance funding provided for the system. This is adversely affecting reliability of the system. Long-established programs for preventative maintenance of major lock components have essentially given way to a fix-as-fail strategy, with repairs sometimes requiring weeks or months to complete. Depending on the nature of a lock malfunction, extended repairs can have major consequences for shippers, manufacturers, consumers, and commodities investors.

The existing 9-foot Channel Navigation Project was largely constructed in the 1930s and extends down the Upper Mississippi River from Minneapolis-St. Paul to its confluence with the Ohio River and up the Illinois Waterway to the Thomas J. O'Brien Lock in Chicago. It includes 37 Locks and approximately 1,200 miles of navigable waterway in Illinois, Iowa, Minnesota, Missouri, and Wisconsin.

The system's 600-foot locks do not accommodate today's modern tows without splitting and passing through the lock in two operations. This procedure requires uncoupling barges at midpoint which triples lockage times and exposes deckhands to increased accident rates.

More than 580 manufacturing facilities, terminals, and docks ship and receive tonnage in the Upper Mississippi River basin. In 2005, the system moved more than 160 million tons of commercial cargo worth roughly \$28.5 billion. Grains (corn and soybeans) dominate traffic on the system. Other commodities, mainly cement and concrete products, comprise the second largest group. A modern 15-barge tow transports the equivalent of 1,050 large semi-trucks (26,250 cargo tons, 875,000 bushels, or 17,325,000 gallons). Annually, the project generates an estimated \$1 billion of transportation cost savings compared with the operation and maintenance costs of approximately \$115 million.

POINT OF CONTACT

St. Paul District Public Affairs Office Phone number: 651-290-5200 Fax number: 651-290-5752 E-mail address: cemvp-pa@usace.army.mil

September 2009

LOCK & DAM 11 (DUBUQUE, IOWA) MISSISSIPPI RIVER

General Contractors:

Lock: Warner Construction Company, Chicago, Illinois Dam: Maxon Construction Company, Inc., Dayton, Ohio Construction: 1934-1937 Congressional Districts: IA-1; WI-3

DESCRIPTION	Lock and Dam 11 borders on the northern edge of Dubuque, Iowa, and is 583 miles above the confluence of the Mississippi and Ohio rivers. A complex of islands and sloughs extends three-quarters of the way across the river from the Wisconsin shore. The Upper Mississippi River Wildlife and Fish Refuge occupies the land adjacent to the Wisconsin shore, both upstream and downstream from the dam.					
	The lock dimen for an auxiliary It takes approxi	isions are 110 feet wide by 6 lock. The maximum lift is 1 imately seven minutes to fill	600 feet long with 1 feet with an ave or empty the loc	n additional provisions erage lift of 9.4 feet. k chamber.		
	The movable d long) and three roller gates sub long, curved, n water to travel	am has 13 submersible Tain submersible roller gates (20 omerge eight feet. The dam on-overflow, earth and sand from Lock and Dam 10, in G	iter gates (20-fee D-feet high by 10 system also incl -filled dike. It tak uttenberg, Iowa,	et high by 60-feet 0-feet long). The udes a 3,540-foot kes nine hours for to Lock and Dam 11.		
HISTORY/SIGNIFICANCE	ISTORY/SIGNIFICANCE The lock opened in 1937. Dams 11 and 18 were designed concurrently the first dams in the Rock Island District to employ submersible, elliptic gates. They were also the first dams in the District to use submersible					
	Lock and Dam 11 was scheduled to be above Sprecht's Ferry, Iowa, but in 1 was relocated to Dubuque. The acute unemployment in Dubuque led the government to begin construction on this complex before others of its class. During the peak of construction, the complex employed 901 people. The loc dam elements of the complex were completed at a cost of \$7,430,000.					
Annual Tonnage	Year	<u>Tons</u>	Year	Tons		
(10-YEAR HISTORICAL)	1999 2000 2001 2002 2003	22,504,873 20,756,882 17,340,441 20,966,149 18,276,060	2004 2005 2006 2007 2008	15,769,584 16,347,999 17,048,863 16,228,148 12,428,007		
(More Information On The Reverse Side)						

Commodity Tonnage & Lockages (2008)

Coal	3,704,657	Subtotals:	
Petroleum	181,776		
Chemicals	1,401,486	Grain	4,035,906
Crude Materials	2,229,080	Steel	126,984
Manufactured Goods	456,311		
Farm Products	4,332,700	Lockages:	
Manufactured Machinery	94,212		
Unknown	27,785	Boats:	4,332
		Cuts:	3,170

CURRENT MAINTENANCE ISSUES – LOCK & DAM 11

Item (Critical Rank Order)

Repair or Replace Emergency Gates L&D 11 Stage III Dam Rehabilitation - Major Rehabilitation Systemic Miter Gate Replacement Central Control Station Flood Proofing Repair Roller End Shields & Seals Bridge Crane Bulkhead Lifter Rehabilitation Systemic Tainter Valve Replacement Dam Rehabilitation Evaluation Report Replacing 70-Yr Old Lock Pontoon Barges (Work Flats) Bridge Crane Repairs to Lattice Boom & Crane Undercarriage

TOTAL ESTIMATED COST: \$29,900,000

The maintenance needs of the aging infrastructure are increasing at a rate much greater than the operations and maintenance funding provided for the system. This is adversely affecting reliability of the system. Long-established programs for preventative maintenance of major lock components have essentially given way to a fix-as-fail strategy, with repairs sometimes requiring weeks or months to complete. Depending on the nature of a lock malfunction, extended repairs can have major consequences for shippers, manufacturers, consumers, and commodities investors.

The existing 9-foot Channel Navigation Project was largely constructed in the 1930s and extends down the Upper Mississippi River from Minneapolis-St. Paul to its confluence with the Ohio River and up the Illinois Waterway to the Thomas J. O'Brien Lock in Chicago. It includes 37 Locks and approximately 1,200 miles of navigable waterway in Illinois, Iowa, Minnesota, Missouri, and Wisconsin.

The system's 600-foot locks do not accommodate today's modern tows without splitting and passing through the lock in two operations. This procedure requires uncoupling barges at midpoint which triples lockage times and exposes deckhands to increased accident rates.

More than 580 manufacturing facilities, terminals, and docks ship and receive tonnage in the Upper Mississippi River basin. In 2005, the system moved more than 160 million tons of commercial cargo worth roughly \$28.5 billion. Grains (corn and soybeans) dominate traffic on the system. Other commodities, mainly cement and concrete products, comprise the second largest group. A modern 15-barge tow transports the equivalent of 1,050 large semi-trucks (26,250 cargo tons, 875,000 bushels, or 17,325,000 gallons). Annually, the project generates an estimated \$1 billion of transportation cost savings compared with the operation and maintenance costs of approximately \$115 million.

POINT OF CONTACT

Rock Island District Corporate Communications Office Phone number: 309-794-5729 Fax number: 309-794-5793 E-mail address: cemvr-cc@usace.army.mil

September 2009

LOCK & DAM 12 (BELLEVUE, IOWA) MISSISSIPPI RIVER

General Contractors:

Lock: James Stewart Corporation, Chicago Illinois Dam: Warner Construction Company, Chicago Illinois Construction: 1934-1938 Congressional Districts: IA-1; IL-16

DESCRIPTION

Lock and Dam 12 is 556.7 miles above the confluence of the Mississippi and Ohio rivers. The complex stretches across the river at a point where the bluffs on the Iowa side are very close to the river; a complex of islands and sloughs extends nearly three-quarters of the way across the river from the Illinois side. Bellevue State Park occupies the high ground on the Iowa side, while the urbanized area of Bellevue extends to the government-owned property on the flat land below the bluff. The Lost Mound Unit of Upper Mississippi River National Wildlife and Fish Refuge occupies the islands, slough, and small flat bottom areas on the Illinois side.

The lock dimensions are 110 feet wide by 600 feet long with additional provisions for an auxiliary lock. The maximum lift is 9 feet with an average lift of 6 feet. It takes approximately 10 minutes to fill or empty the lock chamber.

The movable dam consists of seven submersible Tainter gates (20 feet high by 64 feet long) and three submersible roller gates (20 feet high by 100 feet long). The dam system also includes two, non-overflow, earth and sand-filled dikes; two transitional dikes; and a concrete-covered, ogee spillway, submersible earth and sand-filled dike. The foundation is set in sand, gravel, and silt. It takes eight hours for water to travel from Lock and Dam 11, in Dubuque, lowa, to Lock and Dam 12.

HISTORY/SIGNIFICANCE

The lock opened in 1938. During the peak of construction, a maximum of 1,217 men were employed at one time. The lock and dam elements of the complex were completed at a cost of \$5,581,000.

ANNUAL TONNAGE	<u>Year</u>	<u>Tons</u>	Year	<u>Tons</u>
(10-YEAR HISTORICAL)	1999	24,426,919	2004	17,350,487
	2000	22,280,448	2005	17,672,950
	2001	19,098,873	2006	18,655,930
	2002	23,031,159	2007	17,681,771
	2003	19,622,041	2008	13,299,444

(More Information On The Reverse Side)

Coal	3,509,838	Subtotals:	
Petroleum	123,676		
Chemicals	1,678,527	Grain	4,573,138
Crude Materials	2,471,078	Steel	136,553
Manufactured Goods	463,408		
Farm Products	4,921,245	Lockages:	
Manufactured Machinery	101,672		
Containers & Pallets	0	Boats:	3,102
Unknown	30,000	Cuts:	2,975

CURRENT MAINTENANCE ISSUES – LOCK & DAM 12

Item (Critical Rank Order)

Repair or Replace Emergency Gates Systemic Bulkhead Slots Systemic Miter Gate Replacement Repair Spillway Major Rehabilitation Stage III Dam Repairs Central Control Station Flood Proofing Repair Roller End Shields & Seals - Dam Systemic - Crane Rail Adjustments – Dam Bridge Crane Bulkhead Lifter Rehabilitation Systemic Tainter Valve Replacement Dam Rehabilitation Evaluation Report Replacing 70-year Old Lock Pontoon Barge (Work Flats) Bridge Crane Repairs to Lattice Boom & Crane Undercarriage

TOTAL ESTIMATED COST: \$27,200,000

The maintenance needs of the aging infrastructure are increasing at a rate much greater than the operations and maintenance funding provided for the system. This is adversely affecting reliability of the system. Long-established programs for preventative maintenance of major lock components have essentially given way to a fix-as-fail strategy, with repairs sometimes requiring weeks or months to complete. Depending on the nature of a lock malfunction, extended repairs can have major consequences for shippers, manufacturers, consumers, and commodities investors.

The existing 9-foot Channel Navigation Project was largely constructed in the 1930s and extends down the Upper Mississippi River from Minneapolis-St. Paul to its confluence with the Ohio River and up the Illinois Waterway to the Thomas J. O'Brien Lock in Chicago. It includes 37 Locks and approximately 1,200 miles of navigable waterway in Illinois, Iowa, Minnesota, Missouri, and Wisconsin.

The system's 600-foot locks do not accommodate today's modern tows without splitting and passing through the lock in two operations. This procedure requires uncoupling barges at midpoint which triples lockage times and exposes deckhands to increased accident rates.

More than 580 manufacturing facilities, terminals, and docks ship and receive tonnage in the Upper Mississippi River basin. In 2005, the system moved more than 160 million tons of commercial cargo worth roughly \$28.5 billion. Grains (corn and soybeans) dominate traffic on the system. Other commodities, mainly cement and concrete products, comprise the second largest group. A modern 15-barge tow transports the equivalent of 1,050 large semi-trucks (26,250 cargo tons, 875,000 bushels, or 17,325,000 gallons). Annually, the project generates an estimated \$1 billion of transportation cost savings compared with the operation and maintenance costs of approximately \$115 million.

POINT OF CONTACT

Rock Island District Corporate Communications Office Phone number: 309-794-5729 Fax number: 309-794-5793 E-mail address: cemvr-cc@usace.army.mil

September 2009

LOCK & DAM 13 (FULTON, ILLINOIS) MISSISSIPPI RIVER

General Contractors: Lock and Dam: McCarthy Improvement Company, Davenport, Iowa Construction: 1935-1939 Congressional Districts: IA-1; IL-16

DESCRIPTION	Lock and Dam 13 is 522.5 miles above the confluence of the Mississippi and Ohio rivers. The complex stretches across the river at a point where the bluffs on the lowa side are very close to the river; islands and chutes dot the river beneath the bluffs. Eagle Point Nature Center occupies the high bluff immediately above the lock and dam. A dense group of sloughs and islands extend out from the Illinois shore.			
	The lock dime auxiliary lock. approximately	ensions are 110 by 600 feet v The maximum lift is 11 feet 10 minutes to fill or empty th	vith additional pro with an average ne lock chamber.	ovisions for an lift of 8.6 feet. It takes
	The movable feet long; and Tainter gates earth and san sand-filled dik Bellevue, lowa	dam consists of 10 submersi three submersible roller gate are elliptical. The dam syste d-filled dikes; two transitiona e. It takes 10 hours for wate a, to Lock and Dam 13.	ble Tainter gates es, 20-feet high b m also includes I dikes; and a su r to travel from L	s, 20-feet high by 64- by 100-feet long. The three non-overflow bmersible earth and ock and Dam 12, in
HISTORY/SIGNIFICANCE	The Lock ope concurrently. a result, the g sloughs, islan operated durin necessary to lock site. The \$7,503,000.	ned in 1939. Locks and Dan The site for the lock was ina eneral contractor constructed ds, and marshy bottom lands ng the construction of the dan divert Johnson Creek so that lock and dam elements of the	ns 13, 14 and 17 ccessible from th d a dike road to th s of the Illinois sh m and central con it entered the riv ne complex were	were designed and built ne nearest highway. As he site through the nore. A ferry had to be ntrol station. It was also ver downstream from the completed at a cost of
Annual Tonnage	<u>Year</u>	<u>Tons</u>	Year	<u>Tons</u>
(10-YEAR HISTORICAL)	1999 2000 2001 2002	24,803,042 22,746,082 19,277,553 23,495,472	2004 2005 2006 2007	17,729,645 18,028,251 19,078,754 18,030,735

(More Information On The Reverse Side)

19,990,636

2008

13,595,495

2003

Coal	3,511,948	Subtotals:	
Petroleum	123,676		
Chemicals	1,666,893	Grain	4,821,833
Crude Materials	2,483,078	Steel	136,553
Manufactured Goods	467,828		
Farm Products	5,195,440	Lockages:	
Manufactured Machinery	116,412	-	
Containers & Pallets	0	Boats:	2,853
Unknown	30,150	Cuts:	2,940

CURRENT MAINTENANCE ISSUES – LOCK & DAM 13

Item (Critical Rank Order)

Repair or Replace Emergency Gates Systemic Bulkhead Slots Dam Concrete Repairs Systemic Miter Gate Replacement Central Control Station Flood Proofing Repair Roller End Shields & Seals - Dam Structural Repairs - Tainter and Roller Gates Exterior Systemic - Crane Rail Adjustments - Dam Bridge Crane Bulkhead Lifter Rehabilitation Systemic Tainter Valve Replacement Lock Checkpost Replacement Dam Rehabilitation Evaluation Report Replacing 70-Year Old Lock Pontoon Barge (Work Flats) Bridge Crane Repairs to Lattice Boom & Crane Undercarriage Flood Damage - Repair/Raise Entrance Road New Water Supply Well Scour Repair at Dam and Riverwall Systemic - Standby Generator and Compressor Enclosures New Maintenance Building

TOTAL ESTIMATED COST: \$25,200,000

The maintenance needs of the aging infrastructure are increasing at a rate much greater than the operations and maintenance funding provided for the system. This is adversely affecting reliability of the system. Long-established programs for preventative maintenance of major lock components have essentially given way to a fix-as-fail strategy, with repairs sometimes requiring weeks or months to complete. Depending on the nature of a lock malfunction, extended repairs can have major consequences for shippers, manufacturers, consumers, and commodities investors.

The existing 9-foot Channel Navigation Project was largely constructed in the 1930s and extends down the Upper Mississippi River from Minneapolis-St. Paul to its confluence with the Ohio River and up the Illinois Waterway to the Thomas J. O'Brien Lock in Chicago. It includes 37 Locks and approximately 1,200 miles of navigable waterway in Illinois, Iowa, Minnesota, Missouri, and Wisconsin.

The system's 600-foot locks do not accommodate today's modern tows without splitting and passing through the lock in two operations. This procedure requires uncoupling barges at midpoint which triples lockage times and exposes deckhands to increased accident rates.

More than 580 manufacturing facilities, terminals, and docks ship and receive tonnage in the Upper Mississippi River basin. In 2005, the system moved more than 160 million tons of commercial cargo worth roughly \$28.5 billion. Grains (corn and soybeans) dominate traffic on the system. Other commodities, mainly cement and concrete products, comprise the second largest group. A modern 15-barge tow transports the equivalent of 1,050 large semi-trucks (26,250 cargo tons, 875,000 bushels, or 17,325,000 gallons). Annually, the project generates an estimated \$1 billion of transportation cost savings compared with the operation and maintenance costs of approximately \$115 million.

POINT OF CONTACT

Rock Island District Corporate Communications Office Phone number: 309-794-5729 Fax number: 309-794-5793 E-mail address: cemvr-cc@usace.army.mil

September 2009

LOCKS & DAM 14 (PLEASANT VALLEY, IOWA) MISSISSIPPI RIVER

General Contractors: Lock and Dam: Central Engineering Company, Davenport, Iowa Construction: 1935-1940 Congressional Districts: IA-1; IL-17

DESCRIPTION	Lock and Dam 14 is four miles below LeClaire, Iowa, and 493.3 miles above the confluence of the Mississippi and Ohio rivers. The site is also 3.6 miles below the head of the notorious, rock-bedded, Rock Island Rapids. The LeClaire Lock and the remains of the LeClaire Lateral Canal, built in 1921-1924 to bypass this treacherous stretch of river, are located along the Iowa shore.				
	The main lock' Lock, which is depth of eight f lock's maximur approximately	s dimensions are 110 by 600 used as an auxiliary lock, are feet at the upper sill and seven n lift is 11 feet with an avera eight minutes to fill or empty) feet. The dime e 80 by 320 feet, en feet at the low ge lift of 9.8 feet. the main lock.	nsions of the LeClaire with a low-water ver sill. The main It takes	
	The movable d long) and four system also ind to travel from L	lam has 13 non-submersible submersible roller gates (20 cludes an earth and sand-fille .ock and Dam 13, in Fulton,	Tainter gates (2 feet high by 100 ed dike. It takes lowa, to Lock an	0 feet high by 60 feet feet long). The dam nine hours for water d Dam 14.	
HISTORY/SIGNIFICANCE	The lock opened in 1940. The Corps built the oldest elements of this complex between 1921 and 1924, during the six-foot channel project. As part of that channelization, the Corps built a longitudinal dam paralleling the lowa shore from the head of the Rock Island Rapids at LeClaire, to the head of Smith's Island. The dam formed the riverward wall of the LeClaire Canal, by which vessels could bypass the rapids. The lowa shore served as the canal's landwall. Most of the longitudinal dam was submerged when Dam 14 was built; however, a portion of the original canal near the dam is still used as a mooring and storage site. The lock and dam elements of the complex were completed at a cost of \$6,439,000.				
Annual Tonnage	Year	Tons	Year	<u>Tons</u>	
(10-YEAR HISTORICAL)	1999	30,839,734	2004	20,626,075	
	2000	28,348,136	2005	20,819,999	
	2001	24,204,000 28,428,345	2006 2007	21,934,232 20.675.817	
		,,		,	

(More Information On The Reverse Side)

24,224,248

2008

15,612,451

2003

Coal	3,415,063	Subtotals:	
Petroleum	152,948		
Chemicals	2,146,586	Grain	5,627,009
Crude Materials	3,061,268	Steel	157,014
Manufactured Goods	480,905		
Farm Products	6,198,945	Lockages:	
Manufactured Machinery	109,852		
Waste Material	0	Boats:	5,437
Containers & Pallets	0	Cuts:	3,992
Unknown	46,884		

CURRENT MAINTENANCE ISSUES – LOCK & DAM 14

Item (Critical Rank Order)

Systemic Bulkhead Slots Systemic Miter Gate Replacement Repair Roller End Shields & Seals - Dam Structural Repairs - Tainter and Roller Gates Exterior Systemic - Crane Rail Adjustments - Dam Modify Downstream Approach Bridge Crane Bulkhead Lifter Rehabilitation Repair Miter Gate Speed Reducer Systemic Repair Auxiliary Lock Gates, Including New Bulkhead Slots Systemic Tainter Valve Replacement Dredge Main Lock Upstream Approach Dam Rehabilitation Evaluation Report Painting Under Dam Service Bridge Replacing 70-Year Old Lock Pontoon Barge (Work Flats) Bridge Crane Repairs to Lattice Boom & Crane Undercarriage Repairs to Auxiliary Lock 14 - Machinery Bases Upper Bullnose Repair Auxiliary Lock Valves Rehabilitation Main Lock Chamber - Armoring Systemic - Standby Generator and Compressor Enclosures

TOTAL ESTIMATED COST: \$29,400,000

The maintenance needs of the aging infrastructure are increasing at a rate much greater than the operations and maintenance funding provided for the system. This is adversely affecting reliability of the system. Long-established programs for preventative maintenance of major lock components have essentially given way to a fix-as-fail strategy, with repairs sometimes requiring weeks or months to complete. Depending on the nature of a lock malfunction, extended repairs can have major consequences for shippers, manufacturers, consumers, and commodities investors.

The existing 9-foot Channel Navigation Project was largely constructed in the 1930s and extends down the Upper Mississippi River from Minneapolis-St. Paul to its confluence with the Ohio River and up the Illinois Waterway to the Thomas J. O'Brien Lock in Chicago. It includes 37 Locks and approximately 1,200 miles of navigable waterway in Illinois, Iowa, Minnesota, Missouri, and Wisconsin.

The system's 600-foot locks do not accommodate today's modern tows without splitting and passing through the lock in two operations. This procedure requires uncoupling barges at midpoint which triples lockage times and exposes deckhands to increased accident rates.

More than 580 manufacturing facilities, terminals, and docks ship and receive tonnage in the Upper Mississippi River basin. In 2005, the system moved more than 160 million tons of commercial cargo worth roughly \$28.5 billion. Grains (corn and soybeans) dominate traffic on the system. Other commodities, mainly cement and concrete products, comprise the second largest group. A modern 15-barge tow transports the equivalent of 1,050 large semi-trucks (26,250 cargo tons, 875,000 bushels, or 17,325,000 gallons). Annually, the project generates an estimated \$1 billion of transportation cost savings compared with the operation and maintenance costs of approximately \$115 million.

POINT OF CONTACT

Rock Island District Corporate Communications Office Phone number: 309-794-5729 Fax number: 309-794-5793 E-mail address: cemvr-cc@usace.army.mil

September 2009

LOCKS & DAM 15 (ROCK ISLAND, ILLINOIS) MISSISSIPPI RIVER

General Contractors:

Lock: Merritt-Chapman & Whitney Corporation, Duluth, Minnesota Dam: D.A. Healy Company, Detroit, Michigan **Construction:** 1931-1934 **Congressional Districts:** IA-1; IL-17

DESCRIPTION

In the heart of the Quad Cities, Locks and Dam 15 is 483 miles above the confluence of the Mississippi and Ohio rivers. The complex stretches across the Upper Mississippi River at one of its narrowest points which is also at the foot of the Rock Island Rapids. The complex extends from the northwest tip of the U.S. Army's Arsenal Island on the Illinois side, to a small area of flat-bottom land on the lowa side. A roadway and railroad bridge, joining Davenport and Rock Island, spans the site.

The main lock is 110 feet wide by 600 feet long; the auxiliary lock is 110 by 360 feet. Both have a maximum chamber lift of 16 feet with an average of 13 feet and takes about seven minutes to fill or empty. Each lock gate weighs nearly 82 tons. The 1,203-foot-long movable dam is the largest roller dam in the United States consisting of 11 non-submersible 100-foot-long roller gates with 11 control houses. Nine gates are 19 feet 4 inches in diameter and two are 16 feet 2 inches. It takes three hours for water to travel from Lock and Dam 14, in Pleasant Valley, Iowa, to Lock and Dam 15.

HISTORY/SIGNIFICANCE The complex opened in 1934 and was the first 9-Foot Channel Project complex which served as a prototype for the whole system. Dam 15 is unusual among the Project as it is the only dam on the River made entirely of roller gates as it was constructed at the narrowest part of the channel and is subject to ice and debris jams; is built at a 16-1/2 degree angle to gain additional dam area for maintaining the nine foot navigation; employs roller gates that are non-submersible, of differing sizes, and of non-standard length; is not at a right angle to the river; includes no earthen embankment dike section; incorporates a power plant that generates electricity to operate its gates and valves; and uses an open-truss service bridge with a bulkhead-lifting crane on its lower chord. The complex is also unusual because the intermediate locks' wall encases a bridge swing span. The lock and dam elements of the complex were completed at a cost of \$2,524,700.

ANNUAL TONNAGE (10-YEAR HISTORICAL)

dum cicini					
<u>Year</u>	<u>Tons</u>	<u>Year</u>	<u>Tons</u>		
1999	31,209,760	2004	20,948,490		
2000	28,753,278	2005	20,991,007		
2001	24,707,186	2006	21,942,068		
2002	28,829,063	2007	20,880,043		
2003	24,923,417	2008	15,635,867		

(More Information on the Reverse Side)

Coal	3,398,044	Subtotals:	
Petroleum	151,707		
Chemicals	2,129,808	Grain	5,914,567
Crude Materials	2,761,227	Steel	159,104
Manufactured Goods	579,096		
Farm Products	6,480,544	Lockages:	
Manufactured Machinery	90,992		
Waste Material	0	Boats:	3,535
Containers & Pallets	0	Cuts:	3,717
Unknown	44,449		

CURRENT MAINTENANCE ISSUES – LOCKS & DAM 15

Item (Critical Rank Order)

Rehabilitation of Bulkhead Hoist Systemic Bulkhead Slots Dam Gate Rehabilitation – Exterior Hydropower Turbine Rehabilitation Systemic Miter Gate Replacement Repair Roller End Shields & Seals - Dam Systemic Structural Repairs Service Bridge Dam Replace/Rehabilitate Motors and Brakes for Roller Gates Structural Repairs - Tainter and Roller Gates - Interior Systemic Repair Auxiliary Lock Gates, Including New Bulkhead Slots Systemic Tainter Valve Replacement Lock Checkpost Replacement Dam Rehabilitation Evaluation Report Rehabilitate Concrete on River Wall, Erosion Repairs to Lower Guidewall Bridge Crane Repairs to Lattice Boom & Crane Undercarriage Tainter Valve Limit Switch Replacement and Relocation Scour Repair Davenport Seawall Interior Inspection Rehabilitate Boat Dock Construct Central Control Station /Visitor Center Addition

TOTAL ESTIMATED COST: \$35,500,000

The maintenance needs of the aging infrastructure are increasing at a rate much greater than the operations and maintenance funding provided for the system. This is adversely affecting reliability of the system. Long-established programs for preventative maintenance of major lock components have essentially given way to a fix-as-fail strategy, with repairs sometimes requiring weeks or months to complete. Depending on the nature of a lock malfunction, extended repairs can have major consequences for shippers, manufacturers, consumers, and commodities investors.

The existing 9-foot Channel Navigation Project was largely constructed in the 1930s and extends down the Upper Mississippi River from Minneapolis-St. Paul to its confluence with the Ohio River and up the Illinois Waterway to the Thomas J. O'Brien Lock in Chicago. It includes 37 Locks and approximately 1,200 miles of navigable waterway in Illinois, Iowa, Minnesota, Missouri, and Wisconsin.

The system's 600-foot locks do not accommodate today's modern tows without splitting and passing through the lock in two operations. This procedure requires uncoupling barges at midpoint which triples lockage times and exposes deckhands to increased accident rates.

More than 580 manufacturing facilities, terminals, and docks ship and receive tonnage in the Upper Mississippi River basin. In 2005, the system moved more than 160 million tons of commercial cargo worth roughly \$28.5 billion. Grains (corn and soybeans) dominate traffic on the system. Other commodities, mainly cement and concrete products, comprise the second largest group. A modern 15-barge tow transports the equivalent of 1,050 large semi-trucks (26,250 cargo tons, 875,000 bushels, or 17,325,000 gallons). Annually, the project generates an estimated \$1 billion of transportation cost savings compared with the operation and maintenance costs of approximately \$115 million.

POINT OF CONTACT

Rock Island District Corporate Communications Office Phone number: 309-794-5729 Fax number: 309-794-5793 E-mail address: cemvr-cc@usace.army.mil

September 2009

LOCK & DAM 16 (Illinois City, Illinois) MISSISSIPPI RIVER

General Contractors: Lock and Dam: Central Engineering Company, Davenport, Iowa Construction: 1933-1937 Congressional Districts: IA-2; IL-17

DESCRIPTION

Lock and Dam 16 is about one mile upstream from Muscatine, Iowa, and 457.2 miles above the confluence of the Mississippi and Ohio rivers. The complex stretches across the river at a point where the valley is wide. The earthen embankment section of the dam straddles portions of Hog Island in the main channel.

The lock dimensions are 110 feet wide by 600 feet long with additional provisions for an auxiliary lock. The maximum lift is nine feet with an average lift of 6.5 feet. It takes approximately seven minutes to fill or empty the lock chamber.

The movable dam has 12 non-submersible Tainter gates (20 feet high and 40 feet long), three submersible Tainter gates of the same dimensions, and four non-submersible roller gates (20 feet high and 80 feet long). The dam system also includes a linear, concrete capped, ogee spillway; and a submersible earth and sand-filled dike. It takes eight hours for water to travel from Lock and Dam 15, in Davenport, Iowa, to Lock and Dam 16.

HISTORY/SIGNIFICANCE

The lock opened in 1937. Dam 16 was the last dam in the Rock Island District to employ non-submersible roller gates, as well as Tainter gates (submersible and non-submersible), which had steel sheeting on only one side. It was also the first dam in the District in which all the Tainter gates were operated by line shafts and motors housed in installations above each gate, rather than from locomotive hoist cars running on the dam's service bridge. The lock and dam elements of the complex were completed at a cost of \$3,682,000.

ANNUAL TONNAGE	<u>Year</u>	<u>Tons</u>	Year	<u>Tons</u>
(10-YEAR HISTORICAL)	1999	33,139,184	2004	21,279,884
	2000	30,583,395	2005	21,350,740
	2001	26,451,754	2006	22,708,972
	2002	30,323,912	2007	21,598,027
	2003	25,912,587	2008	16,494,518

(More Information On The Reverse Side)

Coal	3,791,286	Subtotals:	
Petroleum	187,885		
Chemicals	2,158,943	Grain	6,566,968
Crude Materials	2,517,550	Steel	195,281
Manufactured Goods	486,174		
Farm Products	7,173,661	Lockages:	
Manufactured Machinery	126,875		
Waste Material	400	Boats:	2,707
Containers & Pallets	0	Cuts:	3,387
Unknown	51,744		

CURRENT MAINTENANCE ISSUES – LOCK & DAM 16

Item (Critical Rank Order)

Systemic Bulkhead Slots Pier House Roof Repairs Systemic Miter Gate Replacement Damage-Overflow Spillway Concrete Repair Roller End Shields & Seals - Dam Systemic Structural Repairs - Tainter and Roller Gates - Exterior Systemic - Crane Rail Adjustments - Dam Systemic Structural Repairs Service Bridge Dam Structural Repairs - Tainter and Roller Gates – Interior Bridge Crane Bulkhead Lifter Rehabilitation Systemic Repair Auxiliary Lock Gates, Including New Bulkhead Slots Miter Gate Machinery/Gearbox Repair Systemic Tainter Valve Replacement Dam Rehabilitation Evaluation Report Replacing 70-Year Old Lock Pontoon Barge (Work Flats) Wave Damage and Upper End Approach Repair Bridge Crane Repairs to Lattice Boom & Crane Undercarriage Systemic - Standby Generator and Compressor Enclosures New Maintenance Building

TOTAL ESTIMATED COST: \$32,600,000

The existing 9-foot Channel Navigation Project was largely constructed in the 1930s and extends down the Upper Mississippi River from Minneapolis-St. Paul to its confluence with the Ohio River and up the Illinois Waterway to the Thomas J. O'Brien Lock in Chicago. It includes 37 Locks and approximately 1,200 miles of navigable waterway in Illinois, Iowa, Minnesota, Missouri, and Wisconsin. The system's 600-foot locks do not accommodate today's modern tows without splitting and passing through the lock in two operations. This procedure requires uncoupling barges at midpoint which triples lockage times and exposes deckhands to increased accident rates.

More than 580 manufacturing facilities, terminals, and docks ship and receive tonnage in the Upper Mississippi River basin. In 2005, the system moved more than 160 million tons of commercial cargo worth roughly \$28.5 billion. Grains (corn and soybeans) dominate traffic on the system. Other commodities, mainly cement and concrete products, comprise the second largest group. A modern 15-barge tow transports the equivalent of 1,050 large semi-trucks (26,250 cargo tons, 875,000 bushels, or 17,325,000 gallons). Annually, the project generates an estimated \$1 billion of transportation cost savings compared with the operation and maintenance costs of approximately \$115 million.

In constant dollar terms, operations and maintenance funding for the system has been largely flat or declining for decades, while maintenance needs of the aging infrastructure increase. This is adversely affecting reliability of the system. Longestablished programs for preventative maintenance of major lock components have essentially given way to a fix-as-fail strategy, with repairs sometimes requiring weeks or months to complete. Depending on the nature of a lock malfunction, extended repairs can have major consequences for shippers, manufacturers, consumers, and commodities investors.

POINT OF CONTACT

Rock Island District Corporate Communications Office Phone number: 309-794-5729 Fax number: 309-794-5793 E-mail address: cemvr-cc@usace.army.mil

September 2009

LOCK & DAM 17 (New Boston, Illinois) Mississippi River

General Contractors: Lock: Massman Construction Company and Massman-Peterman Company, Kansas City, Missouri Dam: Maxon Construction, Dayton, Ohio Construction: 1935-1939 Congressional Districts: IA-2; IL-17

DESCRIPTION	Lock and Dam 17 is 437.1 miles above the confluence of the Mississippi and Ohio rivers. The complex stretches across a wide portion of river where there are several marshy islands. The Port Louisa National Wildlife Refuge and Odessa State Wildlife Management Area occupy the islands, marshes, and sloughs on the Iowa shore both upstream and downstream from the dam.				
	The lock dimensions are 110 feet wide by 600 feet long with additional provisions for an auxiliary lock. The maximum lift is eight feet with an average lift of four feet. It takes approximately seven minutes to fill or empty the lock chamber.				
	The movable da long) and three dam system als transitional dike hours for water Dam 17.	am has eight submersible Ta submersible roller gates (20 to includes one non-overflow es; and a submersible earth a to travel from Lock and Dan	ainter gates (20 f) feet high by 100 v earth and sand and sand-filled d n 16 in Muscatine	eet high by 64 feet) feet long). The -filled dike; two ike. It takes six e, lowa, to Lock and	
HISTORY/SIGNIFICANCE	The lock opene a result, the cor The remoteness commute to the Company and t lock and dam si large mess hall employed on th completed at a	d in 1939. The site was inac ntractors for the lock had to d s of the site caused other pro- job site from their homes. A he Massman-Peterman Con- ite. This camp consisted of During the peak of constru- e project. The lock and dam cost of \$4,164,000.	ccessible from th construct a 3.7-m oblems. Not end As a result, the M npany built a wor eleven 16-man b ction in July 193 n elements of the	e nearest highway. As hile-long entrance road. ough workers could fassman Construction kers' camp near the ounk houses and a 6, 626 men were a complex were	
Annual Tonnage	<u>Year</u>	Tons	<u>Year</u>	Tons	
(10-YEAR HISTORICAL)	1999 2000	34,170,210 31,375,823	2004 2005	22,107,520 22,596,983	

(More Information On The Reverse Side)

27,451,332

31,631,819

27,171,584

2006

2007

2008

24,046,856

22,843,570

17,338,830

2001

2002

2003

Coal	4,248,023	Subtotals:	
Petroleum	192,385		
Chemicals	2,288,704	Grain	6,888,974
Crude Materials	2,386,284	Steel	196,940
Manufactured Goods	494,603		
Farm Products	7,557,028	Lockages:	
Manufactured Machinery	119,659		
Waste Material	400	Boats:	2,023
Containers & Pallets	0	Cuts:	2,966
Unknown	51.744		

CURRENT MAINTENANCE ISSUES – LOCK & DAM 17

Item (Critical Rank Order)

Systemic Bulkhead SlotsMiter Gate MaConcrete Repairs to Lock MonolithsSystemic TairPier House Roof RepairsLock RehabiliSystemic Miter Gate ReplacementRiprap RepairRepair Roller End Shields & Seals - DamRiverwall ConSystemic Structural Repairs - Tainter and Roller GatesDam Rehabili- ExteriorBridge Crane Bulkhead Lifter RehabilitationFlood DamagStructural Repairs - Tainter and Roller Gates - InteriorSystemic - StateSystemic Repair Auxiliary Lock Gates, Including NewBulkhead SlotsNew MaintenaSystemic Structural Repairs Service Bridge DamNew Maintena

Miter Gate Machinery/Gearbox Repair Systemic Tainter Valve Replacement Lock Rehabilitation Evaluation Report Riprap Repair Riverwall Concrete Horizontal Resurfacing Dam Rehabilitation Evaluation Report Bridge Crane Repairs to Lattice Boom & Crane Undercarriage Flood Damage-Repair Sidewalk Upper/Lower Guidewall Systemic - Standby Generator and Compressor Enclosures Resurface Entrance Road New Maintenance Building

TOTAL ESTIMATED COST: \$34,100,000

The existing 9-foot Channel Navigation Project was largely constructed in the 1930s and extends down the Upper Mississippi River from Minneapolis-St. Paul to its confluence with the Ohio River and up the Illinois Waterway to the Thomas J. O'Brien Lock in Chicago. It includes 37 Locks and approximately 1,200 miles of navigable waterway in Illinois, Iowa, Minnesota, Missouri, and Wisconsin. The system's 600-foot locks do not accommodate today's modern tows without splitting and passing through the lock in two operations. This procedure requires uncoupling barges at midpoint which triples lockage times and exposes deckhands to increased accident rates.

More than 580 manufacturing facilities, terminals, and docks ship and receive tonnage in the Upper Mississippi River basin. In 2005, the system moved more than 160 million tons of commercial cargo worth roughly \$28.5 billion. Grains (corn and soybeans) dominate traffic on the system. Other commodities, mainly cement and concrete products, comprise the second largest group. A modern 15-barge tow transports the equivalent of 1,050 large semi-trucks (26,250 cargo tons, 875,000 bushels, or 17,325,000 gallons). Annually, the project generates an estimated \$1 billion of transportation cost savings compared with the operation and maintenance costs of approximately \$115 million.

In constant dollar terms, operations and maintenance funding for the system has been largely flat or declining for decades, while maintenance needs of the aging infrastructure increase. This is adversely affecting reliability of the system. Longestablished programs for preventative maintenance of major lock components have essentially given way to a fix-as-fail strategy, with repairs sometimes requiring weeks or months to complete. Depending on the nature of a lock malfunction, extended repairs can have major consequences for shippers, manufacturers, consumers, and commodities investors.

POINT OF CONTACT

Rock Island District Corporate Communications Office Phone number: 309-794-5729 Fax number: 309-794-5793 E-mail address: cemvr-cc@usace.army.mil

September 2009

LOCK & DAM 18 (GLADSTONE, ILLINOIS) MISSISSIPPI RIVER

General Contractors:

Lock: Maxon Construction Company, Dayton, Ohio Dam: S.A. Healy Company, Chicago, Illinois Construction: 1934-1937 Congressional Districts: IA-2; IL-17

DESCRIPTION

Lock and Dam 18 is 410.5 miles above the confluence of the Mississippi and Ohio rivers. The bottom lands on both shores are flat and punctuated by sloughs, marshes, and reefs. The river is dotted with low islands of various sizes. The Oquawka State Wildlife Refuge is adjacent to the lock and dam complex on the Illinois shore. The installation's esplanade interrupts a levee and functions as part of the Henderson River diversion that converted Turkey Island into an extension of the Illinois shore.

Lock dimensions are 110 feet wide by 600 feet long with additional provisions for an auxiliary lock. Maximum lift is 9.8 feet with an average lift of 6.9 feet. It takes approximately 10 minutes to fill or empty the lock.

The dam is composed of 14 submersible Tainter gates (20 feet high by 60 feet long) and three submersible roller gates (20 feet high by 100 feet long). All gates submerge to a depth of eight feet. The dam includes a submersible earth and sand-filled dike, a non-overflow earth and sand-filled dike, and two transition dikes. It takes eight hours for water to travel from Lock and Dam 17, in New Boston, Illinois, to Lock and Dam 18.

HISTORY/SIGNIFICANCE The lock opened in 1937. Dams 11 and 18 were the first in the Rock Island District to employ submersible, elliptical Tainter gates. They were also the first two dams in the District to use submersible roller gates. This complex also involved the diversion of Henderson River so that it entered the Upper Mississippi immediately below the lock and dam. During the peak of construction in September 1934, the project employed 960 men as laborers and 74 men as supervisors. Average employment was 478 laborers and 44 supervisors.

The lock and dam elements of the complex were completed at a cost of \$4,122,400.

ANNUAL TONNAGE	Year	<u>Tons</u>	<u>Year</u>	<u>Tons</u>
(10-YEAR HISTORICAL)	1999	35,707,505	2004	23,015,891
	2000	32,864,097	2005	23,602,042
	2001	28,570,073	2006	25,262,995
	2002	32,948,597	2007	24,193,022
	2003	28,389,384	2008	18,661,036

(More Information On The Reverse Side)

Coal	4,300,188	Subtotals:	
Petroleum	201,485		
Chemicals	2,340,981	Grain	8,041,012
Crude Materials	2,423,397	Steel	200,116
Manufactured Goods	487,567		
Farm Products	8,716,995	Lockages:	
Manufactured Machinery	132,079		
Waste Material	400	Boats:	2,237
Containers & Pallets	0	Cuts:	3,246
Unknown	57,944		

CURRENT MAINTENANCE ISSUES – LOCK & DAM 18

Item (Critical Rank Order)

Dam Concrete Safety Repairs	Systemic Structural Repairs - Tainter and Roller Gates
Systemic Bulkhead Slots	- Exterior
Repair Dam Concrete	Miter Gate Machinery/Gearbox Repair
Dam Rehabilitation Evaluation Report	Systemic Tainter Valve Replacement
Systemic Miter Gate Replacement	Lock Rehabilitation Evaluation Report
Repair Roller End Shields & Seals - Dam	Replacing 70-Year Old Lock Pontoon Barge (Work Flats)
Systemic - Crane Rail Adjustments - Dam	Bridge Crane Repairs to Lattice Boom & Crane
Bridge Crane Bulkhead Lifter Rehabilitation	Undercarriage
Structural Repairs - Tainter and Roller Gates - Interior	Repair Henderson River Bridge
Systemic Repair Auxiliary Lock Gates, Including New	Systemic - Standby Generator and Compressor Enclosures
Bulkhead Slots	Resurface Entrance Road (1,200')
Systemic Structural Repairs Service Bridge Dam	New Maintenance Building
Systemic Structural Repairs Service Bridge Dam	New Maintenance Building

TOTAL ESTIMATED COST: \$51,900,000

The existing 9-foot Channel Navigation Project was largely constructed in the 1930s and extends down the Upper Mississippi River from Minneapolis-St. Paul to its confluence with the Ohio River and up the Illinois Waterway to the Thomas J. O'Brien Lock in Chicago. It includes 37 Locks and approximately 1,200 miles of navigable waterway in Illinois, Iowa, Minnesota, Missouri, and Wisconsin. The system's 600-foot locks do not accommodate today's modern tows without splitting and passing through the lock in two operations. This procedure requires uncoupling barges at midpoint which triples lockage times and exposes deckhands to increased accident rates.

More than 580 manufacturing facilities, terminals, and docks ship and receive tonnage in the Upper Mississippi River basin. In 2005, the system moved more than 160 million tons of commercial cargo worth roughly \$28.5 billion. Grains (corn and soybeans) dominate traffic on the system. Other commodities, mainly cement and concrete products, comprise the second largest group. A modern 15-barge tow transports the equivalent of 1,050 large semi-trucks (26,250 cargo tons, 875,000 bushels, or 17,325,000 gallons). Annually, the project generates an estimated \$1 billion of transportation cost savings compared with the operation and maintenance costs of approximately \$115 million.

In constant dollar terms, operations and maintenance funding for the system has been largely flat or declining for decades, while maintenance needs of the aging infrastructure increase. This is adversely affecting reliability of the system. Longestablished programs for preventative maintenance of major lock components have essentially given way to a fix-as-fail strategy, with repairs sometimes requiring weeks or months to complete. Depending on the nature of a lock malfunction, extended repairs can have major consequences for shippers, manufacturers, consumers, and commodities investors.

POINT OF CONTACT

Rock Island District Corporate Communications Office Phone number: 309-794-5729 Fax number: 309-794-5793 E-mail address: cemvr-cc@usace.army.mil

September 2009

LOCK & DAM 19 (KEOKUK, IOWA) MISSISSIPPI RIVER

General Contractors:

Stage I: McCarthy Improvement Company, Davenport, Iowa Stage II: Jones Construction Company, Charlotte, North Carolina Stage III: Oil Gear Company, Milwaukee, Wisconsin Stage IV: Evans Electrical Construction Company, Omaha, Nebraska Construction: (1910-1914) 1952-1957 Congressional Districts: IA-2; IL-17

DESCRIPTION

Lock and Dam 19 is 364.2 miles above the confluence of the Mississippi and Ohio rivers. Privately built and owned, the dam was built in 1913 and includes 119 rectangular sliding gates.

The lock was constructed from 1952-1957. The main lock is 110 by 1,200 feet, twice the size of the standard 9-foot navigation channel lock. The Keokuk and Hamilton Water Power Company Lock (built between 1910 and 1914) is closed off by a permanent, steel pile, cell structure.

Maximum lift is 38.2 feet with an average lift of 36.3 feet. It takes approximately 10 minutes to fill; 9.25 minutes to empty the lock. It takes 12 hours for water to travel from Lock and Dam 18, in Gladstone, Illinois, to Lock and Dam 19.

HISTORY/SIGNIFICANCE

The lock opened in 1957. The lock and dam complex was not built as part of the original 9-foot navigation channel project. The Des Moines Canal Bullnose was built from 1867-1870 as part of the Corps' 4-foot channel project. The Keokuk and Hamilton Water Power Company built the dam, power plant, dry dock, and original lock from 1910-1914.

The Corps built the 1,200-foot lock, control houses, utility building, and esplanade in four stages: Stage I – Construction of lock lower approach (1952-1954); Stage II – Lock construction (1954-1956); Stage III – Manufacture and delivery of electrical control equipment and upstream gate operating equipment (1954); Stage IV – Installation of power, control, and lighting system (1956-1957).

During the peak of construction, 415 people were employed. Elements of the lock and dam were listed on the National Register of Historic Places in 1978. The complex was completed at a cost of \$37,909,000.

ANNUAL TONNAGE	<u>Year</u>	Tons	Year	<u>Tons</u>
(10-YEAR HISTORICAL)	1999	35,803,139	2004	24,190,511
	2000	34,097,581	2005	24,697,974
	2001	30,128,512	2006	26,390,867
	2002	34,914,721	2007	25,504,854
	2003	29,827,673	2008	19,275,225

(More Information On The Reverse Side)

Coal	3,074,535	Subtotals:	
Petroleum	209,137		
Chemicals	2,424,609	Grain	9,655,755
Crude Materials	2,471,767	Steel	203,210
Manufactured Goods	501,318		
Farm Products	10,418,207	Lockages:	
Manufactured Machinery	129,709		
Waste Material	400	Boats:	2,231
Containers & Pallets	0	Cuts:	2,039
Unknown	45,544		

CURRENT MAINTENANCE ISSUES – LOCK & DAM 19

Item (Critical Rank Order)

Concrete Work - Major Maintenance Downstream Cell Replacement Ice Gate Study Rehabilitation to Lock Guard Gate Sandblast and Paint Lock Guard Gate Systemic Tainter Valve Replacement Repair Lock Valve Intake Screens Dewatering Guard Gate Replacing 70-Year Old Lock Pontoon Barge (Work Flats) Remove Rock to Modify Downstream Approach Replace Roof and Brick Veneer on Lock Building Rehabilitate Upper Control Buildings Restore Old Lock and Drydock

TOTAL ESTIMATED COST: \$51,200,000

As the structures and equipment approach the end of their project lives, breakdowns and failure of mechanical and electrical equipment become more frequent and expensive, with resultant delays and loss of revenue to commercial waterway users. The rehabilitation involves the navigation lock chamber and associated parts. Major work items include resurfacing the lock chamber, rehabilitation of Tainter valves, replacing and refurbishing the lock machinery, miter gates and overall site electrical systems. The rehabilitation was started in Fiscal Year 2003 with a Congressional add of \$500,000. Funding for rehabilitation projects is normally provided through Construction General funds, and cost shared 50/50 with the Inland Waterways Trust Fund for the Major Rehabilitation portion of the work; and Operations & Maintenance funds used for the Major Maintenance portion of the work.

Stage I -- Upper gates repair is scheduled for completion in March 2008.

Stage II, Lock Rehabilitation and Miter Gate Replacement -- completed in 2006. After four months of operation, the lower land wall miter gate developed a grinding noise. In 2007, in-house crews repaired the gate. This emergency repair was not included in the Fiscal Year 2007 or 2008 budget, as a result it drew funds from Stage I.

Concrete resurfacing of the lock chamber is deferred (more than \$30 million) due to Operations & Maintenance funding levels that will not permit completion of all major maintenance elements.

Potential unscheduled closures of 90 days have been estimated and associated with failures of mechanical equipment. Transportation impacts associated with a 90-day closure of Lock 19, outside of the winter closure, would approach \$53 million. AmerenUE, a privately owned utility company, owns the adjacent navigation/hydroelectric dam.

POINT OF CONTACT

Rock Island District Corporate Communications Office Phone number: 309-794-5729 Fax number: 309-794-5793 E-mail address: cemvr-cc@usace.army.mil

September 2009

LOCK & DAM 20 (CANTON, MISSOURI) MISSISSIPPI RIVER

General Contractors: Lock: Maxon Construction, Dayton, Ohio Dam: S.A. Healy Company, Detroit, Michigan, and Davenport, Iowa Construction: 1932-1935 Congressional Districts: MO-9; IL-17

DESCRIPTION

Lock and Dam 20 is 343.2 miles above the confluence of the Mississippi and Ohio rivers. The complex stretches across the river at a point where the valley is quite wide, about five-miles wide at the level of the lock and dam. A levee and the Gregory Diversion Ditch separate the complex from the town of Canton.

The lock dimensions are 110 feet wide by 600 feet long with additional provisions for an auxiliary lock. The maximum lift is 10.5 feet with an average lift of 5.3 feet. It takes approximately seven minutes to fill or empty the lock chamber.

The movable dam has three non-submersible roller gates (20 feet high by 60 feet long), 34 non-submersible Tainter gates (20 feet high by 40 feet long), and six submersible Tainter gates (20 feet high by 40 feet long). The submersible Tainter gates submerge three feet. It takes six hours for water to travel from Lock and Dam 19, in Keokuk, Iowa, to Lock and Dam 20.

HISTORY/SIGNIFICANCE

The lock opened in 1935. Dam 20 was the first dam in the Rock Island District to include Tainter gates. The plans originally called for all of the Tainter gates to be operated by hoist cars traveling on the dam's service bridge. However, the District modified two Tainter gates so they were individually operated by line shafts and motors housed in installations above each gate. This operating machinery worked so well that all subsequent Tainter gates in the 9-foot channel project, regardless of which district they were in, used line shafts and motors. Lock and Dam 20 was the first complex in the District on the Mississippi River to undergo major rehabilitation. The lock and dam elements of the complex were completed at a cost of \$3,363,500.

ANNUAL TONNAGE	<u>Year</u>	<u>Tons</u>	<u>Year</u>	<u>Tons</u>
(10-YEAR HISTORICAL)	1999	36,530,515	2004	25,228,357
	2000	35,015,410	2005	25,564,051
	2001	31,113,406	2006	27,584,821
	2002	35,902,022	2007	26,423,478
	2003	30,811,633	2008	20,080,492

(More Information On The Reverse Side)

Coal	3,171,946	Subtotals:	
Petroleum	204,385		
Chemicals	2,400,313	Grain	10,287,100
Crude Materials	2,533,077	Steel	208,165
Manufactured Goods	485,672		
Farm Products	11,083,996	Lockages:	
Manufactured Machinery	156,819		
Waste Material	400	Boats:	2,510
Containers & Pallets	0	Cuts:	3,515
Unknown	44.084		

CURRENT MAINTENANCE ISSUES – LOCK & DAM 20

Item (Critical Rank Order)

Miter Gate Replacement Lock Strut Arm Replacements and Traveling Kevel Rail Mule Replacements Systemic Bulkhead Slots **Pier House Roof Repairs** Concrete Repairs to Lock and Dam 20 Steps Structural Support Beam Repairs to Lock Machinery Raise Gate/Valve Machinery Bridge Crane Bulkhead Lifter Rehabilitation Systemic - Crane Rail Adjustments - Dam Undercarriage Structural Repairs - Tainter and Roller Gates - Interior Initiate Rehabilitation Evaluation Report for Ice/Debris Gate Systemic Structural Repairs Service Bridge Dam Systemic Structural Repairs - Tainter and Roller Gates - Exterior Miter Gate Machinery/Gearbox Repair

Systemic Tainter Valve Replacement Lock Checkpost Replacement Dam Rehabilitation Evaluation Report **Repair Lock Ladder Recesses Repair Lock Armor Plates** Replacing 70-Year-Old Lock Pontoon Barge (Work Flats) Lock Concrete Condition Survey and Repairs Repairs to Guide Cells and Erosion Repairs at Lower Ends Bridge Crane Repairs To Lattice Boom & Crane Repair Upstream Landwall Bullnose Replace Dam Decking Repair Downstream Dam Bullnose **Control Station Repairs** Rehabilitation of Lock Roadway Repair Canton Creek Bridge Systemic - Standby Generator and Compressor Enclosures

TOTAL ESTIMATED COST: \$41,600,000

The Water Resources Development Act of 2007 (WRDA 07) Title VIII authorized the dual-purpose navigation and ecosystem restoration plan for the Upper Mississippi River and Illinois Waterway. The new 1,200-foot lock, which will be located in the auxiliary lock chamber, will cost approximately \$221,000,000. The design and construction of the new lock is dependent upon annual appropriations.

The 9-foot Navigation Project was largely constructed in the 1930s and includes 37 Locks and 1,200 miles of waterway in Illinois, Iowa, Minnesota, Missouri, and Wisconsin. The system's 600-foot locks require tows to split and lock through in two operations. This requires uncoupling barges which triples lockage times and exposes deckhands to safety risks.

More than 580 manufacturing facilities, terminals, and docks ship and receive tonnage in the Upper Mississippi River basin. In 2005, the system moved more than 160 million tons of commercial cargo worth roughly \$28.5 billion. A modern 15-barge tow transports the equivalent of 1,050 large semi-trucks (26,250 cargo tons, 875,000 bushels, or 17,325,000 gallons). Annually, the project generates an estimated \$1 billion of transportation cost savings compared with the operation and maintenance costs of approximately \$115 million.

In constant dollar terms, operations and maintenance funding for the system has been largely flat or declining for decades, while maintenance needs increase. Long-established programs for preventative maintenance have essentially given way to a fix-as-fail strategy, with repairs sometimes requiring weeks or months to complete. Depending on the lock malfunction, extended repairs can have major consequences for shippers, manufacturers, consumers, and commodities investors.

POINT OF CONTACT

Rock Island District Corporate Communications Office Phone number: 309-794-5729 Fax number: 309-794-5793 E-mail address: cemvr-cc@usace.army.mil

September 2009

LOCK & DAM 21 (QUINCY, ILLINOIS) MISSISSIPPI RIVER

General Contractors:

Lock: Joseph Meltzer, Inc., New York, New York Dam: McCarthy Improvement Company, Davenport, Iowa Construction: 1933-1939 Congressional Districts: MO-9; IL-17

DESCRIPTION

Lock and Dam 21 is 324.9 miles above the confluence of the Mississippi and Ohio Rivers. The complex stretches across the river at a point where the valley is wide with flat bottom land on either side of the river. The city of Quincy, Illinois, lies on the low bluffs along the river just upstream from the complex.

Lock dimensions are 110 feet wide by 600 feet long with additional provisions for an auxiliary lock.

The maximum lift is 10.5 feet with an average lift of 6.55 feet. It takes approximately seven minutes to fill or empty the lock chamber.

The movable dam has 10 submersible, elliptical Tainter gates (20 feet high by 64 feet long) and three submersible roller gates (20 feet high by 100 feet long). The dam system also includes two earth and sand-filled transitional dikes, and a submersible earth dike. It takes five hours for water to travel from Lock and Dam 20, in Canton, Missouri, to Lock and Dam 21.

HISTORY/SIGNIFICANCE

Because Lock and Dam 21 was located adjacent to Quincy, which had acute unemployment, the complex was built before some of the other, higher priority locks and dams. The lock, central control station, and esplanade were completed by August 1935. At that point, however, no money was available to begin the dam. As a result, representatives from Quincy vigorously, and successfully, lobbied for federal money to construct the dam as a work relief project. The dam was completed in 1939. The lock and dam elements of the complex were completed at a cost of \$4,155,000.

ANNUAL TONNAGE	<u>Year</u>	<u>Tons</u>	<u>Year</u>	<u>Tons</u>
(10-YEAR HISTORICAL)	1999	37,863,139	2004	26,556,326
	2000	36,449,116	2005	27,127,688
	2001	32,874,457	2006	29,497,577
	2002	37,208,243	2007	28,546,672
	2003	32,025,867	2008	21,939,658

(More Information On The Reverse Side)

Coal	3,277,084	Subtotals:	
Petroleum	263,020		
Chemicals	2,668,704	Grain	10,603,032
Crude Materials	2,691,686	Steel	209,776
Manufactured Goods	507,684		
Farm Products	12,326,026	Lockages:	
Manufactured Machinery	159,730		
Waste Material	40	Boats:	2,376
Containers & Pallets	0	Cuts:	3,569
Unknown	45.684		

CURRENT MAINTENANCE ISSUES – LOCK & DAM 21

Item (Critical Rank Order)

Dam Pierhouse Roof RepairsReplacing 70-Year-Old Lock Pontoon Barges (Work Flats)Repair Roller End Shields & SealsBridge Crane Repairs to Lattice Boom & CraneStructural Repairs - Roller & Tainter Gates – InteriorUndercarriageSystemic - Crane Rail AdjustmentsSystemic - Standby Generator & Compressor EnclosuresBridge Crane Bulkhead Lifter RehabilitationNew Maintenance Building
--

TOTAL ESTIMATED COST: \$31,530,000

The Water Resources Development Act of 2007 (WRDA 07) Title VIII authorized the dual-purpose navigation and ecosystem restoration plan for the Upper Mississippi River and Illinois Waterway. The new 1,200-foot lock, which will be located in the auxiliary lock chamber, will cost approximately \$322,000,000. The design and construction of the new lock is dependent upon annual appropriations.

The existing 9-foot Channel Navigation Project was largely constructed in the 1930s and extends down the Upper Mississippi River from Minneapolis-St. Paul to its confluence with the Ohio River and up the Illinois Waterway to the Thomas J. O'Brien Lock in Chicago. It includes 37 Locks and approximately 1,200 miles of navigable waterway in Illinois, Iowa, Minnesota, Missouri, and Wisconsin. The system's 600-foot locks do not accommodate today's modern tows without splitting and passing through the lock in two operations. This procedure requires uncoupling barges at midpoint which triples lockage times and exposes deckhands to increased accident rates.

More than 580 manufacturing facilities, terminals, and docks ship and receive tonnage in the Upper Mississippi River basin. In 2005, the system moved more than 160 million tons of commercial cargo worth roughly \$28.5 billion. Grains (corn and soybeans) dominate traffic on the system. Other commodities, mainly cement and concrete products, comprise the second largest group. A modern 15-barge tow transports the equivalent of 1,050 large semi-trucks (26,250 cargo tons, 875,000 bushels, or 17,325,000 gallons). Annually, the project generates an estimated \$1 billion of transportation cost savings compared with the operation and maintenance costs of approximately \$115 million.

In constant dollar terms, operations and maintenance funding for the system has been largely flat or declining for decades, while maintenance needs of the aging infrastructure increase. This is adversely affecting reliability of the system. Longestablished programs for preventative maintenance of major lock components have essentially given way to a fix-as-fail strategy, with repairs sometimes requiring weeks or months to complete. Depending on the nature of a lock malfunction, extended repairs can have major consequences for shippers, manufacturers, consumers, and commodities investors.

POINT OF CONTACT

Rock Island District Corporate Communications Office Phone number: 309-794-5729 Fax number: 309-794-5793 E-mail address: cemvr-cc@usace.army.mil

September 2009

LOCK & DAM 22 (SAVERTON, MISSOURI) MISSISSIPPI RIVER

General Contractors: Lock: Joseph Meltzer, Inc., New York, New York Dam: Massman Construction Company, Kansas City, Missouri Construction: 1934-1939 Congressional Districts: MO-9; IL-17

Lock and Dam 22 is 301.2 miles above the confluence of the Mississippi and DESCRIPTION Ohio rivers. Bluffs rise more than 200 feet above the river west of the lock; the valley is guite wide east of the complex. The lock dimensions are 110 feet wide by 600 feet long with additional provisions for an auxiliary lock. The maximum lift is 10.5 feet with an average lift of 7.5 feet. It takes approximately seven minutes to fill or empty the lock chamber. The movable dam has nine non-submersible Tainter gates (25 feet high by 60 feet long), one submersible Tainter gate (25 feet high by 60 feet long), and three submersible roller gates (25 feet high by 100 feet long). Completing the dam system are two transition dikes and a submersible earth and sand-filled dike. It takes seven hours for water to travel from Lock and Dam 21, in Quincy, Illinois, to Lock and Dam 22. The lock opened in 1939. It was on the submersible roller gates at Dam 22 that the HISTORY/SIGNIFICANCE Rock Island District introduced the Poiree dam trestles to mitigate scour problems. The trestles were subsequently used as a retrofit solution on other project dams. It was also on this dam's submersible roller gates that the St. Paul District Hydraulic Laboratory conducted tests that led to the design of stilling basins for roller gates. The Rock Island District incorporated an experimental design for a submersible roller gate with end shields and introduced a new type of non-submersible, trusstype Tainter gate in Dam 22. During the peak of construction, 959 people were employed on the installation. The lock and dam elements of the complex were completed at a cost of \$3,943,000.

ANNUAL TONNAGE	<u>Year</u>	<u>Tons</u>	Year	<u>Tons</u>
(10-YEAR HISTORICAL)	1999	38,074,304	2004	26,755,587
	2000	36,812,642	2005	27,371,325
	2001	33,336,062	2006	29,789,804
	2002	37,567,046	2007	28,908,447
	2003	32,229,405	2008	22,264,425

(More Information On The Reverse Side)

Coal	3,259,824	Subtotals:	
Petroleum	251,720		
Chemicals	2,631,039	Grain	10,870,513
Crude Materials	2,677,283	Steel	211,740
Manufactured Goods	673,698		
Farm Products	12,586,707	Lockages:	
Manufactured Machinery	134,830		
Waste Material	3,640	Boats:	2,227
Containers & Pallets	0	Cuts:	3,530
Unknown	45,684		

CURRENT MAINTENANCE ISSUES – LOCK & DAM 22

Item (Critical Rank Order)

Systemic Miter Gate Replacement Systemic Bulkhead Slots Systemic Tainter Valve Replacement – Includes Rehabilitation Evaluation Report Dam Gate Rehabilitation – Exterior Repair Concrete and Protection Armor in Lock Chamber Dam Pierhouse Roof Repairs Repair Spillway Repair Roller End Shields & Seals - Dam Structural Repairs - Tainter and Roller Gates - Interior Systemic - Crane Rail Adjustments – Dam Bridge Crane Bulkhead Lifter Rehabilitation Resurface Horizontal Surfaces of Bridge Piers Systemic Structural Repairs Service Bridge Dam Repair Upstream Riverwall Bullnose Dam Rehabilitation Evaluation Report Replacing 70-Year-Old Lock Pontoon Barge (Work Flats) Repairs to Guide Cells and Erosion Repairs at Lower Ends Bridge Crane Repairs To Lattice Boom & Crane Undercarriage Damage-Repair Lower Landwall Vertical Concrete Systemic - Standby Generator and Compressor Enclosures New Maintenance Building

TOTAL ESTIMATED COST: \$35,110,000

The Water Resources Development Act of 2007 (WRDA 07) Title VIII authorized the dual-purpose navigation and ecosystem restoration plan for the Upper Mississippi River and Illinois Waterway. The new 1,200-foot lock, which will be located in the auxiliary lock chamber, will cost approximately \$232,000,000. The design and construction of the new lock is dependent upon annual appropriations.

The existing 9-foot Channel Navigation Project was largely constructed in the 1930s and extends down the Upper Mississippi River from Minneapolis-St. Paul to its confluence with the Ohio River and up the Illinois Waterway to the Thomas J. O'Brien Lock in Chicago. It includes 37 Locks and approximately 1,200 miles of navigable waterway in Illinois, Iowa, Minnesota, Missouri, and Wisconsin. The system's 600-foot locks do not accommodate today's modern tows without splitting and passing through the lock in two operations. This procedure requires uncoupling barges at midpoint which triples lockage times and exposes deckhands to increased accident rates.

More than 580 manufacturing facilities, terminals, and docks ship and receive tonnage in the Upper Mississippi River basin. In 2005, the system moved more than 160 million tons of commercial cargo worth roughly \$28.5 billion. Grains (corn and soybeans) dominate traffic on the system. Other commodities, mainly cement and concrete products, comprise the second largest group. A modern 15-barge tow transports the equivalent of 1,050 large semi-trucks (26,250 cargo tons, 875,000 bushels, or 17,325,000 gallons). Annually, the project generates an estimated \$1 billion of transportation cost savings compared with the operation and maintenance costs of approximately \$115 million.

In constant dollar terms, operations and maintenance funding for the system has been largely flat or declining for decades, while maintenance needs of the aging infrastructure increase. This is adversely affecting reliability of the system. Longestablished programs for preventative maintenance of major lock components have essentially given way to a fix-as-fail strategy, with repairs sometimes requiring weeks or months to complete. Depending on the nature of a lock malfunction, extended repairs can have major consequences for shippers, manufacturers, consumers, and commodities investors.

POINT OF CONTACT

Rock Island District Corporate Communications Office Phone number: 309-794-5729 Fax number: 309-794-5793 E-mail address: cemvr-cc@usace.army.mil

September 2009

St Louis District

LOCK & DAM 24 (CLARKSVILLE, MISSOURI) MISSISSIPPI RIVER

> General Contractor: Lock and Dam: Central Engineering Company, Davenport, Iowa Construction: 1936-1940 Congressional Districts: MO-9; IL-17

DESCRIPTION	Lock and Dam 24 is located at Mississippi River mile 273.4, 93.5 miles upstream of St. Louis. The pool length is 27.8 miles and accounts for 13,000 acres.				
	Lock dimension section of an a Locks 26, which is founded on a material, the lo stabilize the inf	ns are the standard 100 by 6 uxiliary lock. Average lift is h are pile-founded structures durable shale. Because of th ck chamber is not floored ar termediate and river walls.	500 feet, with the 15 feet. Unlike L s built atop sand he presence of a nd no lateral strut	upper gate bay ocks 25 and Old and gravel, Lock 24 firm foundation ts were provided to	
	The 1,340-foot high by 80 feet raised and low link-chain hoist support for the extends the ler	long movable dam has 15 fe long, which pivot vertically t ered by individual electric me s, located beneath the dam Tainter gates and the steel ngth of the dam. The dam in	ully submersible o control water f otors, connected service bridge. deck girder servi cludes a 2,720-f	Tainter gates, 25 feet low. The gates are by line shafting to The piers provide ce bridge that oot submersible dike.	
	A major rehab of replacing a l and work areas electrical comp	of Lock and Dam 24 was co arge portion of the concrete s. Also, new gate and valve ponents above the 1993 floor	mpleted in 2005 in the lock cham machinery was i d levels.	. This work consisted ber walls, walkways installed elevating the	
HISTORY/SIGNIFICANCE	The lock was p Foot Channel I Tainter gates of project. At the largest Tainter gates, and the eliminated enti they rendered construction at	but into operation on May 12, Project constructed without r of Dam 24 represent the ape- time of their construction, th gates ever constructed. Be relatively ice-free conditions rely from the dam design. T roller gate technology, the pu- the time, obsolete.	, 1940. This was oller gates. The x of gate design e Corps believed cause of the larg of this stretch of hese Tainter gat rinciple engineer	s the first dam on the 9- submersible, elliptical achieved during the d these gates to be the le size of the Tainter f river, roller gates were es were innovative that ing feature in dam	
Annual Tonnage	Year	<u>Tons</u>	<u>Year</u>	<u>Tons</u>	
(10-YEAR HISTORICAL)	1999 2000	39,296,994 38,697,993	2004 2005	27,883,604 28,932,976	

(More Information On The Reverse Side)

34,785,352

38,864,614

33,761,938

2006

2007

2008

31,061,559

30,145,700

23,133,551

2001

2002 2003

Coal	3,385,284	Subtotals:	
Petroleum	301,616		
Chemicals	2,763,179	Grain	11,086,785
Crude Materials	2,770,704	Steel	213,275
Manufactured Goods	912,775		
Farm Products	12,815,879	Lockages:	
Manufactured Machinery	135,330		
Waste Material	1,600	Boats:	2,372
Containers & Pallets	1,624	Cuts:	3,616
Unknown	47 184		

CURRENT MAINTENANCE ISSUES – LOCK & DAM 24

Item (Critical Rank Order)

Repair critical scour holes upstream of dam Replace Bulkheads, Dam Major Rehabilitation Install New Controls on Bulkhead Lifting Machinery Repair #4 Miter Gate Critical Signs – Fabricate and Install to Conform to Safety Standards (ARRA Funded) Modify Spare Miter Gates Install Chains and Sprockets on Dam Tainter Gates Install / Replace Dam Piezometers Replace Dam Motors Rehabilitate Bulkhead Crane Carriage Repair, Sandblast and Paint Service Bridge Culvert Valves Inspections

TOTAL ESTIMATED COST \$13,807,000

An \$85 million major rehabilitation was substantially completed at Lock and Dam 24 in 2003. Only remaining item is repair to tainter gate trunions which is waiting on analysis of ice flow load data.

The maintenance needs of the aging infrastructure are increasing at a rate much greater than the operations and maintenance funding provided for the system. This is adversely affecting reliability of the system. Long-established programs for preventative maintenance of major lock components have essentially given way to a fix-as-fail strategy, with repairs sometimes requiring weeks or months to complete. Depending on the nature of a lock malfunction, extended repairs can have major consequences for shippers, manufacturers, and consumers, and commodities investors.

The existing 9-foot Channel Navigation Project was largely constructed in the 1930s and extends down the Upper Mississippi River from Minneapolis-St. Paul to its confluence with the Ohio River and up the Illinois Waterway to the Thomas J. O'Brien Lock in Chicago. It includes 37 Locks and approximately 1,200 miles of navigable waterway in Illinois, Iowa, Minnesota, Missouri, and Wisconsin.

The system's 600-foot locks do not accommodate today's modern tows without splitting and passing through the lock in two operations. This procedure requires uncoupling barges at midpoint which triples lockage times and exposes deckhands to increased accident rates.

More than 580 manufacturing facilities, terminals, and docks ship and receive tonnage in the Upper Mississippi River basin. In 2005, the system moved more than 160 million tons of commercial cargo worth roughly \$28.5 billion. Grains (corn and soybeans) dominate traffic on the system. Other commodities, mainly cement and concrete products, comprise the second largest group. A modern 15-barge tow transports the equivalent of 1,050 large semi-trucks (26,250 cargo tons, 875,000 bushels, or 17,325,000 gallons). Annually, the project generates an estimated \$1 billion of transportation cost savings compared with the operation and maintenance costs of approximately \$115 million.

POINT OF CONTACT

St. Louis District Public Affairs Office Phone number: 314-331-8002 Fax number: 314-331-8005 E-mail address: cemvs-pa@usace.army.mil

September 2009

LOCK & DAM 25 (WINFIELD, MISSOURI) MISSISSIPPI RIVER

General Contractor: Lock and Dam: United Construction Company, Winona, Minnesota Construction: 1935-1939 Congressional Districts: MO-2; IL-17

DESCRIPTION	Lock and Dam 25 is located at Upper Mississippi River mile 241.4. It is southern-most dam in the system on the Upper Mississippi River. The length is 32 miles and accounts for 18,000 acres.				
	The lock consis and the upper of foot-wide by 60 and the movabl	ts of a main lock, located ag jate bay of an auxiliary lock. 0-foot-long chamber. The a e dam are pile-founded stru	ainst the east ba The main lock h verage lift is 15 f ctures.	ank of Bradley Island, has the standard 110- eet. Both the lock	
	The 1,296-foot gate, 25 feet hig high by 60 feet	long movable portion of the gh by 100 feet long, and 14 long. The overflow dike len	dam has three s submersible Tair gth for is 2,566 fe	ubmersible roller hter gates, 25 feet eet.	
	Lock and Dam a raised or lowere dam. In times of flows almost un roller gates, loc a manner mear	25 consists of 14 Tainter ga ed to control the depth of the of high water, these gates ar impeded, allowing a more n ated near the center of the c at to reduce erosion.	tes which pivot v water in the poo e raised complet atural flow of the lam, also restrict	ertically and are ol upstream of the tely and the river e river. The three the water flow, but in	
HISTORY/SIGNIFICANCE	The lock was p	ut into operation on May 18,	1939.		
	The Tainter gat Old Dam 26. T than twice that characterized th covered the gat smooth unobstr position.	es of Dam 25 represented a he gates were fully submers attained at Dam 26. Additio he dam gates was replaced e's steel framework, protect ructed surface for the water	marked advance ible to a depth o nally, the stream by a riveted stee ing it from ice da to pass over the	e over those installed at f nearly eight feet, more lined spillway that I sheet that entirely mage and providing a gate in its submerged	
Annual Tonnage	Year	Tons	Year	<u>Tons</u>	
(10-YEAR HISTORICAL)	1999 2000 2001 2002 2003	39,536,830 39,177,450 34,858,294 38,916,145 33,749,527	2004 2005 2006 2007 2008	27,894,562 29,043,655 31,026,288 30,204,744 23,244,934	

(More Information On The Reverse Side)

Coal	3,358,954	Subtotals:	
Petroleum	315,701		
Chemicals	2,751,038	Grain	11,080,301
Crude Materials	2,853,001	Steel	208,527
Manufactured Goods	942,427		
Farm Products	12,820,899	Lockages:	
Manufactured Machinery	154,130		
Waste Material	1,600	Boats:	2,950
Containers & Pallets	0	Cuts:	3,929
Unknown	47,184		

CURRENT MAINTENANCE ISSUES – LOCK & DAM 25

Item (Critical Rank Order)

Install Bulkhead Slots (ARRA Funded) Install High Mast Lights Replace Culvert Valve Machinery (ARRA Funded) Replace Diesel Compressors (ARRA Funded) Replace Bulkheads Dam Roller Gate Saddledam Rehabilitation Critical Signs – Fabricate and Install to Conform to Safety Standards (ARRA Funded) Modify Spare Miter Gates Install Chains and Sprockets on Dam Tainter Gates Sandblast, Rebuild, and Paint Dam Roller Gates Structural Repair to Dam Tainter Gates Sandblast, Rebuild, and Paint or Replace Bulkheads Bulkhead Crane - Drive Replacement Spillway - Rehabilitation, Vegetation removal from Overflow dike Replace Dam Motors Repair Service Bridge -Sandblast, Paint Concrete Repairs Cleanout Forebay Culvert Valves – Inspections Sandblast and Repaint Lock Wall Bullnose Replace Maintenance Facility

TOTAL ESTIMATED COST \$18.258.000

A \$52 million major rehabilitation was completed at Lock and Dam 25 in 1999. The lock has a scheduled closure from December 15, 2009 to March 15, 2010 to address backlog maintenance repairs: replacement of culvert valve machinery and installment of bulkhead slots. Phase I of the Dam Safety Modification Project has been approved and is under construction. This includes an \$11 million repair to critical scour holes upstream of the dam.

The existing 9-foot Channel Navigation Project was largely constructed in the 1930s and extends down the Upper Mississippi River from Minneapolis-St. Paul to its confluence with the Ohio River and up the Illinois Waterway to the Thomas J. O'Brien Lock in Chicago. It includes 37 Locks and approximately 1,200 miles of navigable waterway in Illinois, Iowa, Minnesota, Missouri, and Wisconsin. The system's 600-foot locks do not accommodate today's modern tows without splitting and passing through the lock in two operations. This procedure requires uncoupling barges at midpoint which triples lockage times and exposes deckhands to increased accident rates.

More than 580 manufacturing facilities, terminals, and docks ship and receive tonnage in the Upper Mississippi River basin. In 2005, the system moved more than 160 million tons of commercial cargo worth roughly \$28.5 billion. Grains (corn and soybeans) dominate traffic on the system. Other commodities, mainly cement and concrete products, comprise the second largest group. A modern 15-barge tow transports the equivalent of 1,050 large semi-trucks (26,250 cargo tons, 875,000 bushels, or 17,325,000 gallons). Annually, the project generates an estimated \$1 billion of transportation cost savings compared with the operation and maintenance costs of approximately \$115 million.

In constant dollar terms, operations and maintenance funding for the system has been largely flat or declining for decades, while maintenance needs of the aging infrastructure increase. This is adversely affecting reliability of the system. Long-established programs for preventative maintenance of major lock components have essentially given way to a fix-as-fail strategy, with repairs sometimes requiring weeks or months to complete. Depending on the nature of a lock malfunction, extended repairs can have major consequences for shippers, manufacturers, consumers, and commodities investors.

POINT OF CONTACT

St. Louis District Public Affairs Office Phone number: 314-331-8002 Fax number: 314-331-8005 E-mail address: cemvs-pa@usace.army.mil

September 2009

MELVIN PRICE LOCKS & DAM (ALTON, ILLINOIS) MISSISSIPPI RIVER

General Contractors:

Lock: Joint venture of S.J. Groves & Sons Company, Minneapolis, Minnesota; Guy F. Atkinson Company, South San Francisco, California; and Dillingham Corporation, Pleasanton, California Dam: Joint venture of S.J. Groves & Sons, Minneapolis, Minnesota; Guy F. Atkinson Company, South San Francisco, California Ball Construction Company; and Black & Veatch Construction: 1979-1990 Congressional Districts: MO-2; IL-12

DESCRIPTION

Melvin Price Locks and Dam is located at Mississippi River mile 200.5, two miles below the site of the old Locks and Dam 26 which was razed in 1990. It is approximately 20 miles above St. Louis. The pool length is 40.6 miles and accounts for 31,000 acres.

The complex has twin locks. The main lock is 110 by 1,200 feet; the auxiliary lock is 100 feet by 600 feet. The locks are U-shaped and supported on steel H-piles. The maximum lift is 24 feet.

The movable dam has nine, open-frame, non-submersible Tainter gates, each 42 feet high by 110 feet long. Individual, electrically operated, cable hoists are housed in pier-top operating houses. The 1,160-foot-long movable dam is supported by steel H-piles driven into bedrock.

HISTORY/SIGNIFICANCE The lock was put into operation on October 10, 1989. The complex is also known as Locks and Dam 26R and constitutes the first replacement of an original installation of the 9-Foot Channel Project.

The basic components of the complex are similar to those built in the 1930s. The most striking difference is the immense size of the new structure, which dwarfs the older installations. But the significance of the new installation is not limited to its colossal size. Throughout its design and construction, the Corps and various contractors engaged in an extensive program of computer-assisted design, testing, and evaluation to create a structure that represents the present state-of-the-art in river navigation control works.

Co-located with the lock is the National Great Rivers Museum, which opened in October 2003. The museum is a USACE Class A regional visitor center (one of 9), averaging over 80,000 visitors a year.

Annual Tonnage	Year	<u>Tons</u>	Year	<u>Tons</u>
(10-YEAR HISTORICAL)	1999	77,580,836	2004	67,672,535
	2000	77,120,885	2005	66,536,490
	2001	75,870,386	2006	70,759,977
	2002	79,037,946	2007	65,248,495
	2003	72,442,623	2008	56,295,661
(M	ORE INFORMA	TION ON THE REVERSE	E SIDE)	

Coal	6,628,688	Subtotals:	
Petroleum	4,537,453		
Chemicals	8,391,478	Grain	20,821,029
Crude Materials	8,152,264	Steel	2,472,731
Manufactured Goods	3,496,538		
Farm Products	24,697,719	Lockages:	
Manufactured Machinery	289,352		
Waste Material	3,200	Boats:	6,799
Containers & Pallets	0	Cuts:	6,259
Unknown	98,969		

CURRENT MAINTENANCE ISSUES – (MELVIN PRICE LOCKS AND DAM)

Item (Critical Rank Order)

Lock Maintenance Bulkheads - Fracture Critical Weld Repairs	Replace/Install Plastic Fenders or Wood on Miter Gates
Perform Modifications to Deficiencies on Miter Gates (ARRA	(ARRA Funded)
Funded)	Critical Signs – Fabricate and Install to Conform to Safety
Rehabilitate/Repower Emergency Bulkhead Crane	Standards (ARRA Funded)
Rehabilitate Spur Dike	Repair Track System on Emergency Bulkhead Overhead
Miter Gate Direct Acting Cylinders - Replace Old Gear and	Crane
Sector with Direct Acting	Silt Removal on Auxiliary Lock (ARRA Funded)
Rehabilitate and Paint Tainter Gates, Dam	Replace Mobile Hydraulic Crane
Rehabilitate Miter Gate Cylinders	Upgrade Lock Wall Grating for Crane Access to Support
Upgrade CCTV Camera System	Weight of Crane
Concrete Repairs - Repair and Seal Top of Lock Walls	Rehabilitate Trilateration Stations (ARRA Funded)
(ARRA Funded)	Inspect Culvert Valves
Rehabilitate entire Project on Lock Walls Handrail Anchorage	Upgrade Local Control Houses, Control Consoles and PLC Rehabilitate Operator Tower Window

TOTAL ESTIMATED COST \$9,464,000

The maintenance needs of the aging infrastructure are increasing at a rate much greater than the operations and maintenance funding provided for the system. This is adversely affecting reliability of the system. Long-established programs for preventative maintenance of major lock components have essentially given way to a fix-as-fail strategy, with repairs sometimes requiring weeks or months to complete. Depending on the nature of a lock malfunction, extended repairs can have major consequences for shippers, manufacturers, and consumers, and commodities investors.

The existing 9-foot Channel Navigation Project was largely constructed in the 1930s and extends down the Upper Mississippi River from Minneapolis-St. Paul to its confluence with the Ohio River and up the Illinois Waterway to the Thomas J. O'Brien Lock in Chicago. It includes 37 Locks and approximately 1,200 miles of navigable waterway in Illinois, Iowa, Minnesota, Missouri, and Wisconsin. The system's 600-foot locks do not accommodate today's modern tows without splitting and passing through the lock in two operations. This procedure requires uncoupling barges at midpoint which triples lockage times and exposes deckhands to increased accident rates.

More than 580 manufacturing facilities, terminals, and docks ship and receive tonnage in the Upper Mississippi River basin. In 2005, the system moved more than 160 million tons of commercial cargo worth roughly \$28.5 billion. Grains (corn and soybeans) dominate traffic on the system. Other commodities, mainly cement and concrete products, comprise the second largest group. A modern 15-barge tow transports the equivalent of 1,050 large semi-trucks (26,250 cargo tons, 875,000 bushels, or 17,325,000 gallons). Annually, the project generates an estimated \$1 billion of transportation cost savings compared with the operation and maintenance costs of approximately \$115 million.

POINT OF CONTACT

St. Louis District Public Affairs Office Phone number: 314-331-8002 Fax number: 314-331-8005 E-mail address: cemvs-pa@usace.army.mil

September 2009

LOCKS AND DAM 27 (GRANITE CITY, ILLINOIS) MISSISSIPPI RIVER

General Contractors: Lock: River Construction Corporation Dam: Unknown Construction: 1947-1964 Congressional Districts: MO-1; IL-12

DESCRIPTION	Locks 27 i 8.4-mile lc 190.2 imm St. Louis \ Highway 2 (canal only	Locks 27 is located at Mississippi River mile 185.5 near the southern end of the 8.4-mile long Chain of Rocks Canal. The dam is located at Mississippi River mile 190.2 immediately downstream from Homer Dike, Intake Towers 1 and 2 of the St. Louis Water Works, the Chain of Rocks Highway Bridge, and the Interstate Highway 270 Bridge. The pool length is 15.6 miles and accounts for 489 acres (canal only).				
	Locks 27 I lock cham measures bedrock, v	Locks 27 has twin locks, a main chamber and an auxiliary chamber. The main lock chamber is 1,200 feet long by 110 feet wide. The auxiliary chamber measures 600 feet long by 110 feet wide. Both locks were excavated to bedrock, which serves as the lock chamber floors.				
	The dam i extends e	s 2,500 feet in length and ntirely across the river.	is a non-movable lo	ow-water dam which		
HISTORY/SIGNIFICANCE	The canal	The canal and locks were put into operation in February 1953.				
	Locks 27 is unique for several reasons. Constructed between 1946 and 1 these locks are the only locks on the upper Mississippi River that are not of attached to their respective dam. The dam is located several miles away river, whereas the locks are within the Chain of Rocks Canal. The dam its also unlike any of the other dams in the system. All other dams in the system to be moveable, so they could be adjusted according to the changing level. Dam 27 is not so complex; it is a 2,500 foot non-movable low water crest rock dam extending across the river and was designed to provide ad water depth at the lower gate sills of Lock 26. Constructed between 1959 1964, the dam has virtually no impact upon operations within the Chain of Canal or at Locks 27.					
	Since the than any c lock cham	locks are the last on the u ther navigation structure bers, of which the main lo	pper Mississippi Riv on the River. This is ock can accommoda	ver, they move more cargo s why it incorporates two te a full tow of 15 barges.		
Annual Tonnage	Year	<u>Tons</u>	Year	<u>Tons</u>		
(10-YEAR HISTORICAL)	1999 2000	83,378,714 82,633,959	2004 2005	71,169,714 68,369,897		

(More Information On The Reverse Side)

2001

2002

2003

81,090,628

83,825,396

77,466,308

AMERICA'S WATERSHED U.S. Army Corps of Engineers BUILDING STRONG®

73,361,655

67,714,832

58,545,560

2006

2007

2008

Coal	6,309,071	Subtotals:	
Petroleum	6,997,940		
Chemicals	7,907,768	Grain	20,500,616
Crude Materials	8,046,448	Steel	2,778,103
Manufactured Goods	3,748,521		
Farm Products	25,161,726	Lockages:	
Manufactured Machinery	302,962		
Waste Material	3,100	Boats:	8,001
Containers & Pallets	0	Cuts:	7,549
Unknown	67,364		

CURRENT MAINTENANCE ISSUES – LOCKS & DAM 27

Item (Critical Rank Order)

Install Lift Gate Leaves Main (ARRA funded)* Rehabilitate / Replace Culvert Valves (ARRA Funded)* Install Bulkhead Slots Install Replacement Walkway Bridge Aux Install Replacement Walkway Bridge Main Replace Miter Gate (ARRA funded)* Install Lift Gate Leaves Aux Rehabilitate/Replace Culvert Valve machinery (ARRA funded)* Sill Stability Anchorage (ARRA funded)* Replace Protection Cells (ARRA funded)* Install Walkway Bridge Machinery Rehabilitate Embedded Metals Clean out and Replace Valves in Float Well Pits Concrete Repairs - Repair and Seal Top of Lock Walls New/Replacement I-Wall Control House - New/Replacement (ARRA funded) Inspect Culvert Valves Critical Signs - Fabricate and Install to Conform to Safety Standards (ARRA funded) Install CCTV for Lock Operation Paint Miter Gates, Auxiliary Lock Modify Counterweight Basket Replace and Demolish Obsolete Visitor Platform and construct adjacent maintenance facility Rehabilitate Trilateration Stations

*Approved in Locks 27 Major Rehabilitation

TOTAL ESTIMATED COST: \$12,121,000

American Recovery and Reinvestment Act of 2009 will completely fund the major rehabilitation of Locks 27.

The existing 9-foot Channel Navigation Project was largely constructed in the 1930s and extends down the Upper Mississippi River from Minneapolis-St. Paul to its confluence with the Ohio River and up the Illinois Waterway to the Thomas J. O'Brien Lock in Chicago. It includes 37 Locks and approximately 1,200 miles of navigable waterway in Illinois, Iowa, Minnesota, Missouri, and Wisconsin. The system's 600-foot locks do not accommodate today's modern tows without splitting and passing through the lock in two operations. This procedure requires uncoupling barges at midpoint which triples lockage times and exposes deckhands to increased accident rates.

More than 580 manufacturing facilities, terminals, and docks ship and receive tonnage in the Upper Mississippi River basin. In 2005, the system moved more than 160 million tons of commercial cargo worth roughly \$28.5 billion. Grains (corn and soybeans) dominate traffic on the system. Other commodities, mainly cement and concrete products, comprise the second largest group. A modern 15-barge tow transports the equivalent of 1,050 large semi-trucks (26,250 cargo tons, 875,000 bushels, or 17,325,000 gallons). Annually, the project generates an estimated \$1 billion of transportation cost savings compared with the operation and maintenance costs of approximately \$115 million.

In constant dollar terms, operations and maintenance funding for the system has been largely flat or declining for decades, while maintenance needs of the aging infrastructure increase. This is adversely affecting reliability of the system. Long-established programs for preventative maintenance of major lock components have essentially given way to a fix-as-fail strategy, with repairs sometimes requiring weeks or months to complete. Depending on the nature of a lock malfunction, extended repairs can have major consequences for shippers, manufacturers, consumers, and commodities investors.

POINT OF CONTACT

St. Louis District Public Affairs Office Phone number: 314-331-8002 Fax number: 314-331-8005 E-mail address: cemvs-pa@usace.army.mil

September 2009

THOMAS J. O'BRIEN (CHICAGO, ILLINOIS) CALUMET RIVER

Construction: 1957-1960 Congressional District: IL-2

DESCRIPTION

HISTORY/SIGNIFICANCE

Thomas J. (T.J.) O'Brien Lock and Dam is 326.0 miles above the confluence of the Illinois River with the Mississippi river at Grafton, Illinois. It is approximately 35 miles upstream of the Lockport Lock and Dam, in the southeastern portion of Chicago.

O'Brien is located at the entrance to Lake Michigan in Chicago. The facility is a unit of the Inland Waterway Navigation System and is one of eight such facilities between Chicago and Versailles, III. It is composed of a navigational lock, fixed dam, and controlling works.

O'Brien is a low-lift sector gate lock. It provides a maximum lift of five feet for traffic passing from Lake Michigan to the Calumet River. The lock chamber is 1,000-feet long by 110-feet wide. The dam is 296.75 feet long. The controlling works consist of four large vertical slide gates (10 feet square) located near the center of the dam to regulate water flow. There are also two sets of sector gates weighing 216 tons each at both the river and lake ends. These are unique on the Illinois Waterway and; consequently, there is no need for tunnels in the lock walls.

T.J. O'Brien Lock and Dam controls the movement of water between Lake Michigan and the Calumet River while maintaining navigation. The lock and dam are used for flood control and waterway flushing, and also function as components of the diversion control system.

The lock opened in 1960. The lock and dam elements of the complex were completed at a cost of \$6,954,700. In 2007, the complex would have cost \$66,400,000 to build.

ANNUAL TONNAGE	<u>Year</u>	<u>Tons</u>	<u>Year</u>	<u>Tons</u>
(10-YEAR HISTORICAL)	1999	7,371,509	2004	9,674,528
	2000	8,436,175	2005	9,048,078
	2001	6,778,306	2006	9,482,367
	2002	7,618,898	2007	7,294,890
	2003	6,975,080	2008	6,822,254

(More Information On The Reverse Side)

Commodity Tonnage & Lockages (2008)

Coal	2,426,000	Subtotals:	
Petroleum	411,200		
Chemicals	212,700	Grain	273,100
Crude Materials	1,644,600	Steel	1,375,518
Manufactured Goods	1,754,018		
Farm Products	314,700	Lockages:	
Manufactured Machinery	43,586		
Waste Material	3,600	Boats:	17,532
Unknown	11,850	Cuts:	6,309

CURRENT MAINTENANCE ISSUES – THOMAS J. O'BRIEN

Item (Critical Rank Order)

Lock - Major Rehabilitation Lock & Dam - Major Maintenance Install New High Mast Lighting Systemic Filling Valve Replacement New Maintenance Building

TOTAL ESTIMATED COST: \$34,200,000

After 48 years of service, reliability, and operation, problems are a recurring threat and have significant impacts to the navigation users. A plan to reduce the width of the Chicago River in the City of Chicago, near the Chicago Lock, has already rerouted the barge traffic using the Chicago Lock to the O'Brien Lock.

Although this will not cause a significant change in traffic flow, it does mean that O'Brien will be the only commercial access from the Illinois Waterway to Lake Michigan.

Frequent flooding and temperature extremes, combined with high usage, has resulted in significant deterioration of lock concrete and the decline of mechanical and electrical systems performance and reliability. The vertical concrete has deteriorated to the point that sections have had to be removed and/or threaten to fall into the lock chamber. Barges can become wedged under the armor, resulting in a dangerous situation for deck hands, lock personnel, and potential damage to the barges. Hazardous working conditions exist due to deteriorated horizontal concrete on the land and river walls of the lock chamber. The mechanical and electrical systems require constant patching and labor intensive repairs. Parts are difficult to obtain and have to be specially made in most cases. The probability of failure of the mechanical and electrical systems requiring extensive and expensive repairs in the next several years is very high. The potential at any time for an incident to occur due to deteriorated lock concrete, in which the lock had to be closed for more than a week, is very probable with the potential increasing every year the lock concrete is not rehabilitated.

A Rehabilitation Evaluation Report was approved in 2004, and we are awaiting a new construction start.

Significant features of the work include rehabilitation of the sector gate electric system, the lock electrical distribution system, and injection grouting of the lock land & river walls. The existing lock mechanical and electrical systems are original equipment installed in the 1960s. The electric power utility service was upgraded in 1998, but the other components have been in operation since the original construction of the lock. An electrical component failure of the lock electrical distribution system or the sector gate electrical system could result in lock failure, which could cause delays to navigation traffic. The sheet piling for the lock land wall and river walls have also been in service since the original construction of the lock. Should one of the sheet pile cells rupture, the lock would have an unscheduled closure to navigation for a minimum of 60 days. The repair costs are estimated at \$530,000 and the transportation impacts associated with a 60-day closure would approach \$18.1 million dollars. New lock dewatering bulkheads are needed to replace the old set of bulkheads that has been decommissioned due to age and deterioration.

POINT OF CONTACT

Rock Island District Corporate Communications Office Phone number: 309-794-5729 Fax number: 309-794-5793 E-mail address: cemvr-cc@usace.army.mil

September 2009

LOCKPORT (LOCKPORT, ILLINOIS) CHICAGO SANITARY & SHIP CANAL

Construction: 1923-1933 Congressional District: IL-13

DESCRIPTION

Lockport Lock and Dam is 291.0 miles above the confluence of the Illinois River with the Mississippi river at Grafton, Illinois. The complex is two miles southwest of the city of Lockport, Illinois.

The lock is 110 feet wide by 600 feet long. Maximum vertical lift is 42.0 feet, the average lift is 39 feet. It averages 22.5 minutes to fill the lock chamber; 15 minutes to empty.

The Corps of Engineers controls the lock at Lockport. The Lockport Dam consists of the Metropolitan Water Reclamation District of Greater Chicago lock, powerhouse and associated controlling works. The Corps has no ownership of the controlling works; however, it has the responsibility to maintain the foundation, piers, dolphins and all the concrete at the Lockport Controlling Works and the gravity structure at the dam.

Rehabilitation of the lock was completed in 1989 at a cost of \$22,681,000.

HISTORY/SIGNIFICANCE

The lock opened in 1933. Lockport Lock was one of five designed and partially constructed by the state of Illinois over a period from 1923 to 1930. The complex was about 97 percent complete when construction was turned over to the federal government due to state financial difficulties.

The government, by the authority of the Rivers and Harbors Act of 1930, completed construction of the lock in 1933. The opening of the Lockport Lock coincided with the opening of the downstream Brandon Road, Dresden Island, Marseilles, and Starved Rock locks and dams. The total cost of the lock was \$2,153,867, of which \$2,020,259 was state funded and \$133,608 was funded by the federal government.

Annual Tonnage	Year	<u>Tons</u>	Year	<u>Tons</u>
(10-YEAR HISTORICAL)	1999	16.039.564	2004	17,341,066
	2000	16,788,986	2005	16,929,707
	2001	15,970,297	2006	17,253,650
	2002	16,872,206	2007	13,507,517
	2003	15,310,005	2008	12,460,893

(More Information On The Reverse Side)

Commodity Tonnage & Lockages (2008)

Coal	1,699,283	Subtotals:	
Petroleum	1,945,905		
Chemicals	1,628,068	Grain	264,492
Crude Materials	4,969,091	Steel	1,231,956
Manufactured Goods	1,697,343		
Farm Products	406,223	Lockages:	
Manufactured Machinery	85,625		
Waste Material	3,100	Boats:	3,469
Containers & Pallets	4,500	Cuts:	3,378
Unknown	21 755		

CURRENT MAINTENANCE ISSUES – LOCKPORT

Item (Critical Rank Order)

Channel Concrete Wall - Major Rehabilitation (ongoing, 35% complete – remaining \$88 million partially funded by ARRA) Lock Emergency Gate Hydraulic System Rehabilitation Lock Emergency Gate Replacement Systemic Miter Gate Replacement Systemic Miter Gate Machinery Replacement Bulkhead Design - Vertical Sluice Gate Systemic Filling Valve Replacement Replace Lock Controlling Works Major Maintenance - Spillway Design & Construction Power House Guide Wall Rehabilitation New Maintenance Building

TOTAL ESTIMATED COST: \$127,500,000

The existing 9-foot Channel Navigation Project was largely constructed in the 1930s and extends down the Upper Mississippi River from Minneapolis-St. Paul to its confluence with the Ohio River and up the Illinois Waterway to the Thomas J. O'Brien Lock in Chicago. It includes 37 Locks and approximately 1,200 miles of navigable waterway in Illinois, Iowa, Minnesota, Missouri, and Wisconsin. The system's 600-foot locks do not accommodate today's modern tows without splitting and passing through the lock in two operations. This procedure requires uncoupling barges at midpoint which triples lockage times and exposes deckhands to increased accident rates.

More than 580 manufacturing facilities, terminals, and docks ship and receive tonnage in the Upper Mississippi River basin. In 2005, the system moved more than 160 million tons of commercial cargo worth roughly \$28.5 billion. Grains (corn and soybeans) dominate traffic on the system. Other commodities, mainly cement and concrete products, comprise the second largest group. A modern 15-barge tow transports the equivalent of 1,050 large semi-trucks (26,250 cargo tons, 875,000 bushels, or 17,325,000 gallons). Annually, the project generates an estimated \$1 billion of transportation cost savings compared with the operation and maintenance costs of approximately \$115 million.

In constant dollar terms, operations and maintenance funding for the system has been largely flat or declining for decades, while maintenance needs of the aging infrastructure increase. This is adversely affecting reliability of the system. Longestablished programs for preventative maintenance of major lock components have essentially given way to a fix-as-fail strategy, with repairs sometimes requiring weeks or months to complete. Depending on the nature of a lock malfunction, extended repairs can have major consequences for shippers, manufacturers, consumers, and commodities investors. Ongoing rehabilitation of the channel concrete wall will result in construction zones and width restrictions over the next two years.

POINT OF CONTACT

Rock Island District Corporate Communications Office Phone number: 309-794-5729 Fax number: 309-794-5793 E-mail address: cemvr-cc@usace.army.mil

September 2009

BRANDON ROAD (JOLIET, ILLINOIS) DES PLAINES RIVER

Construction: 1927 -1933 Congressional District: IL-11

DESCRIPTION	Brandon Road Lock and Dam is 286 miles above the confluence of the Illinois River with the Mississippi river at Grafton, Illinois. The complex is located 27 miles southwest of Chicago; 2 miles southwest of Joliet, Illinois, near Rockdale.			
	The lock is 600 feet long, 110 feet wide. Nominal lift is 34 feet with an average 19-minute lock chamber fill time; 15-minute emptying time. The dam is 2,391 feet long (exclusive of fixed embankment and river wall). It contains 21 operational Tainter gates (50 feet wide by 2 feet, 3-1/2 inches high), six sluice gates (7 feet, 9 inches wide x 8 feet, five inches high, bulkheaded closed), and 16 pairs of 16 feet high by 15 feet wide headgates (eight operational, eight bulkheaded closed)			
	From the upper Illinois Waterw to 40-feet high lock and dam. deteriorated w Corps began a walls to ensure	er limits of the city of Joliet to yay is contained between co . The walls extend approxin Failure of these walls could alls and manholes was com a multi-million dollar, multi-ya e their continued integrity.	b Brandon Road I ncrete gravity wa nately three mile d result in flooding pleted from 1985 ear program to re	Lock and Dam, the Ills which are from 15 s upstream from the g Joliet. Repair of the 5-1988. In 2007, the epair and reinforce the
HISTORY/SIGNIFICANCE	The lock opened in 1933. Brandon Road Lock and Dam was one of five designed and partially constructed by the state of Illinois over a period from 1927 to 1930. The complex was about 70 percent complete when construction was turned over to the federal government due to state financial difficulties.			
	The governme construction of completed at a \$2,434,748 we	ent, by the authority of the Rift the lock in 1933. The lock a total cost of \$4,500,000, of ere federal funds.	vers and Harbors and dam elemen which \$2,031,68	s Act of 1930, completed its of the complex were 33 were state funds and
Annual Tonnage	Year	Tons	<u>Year</u>	<u>Tons</u>
(10-YEAR HISTORICAL)	1999 2000 2001 2002 2003	16,073,774 16,939,884 16,418,031 17,177,894 15,784,153	2004 2005 2006 2007 2008	17,656,488 17,341,109 17,811,849 13,862,037 12,665,246
	_			·

(More Information On The Reverse Side)

Coal	1,725,583	Subtotals:	
Petroleum	1,969,148		
Chemicals	1,633,958	Grain	264,292
Crude Materials	5,126,266	Steel	1,233,956
Manufactured Goods	1,694,843		
Farm Products	409,443	Lockages:	
Manufactured Machinery	75,850		
Waste Material	3,100	Boats:	3,529
Containers & Pallets	4,500	Cuts:	3,464
Unknown	22,555		,

CURRENT MAINTENANCE ISSUES – BRANDON ROAD

Item (Critical Rank Order)

Rehabilitation Evaluation Report Tainter Gate Concrete Repairs Systemic Miter Gate Replacement Systemic Control Stand Replacement Install New High Mast Lighting (ongoing, funded by ARRA) Paint/Repair Service Bridge, Tainter Gate Section Systemic Dam Machinery Replacement (Engineering & Design) Systemic Filling Valve Replacement Concrete Repairs Downstream I-Wall and Land Wall Install Traveling Kevel and Remove Pier New Maintenance Building

TOTAL ESTIMATED COST: \$19,950,000

The existing 9-foot Channel Navigation Project was largely constructed in the 1930s and extends down the Upper Mississippi River from Minneapolis-St. Paul to its confluence with the Ohio River and up the Illinois Waterway to the Thomas J. O'Brien Lock in Chicago. It includes 37 Locks and approximately 1,200 miles of navigable waterway in Illinois, Iowa, Minnesota, Missouri, and Wisconsin. The system's 600-foot locks do not accommodate today's modern tows without splitting and passing through the lock in two operations. This procedure requires uncoupling barges at midpoint which triples lockage times and exposes deckhands to increased accident rates.

More than 580 manufacturing facilities, terminals, and docks ship and receive tonnage in the Upper Mississippi River basin. In 2005, the system moved more than 160 million tons of commercial cargo worth roughly \$28.5 billion. Grains (corn and soybeans) dominate traffic on the system. Other commodities, mainly cement and concrete products, comprise the second largest group. A modern 15-barge tow transports the equivalent of 1,050 large semi-trucks (26,250 cargo tons, 875,000 bushels, or 17,325,000 gallons). Annually, the project generates an estimated \$1 billion of transportation cost savings compared with the operation and maintenance costs of approximately \$115 million.

In constant dollar terms, operations and maintenance funding for the system has been largely flat or declining for decades, while maintenance needs of the aging infrastructure increase. This is adversely affecting reliability of the system. Longestablished programs for preventative maintenance of major lock components have essentially given way to a fix-as-fail strategy, with repairs sometimes requiring weeks or months to complete. Depending on the nature of a lock malfunction, extended repairs can have major consequences for shippers, manufacturers, consumers, and commodities investors.

POINT OF CONTACT

Rock Island District Corporate Communications Office Phone number: 309-794-5729 Fax number: 309-794-5793 E-mail address: cemvr-cc@usace.army.mil

September 2009

DRESDEN ISLAND (Morris, Illinois) Illinois River

Construction: 1928-1930 Congressional District: IL-11

DESCRIPTION	Dresden Island River with the I downstream fro southwest of Jo	Ind Lock and Dam is 271.5 miles above the confluence of the Illinois Mississippi river at Grafton, Illinois. The complex is 1-1/2 miles from the mouth of the Kankakee River and about 15 miles Joliet, Illinois.			
	The complex consists of a gated concrete gravity dam. The total length of th lock and dam between abutments is about 1,320 feet. Lock dimensions are feet wide by 600 feet long with a maximum lift of 22 feet. Average filling time the lock chamber is 14 minutes; 12 minutes emptying time.				
	The dam consists of an arch dam section, a fixed spillway section, gates (60 feet wide by 17 feet high), 18 plugged headgates, and a earthfill section with steel sheet pile cut-off wall connecting the heat to the Illinois and Michigan Canal embankment.				
	It takes two ho Dresden Island	urs for water to travel from B I during flood or high flow co	randon Road Lo nditions.	ck and Dam to	
HISTORY/SIGNIFICANCE	The lock opened in 1933. Dresden Island Lock and Dam was one of five des and partially constructed by the state of Illinois over a period from 1928 to 19 Excavation and masonry work began in December 1928. The complex was 35 percent complete when construction was turned over to the federal gover due to state financial difficulties.				
	The government construction in cost of the proj and \$2,503,370	nt, by the authority of the Riv 1933. The estimated cost w ect was \$3,915,964, of whicl 6 was funded by the federal	vers and Harbors vas \$2,306,000, h \$1,412,588 wa government.	Act of 1930, completed however, the actual is funded by the state	
Annual Tonnage	<u>Year</u>	<u>Tons</u>	<u>Year</u>	<u>Tons</u>	
(10-YEAR HISTORICAL)	1999 2000 2001 2002 2003	17,761,340 18,835,137 18,876,400 18,712,254 18,556,711	2004 2005 2006 2007 2008	20,389,783 19,371,418 20,548,035 16,532,747 15,188,254	
(More	E INFORMATION	NON THE REVERSE SIDE)			

Coal	1,515,097	Subtotals:	
Petroleum	3,565,568		
Chemicals	2,600,250	Grain	276,199
Crude Materials	5,257,752	Steel	1,234,715
Manufactured Goods	1,648,951		
Farm Products	490,774	Lockages:	
Manufactured Machinery	80,075		
Waste Material	4,700	Boats:	3,683
Containers & Pallets	0	Cuts:	3,727
Unknown	25.077		

CURRENT MAINTENANCE ISSUES – DRESDEN ISLAND

Item (Critical Rank Order)

Rehabilitation Evaluation Report Rehabilitate Lock - I-wall Electrical Gallery Replace Dam Gates Systemic Miter Gate Replacement Emergency Miter Gates for District Use Systemic Miter Gate Machinery Replacement Rehabilitate Tainter Gate Piers 6 and 7 (Engineering & Design) Systemic Control Stand Replacement Install New High Mast Lighting (ongoing, funded by ARRA) Systemic Dam Machinery Replacement (Engineering & Design) Systemic Filling Valve Replacement Construct Submergible Tainter Gate Replace Standby Generator Repair Upstream Guidewall and Mooring Cell New Maintenance Building

TOTAL ESTIMATED COST: \$25,800,000

The existing 9-foot Channel Navigation Project was largely constructed in the 1930s and extends down the Upper Mississippi River from Minneapolis-St. Paul to its confluence with the Ohio River and up the Illinois Waterway to the Thomas J. O'Brien Lock in Chicago. It includes 37 Locks and approximately 1,200 miles of navigable waterway in Illinois, Iowa, Minnesota, Missouri, and Wisconsin. The system's 600-foot locks do not accommodate today's modern tows without splitting and passing through the lock in two operations. This procedure requires uncoupling barges at midpoint which triples lockage times and exposes deckhands to increased accident rates.

More than 580 manufacturing facilities, terminals, and docks ship and receive tonnage in the Upper Mississippi River basin. In 2005, the system moved more than 160 million tons of commercial cargo worth roughly \$28.5 billion. Grains (corn and soybeans) dominate traffic on the system. Other commodities, mainly cement and concrete products, comprise the second largest group. A modern 15-barge tow transports the equivalent of 1,050 large semi-trucks (26,250 cargo tons, 875,000 bushels, or 17,325,000 gallons). Annually, the project generates an estimated \$1 billion of transportation cost savings compared with the operation and maintenance costs of approximately \$115 million.

In constant dollar terms, operations and maintenance funding for the system has been largely flat or declining for decades, while maintenance needs of the aging infrastructure increase. This is adversely affecting reliability of the system. Longestablished programs for preventative maintenance of major lock components have essentially given way to a fix-as-fail strategy, with repairs sometimes requiring weeks or months to complete. Depending on the nature of a lock malfunction, extended repairs can have major consequences for shippers, manufacturers, consumers, and commodities investors.

POINT OF CONTACT

Rock Island District Corporate Communications Office Phone number: 309-794-5729 Fax number: 309-794-5793 E-mail address: cemvr-cc@usace.army.mil

September 2009

MARSEILLES (MARSEILLES, ILLINOIS) ILLINOIS RIVER

General Contractors:

Lock: Green and Sons Company, Chicago, Illinois & Independent Bridge Company, Pittsburgh, Pennsylvania Marseilles Canal: Callahan Construction Company, St. Louis, Missouri Construction: 1920-1933 Congressional District: IL-11

DESCRIPTION

Marseilles Lock is 244.6 miles above the confluence of the Illinois River with the Mississippi river at Grafton, Illinois, at the foot of Bells Island. Marseilles Dam is 2.5 miles upstream of the lock at the head of Bells Island.

The lock and dam is located southwest of Marseilles, III., near Illini State Park. The Marseilles Canal, adjacent to the left bank of the Illinois, extends from the dam to the lock. There are hydroelectric generating facilities at the dam.

The lock is 110 feet wide by 600 feet long. The maximum lift is 24.5 feet with an average lift lower than 24 feet. It takes an average of 15 minutes to fill the lock chamber; 10 minutes to empty it.

The dam is a fixed, gated-concrete, gravity dam. The main dam is 598.5-feet long with eight submersible Tainter gates (60-feet wide, 16-feet high, 25-foot radius) and Ogee spillway at Ice Chute. The gates are remotely controlled by the lockmaster at the lock. The South Channel Headrace dam is 111-feet long with one Tainter gate. The North Channel Headrace dam is 206-feet long with two Tainter gates. It takes six hours for water to travel from Dresden Island Lock and Dam to Marseilles during flood or high flow conditions.

HISTORY/SIGNIFICANCE The Marseilles complex was one of five begun by the state of Illinois in 1920. The dam was about 95 percent complete when construction was turned over to the federal government due to state financial difficulties. The lock was completed, except for the steel work, in August 1923. The contract for the lock gates, valves and lower approach wall was let in 1927.

Marseilles Dam was completed in 1933 at a cost \$3,079,372, of which \$1,796,372 was funded by the state and \$1,283,000 was funded by the government.

ANNUAL TONNAGE (10-YEAR HISTORICAL)

	Year	<u>Tons</u>	Year	Tons
AL)	1999	19,155,838	2004	21,754,394
	2000	20,237,408	2005	20,139,348
	2001	20,886,084	2006	21,043,379
	2002	20,132,588	2007	17,221,068
	2003	19,619,082	2008	15,657,070

(More Information On The Reverse Side)

Coal	1,611,365	Subtotals:	
Petroleum	3,463,125		
Chemicals	2,856,859	Grain	888,797
Crude Materials	4,817,024	Steel	1,202,697
Manufactured Goods	1,604,962		
Farm Products	1,160,359	Lockages:	
Manufactured Machinery	115,149		
Waste Material	3,100	Boats:	3,978
Containers & Pallets	0	Cuts:	3,774
Unknown	25,127		

CURRENT MAINTENANCE ISSUES – MARSEILLES

Item (Critical Rank Order)

Systemic Miter Gate Replacement Causeway Concrete Repairs Rebuild Miter Gate Machinery Lock Concrete and Steel Repairs Install New High Mast Lighting Systemic Control Stand Replacement Systemic Dam Machinery Replacement (Engineering & Design) Systemic Filling Valve Replacement Lock and Dam Slope Protection Channel Repair Electrical Cable Trenches Repair Bank Scour Repair Concrete Upper Right Guidewall Lower Guidewall Rehabilitation Replace Standby Generator Remove Abandoned Lock Control House Sheet Piling Wall Construction Lock Wall Concrete Repairs New Maintenance Building

TOTAL ESTIMATED COST: \$27,000,000

The existing 9-foot Channel Navigation Project was largely constructed in the 1930s and extends down the Upper Mississippi River from Minneapolis-St. Paul to its confluence with the Ohio River and up the Illinois Waterway to the Thomas J. O'Brien Lock in Chicago. It includes 37 Locks and approximately 1,200 miles of navigable waterway in Illinois, Iowa, Minnesota, Missouri, and Wisconsin. The system's 600-foot locks do not accommodate today's modern tows without splitting and passing through the lock in two operations. This procedure requires uncoupling barges at midpoint which triples lockage times and exposes deckhands to increased accident rates.

More than 580 manufacturing facilities, terminals, and docks ship and receive tonnage in the Upper Mississippi River basin. In 2005, the system moved more than 160 million tons of commercial cargo worth roughly \$28.5 billion. Grains (corn and soybeans) dominate traffic on the system. Other commodities, mainly cement and concrete products, comprise the second largest group. A modern 15-barge tow transports the equivalent of 1,050 large semi-trucks (26,250 cargo tons, 875,000 bushels, or 17,325,000 gallons). Annually, the project generates an estimated \$1 billion of transportation cost savings compared with the operation and maintenance costs of approximately \$115 million.

In constant dollar terms, operations and maintenance funding for the system has been largely flat or declining for decades, while maintenance needs of the aging infrastructure increase. This is adversely affecting reliability of the system. Longestablished programs for preventative maintenance of major lock components have essentially given way to a fix-as-fail strategy, with repairs sometimes requiring weeks or months to complete. Depending on the nature of a lock malfunction, extended repairs can have major consequences for shippers, manufacturers, consumers, and commodities investors.

POINT OF CONTACT

Rock Island District Corporate Communications Office Phone number: 309-794-5729 Fax number: 309-794-5793 E-mail address: cemvr-cc@usace.army.mil

September 2009

STARVED ROCK (OTTAWA, ILLINOIS) ILLINOIS RIVER

General Contractors:

Woods Brothers Construction Company, Lincoln, Nebraska & Independent Bridge Company, Pittsburgh, Pennsylvania Construction: 1926-1933 Congressional Districts: IL-11

DESCRIPTION

Starved Rock Lock and Dam is 231.0 miles above the confluence of the Illinois River with the Mississippi river at Grafton, Illinois. The lock and dam is located about 1.5 miles southeast of Utica, Ill.

The dam is a gated, concrete, gravity dam, 1,280 feet long. A 680-foot-long Tainter gate section contains 10 Tainter gates. The headgate section contains 30 headgates that were plugged with concrete in 1982. The 52-foot-long ice chute section of the dam includes a 52-foot-long inoperable Tainter gate. The lock is the standard 600 feet long by 110 feet wide. The maximum lift is 18.5 feet with an average lift of 17 feet. It takes approximately 12 minutes to fill the lock chamber; nine minutes to empty.

It takes two hours for water to travel from Marseilles Lock and Dam to Starved Rock during flood or high flow conditions.

HISTORY/SIGNIFICANCE The lock opened in 1933. Starved Rock Lock and Dam was one of five designed and partially constructed by the state of Illinois over a period from 1926 to 1930. The original contractor, selected in 1923, failed to appear for the signing of the contract documents. Land litigation issues were resolved in 1925 and a second contract was awarded in 1926. Starved Rock Lock and Dam was about 95 percent complete when construction was turned over to the federal government due to state financial difficulties.

The government, by the authority of the Rivers and Harbors Act of 1930, completed construction of the lock in 1933. The lock and dam elements of the complex were completed at a total cost of \$4,462,737, of which \$3,577,419 were state funds and \$885,318 were federal funds.

Annual Tonnage (10-Year Historical)

<u>Year</u>	Tons	<u>Year</u>	<u>Tons</u>
1999	21,384,458	2004	23,796,648
2000	22,377,658	2005	22,070,208
2001	23,300,035	2006	23,187,461
2002	22,432,189	2007	19,052,616
2003	21,837,185	2008	17,038,590

(More Information On The Reverse Side)

Coal	1,487,044	Subtotals:	
Petroleum	3,531,954		
Chemicals	3,021,353	Grain	1,793,167
Crude Materials	5,110,550	Steel	1,229,720
Manufactured Goods	1,655,307		
Farm Products	2,103,079	Lockages:	
Manufactured Machinery	101,300		
Waste Material	4,700	Boats:	4,173
Containers & Pallets	0	Cuts:	3,959
Unknown	23,303		

CURRENT MAINTENANCE ISSUES – STARVED ROCK

Item (Critical Rank Order)

Lock - Concrete Repairs Rehabilitation Evaluation Report Systemic Miter Gate Replacement Remove Mooring Cell Steam Line and Boiler Replacement (ongoing) Rebuild Miter Gate Machinery Floating Mooring Bit Concrete Repairs Install New High Mast Lighting Replace Tainter Gates Systemic Dam Machinery Replacement (Engineering and Design) Systemic Filling Valve Replacement Submersible Tainter Gate Construction Repair Lower Riverwall Bullnose Repair Upstream Guidewall Lower Guidewall Concrete Repairs Replace Standby Generator New Maintenance Building

TOTAL ESTIMATED COST: \$35,000,000

The existing 9-foot Channel Navigation Project was largely constructed in the 1930s and extends down the Upper Mississippi River from Minneapolis-St. Paul to its confluence with the Ohio River and up the Illinois Waterway to the Thomas J. O'Brien Lock in Chicago. It includes 37 Locks and approximately 1,200 miles of navigable waterway in Illinois, Iowa, Minnesota, Missouri, and Wisconsin. The system's 600-foot locks do not accommodate today's modern tows without splitting and passing through the lock in two operations. This procedure requires uncoupling barges at midpoint which triples lockage times and exposes deckhands to increased accident rates.

More than 580 manufacturing facilities, terminals, and docks ship and receive tonnage in the Upper Mississippi River basin. In 2005, the system moved more than 160 million tons of commercial cargo worth roughly \$28.5 billion. Grains (corn and soybeans) dominate traffic on the system. Other commodities, mainly cement and concrete products, comprise the second largest group. A modern 15-barge tow transports the equivalent of 1,050 large semi-trucks (26,250 cargo tons, 875,000 bushels, or 17,325,000 gallons). Annually, the project generates an estimated \$1 billion of transportation cost savings compared with the operation and maintenance costs of approximately \$115 million.

In constant dollar terms, operations and maintenance funding for the system has been largely flat or declining for decades, while maintenance needs of the aging infrastructure increase. This is adversely affecting reliability of the system. Longestablished programs for preventative maintenance of major lock components have essentially given way to a fix-as-fail strategy, with repairs sometimes requiring weeks or months to complete. Depending on the nature of a lock malfunction, extended repairs can have major consequences for shippers, manufacturers, consumers, and commodities investors.

POINT OF CONTACT

Rock Island District Corporate Communications Office Phone number: 309-794-5729 Fax number: 309-794-5793 E-mail address: cemvr-cc@usace.army.mil

September 2009

PEORIA (CREVE COEUR, ILLINOIS) **ILLINOIS RIVER**

Peoria Lock and Dam is 157.7 miles above the confluence of the Illinois River

with the Mississippi river at Grafton, Illinois. The lock and dam is located four

Construction: -1939 Congressional Districts: IL-18

miles downstream of Peoria, III. The lock is the standard 600-feet long by 110-feet wide. The maximum lift is 11 feet with an average lift of six feet. It takes ten minutes to fill or empty the lock chamber. The dam is a Chanoine wicket dam, the navigable pass type. Overall length of the dam is 570 feet. The movable dam is 432-feet long containing 108 wickets (3.75-feet wide, 16.42-feet high, 0.25-foot gap between wickets). The dam includes a single 84-foot-long submersible Tainter gate. From 1987-1990, a major rehabilitation changed the physical components of the dam and operating procedures by replacing 26 of the original 134 wickets with a single 84-foot long submersible Tainter gate adjacent to the lock wall. It takes two days for water to travel from Starved Rock Lock and Dam to Peoria. The lock opened in 1939. Following the Supreme Court's decree of April 21, 1930, HISTORY/SIGNIFICANCE limiting the diversion of water from Lake Michigan, a new navigation plan was developed calling for removing four old locks and dams at Henry, Copperas Creek, LaGrange and Kampsville; new locks at Peoria and LaGrange, and a dam on the Mississippi River at Alton, Missouri, to provide the required navigation depth from the mouth of the Illinois to LaGrange. The lock is used only during low and moderate river flows when the wicket dams are raised to maintain the nine-foot navigation depth. During high flows, the wickets are lowered and open river conditions prevail. Peoria is one of only two wicket dams on the Illinois Waterway. The lock and dam elements of the complex were completed at a cost of \$3 381 030

ANNUAL TONNAGE (10-YEAR HISTORICAL)

DESCRIPTION

<u>Year</u>	<u>Tons</u>	<u>Year</u>	<u>Tons</u>	
1999	31,143,398	2004	32,321,149	
2000	31,730,582	2005	29,734,319	
2001	33,668,096	2006	30,514,817	
2002	32,080,328	2007	26,391,793	
2003	31.878.067	2008	23,483,059	

(More Information On The Reverse Side)

COMMODITY TONNAGE & LOCKAGES (2008)

Coal	2,572,426	Subtotals:	
Petroleum	3,610,934		
Chemicals	4,323,775	Grain	4,971,473
Crude Materials	4,737,417	Steel	1,445,215
Manufactured Goods	1,886,049		
Farm Products	6,196,435	Lockages:	
Manufactured Machinery	111,746		
Waste Material	10,800	Boats:	3,889
Containers & Pallets	0	Cuts:	4,034
Unknown	33,477		

CURRENT MAINTENANCE ISSUES – PEORIA

Item (Critical Rank Order)

Cut Bulkhead Slots New Maintenance Building Permanently Close Butterfly Valves Add Guide Cells Repair Horizontal Concrete & Riprap above Weir Motor Vessel Sangamon Replacement Emergency Stackable Miter Gates Systemic Filling Valve Replacement Paint Tainter Gate, Service Bridge and Machinery Systemic Miter Gate Replacement

TOTAL ESTIMATED COST: \$22,900,000

The Water Resources Development Act of 2007 (WRDA 07) Title VIII authorized the dual-purpose navigation and ecosystem restoration plan for the Upper Mississippi River and Illinois Waterway. The new 1,200-foot lock, which is located landside, will cost approximately \$262,000,000. The design and construction of the new lock is dependent upon annual appropriations.

The existing 9-foot Channel Navigation Project was largely constructed in the 1930s and extends down the Upper Mississippi River from Minneapolis-St. Paul to its confluence with the Ohio River and up the Illinois Waterway to the Thomas J. O'Brien Lock in Chicago. It includes 37 Locks and approximately 1,200 miles of navigable waterway in Illinois, Iowa, Minnesota, Missouri, and Wisconsin. The system's 600-foot locks do not accommodate today's modern tows without splitting and passing through the lock in two operations. This procedure requires uncoupling barges at midpoint which triples lockage times and exposes deckhands to increased accident rates.

More than 580 manufacturing facilities, terminals, and docks ship and receive tonnage in the Upper Mississippi River basin. In 2005, the system moved more than 160 million tons of commercial cargo worth roughly \$28.5 billion. Grains (corn and soybeans) dominate traffic on the system. Other commodities, mainly cement and concrete products, comprise the second largest group. A modern 15-barge tow transports the equivalent of 1,050 large semi-trucks (26,250 cargo tons, 875,000 bushels, or 17,325,000 gallons). Annually, the project generates an estimated \$1 billion of transportation cost savings compared with the operation and maintenance costs of approximately \$115 million.

In constant dollar terms, operations and maintenance funding for the system has been largely flat or declining for decades, while maintenance needs of the aging infrastructure increase. This is adversely affecting reliability of the system. Longestablished programs for preventative maintenance of major lock components have essentially given way to a fix-as-fail strategy, with repairs sometimes requiring weeks or months to complete. Depending on the nature of a lock malfunction, extended repairs can have major consequences for shippers, manufacturers, consumers, and commodities investors.

POINT OF CONTACT

Rock Island District Corporate Communications Office Phone number: 309-794-5729 Fax number: 309-794-5793 E-mail address: cemvr-cc@usace.army.mil

September 2009

LAGRANGE (Versailles, Illinois) Illinois River

Construction: 1936-1939 Congressional Districts: IL-18

DESCRIPTION

LaGrange Lock and Dam is 80.2 miles above the confluence of the Illinois River with the Mississippi river at Grafton, Illinois, 7.8 miles below Beardstown, Illinois.

LaGrange Lock and Dam consists of a 1,066-foot-long dam and a 110-foot-wide by 600-foot-long lock. The maximum lift is 10 feet with an average lift of 4.5 feet. It takes approximately 10 minutes to fill or empty the lock chamber.

LaGrange uses a Chanoine wicket dam, the navigable pass type. The wicket section is 436 feet long containing 109 wickets. Each wicket is 3.75 feet wide by 14.92 feet high, with a .25-foot gap between wickets. From 1987-1991, a major rehabilitation changed the physical components of the dam and operating procedures by replacing 26 of the original 135 wickets with a single 84-foot long submersible Tainter gate adjacent to the lock wall.

It takes 24-36 hours for water to travel from Peoria Lock and Dam to LaGrange during flood or high flow conditions.

HISTORY/SIGNIFICANCE The lock opened in 1939. Following the Supreme Court's decree of April 21, 1930, limiting the diversion of water from Lake Michigan, a new navigation plan was developed calling for removing four old locks and dams at Henry, Copperas Creek, LaGrange and Kampsville; new locks at LaGrange and Peoria, and a dam on the Mississippi River at Alton, Illinois, to provide the required navigation depth from the mouth of the Illinois to LaGrange. The lock is used only during low and moderate river flows when the wicket dams are raised to maintain the nine-foot navigation depth. During high flows, the wickets are lowered and open river conditions prevail.

LaGrange is one of only two wicket dams on the Illinois Waterway. The lock and dam elements of the complex were completed at a cost of \$2,744,592.

ANNUAL TONNAGE (10-YEAR HISTORICAL)

Year	Tons	Year	<u>Tons</u>
1999 2000	35,59,7851 35,164,245	2004 2005	34,681,667 31,708,944
2001	36,729,826	2006	32,903,584
2002	35,858,094	2007	29,046,034
2003	35,136,029	2008	26,690,243

(More Information On The Reverse Side)

Commodity Tonnage & Lockages (2008)

Coal	1,640,338	Subtotals:	
Petroleum	3,547,872		
Chemicals	4,671,493	Grain	8,067,608
Crude Materials	4,928,080	Steel	1,470,904
Manufactured Goods	1,913,290		
Farm Products	9,874,133	Lockages:	
Manufactured Machinery	61,542		
Waste Material	13,700	Boats:	2,853
Containers & Pallets	0	Cuts:	3,177
Unknown	39,795		

CURRENT MAINTENANCE ISSUES – LAGRANGE

Item (Critical Rank Order)

Lock - Major Rehabilitation Lock - Major Maintenance Systemic Miter Gate Replacement Permanently Close Butterfly Valves Add Guide Cells Paint Dam Tainter Gate, Service Bridge, and Machinery Motor Vessel Beardstown Replacement Emergency Stackable Miter Gates Systemic Filling Valve Replacement Office and Maintenance Building

TOTAL ESTIMATED COST: \$78,800,000

The Water Resources Development Act of 2007 (WRDA 07) Title VIII authorized the dual-purpose navigation and ecosystem restoration plan for the Upper Mississippi River and Illinois Waterway. The new 1,200-foot lock, which is located landside, will cost approximately \$261,000,000. The design and construction of the new lock is dependent upon annual appropriations.

For more than 65 years, the lock has been exposed to multiple freeze/thaw cycles and flooding, causing a gradual but incessant degradation of the lock components. Frequent flooding and temperature extremes, combined with high usage, has resulted in significant deterioration of lock concrete and the decline of mechanical and electrical systems performance and reliability. The vertical concrete has deteriorated to the point that sections have had to be removed and/or threaten to fall into the lock chamber. Barges can become wedged under the armor, resulting in a dangerous situation for deck hands, lock personnel, and potential damage to the barges. Hazardous working conditions exist due to deteriorated horizontal concrete on the land and river walls of the lock chamber. The mechanical and electrical systems require constant patching and labor intensive repairs. Parts are difficult to obtain and have to be specially made in most cases. The probability of failure of the mechanical and electrical systems, requiring extensive and expensive repairs, in the next several years is very high. The potential at any time for an incident to occur due to deteriorated lock concrete, in which the lock had to be closed for more than a week, is very probable with the potential increasing every year the lock concrete is not repaired. In 2004, an expert panel concluded that the lock concrete was in need of rehabilitation at the earliest possible opportunity.

Bulkhead slots are needed on the downstream end of the lock to allow for lock dewatering with bulkhead sections. As there are currently no bulkhead sections available on the Illinois Waterway, a set would need to be purchased under this project for lock dewatering during the rehabilitation. A Rehabilitation Evaluation Report was approved in 2005 with an estimated total cost of \$64 million. A preliminary schedule of work was developed with construction spanning over a three year period. Three lock closures will be required of approximately 30 days each with two of the three closures involving lock dewatering.

POINT OF CONTACT

Rock Island District Corporate Communications Office Phone number: 309-794-5729 Fax number: 309-794-5793 E-mail address: cemvr-cc@usace.army.mil

September 2009

The Upper Mississippi River Basin U.S. Geological Survey Hydrologic Unit Code (HUC) 07

US Army Corps of Engineers® Mississippi Valley Division

THE UPPER MISSISSIPPI RIVER SYSTEM

The Upper Mississippi River System (UMRS) is a vital part of our national economy and a valuable ecological resource. The system includes the Upper Mississippi River from Minneapolis, Minnesota, to Cairo, Illinois; the Illinois Waterway from Chicago to Grafton, Illinois; and navigable portions of the Minnesota, St. Croix, Black and Kaskaskia Rivers. The UMRS ecosystem encompasses the entire floodplain area and associated physical, chemical, and biological components. The Upper Mississippi River – Illinois Waterway (UMR-IWW) navigation system includes 1,200 miles of 9-foot navigation channel, 37 lock and dam sites, and thousands of channel training structures. The 1,200 miles of 9-foot channel created by the locks and dams allow waterway traffic to move from one pool to another providing an integral regional, national, and international transportation network.

The existing 9-foot Channel Navigation Project was largely constructed in the 1930s. The system's 600-foot locks do not accommodate today's modern tows without splitting and passing through the lock in two operations. This procedure requires uncoupling barges at midpoint, which triples lockage times and exposes deckhands to increased accident rates.

THE FUTURE

Ensuring the economic, environmental and social prosperity and sustainability of the UMRS will require a concentrated and continued investment along with purposeful and collaborative river stewardship and management. The UMR-IWW navigation system requires three major elements to ensure sustainability: (1) continuous regular operations and maintenance (\$120 million/year), (2) periodic major rehabilitation of Locks and Dams (\$65 million/year) and (3) efficiency and modernization improvements authorized under the Navigation and Ecosystem Restoration Program (NESP) (\$150-200 million/year). The UMRS ecosystem is comprised of hundreds of thousands of acres of bottomland forests, islands, backwaters, side channels and wetlands that support a nationally significant assemblage of birds, mammals, amphibians, reptiles, mussels, fish and plants. It is a place for this and future generations to learn how to restore and maintain a "living river" in the face of an ever growing human population. The lessons learned in more than a half century of study and application of large river function, form and restoration have provided us with the necessary tools, knowledge and experience to effectually protect, preserve and enhance environmental conditions necessary for ecological health and sustainability of this national treasure.

The recently authorized Navigation and Ecosystem Sustainability Program is a long-term program to provide for navigation efficiency and environmental sustainability, and ecosystem restoration for the Upper Mississippi River System over a 50-year period. The primary opportunities are to reduce or eliminate commercial traffic delays and improve the national and regional economic conditions while restoring, protecting, and enhancing the environment. The primary goal of the program (authorized by Congress in the Water Resources Development Act of 2007) is implementation of an integrated, dual-purpose plan to ensure the economic and environmental sustainability of the UMRS.

The program includes a long-term framework for navigation efficiency improvements and ecosystem restoration. The program includes small-scale structural and nonstructural measures; new 1,200-foot locks at seven sites; lock extensions; appropriate measures to avoid, minimize, and mitigate for environmental impact; and system-wide ecosystem restoration projects. NESP will be implemented through an adaptive management and anticipatory engineering approach that will include checkpoints requiring future reporting to the Administration and Congress, and will be administered by the Corps of Engineers in full collaboration and partnership with the other federal and state agencies and stakeholders involved in management of the Upper Mississippi River System.

FOR MORE INFORMATION

Rock Island District Corporate Communications Office Phone number: 309-794-5729 Fax number: 309-794-5793 E-mail address: cemvr-cc@usace.army.mil