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We present a review of the constrained interpolation profile (CIP) method that is
known as a general numerical solver for solid, liquid, gas, and plasmas. This method
is a kind of semi-Lagrangian scheme and has been extended to treat incompressible
flow in the framework of compressible fluid. Since it uses primitive Euler repre-
sentation, it is suitable for multiphase analysis. The recent version of this method
guarantees the exact mass conservation even in the framework of a semi-Lagrangian
scheme. We provide a comprehensive review of the strategy of the CIP method, which
has a compact support and subcell resolution, including a front-capturing algorithm
with functional transformation, a pressure-based algorithm, and other miscellaneous
physics such as the elastic—plastic effect and surface tension. Some practical appli-
cations are also reviewed, such as milk crown or coronet, laser-induced melting, and
turbulent mixing layer of liquid—gas interface.q 2001 Academic Press
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1. INTRODUCTION

Recent high technology requires new tools for combined analysis of materials in differ
phase states, e.g., solid, liquid, and gas. A universal treatment of all phases by one sit
algorithm would be useful and we are at the point of attacking this goal. For these tyj
of problems, for example, welding and cutting processes, we need to treat topology
phase changes of the structure simultaneously, where the grid system aligned to the
or liquid surface has no meaning and sometimes the mesh is distorted and even broke
To solve these problems with Lagrangian representation in finite-difference, finite-eleme
and boundary-element methods will be a challenging task.
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Even without phase change, solving the problem of structure—fluid interaction is not
easy task. In most cases, the grid cannot always be adapted to the solid surface. Ther
the description of moving solid surfaces of complicated shapes in the Cartesian grid sys
is a challenging subject [57].

To attack the problems mentioned above, we must first find a method to treat a st
interface and to solve the interaction of compressible gas with incompressible liquid or sc
For compressible fluid, elaborate schemes like TVD (total variation diminishing) or EN
(essentially nonoscillating) proved to be effective in capturing shock waves. However, si
these schemes employ a conservative form of fluid equations, divergence of velocity wt
becomes zero in the incompressible limit cannot be treated independent of the adve
part. Furthermore, as Karni [15] pointed out, the conservative algorithm sometimes gi
fictitious pressure undulation at the boundary of multiphase materials.

On the other hand, incompressible schemes like QUICK or higher-order upwind scher
can treat divergence-free fluid vorticity and turbulence. However, these schemes ca
always treat a shock wave as a sharp discontinuity.

We need a scheme for treating both compressible and incompressible fluids with e
density ratios simultaneously in one program to simulate the interaction of gas witl
liquid or solid. Fully implicit solvers can handle this procedure, but the convergence
iteration in a highly distorted state is still a problem. Toward this goal, we take a E
lerian approach based on the CIP (cubic-interpolated propagation) method [40, 41,
62] which does not need an adaptive grid system and therefore eliminates the probl
of grid distortion caused by structural breakup and topology change. The material ¢
face can almost be captured by one grid throughout the computation [64, 65]. Furtt
more, the code can treat all the phases of matter from solid state through liquid
from two-phase state to gas without restriction on the time step from high-sound sp
[63].

A pressure-based algorithm coupled with a semi-Lagrangian approach such as the
proved to be stable and robust in analyzing these subjects. One disadvantage of this m¢
was the lack of conservative property. Recent versions of the CIP-CSL4 (conserva
semi-Lagrangian) [43] can overcome this difficulty and provide exactly a conservative se
Lagrangian scheme. Since these schemes do not use cubic polynomials but rather diff
orders of polynomials, we have renamed these CIP families “constrained interpolat
profile” and kept the abbreviation CIP. This means that various constraints such as
time evolution of a spatial gradient, which is used in the original CIP method, or spatia
integrated conservative quantities can be used to construct the profile. In this paper
review the CIP method and related schemes and address these important subjects.

In Section 2, the CIP method is derived for advection calculation. After a descriptit
of the fundamental idea of the method with a 1D problem, some variants and pra
cal extensions are discussed. They include, for example, multidimensional formulati
oscillation-suppressing interpolation, and sharpness enhancement. A formulation of
CIP method applied to general hydrodynamics is presented in Section 3. Section 4
cusses a unified procedure to compute both compressible and incompressible fluids
several examples. Some numerical formulations for interfacial flows, including surface t
sion and the elastic—plastic effect, are presented in Section 5. As arecentimprovementt
CIP method, conservative variants of the method are briefly discussed with a few numet
examples. The paper ends with a short summary referencing some applications in c
fields.
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2. THE ADVECTION PROCESS

2.1. CIP Formulation in One Dimension

Although nature operates in a continuous world, a discretization process is unavoidz
forimplementing numerical simulations. The primary goal of any numerical algorithm wi
be to retrieve the information lost inside the grid cell between these digitized points. T
CIP method proposed by one of the authors tries to construct a solution inside the grid
that is close enough to the real solution of the given equation, with some constraints.
here explain the strategy of the CIP method by using an advection equation,

of of
When the velocity is constant, the solution of Eq. (1) gives a simple translational motion
a wave with velocityu. The initial profile (the solid line in Fig. 1a) moves like a dashed line
in a continuous representation. At this time, the solution at grid points is denoted by circ
and is the same as the exact solution. However, if we eliminate the dashed line as in Fig
then the information about the profile inside the grid cell has been lost, and it is diffic
to imagine the original profile and natural to imagine a profile such as that shown by
solid line in (c). Thus, numerical diffusion arises when we construct the profile by the line
interpolation, even with the exact solution shown in Fig. 1c. This process is called the fir
order upwind scheme. On the other hand, if we use a quadratic polynomial for interpolati
the model suffers from overshooting. This process is called the Lax—Wendroff scheme
the Leith scheme [18].

What made this solution worse? This decline in accuracy is the reason we neglect
behavior of the solution inside the grid cell and merely follow the smoothness of the soluti
From this consideration, we can see that it is important to develop a method incorpora
the real solution into the profile within a grid cell. We propose an approximation of tt
profile as shown below. If we differentiate Eq. (1) with spatial variahle/e get

dg g au
= u— =-——g,
at T Yox ax 9

)

FIG. 1. The principle of the CIP method. (a) The solid line is the initial profile and the dashed line is &
exact solution after advection, shown in (b) at discretized points. (c) When (b) is linearly interpolated, numer
diffusion appears. (d) In the CIP, the spatial derivative also propagates and the profile inside a grid cell is retrie
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where g stands for the spatial derivative df, 3f/dx. In the simplest case where the
velocity u is constant, Eq. (2) coincides with Eq. (1) and represents the propagation ¢
spatial derivative with velocityl. Using this equation, we can trace the time evolution o
f andg on the basis of Eq. (1). if is predicted after propagation as shown by the arrow
in Fig. 1d, the profile after one step is limited to a specific profile. It is easy to imagil
that by this constraint, the solution becomes much closer to the initial profile that is 1
real solution. Most importantly, the solution thus created gives a profile consistent w
Eqg. (1) even inside the grid cell. The importance of this constraint is demonstrated in
next section.

If two values of f andg are given at two grid points, the profile between these points cz
be interpolated by the cubic polynomiglx) = ax® + bx? + cx + d. Thus, the profile at
then + 1 step can be obtained by shifting the profileuwt so that

£ = F(x — uAt),
g"! = dF(x — uAt)/dx.

3
o g + Qiup 2( fi — fiup) ( )
8 = D2 + D3 )
b — 3( fiup — ) 29 + Qiup
(M D2 - D )
M = &g’ + big? + g +
. , (4)
o't = 3aE? + 2 + o,
where we defing = —uAt. Here,D = —AX,iup=1i — 1foru > 0andD = AX, iup =

i + 1 for u < 0. Figure 2a shows a profile after 1000 steps with this CIP method for tl
propagation of a square wave.

The CIP advection scheme can be sorted out as a kind of semi-Lagrangian metha
the sense that the CIP advection scheme employs a Lagrangian invariant solution. S
Lagrangian methods that trace back along the characteristics in time depend on an inte
lation of the initial profile to determine the value at the upstream departure point (whi
may not coincide with the computational grid point).

Although there are various polynomial functions such as linear, quadratic Lagran
cubic Lagrange, cubic spline, and quintic Lagrange [37], all of these schemes (exc
those using the linear interpolation function) need at least three points for construc
interpolation approximations in one dimension. A more compact scheme by which ¢

E (a) ] E (b) ] E (c) J

FIG. 2. (a) Initial condition, and the profile after one complete revolution with (b) CIP, and (c) rational ClI
and tangent-transformed CIP.
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FIG. 3. Phase error of various schemes such as first-order upwind, Lax-Wendroff (LW), PPM, Spline, &
CIP.

can construct interpolation functions of high accuracy with fewer computational stencils
desired in many situations, such as calculating discontinuities or large gradients. A sch
that is based on a compact support is able to localize dispersion errors to the reg
where large local gradients appear. Moreover, in a model with a limited computatior
domain, different approximations for the derivatives must be used at the grid points cl
to boundaries; these approximations are usually of lower order than the approximati
used deeper in the interior. Thus, a scheme that uses fewer stencils may be advantage:
treating computational boundaries since fewer boundary points need to be handled. Anc
attractive feature of reducing the number of stencils may be the reduction in data transfe
parallel implementations on distributed memory architectures. In this sense, the CIP se
to be attractive since it uses only one cell for computation even in three dimensions.

2.2. Mathematical Analysis of CIP

Itis interesting to examine the phase error of various schemes using the method prop
by Purnell [34] and Utsuret al.[46]. Figure 3 summarizes those results. As is well known
phase speeds in conventional schemes depart from the exact speed, shown by the solic
which is aroundkAx = /2. Surprisingly, however, the CIP can reproduce the correc
phase speed even upkax = 7. This is remarkable becauk& x = = means that one
wavelength is described by three mesh points. Let us consider the case shown in Fit
where values of the three points are zero. Even in this case, one wave can exist as sl
in Fig. 4. The CIP gives correct spatial gradients, which are non-zero at these points,

FIG. 4. The CIP can correctly recognize one wavelength with three grid points.
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therefore it recognizes the existence of the wave inside the grid cell. Any code that o
takes into account this value, which is zero here, cannot correctly recognize the wave ¢
if a higher order polynomial is employed.

The importance of Eq. (2), which predicts the propagation of gradients, can be cle:
demonstrated by comparison with the cubic spline [34]. Although the cubic spline uses
same cubic polynomial as the CIP, it cannot reproduce the result of the CIP, because
gradient of the spline is determined merely from the smoothness requirement. As is e
recognized, a constraint that is independent of the original equation will not help to retri
the profile inside the grid cell.

A possible objection to the CIP method is that it uses both a function and its derivat
and seems to be the same as other schemes that use twice as many mesh points. We ¢
the following points against this objection.

(1) The cubic spline shown in Fig. 3 uses both a function and its derivative, as does
CIP, but fails to give a similar result.

(2) The calculation costs do notincrease even if an additional variable such as a derive
is introduced. For example, the CPU time required for a simple advection problem in ¢
dimension is Spline/CIR- 1.68 (the Thomas method is used to solve the matrix), RCI
(rational CIP)/CIP=1.77, PPM (piecewise parabolic method)/[6]P = 2.31. RCIP will
be defined in Section 2.4.

(3) The memory increase owing to an additional variable is less significant for higk
dimensions. Let be the number of time-dependent variables; then memory increases
(o + 1)Ly in the CIP and as®*? L in conventional schemes it /Ax is fixed, wherex
is the dimension and is the mesh refinement. These rates will bg 4nd 18_; in three
dimensions for the CIP and for twice-refinad-€ 2) conventional schemes, respectively.

(4) Adding to (3), in most practical applications, we use additional variables such
thermal conductivity, viscosity, and temporal variables for matrix solutior.glfis the
number of these variables, the memory requirementis@enl)L; + Loandn*L; + L.
Since Lo > L usually, the memory requirement of the CIP is similar to that of othe
schemes even for unrefined mesk- 1.

2.3. CIP Formulation in Multidimensions

In the CIP method, the first-order spatial derivatives of the interpolation function &
treated as dependent variables as shown in the previous sections. The governing equ
forthose derivatives in multidimensions are derived by differentiating the advection equat
with respect to the spatial coordinates. This scheme is different from the conventional se
Lagrangian methods for computation of derivatives. In the latter methods, as mentio
above, the gradient is calculated based on the function values at neighboring grid point
either assuming the continuity of the quantity, or of the first- and sometimes the second-o
derivatives of the quantity at the mesh boundaries [34], or by using approximations ba
on local grid points [51]. By special treatment of the first derivatives of the interpolatic
function, the CIP method achieves a compact form that uses only one mesh cell to cons
the interpolation profile and provides subcell resolution.

The model equation to be solved is an advection equation,

af (x, 1)
at

+u-Vixt) =0, (%)
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wherex meangx, y, 2),u = (U(x, y, z,t), v(x, y, z, t) , w(X, Yy, z, t)) is the characteristic
speed, and (x, v, z, t) is the dependent variable. The gradient operator is defin®d-as
(9x, dy, 9z).

Semi-Lagrangian methods usually make use of the solution as a Lagrangian invarial

f(x,t) = f(x =X, t — At), (6)

whereX is the distance a particle travels in time incremantgiven bydx/dt = u. If it is
possible to trace the trajectory across several grid pointstjrEq. (6) can be used even
for a large CFL numbes= uAt/Ax. One of the main efforts in semi-Lagrangian methods
is constructing the interpolation function based on grid values to determine the field va
at a departure point not coinciding with a grid point.

A CIP-type method evaluates the first-order derivatives of the profile by treating t
derivatives as additional dependent variables and adding an equation, derived from Eq
as

(3, )
ot

3
tu-vE = -2 v, 7)
ax

wherey denotes the space coordinatey, or z, andd, f representsf /9.

One then gets an additional advection equation in each dimension with a forcing te
for the first-order derivative of that respective dimension. The set of governing equatic
for the three-dimensional advection problem is consequently written as

ou
— +u-VU=¢G, (8)
ot
where
f
axf
| ayf
0, f
and
0

—0xUdy f — dyvdy f — dxwdy f
—3yudy f — dyvdy f — dywd, f
—0,Udy f — 0,00y f — B, f

A CIP-type scheme is equivalent to the two-step semi-Lagrangian procedure
Ux, t) = Up(x — &, t — At) (9)
and

U, t) = O(x, t)+/G(0)dr, (10)
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whereUy, represents the interpolation approximatiottandr denotes the trajectory that
connectgX, t — At) and(x, t).

Once the interpolation function is determined from the continuity condition imposed:
the dependent variable and its first-order derivatives at the grid points, we immediately
the solution to the advection equation from Egs. (9) and (10).

Several forms of the multidimensional cubic polynomial have been proposed [2, 6
Among various families of polynomial, the simplest one is written as [62]

Fij(X,y) = Ca0oX3+ CpoX?+ fxij X + fij + CoaY3 + CooY2+ fyi ;Y
4+ C21X%Y 4 C11XY 4 C1oXY?, (11)

which has a form consistent with one-dimensional CIP in one direction. Here we def
X =x—=X,Y =y—yY;. Thus 10 unknowns are determined from the continuityf of
af/ox; af /oy at(, j), (i +1,]j), (i, j +1); and the continuity of at § + 1, j + 1).

Although Eq. (11) is not the only candidate for the interpolation in two dimensions
variant is in fact presented in [2]), it is sufficient for a small time syt /Ax < 0.5 as
one can imagine from the definitiodf /ax, 0f /dy at ( + 1, j 4+ 1) are not continuous and
are not accurate. In Fig. 5, we show the result of a two-dimensional solid-body revolut
[74]. Figure 5a shows an initial profile and Fig. 5b the profile after one revolution whe
Eqg. (11) is applied. Although the scheme is simple, it can produce a result comparabl
existing higher order schemes. If we apply tangent transformation (which will be introduc
in Section 2.5) to this problem, the result is much improved, as shown in Fig. 5e.

(d) (e)

FIG. 5. (a) Initial condition and the profile after one complete revolution with (b) CIP, (c) splitting CIP
(d) rational CIP, and (e) tangent-transformed CIP.
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In these cases, the multidimensional profile is shifted in the direction of velocity vect
u. In addition, a directional splitting technique can be used to perform sequential ol
dimensional advection in each direction. The latter method is very promising becaus
would be difficult to construct a cubic polynominal in six-dimensional hyperspace su
as the Vlasov equation, and a conservative scheme can be readily constructed using
splitting scheme [21]. Figure 5, which includes the result of this scheme, shows that
symmetry of the profile is preserved well.

2.4. The RCIP Scheme for the Advection Equation

In practical implementation, an attractive advection scheme should be both low in ¢
fusion and free of oscillation. In modern Eulerian high-resolution schemes, manipulatic
such as numerical viscosity are usually done to degrade the scheme to a lower orde
the presence of discontinuities in order to eliminate spurious oscillation. Some of th
schemes are reviewed by Toro [44]. Preserving the shape of the advected field is also o
the primary goals for semi-Lagrangian schemes, since a scheme with an interpolator hi
than second order will produce spurious oscillations near large gradients or discontinuit
Williamson and Rasch [51] discuss several shape-preserving interpolation schemes.
monotonicity of a scheme is improved by imposing derivative constraints on a Herm
cubic or a rational-cubic interpolation function. Bermejo and Staniforth [4] also reporte
their work on overcoming the numerical oscillation for semi-Lagrangian schemes, wh
a minimum/maximum limiter is imposed on the calculated results from any conventior
semi-Lagrangian scheme, based on the argument that no new extremum should be cr
by an advection scheme.

The original CIP method, which uses a cubic polynomial interpolant, produces numeri
oscillations near the area where the dependent variable has a degree of smoothness nc
than 1, which is onlyC° for a step or a triangle distribution. A numerical scheme to get .
shape-preserving scheme for a CIP-type method was developed from a rational interpolz
function over one mesh cell [54, 55]. This scheme, which we call the RCIP (rational-cul
interpolation propagation) scheme, shows good properties in keeping the topological na
of data, such as preserving convexity or concavity.

The 1D scheme is based on the rational function

-1

RP0) = > | Y apBpXP| C, X", (12)

0<ly<3 \0<p=<1
whereX = x — x; and

Co = fj

Ci=0 + fiupr

Co=Safr+ (§ —d)A !t = CsA
Cs=[0 — S + (G — )L+ a181A)]A; 2
oo = 1.0

Bo =10

Br=[1(S —6)/(Gup — I — 1A
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here

Aj = Xiup — Xi
S = (fip— f)Ai™?
g = df/dx).

In deriving the above coefficients, we first determigedhy settingC; = 0, which means
a second-order polynomial is the numerator of Eq. (12) becgusieould be effective at the
discontinuity where the scheme becomes lower order. Therefore four constraintis &
g at neighboring points are sufficient to determine these coefficients. After determiining
we use it as a fixed value and then recaBgand uniquely determine the cubic polynomial
by the same four constraints [55].

Then a solution to the advection equation can be written as

Co + C1£ + Cpt2 + Cgt3
1+ a181&

and the first-order derivative of the dependent variable is calculated by

" = RIP(x — uAt) = , (13)

gt = B £ = 9 RIP(x — UAL) = (Cq + 2Cp£ + 3C3£2) (L + a1 1)

n
—a1B1(Co + Ci§ + Cot® + Ca&°) (1 + 01 pr) 2 — (g—i g—i) . (1
I
whereé = —uAt. All the coefficients in the above expressions can be computed from t
guantities off andg at stepn. It is interesting to see that the second term on the right-har
side of Eq. (14) is proportional texy 8; and hence plays a role in reducing the contributior
from the highest order polynomial, the s, Cs&2 term, tog at the discontinuity.
The paramete®; € [0, 1] provides flexibility to choose between a rational function anc
a cubic function for interpolation. In practical computations, we recommend the followi
switching formulation to put the interpolatant “cubic” in the smooth region and the “rations
near discontinuity:
o1 = {l’ P (15)
0, g -Gu=0.

The subscriptup indicates an upwind grid point. The smoothness is detected by seei
whether the first-order derivative, which is computed as a dependent variable in the |
method, has the same sign at neighboring grid points. When the switching paraiister
setto zero, algorithm (13), (14) is identical to the original CIP methodxi.et 1; underthe
CFL condition, scheme (13), (14) is convex—concave preserving and monotone preser
if the given data are nonconcave or nonconvex, as proved in Ref. [54].

Numerical experiments, shown in Fig. 2b demonstrate that the scheme of Egs. (13)
(14) is capable of suppressing the spurious oscillation near discontinuities.

Fully two- and three-dimensional schemes can also be constructed by making use o
following interpolation functions (see [55] for details).

1
RPX.Y) = Y opaBpaXPY® > Gy Xy, (16)

0<p+q<1 O<Ix+ly<3
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and

-1

R (X, y.2) = > pqrBparXPYIZ' > G Xhyhzh (17)
0<p+q+r=<1 O<lx+ly+l,<3

Figure 5 includes the test run with this RCIP scheme.

2.5. Interface Tracking: A Sharpness-Preserving Method

Treatment of the interface that lies between materials of different properties remair
formidable challenge to the computation of multiphase fluid dynamics. Eulerian methc
have proven robust in simulating flows with interfaces of complex topology. General
Eulerian methods use color function to distinguish among regions containing differe
materials. To accurately reproduce the physical processes that occur across the inte
transition region, maintaining the compact thickness of the interface is very important. T
finite-difference schemes constructed on a Eulerian grid, however, intrinsically prodt
numerical diffusions to the solution of the advection equation by which the interface
predicted temporally. Thus, the direct implementation of finite-difference schemes (e
those of high order) cannot maintain the compactness of the interface.

Various kinds of methods have been developed to achieve a compact and correctly def

interface by introducing extra programming. Among the most common algorithms are 1
level-set methods and the VOF (volume-of-fluid) methods for front capturing, and othe
for front tracking [45]. The level set method that was first proposed by Osthalr [24,
29, 38] gets around the computation of interfacial discontinuity by evaluating the field
higher dimensions. The interface of interest is then recovered by taking a subset of
field. Practically, the interface is defined as the zero-level set of a distance function fr
the interface.

In VOF methods, on the other hand, the interface needs to be reconstructed based o
volume fraction of fluid. VOF methods are mainly classified as SLIC (simple line inte
face calculation) algorithms and PLIC (piecewise linear interface calculation) algorithr
according to the interpolation function used to represent the interface. The SLIC [11] al
rithm makes use of piecewise constant reconstruction, and the interfaces are approxir
by lines aligned with mesh coordinates. A significant improvement in the VOF meth
was made by Youngs with the PLIC algorithm [71]. Since then, some improvements in 1
reconstruction of the VOF interface have been reported [16, 32, 33]. The PLIC algoritl
estimates the interface with a truly piecewise linear approximation that greatly impro\
the geometrical faithfulness of the method. A comparison of various methods for track
interfaces can be found in [35].

In [64] and [65], we devised an interface tracking technique that appears to be efficie
geometrically faithful, and diffusionless. The method is a combination of the CIP advecti
solver and a tangent function transformation.

ConsidelK kinds ofimpermeable materials occupying closed af@a&), k = 1,2, ...,

K} in computational domai® € R3(x, y, z). We identify them with color functions or den-
sity functions{¢k(X, y, z,t), k =1, 2, ..., K} according to the following definition.

1L (XY.2) e Qd),

X’ ’Z’t = -
DXy ) {0, otherwise.
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Suppose these materials move at the local speed; then the color functions evolve acco
to the advection equation

%+u-v¢k=o, k=12...,K, (18)
whereu is the local velocity.

It is known that solving the above equation by finite-difference schemes in a Euler
representation will produce numerical diffusion and tend to smear the initial sharpnes:
the interfaces. In our method, rather than the original varigpiéself, its transformation,
sayF (¢x), is calculated by the CIP method. We spedifypy) to be a function oty only,
which means that the new functidf(¢y) is also governed by the same equation as (18
Hence, we have

IF (Px)
at

and all the algorithms proposed fgg (schemes for advection equations) can be used fc
F (¢x). We hope the considerable simplicity of this kind of technique will make it ver
attractive for practical implementation. Here we use a transformation of a tangent funct
for F(¢y); that is,

+u-VF(¢x) =0, (29)

F(éx) = tan[(1 — e)m (¢ — 1/2)], (20)
Pk = tan ' F () /[(1 — e)7] + 1/2, (21)

wheree is a small positive constant. The facidr— ¢) enables us to get arounebo for
¢k = 0 andoo for ¢ = 1 and to tune for desired steepness of the transition layer.
Remarks:

e Although ¢¢ undergoes a rapid change from 0 to 1 at the interf&a@y) shows
regular behavior. Because most of the valueB @fy) are concentrated negg = 0 and 1,
the function transformation improves locally the spatial resolution near the large gradiel
Thus, the sharp discontinuity can be described easily.

e A transformation of this kind is effective only for the case where the valugya$
limited to a definite range throughout the calculation, as is the color function defined abc
e An analysis (done by Brackbill in [5]) shows that transformifigto F (¢x) results in
a modification in the advection speed. The effective velocity guarantees the correctnes
the advection speed along thg = 0.5 surface of the interface transition layer and tend:
to produce a solution that counters the smearing across the transition layer with intrir

anti-diffusion.

e Thetangentfunctiontransformation performs well with other third-order schemes st
as the PPM method [6], but it is not encouraging when incorporated with low-order scher
or dispersion schemes, such as the first-order upwind scheme or the Lax—Wendroff sch
This can be explained by the fact tliat= 0.5 is not the middle point of the transition layer
for an advection scheme with significant errors in dispersion or dissipation.

e This method does not involve any interface construction procedure and is econom
in computational complexity. One of the interesting examples is the shock-wave interaci
with a liquid drop, in which the deformable shape of the drop has been successfully captt
[64]. Note that the presented method is more attractive in 3D computation since the exten
of the scheme to three dimensions is straightforward.
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Figure 2c shows a 1D square wave propagation computed by the CIP method together
the tangent transformation. The initial sharpness is well preserved and the discontinu
are advected with a correct speed. A 3D rotating notched brick, which was also uset
[16, 33] to evaluate the performance of the VOF method, was calculated with the tang
transformation as well. As displayed in Fig. 6, the geometry is satisfactorily preserved.

3. A SEMI-LAGRANGIAN APPROACH TO HYDRODYNAMIC EQUATIONS

3.1. Basic Equations

Before presenting a method to solve all the phases of materials, we must first const
a unified equation to describe all the phases. For this purpose we use the following se
hydrodynamic equations:

o +@Uu-WWi=S (22)

at
Here,f = (p,u,T),S= (—pV - U+ Qm, —Vp/p + Qu, —PruV - u/pC, + Qg), where
p is the densityu the velocity, p the pressure, an@l the temperatureQn, represents the
mass source ternQ, represents viscosity, elastic stress tensor, surface tension, etQgzand
represents viscous heating, thermal conduction, and heat sQyrisethe specific heat for
constant volume and we defifgy = T (dp/dT),, which is derived from the first principle
of thermodynamics and the Helmholtz free energy. HB¢g,is not merely the pressure. In
the special case of ideal fluid, howevE¥ is exactly the pressung because the pressure
linearly depends on temperature. The next simpler example is the two-phase flow descr
by the Clausius—Clapeyron relation

L 0
p= mexp(—ﬁ) Pry = T<£) x L, (23)

whereR is the gas constant. In this cas&y becomes proportional to the latent héat
Therefore,Pry describes the heat loss due to latent heat when the ratio of gas increase
two-phase flow. A more general form 6f and Py is given by semi-analytical formula or
tabulated data.

3.2. The Fractional Step Approach

The underlying physics included in the above equations for continuum dynamics is cc
plex and may include processes that have different time scales of variation. It is expediel
separate the solution procedure into several fractional steps. For example, for the adve
phase,

f
% + -V =0, (24)

and for the non-advection phase,

of
=S (25)
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FIG. 6. The 0.5isosurface of the notched brick. Displayed are the initial shape (top) and the computed re
after one revolution computed by the interface-tracking method (bottom).
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For the advection phase, the procedure given in Section 2 is used. The time evolutio
the spatial gradient in the non-advection phase is again calculated according to Eq. (25)

thus we have
3(9, )
X7 9, S. 26
ot = (26)

Usually it is not easy to get a finite-difference formagfS. One method for estimating this
term is [61]

(axf)n+l - (axf)* — ((Sxf)n+l - ((S)(fy<

27
At At 27)

whereé, f represents a centered finite-difference formdgf in the x direction. Thus the
time evolution ofd, f is estimated by the time evolution balready given by Eq. (25).

3.3. Application to Shock Waves

As is well known, in a primitive Euler scheme, as in Eq. (22), the equation of intern
energy is decoupled from kinetic energy. Therefore, in order to correctly transform dis
pated kinetic energy to internal energy, some real physical mechanism must be introdu
In ordinary hydrodynamics, viscosity plays this role. In most cases of practical interest,
shock width is smaller than the mesh size. However, since the dissipation scale is limite
mesh size in computation, viscosity with this scale will be much smaller and hence will r
give the correct dissipation energy. Therefore von Neumann and Richtmyer [22] propo
the use of an artificially large viscosity coefficient to achieve a sufficient viscosity effe
even with a shock width equal to the mesh size. The correct form of this artificial viscos
is given by the Rankine—Hugoniot relation as shown by Wilkins [49], and its improved for
free from directional dependence in 3D was proposed by Ogata and Yabe [23].

The CIP method with this numerical viscosity has been tested by an example of t
interacting blast waves given by Woodward and Colella[52]. Inthis case, initial prgsstre
1000 forx < 0.1, p=0.01 for 01 < x < 0.9, andp = 100 for Q9 < x < 1. Although
Woodward and Colella used a minimum grid sizerof = 1/9600, we have succeeded in
reproducing the result even with a uniformly spaced gridaf= 1/400 (Fig. 7b) and it
should be noted again that the present scheme used the primitive Euler representati
capture these shock waves.

O = N W A~ 01 O ~N
T T

O = N @ s O O N
T

0 02 04 06 08 1 0 02 04 06 08 1

FIG. 7. Interacting shock waves. Density profiletat 0.038 with (a) 800 and (b) 400 equally spaced grids.
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FIG. 8. Shock propagation in multiphase media.

The merit of primitive Euler representation of the CIP method can be demonstrated
the example of shock propagation through multiphase media. Figure 8 shows the result
typical example, as discussed by Karni [15]. The specific heat ratio varies and is 1.4 on
left and 1.2 on the right. The specific heat ratio propagates according to Eq. (18) toge
with the contact discontinuity. At this point, fictitious pressure undulation appears wh
conservative schemes are used. However, the CIP can correctly treat the problem wit
any pressure undulation, as shown in Fig. 8. Note that in all the calculations shown in
section, we used neither RCIP nor tangent transformation to demonstrate the performan
the simple CIP. Small undulations of density at the contact discontinuity can be elimina
by RCIP and the profile of can be sharpened by tangent transformation. In addition, fc
the pressure (temperature) solution, Eq. (22) is explicitly solved and the implicit technic
given in the following section is not used.

4. APRESSURE-BASED ALGORITHM IN A PRIMITIVE EULER SCHEME

4.1. Pressure-Based Algorithm

The CIP method uses the primitive Euler method to solve Eq. (22); thus the formulat
into a simultaneous solution of incompressible and compressible fluid is readily obtain
In order to understand this strategy, we first examine why it has been difficult to so
these equations together. In ordinary compressible fluid, the demsgtysolved by the
mass conservation equation and then the temperdatigebtained by the energy equation.
After that, from the equation of state (EOS), schematically shown in Fig. 9, the press
p = p(p, T) is calculated. At the low-density sidp,cx pT like ideal fluid and dependence
is relatively weak, but at solid or liquid density steeply rises as the density rises. This
means that extremely high pressure is need to compress solid or liquid even slightly
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FIG. 9. Anexample of an equation of state. Each line represents isotherms.

other words, for solid or liquid, the sound spe@g= (dp/dp)*/? is very large. Therefore,

if we look at the process in which density is first calculated, we find that only a sm:
amount of density error—210%, for example—causes a large pressure pulse of 3—4 or
of magnitude.

In such a situation, incompressible approximation is normally adopted; that is, the pr
sure equation to ensuké- u = 0 is derived from the equation of motion and mass consel
vation. This scheme is called a pressure-based scheme and MAC [10], SMAC [1], SIMF
[28], and SIMPLER [27] are typical examples.

In order to extend this idea to compressible fluid, we need to modify the EOS sho
in Fig. 9. If we rotate the figure by 90 degrees, then the steep pressure curve beco
a flat density curve. This means that if we could first solve the pressure and then €
mate the density in terms qf(p, T) by using the EOS shown in Fig. 9, the problem
at liquid density would be eliminated. In addtion, since the EOS in lower density g
depends linearly on other quantities, this reverse procedure creates no problems in
case.

Then how do we realize this reverse procedure? For this purpose, we should pre
how the pressure reacts to changes in density and temperature. Such a unified proc
to incorporate compressible fluid with incompressible fluid has been initiated by Harlc
and Amsden as the ICE (implicit continuous Eulerian) [9]. The ICE has been improv
by the PISO [12] (pressure implicit with splitting of operators). In both cases, howev:
conservative equations are used as a starting point. The main difference between the
and the PISO is in the treatment of the convection term.

On the other hand, the CCUP (CIP-combined and unified procedure) [63] uses primil
Euler equations and splits the advection term from the other terms, related sound waves.
simplification also simplifies the pressure equation and greatly improves our ability to attz
multiphase flow. One year after this proposal, Zienkiewicz [73] proposed a similar meth
but applied it to the finite-element method. Unfortunately, however, with their scheme it
not as easy to remove the difficulty stemming from a large-density ratio at the bound
between liquid and gas, as discussed below.

We now present a condensed and generalized description of the ICE. In both the ICE
the PISO, conservation equations of mass and momentum are used in a finite-differe
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form,
p"t—p"  3(pw) 28)
At X
(pw) — (pu)" op"tt
= - H 29
At ax +HW (29)
3(pu?)
Hu) = - . 30
(u) o (30)
Substituting Eqg. (29) into Eq. (28), we get
82 n+1 n+1 _ ,n 179 n OH
Pt _p p" 1 [dpu oH (31)
X2 At? At\ 9x X
Next, if we assume that density changes in proportion to pressure change,
ad
p /1
then density change on the right-hand side of Eq. (31) is replaced by pressure change
92p™t  p™t—p" 1 /8pu\"  oH (33)
ax2  C2At2 At\ 9x ax

In the ICE, the ternH is estimated at the step while in the PISCH is predicted by an
equation of motion,

nuP — (ou)" ap"
% = _BLX + H(Up)v (34)

and finally gives

(35)

aZ(pn+1 _ pn) _ pn+1 _ pn 1 apnup n
Ix2 - Caat? At\ ax )’

The original PISO is more complicated because it repeats this predictor—corrector
gorithm a few times and some complication appears to diagonalizel theem to solve
Eq. (34) in terms ofiP.

4.2. CCUP Method

Yabe and Wang [63] adopted the primitive Euler form instead of the conservative fo
to construct the pressure equation. Furthermore, the advection part is separated fror
other terms, since the advection term can be processed free from the CFL condition
semi-Lagrangian procedure. Fortunately, this splitting led to an unexpected advantag
the solution in multiphase flow, as shown below.

The original CCUP method [63] was proposed only for a special equation of state s
as Eq. (32), but here we rebuild it with a more general EOS [56]. That is, for small chan
of density and temperature, the pressure change can be linearly proportional to them e

op op
Ap=|—] A — | AT 36

where Ap means the pressure changle! — p* during one time step andis the profile
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after advection. This also appliesdoT. From this relation, oncap andAT are predicted,
Apis predicted based on Eq. (36)p/dp, dp/dT are given by the EOS.

Since the CIP separates the non-advection terms from the advection terms, we can
centrate on the non-advection terms related to sound waves, which are the primary cau
the difficulty posed by the large sound speed of liquid, and hendeare simply given by

Ap = —p*V - u™At  p*C AT = —PryV - u™1AL, (37)

whereC, is the specific heat ratio at constant volum&":! in this equation is given by an
equation of motion as

\v/ pn+1
o*

AU =

At. (38)

SinceAu = u"t! — u*, Egs. (36)—(38) lead to a pressure equation [56, 63]

p*CSZ + o At

n+1 _ % I
v <i*v pn+l> — p p = + V-.u ) (39)
1% Atz( TH )

Then substituting the givep"™* into Eq. (38), we obtain the velocity’*! and then the
densityp"*! from Eq. (37). From this procedure, density can be solved in terms of pressu
which is analogous to rotating Fig. 9 by 90 degrees. Equation (39) has many import
features. This equation shows that, at sharp discontinuitiedy p/p) is continuous. Since
Vp/p is the acceleration, it is essential that this term be continuous since the den:
changes by several orders of magnitude at the boundary between liquid and gas. In
case, the denominator 8fp/p changes by several orders, and the pressure gradient mi
be calculated accurately enough to ensure continuous change of acceleration. Equa
(33) and (35) derived by the ICE and the PISO seem to be similar to Eq. (39) but f
continuity of Vp/p in the ICE and the PISO is not guaranteed. However, Eq. (39) worl
robustly even with a density ratio larger than 1000 and enables us to treat both compres:
and incompressible fluids. Computationally, the solution of Eq. (39) provides a press
distribution that can be used to project the velocity field for variable density flow; i.e., tl
resulting pressure field is weighted by the inverse density. Other projection methods v
variable density for incompressible fluid can be found in [3] and [32].

It is interesting to examine the meaning of this pressure equation. the term is
absent, this equation is merely the diffusion equation. The origin of this term is as follov
During time stepAt, the sound wave propagates for a dista@gat. In the next step, the
signal also propagates backward and forward since the sound wave should isotropic
propagate. Then statistically, 50% propagates backward and another 50% forward.
process is similar to the random walk. The diffusion coefficient of the random walk
given by the quivering distanc&x = CsAt asD = Ax?/At. This leads to the diffusion
equation for pressure. From this consideration, we can see how the effect of sound w:
is implemented.

4.3. Two-Dimensional Driven Cavity Flow

As amodel problem for verifying the numerical scheme, we first examine two-dimensio
incompressible flow in a square cavity with a top wall moving at a constant velocity. Tt
problem has been studied by many researchers as a benchmark problem. In order to
ulate incompressible flow with compressible-type equations, the sound veloisyset
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FIG. 10. The velocity profiles in a two-dimensional driven cavity flow with 880 and 60x 60 Cartesian
grids. For comparison, the result by Gleieal. [7] using 256x 256 multigrids is shown by circles.

to 1.0 x 10'% instead of toco. In this calculation, we need to include the viscosity term ir
Eq. (38) butitis possible to treat it separately by a splitting procedure [63] or by a predict
corrector scheme [70]. The calculations are performed on a uniform grid structure for
Reynolds number 10,000. The velocity profiles [70] in thandy directions are shown
in Fig. 10. For comparison, the result of Glagaal. [7] from using 256x 256 multigrids

is shown by circles. As shown in the figure, the solution with660 meshes is accurate
enough to reproduce Ghia’s result near the wall as well as in the central region, altho
the one with 30x 30 meshes failed near the wall.

4.4. Milk Crown Formation

The next example demonstrates the capturing of the liquid—gas interface. Simulatiol
the coronet or “milk crown” has long been a dream in computational physics [8]. The auth
successfully simulated this problem [66, 67] and discussed the effect of surface tension c
paring expected effects with experimental data [72]. The coronet is not only a conseque
of a free-surface problem; we must solve the problem of surrounding gas as well.

Figure 11 shows an iso-surface contour of density in whichx1a®0 (horizontal)x 34
(vertical) fixed equally spaced grids are used wiii16 grid spacing, wher® is the
diameter of the water drop. A thin water film with a thicknes€o# is placed on a solid
plate and a water drop impacts from the top at a spedd;dRe= U D/v = 8000. We
solved for air as well as for water and the density ratio at the interface is almost 1000.

Surprisingly, as this three-dimensional simulation shows, the wavelength of the irref
larity or finger along the rim depends on the density of ambient gas and increases with
density. Even for the highest ambient density, the density ratio of liquid and gas is still
and such a low-density gas has been believed not to cause such a significant change be
the growth rate of the Rayleigh—Taylor (R-T) instability is proportionaldg, — pgad/>.

We proposed a stabilization mechanism by ambient gas [72]. Since the wind of amb
gas blows toward the rim radially in the moving frame of the rim, it can act to stabilize the |
T instability like a wall. If this wind velocity i$Jo, then the effect of the rim pressure should
be added in the perturbed form 8pgadJ3/dX, Which is roughly pgadJod (£/At) /X ~
PgadJoKE yrr, Whereg is the amplitude of the perturbed surfaeg, ~ 1/ygr, andx is in
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FIG. 11. A water surface plot in the coronet-formation process. A 0000 x 34 Cartesian grid is used.
The figure shows the plots ait= 8.2D/U. Ambient gas density used in the simulatiomig/ p.iq = 0.002 (top),
0.02 (middle), and 0.03 (bottom). The irregular structure disappears as the gas density increases.

the radial direction. Thus we obtain a model equation [72]:
0%€ 2
PLig e = PLigYrTE — PgadJoKE YRT. (40)

Therefore the criteria for the growth of perturbations will be

YRT > piaskuo- (41)

PLiq

Thus, the maximum wavenumber for instability is inversely proportionaggg sinceyrr
is proportional tck/2.
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In the simulation, we have included kinematic viscosity for water and ait Bgv =
8400 and 560, respectively. Since the viscosity effect appears in aform of kinematic visco
in the R-T instability, the effect of the ambient density does not explicitly appear in
result. The effect of surface tension has also been discussed in Ref. [72] and has |
compared to experimental results.

Since the wavelength of the fingers along the rim strongly depends on the density
ambient gas, the finger formation observed here is not an artifact of finite grid size, altho
it might have provided seeds of the instability. As is clear from this example, simulations ¢
provide important information about coronet-formation physics by modeling situations t
would be hard to create experimentally. The phenomena observed here also give valt
information about GDI (gasoline direct injection) engines, in which the impact of splashi
fuel on the combustion chamber is the key issue for efficient combustion [47] becal
of increasing surface area. Since ambient pressure in the chamber should be high
generation of droplets might be greatly reduced as indicated here.

4.5. Laser-Induced Evaporation

We now add further complication to this interaction, i.e., phase change. Figure 12 sh
melting and evaporation of aluminum under the illumination of laser light, where the dens

] B

(b)

FIG. 12. The density contour of aluminum (on the left) illuminated by laser light. The filamentary structut
explains the experimental results. The time sequence is (a) 40 ns, (b) 90 ns, and (c) 290 ns with an elastic—
effect. The crater does not grow after this. However, if the elastic—plastic effect is switched off, it continues
grow like the contour at (d) 500 ns.
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changes from 2.7 to 1@ g/cn?®. Aluminum solid is initially treated as an elastic material,
whose treatment s given in Section 5, and then as a liquid and vapor during phase transi
This change is simple as realized by the equation of state shown in Fig. 9. This exan
shows that the code has a strong ability to describe a sharp interface and is robust en
to treat both compressible and incompressible fluid simultaneously. In this calculation,
used two-dimensional cylindrical coordinates and a grid of 90 (axial5 (radial). Laser
light is normally incident and is simply treated as a straight line depositing its energy at 1
solid—gas interface with an absorption rate of 30%.

The experiment was performed at the Institute of Laser Engineering, Osaka Univer:
[68]. A YAG laser of 650 mJ and an 8-ns pulse width are used to illuminate an aluminui
slab target. Final crater depth and shape agree well with the simulation. It is interest
to note that the crater is not formed during the laser pulse but develops gradually ov
time scale of several hundred nanoseconds well after the laser pulse has ended, as s
in Fig. 12. The very high temperature plasma of more than a few tens of electronvolts
produced by the 8-ns laser pulse, and most of them expand from the target. However, s
stay near the target for a long time after the laser pulse because of the recoil force f
expanded plasmas and act as a heat source to melt the aluminum over a time scale of se
hundred nanoseconds.

When the plasma temperature becomes less than the melting temperature—around 2
(the time is measured from the laser peak)—aluminum with a strength of 0.248 Mbar ar
yield strength of 2.2976 kbar starts being affected from the stress and no distortion oc
after that time. This yield stress plays an important role in determining the final crater si
Without yield strength, the crater develops further even after 490 ns and becomes se\
times larger, as shown in Fig. 12d, although less difference is seen at the beginning arc
90 ns.

The plasma-heated crater formation leads to other interesting phenomena. Since
plasma acts not only as a heat source but also as a pressure source, the dynamic exp:
of evaporated material at a later time is strongly modified. Since a high-pressure regio
just in front of the evaporation surface, the vapor is forced to bypass this region, flowi
through a narrow channel between the metal surface and this pressure source. Therefor
vapor preferentially flows toward a circumference with a large angle to the target norrr
This effect is the exactly the same as that obtained in the experiment [68].

The simulation predicts additional interesting behavior. The expansibr:at0 ns is
uniform because its temperature is high—a few tens of electronvolts. The experiment s
ports this result and the debris around 0 degrees is very fine and indistinguishable \
an optical microscope. On the other hand, the simulation resuk=e290 ns shows some
filamentary streams flowing from the surface. The experiment also supports this result
the debris at 75 degrees consists of particles of 1 tar20

5. TREATMENT OF EMBEDDED BOUNDARIES IN CARTESIAN GRIDS

5.1. Fluid—=Structure Interaction

Directly computing the interactions between solid bodies and suspended fluid is neces
for suspension flows in which the suspended bodies interact with the surrounding fl
and substantially influence the flow motion. An efficient computational model for flow
containing distortionless rigid bodies can be constructed by using the numerical proced
introduced in Section 2.5.
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Using color functions, we can easily treat solid bodies or objects that have any comg
shape or heterogeneous density distributions.
The advection equation for the color functign

a
%+ub(|)~v¢|:0, l=1,2,...,L, (42)
is solved by the method in Section 2.5 to recognize all the solid bodies, whgrés the

velocity field for object. The motion of the objedtis determined by
Ubay = Uy + T x €, (43)

wherey, is the translational speed of the mass center of ohjé_ntis the angular speed, and
r is the distance to the mass centet= x — X, X = [ xp¢y dV/M, andM = [ p¢y dV.
These quantities are predicted by Newton’s laws of motion
du 1 [du
— = —pp dV 44
= wm | qredv. (44)
and
d = = — du
— 1) =T = —pgp dV, 45
dt( o) [ /fxdtpfbl (45)

whereI‘_| is the torque for objedt 1'_I(|) is the tensor of inertia momest [ rr p¢ dV.

Allthe forces (represented pydu/dt, including both the body force and the fluid stress)
are calculated at all grids in a volume force form. It is convenient to compute the net fo
on the mass center of objecby summing up all the forces over the entire domain, bu
only the region recognized I = 1 contributes to the integration in Egs. (44) and (45).
Different from the so-called “surface force” formulation, the volume force—based schem
as we used here, do not need information about the body surface, such as orientation
surface areas, which appears in other difficult problems in computation.

A non-slip condition is used to impose solid motion onto the velocity field of the fluic
which in turn is driven through the velocity coupling as

du

= IZ¢I(U — Up(y). (46)

Ths slip boundary condition can be treated similarly but is slightly more complicated [6'
We computed a solid object undergoing steady translation at a low spéedtokes
flows. Some similar examples can also be found in the works of Pan and Banerjee |
26]. The Reynolds number Re 2avs/v is 0.006, whera is the radius being described by
two grids in Cartesian coordinates. Figure 13 shows the velocity component perpendic
to the velocity of the particle and the analytical results at different levels apart from t
particle, and here we find agreement between the numerical results and the analy

solutions.

As an example of treating complex geometry, we simulated a rotating spherical c:
rising from fluid under the force of floating. The cage is a hollow sphere with six holes «
the surface, and the thickness of the cage is described by seven grid sizes. This geome
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FIG. 13. A solid sphere moving at a constant spaegdn a viscous fluid produces steady flows in the
surrounding fluid. Displayed is the velocity distribution of the velocity component normal to the moving speed
the particleps, at distances ofz, — z)/(2a) = 1.5 below the particlez, is the particle location anais the radius
of the particle. The solid line represents the analytical solution, and the circles denote our computational res

too complex for many numerical methods to handle. The cage has a density 10% that o
fluid and rotates initially along the gravity direction. Figure 14 shows the time developme
of the process. The cage rose from under water and drove out the surrounding fluid. Pa
the fluid was carried upward by the cage and then leaked out through the holes. The «
then approached its equilibrium state and stayed on the fluid’s surface.

FIG.14. Aspherical cage floating up from under water with an initial rotation along the gravitational directiol
A 150 x 150 x 150 Cartesian grid is used. Time increases from left to right and from top to bottom. This sol
cage is described by a color function with tangent transformation.
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5.2. Numerical Formulation for Surface Tension

The CSF (continuum surface force) formulation [5] is widely used in the CFD (con
putational fluid dynamic) society. In the CSF computational model, the surface tensiol
converted into a form of volume force and the resulting force is proportional to the produc
the interface gradient and the surface curvature. A similar expression can be easily obte
using the solution of the variational problem for the total energy conservation [13]. T
effects of surface tension are consequently included in the computational model throug
external forcing term added to the momentum equation. Then, iexteenal-forcing—and
resource-terms—related phasge must solve the equation

d
pos = —oK($)V9, (47)

whereg is the color function defined above. The local mean curvature is calculated as

V¢
k(p) =V Vol (48)
Computing the curvature requires the gradient field»ofThe gradients can be directly
obtained from the distance function in a level set method in which the quangitgiways
indicates a slope of 1 but needs to be artificially smoothed in a VOF-type method in wh
an interface is presented via a discontinuity in the VOF function.

Using a CIP-type scheme to calculate the color funciippne can simultaneously get
the solutions tap and its first-order derivatives. This fact motivated us to make use
the readily known values di;¢, dy¢, andd.¢ from the interface-tracking calculation. In
evaluating the curvaturg¢), we can directly manipulate the gradients of the color functiol
as dependent variables.

A 2D example of an equilibrium rod in [5] was used to validate the computational mod
The 2D RCIP scheme was used in the calculation of the color function.

When the viscosity effect is neglected and a constant surface-tension coefficient is
sumed, from Laplace’s formula we can obtain the theoretical prediction of the pressure-j
inside an infinite cylinder aa pheor = 0/ R, whereR is the cylinder radius. We computed
the equilibrium rod problem with the modelintroduced above. A Cartesian grid with unifor
mesh spacingXx = Ay) was used and the background pressurelsQalculations were
carried out with drops with various radii and surface-tension coefficients. The numeri
error is measured with thie, norm defined by

\/Zi,j [(A Pnumeri,j — A|3thc-:-or)2¢i,j]
L, = > .
A Ptheor Zi,j ¢i~J

In all the cases, equilibrium pressure jumps were built up and underwent no notices
change after 500 calculation steps.

Results after 1500 time steps are displayed in Fig. 15 and Table |. Figure 15 exhi
an oscillation-less plateau of a pressure field and a sharp transition region that covers
than two grid points. As we evaluate the surface tension from a color function which t
a compact transition thickness, we see that the force is only imposed on a narrow re
along the interface. This looks different from the CSF method, which gives a smoott
pressure jump across the interface due to the use of a smoothed color function. Tal
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shows agreement between the numerical and theoretical results. Compared with the ce
R/Ax = 20, that ofR/Ax = 5 also gives a competitive computational accuracy even wit
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FIG. 15. Pressure field of the 2D equilibrium roR(A = 10, 0 = 0.1).

such a low spatial resolution.

5.3. Computation of the Constitution Equation

Modeling of fluids which contain flexible bodies has been done so far with numeric
methods based on Eulerian representations [19, 30, 31]. In these methods, the rheolo
effects are included by using either massless Lagrangian particles to evaluate the s
or finite-element technigques on subdomains to treat the flexible bodies. McMaster [
discusses three computer codes to model fluid—structure interaction, where Eulerian f
differencing is used to compute the fluid and a finite-element method is used to solve
structure. The key strategy underlying those numerical models is to couple the fluid and
structure by an iteration procedure that results in a continuous velocity boundary condit
on the interface between two material components. The advantage of the CIP methc
that it can be applied to all the materials including flexible bodies using a single algoritt

with no iterative procedure.

TABLE |
Comparison of the Computed Mean Drop Pressure Jump

APrumer. = D _ij APrumerij®iil Y ¢1; and the Theoretical
Pressure, and thel, Errors for the Equilibrium Rod Problem

R/AX o A Prumer/ A Pineor L>
5 0.1 0.982 B x 102
5 0.2 0.951 & x 102
10 0.1 0.972 BHx 1072
10 0.2 0.965 Dx 102
20 0.1 0.994 Bx102

20 0.2 0.992 3 x 1072
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Based onthe fractional-step solution procedure mentioned in the previous sections, we
construct a numerical treatment for the constitutive equation—related phase [58] separ:
from other processes. The constitutive relation, which has a differential form and relates
velocity to the stress or stress rate, is solved by the finite-difference method. The resul
velocity is then used as a provisional value in the remaining computations.

Constitutive equations, which give prescribed relations between stress and strain,
usually expressed in terms of stress or stress rate and strain or strain rate. Since veloc
one of the dependent variables in the present computational model, a constitutive equi
in terms of strain rate is more convenient to formulate. Thus an equation such as

di . }deij 1d6kk . déij _ ou; %
=26 . dt — ax; = 9x

dt 2dt 3 dt

is used to obtain a stress tensgrfrom velocity fields with Young modulu&. By using

a staggered grid, the conventional central differencing results in a compact computatic
formulation. The time integration of the “velocity—stress” relations can be computed by
multistep explicit scheme based on the Taylor expansion [58] or by a semi-implicit sche
using the ADI (alternative directional implicit) technique [53].

Figure 16 shows the sequence of two kinds of viscoelastic bodies sedimenting in fl
under the force of gravity. The object is initially put in a direction oblique to gravity whicl
points downward. Once released, the object moves down and is imposed on by forces
the surrounding fluid. As expected from the theoretical analysis [59], the net external fo
along the body will bend the long axis into a curve. The bent object will then produce
torque that tends to push it toward a horizontal position. Thus, the object vacillates whil
is sedimenting in the fluid. A constitutive equation for a Hook elastic solid is used for tl
pure elastic body. As can be seen from Fig. 16 (top), the elastic force resists the forcing f
the fluid and prevents further deformation of the body. For the Maxwell body, a constitut
equation for a Maxwell solid body is used, which includes both elastic and viscous effe
and a relaxation on elastic stresses takes place. In the present calculation (Fig. 16, bot
the Deborah numbelNp = 1/t with tg being the total integration time) is aboyt The
stress is released significantly during the computation. The body is bent to a larger ex
and behaves more like fluid.

Figure 17 shows another example. An elastic ball collides with a plate which is fixed
both sides. Both ball and plate move through a ¥0D00 fixed Cartesian grid. Here only
10 grids are used to describe the thickness of the plate at its initial location. The black |
in the figure is filled with air and is also taken into account in the calculations. After tt
collision, the ball again detached from the plate. Such behavior is difficult to simulate w
adapted grid methods.

6. CONSERVATIVE SEMI-LAGRANGIAN SCHEMES

It is useful to look for conservative semi-Lagrangian schemes because the se
Lagrangian method can be effective on parallel computers, is suitable for multiphase fl
and enables the advection calculation to be made with a large time step free from the
condition. Although the semi-Lagrangian scheme has been successfully used in short-
atmospheric problems, the loss of exact conservation makes the scheme inappropria
long-term problems and oceanic problems.
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FIG. 16. Sedimentation of a pure elastic body (top) and a Maxwell body (bottom) in fluid. Time increas
from left to right and from top to bottom. The vorticity of the environmental flow is also plotted.

Furthermore, some subjects require exact conservation of mass. A typical exampl
black-hole formation and emission of gravity waves [36]. In this case, a small fraction
mass is converted into gravity waves and strict mass conservation is essential. Ano
example is plasma simulation in which a Vlasov equation in six-dimensional phase sp
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(a) (b)

FIG. 17. Example of elastic—plastic flow. The system is described by a<x1000 Cartesian fixed grid, and
only 10 grids are used for the width of the plate. The plate and ball are moving through a fixed-grid system.
black part is filled with air and is also taken into account in the calculations.

must be solved and total particle density must be conserved or else a large electric
appears. The CIP method can be constructed to exactly conserve the total massinaV
system of equally spaced grids in phase space [21]. However, the use of non-equally sp
grids or other general grids can save on computational cost and is worthy of investigat

In this sense, establishing exact conservation in a semi-Lagrangian form would be a
lenging task. In shall section, we propose a non-conservative or semi-Lagrangian sch
that guarantees exact mass conservation.

6.1. CIP-CSL4 [43]
We first discuss the conservation law, which is computed as
of owf)

—+
at aXx
As already seen, the CIP adopts an additional constraint, i.e., the spatial gradient, to repr
the profile inside the grid cell. In order to ensure the conservative property, we here

another constraint,

0. (49)

Xit1
Pir1je = / fhdx. (50)
J X
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Therefore the spatial profile must be constructed to satisfy this additional constraint as v

If this is possible,f is advanced in the non-conservative form, but conservation is realiz

by p which is advanced by remapping of the Lagrangian volume, as described below.
Theith function piecd; (x) is determined so as to satisfy the continuity condition

Fi(xi-1) = f(Xi-1), Fi(xi) = f(x)
IR (Xi—1)/0x =9g(Xi—1),  IF(X)/Ix = g(X) (51)
S R0 dx = pi_1/2.

In order to meet the above condition, a fourth-order polynomial can be chosen as an ir

polation functionk; (x); the time development of andg is calculated simply by shifting
the interpolation functior; (x) by uAt in the same way as Eq. (4) of the CIP method as

f* = F(x — uPAt) = g + b'e® + &2 + oPg + M, (52)
o = 3Fi (x — ul'At) /ax = 4al&> + 30&? + 20N + g, (53)
where§ = —ul'At and

al — —5(6( fiup + f)AX — (Gup — G) AX? + 125gn(uf) pi —sgnur),2)

2AX° ’
n 4(7( fiup + 8fi)AXi - (giup - (3/2)gi )Axiz + 1559r(uin)pi —sgr’(u[‘)/Z)
bi = AX-4 ’ (54)
1
o —3(42fiup + 3f) Axi — (Giup — 39 AX? + 20sgn(U!) pi —sgriur) 2)
! 2A%3 ’

AXj = Xiyp — Xi,
_ i—1 iful>0,
up = <. :

i+1 iful <0,
+1 ifur >0,
-1 ifu' <O.

sgn(u) = {

The problem left for usis to calculate the time developmept ¢ffwe define the upstream
departure point of; as

t+At
xP =X — / u; dt, (55)
t
the density contained betweer”[;, x"] is simply remapped intox_z, x] at t + At.

Therefore in the simplest casewht/Ax < 1, the time development gfis calculated by
the following equation.

pinjll/Z =12+ Apy — Apf. (56)
With the aid of Fig. 18, it is clear thakp" is defined by the equation
Xi n bn ch n
Apfl = / Froodx=—(Tet+>e0+ 26+ Te+ 10 )a, 67
X —u' At 5 4 3 2

where§ = —u'At, and each coefficient is equivalent to Eq. (54) at time step
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FIG. 18. The inflow and outflow of flux duringt.

Therefore, the solution of Eq. (49) is given by Egs. (52)—(57). Extension to more gene
equations is similar to the CIP method.

6.2. Numerical Tests

We present some sample calculations to test the procedure given in the previous sec
The first example is an advection with variable velocity and Eq. (49) is solved under a gi\
velocity field,

u=1+0.5sin27rx/100),

with the initial condition

1 if40<x<60
f(0,x) = _
0 otherwise

where equally spaced grid points afx = 100/(N — 1) and a time-step size okt =
10/(N — 1) are usedN being the number of grid points.

We repeated the calculation by changing the total number of grid points to 101, 301,
1001 to test grid dependence of the present scheme, the CIP scheme, the upwind schem
TVD with a superbee limiter [39], as shown in Fig. 19. The result of the first-order upwir
scheme withN = 10,001 is also shown in Fig. 19. All profiles shown are afteiN.6- 1)
time steps, which corresponds te= 100. Since no analytical solution is available, the
result of the present scheme with= 1001 is shown by the solid line in the figure.

We confirm that the accuracy has been improved at the discontinuity by the pres
scheme. Note that the first-order upwind scheme needs 10,001 grid points to obtain
same result as the present scheme or the CIP method using 101 grid points, which conv
to one solution regardless of grid size. Furthermore, it has already been shown that
of the modern schemes such as TVD and ENO fail to reproduce the result with 101 ¢
points [42], as shown in Fig. 19.

The following one-dimensional Burger’s equation is an interesting example of applicati
to a non-linear equation.

au au 32u
— 4+U— =A—>=S. 58
ot + X X2 (58)

The viscosity term is calculated with a finite-difference approach.
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FIG. 19. Propagation of a square wave with a given velocity field by the present scheme, the CIP meth
the upwind scheme, and the TVD scheme with a superbee limiter (SPB) 400. The number of grids is 101
(circles), 301 (triangles), 1,001 (squares), and 10,001 (diamonds). For comparison, the result of the present sc
with 1,001 grids is shown by the solid line.

In order to calculate the spatial derivativelpfwe differentiate Eq. (58); then

o o’ 2

— — =-u“+S. 59

ot * X + (59)
This equation is split into two phasesu’/dt + udu’/ax = 0 (advection) andu’/dt =
—u”? 4+ S (non-advection). We calculate the advection phase with Eq. (4), and the nc
advection phase with the following equation, applying a finite-difference method.

n+1 2
U™t = Ut — (U)At.

The SandS terms are treated by the method given in Section 3.2. In fact, first-order tin
integration is not necessarily used here. A higher order integration along the trajectory
be easily implemented.
For the calculation op (= [u dx), we transform Eq. (58) into the conservation form as
follows.
2
ou n a(u</2) _

S 60
ot X (60)
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==0==Present(N=101)
—JPWIND(N=1001)

FIG. 20. The result of Burger's equation without viscosity with the present scheme with 101 grid points
t = 100. For comparison, the result of the first-order upwind scheme with 1001 grid potnts B0 is shown

by the solid line.

Figure 20 shows the calculation resultat 100 witha = 0 and the initial condition

u(0, x) = 0.5+ 0.4 cog27x,/100), (61)

and equally spaced grid pointsaak = 1.0, atime-step size akt = 0.1, and mesh number

N = 101 are used.

In order to check the exact speed of a shock wave, we show the result of the calcula
with the conservative form of Burger’s equation using the first-order upwind scheme w

N = 1001.

0.8

0.6

0.2

==O==Present
Exact

FIG.21. Theresultof Burger's equation with viscosity with the present scheine-&lt00. The exact solution

is shown by the solid line.
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=100fs T (=120fs T t=L40fs

FIG. 22. Bird's-eye view of a gas—liquid turbulence mixing layer.

In this calculation, although the viscosity term is not considered, the speed of a sh
wave can be exactly reproduced by the present scheme.
Next we solve Eq. (58) with a viscosity term and condition as

0.9 if x <10
u@Q, x) = )
—-0.1 if x > 10,

where equally spaced grid points afk = 1, and a time-step size @&t = 0.1 are used.
The coefficient of the viscosity term is setite= 0.15.

Figure 21 shows the profile after 1000 time steps that correspornds:th0, and the
propagation speed agrees well with the exact solution.

7. SUMMARY

We have reviewed various families of the CIP method to address the problem of mu
phase flow. Significant improvements are still being made but we cannot discuss all of th
efforts, such as, application to the finite-element method, extension to higher order poly
mials, application to other equations such as diffusion or the Poisson equation. Applica
of the CIP method to various fields such as volcanic eruption, astrophysical jets [17],
GDI engine, and combustion is also expanding. Some of these fields are discussed ir
special issue of the CFD Journal on the CIP method (vol. 8, No. 1, 1999). Before closi
we introduce an interesting application done by Mutsuda and Yasuda [20]. Figure 22 sh
a bird’s-eye view of a gas—liquid turbulence mixing layer driven by jet ejection, in whic
a three-dimensional domain of a solitary wave leads to very forceful wave-breaking ol
double reef with two steps, and the surface profiles and entrained air bubble motions dev
quickly into the turbulent mixing layer with strong three-dimensionality. This simulatiol
has been done with one CPU on an Intel-based personal computer (with a 300-MHz Pen
Il processor).
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