
Journal of Computational Physics169,556–593 (2001)

doi:10.1006/jcph.2000.6625, available online at http://www.idealibrary.com on

The Constrained Interpolation Profile Method
for Multiphase Analysis

Takashi Yabe,∗ Feng Xiao,∗,† and Takayuki Utsumi†,‡
∗Department of Mechanical Engineering and Science, Tokyo Institute of Technology, O-okayama, Meguro-ku,

Tokyo 152-8552, Japan;‡Advanced Photon Research Center, Kansai Research Establishment, Japan
Atomic Energy Research Institute, 25-1 Miiminami-machi, Neyagawa, Osaka 572-0019, Japan;

and†Frontier Research System for Global Change, SEAVANS North, 1-2-1 Shibaura,
Minato-ku, Tokyo 105-6791, Japan

Received December 16, 1999; revised August 3, 2000

We present a review of the constrained interpolation profile (CIP) method that is
known as a general numerical solver for solid, liquid, gas, and plasmas. This method
is a kind of semi-Lagrangian scheme and has been extended to treat incompressible
flow in the framework of compressible fluid. Since it uses primitive Euler repre-
sentation, it is suitable for multiphase analysis. The recent version of this method
guarantees the exact mass conservation even in the framework of a semi-Lagrangian
scheme. We provide a comprehensive review of the strategy of the CIP method, which
has a compact support and subcell resolution, including a front-capturing algorithm
with functional transformation, a pressure-based algorithm, and other miscellaneous
physics such as the elastic–plastic effect and surface tension. Some practical appli-
cations are also reviewed, such as milk crown or coronet, laser-induced melting, and
turbulent mixing layer of liquid–gas interface. c© 2001 Academic Press
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1. INTRODUCTION

Recent high technology requires new tools for combined analysis of materials in different
phase states, e.g., solid, liquid, and gas. A universal treatment of all phases by one simple
algorithm would be useful and we are at the point of attacking this goal. For these types
of problems, for example, welding and cutting processes, we need to treat topology and
phase changes of the structure simultaneously, where the grid system aligned to the solid
or liquid surface has no meaning and sometimes the mesh is distorted and even broken up.
To solve these problems with Lagrangian representation in finite-difference, finite-element,
and boundary-element methods will be a challenging task.
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Even without phase change, solving the problem of structure–fluid interaction is not an
easy task. In most cases, the grid cannot always be adapted to the solid surface. Therefore,
the description of moving solid surfaces of complicated shapes in the Cartesian grid system
is a challenging subject [57].

To attack the problems mentioned above, we must first find a method to treat a sharp
interface and to solve the interaction of compressible gas with incompressible liquid or solid.
For compressible fluid, elaborate schemes like TVD (total variation diminishing) or ENO
(essentially nonoscillating) proved to be effective in capturing shock waves. However, since
these schemes employ a conservative form of fluid equations, divergence of velocity which
becomes zero in the incompressible limit cannot be treated independent of the advection
part. Furthermore, as Karni [15] pointed out, the conservative algorithm sometimes gives
fictitious pressure undulation at the boundary of multiphase materials.

On the other hand, incompressible schemes like QUICK or higher-order upwind schemes
can treat divergence-free fluid vorticity and turbulence. However, these schemes cannot
always treat a shock wave as a sharp discontinuity.

We need a scheme for treating both compressible and incompressible fluids with large
density ratios simultaneously in one program to simulate the interaction of gas with a
liquid or solid. Fully implicit solvers can handle this procedure, but the convergence of
iteration in a highly distorted state is still a problem. Toward this goal, we take a Eu-
lerian approach based on the CIP (cubic-interpolated propagation) method [40, 41, 60–
62] which does not need an adaptive grid system and therefore eliminates the problems
of grid distortion caused by structural breakup and topology change. The material sur-
face can almost be captured by one grid throughout the computation [64, 65]. Further-
more, the code can treat all the phases of matter from solid state through liquid and
from two-phase state to gas without restriction on the time step from high-sound speed
[63].

A pressure-based algorithm coupled with a semi-Lagrangian approach such as the CIP
proved to be stable and robust in analyzing these subjects. One disadvantage of this method
was the lack of conservative property. Recent versions of the CIP-CSL4 (conservative
semi-Lagrangian) [43] can overcome this difficulty and provide exactly a conservative semi-
Lagrangian scheme. Since these schemes do not use cubic polynomials but rather different
orders of polynomials, we have renamed these CIP families “constrained interpolation
profile” and kept the abbreviation CIP. This means that various constraints such as the
time evolution of a spatial gradient, which is used in the original CIP method, or spatially
integrated conservative quantities can be used to construct the profile. In this paper, we
review the CIP method and related schemes and address these important subjects.

In Section 2, the CIP method is derived for advection calculation. After a description
of the fundamental idea of the method with a 1D problem, some variants and practi-
cal extensions are discussed. They include, for example, multidimensional formulation,
oscillation-suppressing interpolation, and sharpness enhancement. A formulation of the
CIP method applied to general hydrodynamics is presented in Section 3. Section 4 dis-
cusses a unified procedure to compute both compressible and incompressible fluids with
several examples. Some numerical formulations for interfacial flows, including surface ten-
sion and the elastic–plastic effect, are presented in Section 5. As a recent improvement to the
CIP method, conservative variants of the method are briefly discussed with a few numerical
examples. The paper ends with a short summary referencing some applications in other
fields.
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2. THE ADVECTION PROCESS

2.1. CIP Formulation in One Dimension

Although nature operates in a continuous world, a discretization process is unavoidable
for implementing numerical simulations. The primary goal of any numerical algorithm will
be to retrieve the information lost inside the grid cell between these digitized points. The
CIP method proposed by one of the authors tries to construct a solution inside the grid cell
that is close enough to the real solution of the given equation, with some constraints. We
here explain the strategy of the CIP method by using an advection equation,

∂ f

∂t
+ u

∂ f

∂x
= 0. (1)

When the velocity is constant, the solution of Eq. (1) gives a simple translational motion of
a wave with velocityu. The initial profile (the solid line in Fig. 1a) moves like a dashed line
in a continuous representation. At this time, the solution at grid points is denoted by circles
and is the same as the exact solution. However, if we eliminate the dashed line as in Fig. 1b,
then the information about the profile inside the grid cell has been lost, and it is difficult
to imagine the original profile and natural to imagine a profile such as that shown by the
solid line in (c). Thus, numerical diffusion arises when we construct the profile by the linear
interpolation, even with the exact solution shown in Fig. 1c. This process is called the first-
order upwind scheme. On the other hand, if we use a quadratic polynomial for interpolation,
the model suffers from overshooting. This process is called the Lax–Wendroff scheme or
the Leith scheme [18].

What made this solution worse? This decline in accuracy is the reason we neglect the
behavior of the solution inside the grid cell and merely follow the smoothness of the solution.
From this consideration, we can see that it is important to develop a method incorporating
the real solution into the profile within a grid cell. We propose an approximation of the
profile as shown below. If we differentiate Eq. (1) with spatial variablex, we get

∂g

∂t
+ u

∂g

∂x
= −∂u

∂x
g, (2)

FIG. 1. The principle of the CIP method. (a) The solid line is the initial profile and the dashed line is an
exact solution after advection, shown in (b) at discretized points. (c) When (b) is linearly interpolated, numerical
diffusion appears. (d) In the CIP, the spatial derivative also propagates and the profile inside a grid cell is retrieved.
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where g stands for the spatial derivative off , ∂ f/∂x. In the simplest case where the
velocity u is constant, Eq. (2) coincides with Eq. (1) and represents the propagation of a
spatial derivative with velocityu. Using this equation, we can trace the time evolution of
f andg on the basis of Eq. (1). Ifg is predicted after propagation as shown by the arrows
in Fig. 1d, the profile after one step is limited to a specific profile. It is easy to imagine
that by this constraint, the solution becomes much closer to the initial profile that is the
real solution. Most importantly, the solution thus created gives a profile consistent with
Eq. (1) even inside the grid cell. The importance of this constraint is demonstrated in the
next section.

If two values of f andg are given at two grid points, the profile between these points can
be interpolated by the cubic polynomialF(x) = ax3+ bx2+ cx+ d. Thus, the profile at
then+ 1 step can be obtained by shifting the profile byu1t so that

f n+1 = F(x − u1t),

gn+1 = d F(x − u1t)/dx.
(3)

ai = gi + giup

D2
+ 2( fi − fiup)

D3
,

bi = 3( fiup− fi )

D2
− 2gi + giup

D
,

f n+1
i = ai ξ

3+ bi ξ
2+ gn

i ξ + f n
i ,

(4)
gn+1

i = 3ai ξ
2+ 2bi ξ + gn

i ,

where we defineξ = −u1t . Here,D = −1x, iup= i − 1 for u ≥ 0 andD = 1x, iup=
i + 1 for u < 0. Figure 2a shows a profile after 1000 steps with this CIP method for the
propagation of a square wave.

The CIP advection scheme can be sorted out as a kind of semi-Lagrangian method in
the sense that the CIP advection scheme employs a Lagrangian invariant solution. Semi-
Lagrangian methods that trace back along the characteristics in time depend on an interpo-
lation of the initial profile to determine the value at the upstream departure point (which
may not coincide with the computational grid point).

Although there are various polynomial functions such as linear, quadratic Lagrange,
cubic Lagrange, cubic spline, and quintic Lagrange [37], all of these schemes (except
those using the linear interpolation function) need at least three points for constructing
interpolation approximations in one dimension. A more compact scheme by which one

FIG. 2. (a) Initial condition, and the profile after one complete revolution with (b) CIP, and (c) rational CIP
and tangent-transformed CIP.
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FIG. 3. Phase error of various schemes such as first-order upwind, Lax–Wendroff (LW), PPM, Spline, and
CIP.

can construct interpolation functions of high accuracy with fewer computational stencils is
desired in many situations, such as calculating discontinuities or large gradients. A scheme
that is based on a compact support is able to localize dispersion errors to the regions
where large local gradients appear. Moreover, in a model with a limited computational
domain, different approximations for the derivatives must be used at the grid points close
to boundaries; these approximations are usually of lower order than the approximations
used deeper in the interior. Thus, a scheme that uses fewer stencils may be advantageous in
treating computational boundaries since fewer boundary points need to be handled. Another
attractive feature of reducing the number of stencils may be the reduction in data transfer in
parallel implementations on distributed memory architectures. In this sense, the CIP seems
to be attractive since it uses only one cell for computation even in three dimensions.

2.2. Mathematical Analysis of CIP

It is interesting to examine the phase error of various schemes using the method proposed
by Purnell [34] and Utsumiet al.[46]. Figure 3 summarizes those results. As is well known,
phase speeds in conventional schemes depart from the exact speed, shown by the solid line,
which is aroundk1x = π/2. Surprisingly, however, the CIP can reproduce the correct
phase speed even up tok1x = π . This is remarkable becausek1x = π means that one
wavelength is described by three mesh points. Let us consider the case shown in Fig. 4,
where values of the three points are zero. Even in this case, one wave can exist as shown
in Fig. 4. The CIP gives correct spatial gradients, which are non-zero at these points, and

FIG. 4. The CIP can correctly recognize one wavelength with three grid points.
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therefore it recognizes the existence of the wave inside the grid cell. Any code that only
takes into account this value, which is zero here, cannot correctly recognize the wave even
if a higher order polynomial is employed.

The importance of Eq. (2), which predicts the propagation of gradients, can be clearly
demonstrated by comparison with the cubic spline [34]. Although the cubic spline uses the
same cubic polynomial as the CIP, it cannot reproduce the result of the CIP, because the
gradient of the spline is determined merely from the smoothness requirement. As is easily
recognized, a constraint that is independent of the original equation will not help to retrieve
the profile inside the grid cell.

A possible objection to the CIP method is that it uses both a function and its derivative
and seems to be the same as other schemes that use twice as many mesh points. We address
the following points against this objection.

(1) The cubic spline shown in Fig. 3 uses both a function and its derivative, as does the
CIP, but fails to give a similar result.

(2) The calculation costs do not increase even if an additional variable such as a derivative
is introduced. For example, the CPU time required for a simple advection problem in one
dimension is Spline/CIP= 1.68 (the Thomas method is used to solve the matrix), RCIP
(rational CIP)/CIP= 1.77, PPM (piecewise parabolic method) [6]/CIP= 2.31. RCIP will
be defined in Section 2.4.

(3) The memory increase owing to an additional variable is less significant for higher
dimensions. LetL t be the number of time-dependent variables; then memory increases as
(α + 1)L t in the CIP and asn(α+1) L t in conventional schemes if1t/1x is fixed, whereα
is the dimension andn is the mesh refinement. These rates will be 4L t and 16L t in three
dimensions for the CIP and for twice-refined (n = 2) conventional schemes, respectively.

(4) Adding to (3), in most practical applications, we use additional variables such as
thermal conductivity, viscosity, and temporal variables for matrix solution. IfL0 is the
number of these variables, the memory requirement is then(α + 1)L t + L0 andnαL t + L0.
Since L0À L t usually, the memory requirement of the CIP is similar to that of other
schemes even for unrefined meshn = 1.

2.3. CIP Formulation in Multidimensions

In the CIP method, the first-order spatial derivatives of the interpolation function are
treated as dependent variables as shown in the previous sections. The governing equations
for those derivatives in multidimensions are derived by differentiating the advection equation
with respect to the spatial coordinates. This scheme is different from the conventional semi-
Lagrangian methods for computation of derivatives. In the latter methods, as mentioned
above, the gradient is calculated based on the function values at neighboring grid points by
either assuming the continuity of the quantity, or of the first- and sometimes the second-order
derivatives of the quantity at the mesh boundaries [34], or by using approximations based
on local grid points [51]. By special treatment of the first derivatives of the interpolation
function, the CIP method achieves a compact form that uses only one mesh cell to construct
the interpolation profile and provides subcell resolution.

The model equation to be solved is an advection equation,

∂ f (x, t)
∂t

+ u · ∇ f (x, t) = 0, (5)
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wherex means(x, y, z), u = (u(x, y, z, t), v(x, y, z, t) , w(x, y, z, t)) is the characteristic
speed, andf (x, y, z, t) is the dependent variable. The gradient operator is defined as∇ =
(∂x, ∂y, ∂z).

Semi-Lagrangian methods usually make use of the solution as a Lagrangian invariant,

f (x, t) = f (x− x̂, t −1t), (6)

wherex̂ is the distance a particle travels in time increment1t given bydx/dt = u. If it is
possible to trace the trajectory across several grid points in1t , Eq. (6) can be used even
for a large CFL number≡ u1t/1x. One of the main efforts in semi-Lagrangian methods
is constructing the interpolation function based on grid values to determine the field value
at a departure point not coinciding with a grid point.

A CIP-type method evaluates the first-order derivatives of the profile by treating the
derivatives as additional dependent variables and adding an equation, derived from Eq. (5)
as

∂(∂χ f )

∂t
+ u · ∇(∂χ f ) = − ∂u

∂χ
· ∇ f , (7)

whereχ denotes the space coordinatex, y, or z, and∂χ f represents∂ f /∂χ .
One then gets an additional advection equation in each dimension with a forcing term

for the first-order derivative of that respective dimension. The set of governing equations
for the three-dimensional advection problem is consequently written as

∂U
∂t
+ u · ∇U = G, (8)

where

U =


f

∂x f

∂y f

∂z f


and

G =


0

−∂xu∂x f − ∂xv∂y f − ∂xw∂z f

−∂yu∂x f − ∂yv∂y f − ∂yw∂z f

−∂zu∂x f − ∂zv∂y f − ∂zw∂z f

 .
A CIP-type scheme is equivalent to the two-step semi-Lagrangian procedure

Ũ(x, t) = Uh(x− x̂, t −1t) (9)

and

U(x, t) = Ũ(x, t)+
∫
τ

G(Ũ) dτ, (10)



CIP METHOD FOR MULTIPHASE ANALYSIS 563

whereUh represents the interpolation approximation toU, andτ denotes the trajectory that
connects(x̂, t −1t) and(x, t).

Once the interpolation function is determined from the continuity condition imposed on
the dependent variable and its first-order derivatives at the grid points, we immediately get
the solution to the advection equation from Eqs. (9) and (10).

Several forms of the multidimensional cubic polynomial have been proposed [2, 62].
Among various families of polynomial, the simplest one is written as [62]

Fi, j (x, y) = C3,0X3+ C2,0X2+ fxi, j X + fi, j + C0,3Y3+ C0,2Y2+ fyi, j Y

+C2,1X2Y + C1,1XY+ C1,2XY2, (11)

which has a form consistent with one-dimensional CIP in one direction. Here we define
X = x − xi , Y = y− yj . Thus 10 unknowns are determined from the continuity off ;
∂ f/∂x; ∂ f/∂y at (i , j ), (i + 1, j ), (i , j + 1); and the continuity off at (i + 1, j + 1).

Although Eq. (11) is not the only candidate for the interpolation in two dimensions (a
variant is in fact presented in [2]), it is sufficient for a small time stepu1t/1x < 0.5 as
one can imagine from the definition:∂ f/∂x, ∂ f/∂y at (i + 1, j + 1) are not continuous and
are not accurate. In Fig. 5, we show the result of a two-dimensional solid-body revolution
[74]. Figure 5a shows an initial profile and Fig. 5b the profile after one revolution when
Eq. (11) is applied. Although the scheme is simple, it can produce a result comparable to
existing higher order schemes. If we apply tangent transformation (which will be introduced
in Section 2.5) to this problem, the result is much improved, as shown in Fig. 5e.

FIG. 5. (a) Initial condition and the profile after one complete revolution with (b) CIP, (c) splitting CIP,
(d) rational CIP, and (e) tangent-transformed CIP.
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In these cases, the multidimensional profile is shifted in the direction of velocity vector
u. In addition, a directional splitting technique can be used to perform sequential one-
dimensional advection in each direction. The latter method is very promising because it
would be difficult to construct a cubic polynominal in six-dimensional hyperspace such
as the Vlasov equation, and a conservative scheme can be readily constructed using this
splitting scheme [21]. Figure 5, which includes the result of this scheme, shows that the
symmetry of the profile is preserved well.

2.4. The RCIP Scheme for the Advection Equation

In practical implementation, an attractive advection scheme should be both low in dif-
fusion and free of oscillation. In modern Eulerian high-resolution schemes, manipulations
such as numerical viscosity are usually done to degrade the scheme to a lower order in
the presence of discontinuities in order to eliminate spurious oscillation. Some of these
schemes are reviewed by Toro [44]. Preserving the shape of the advected field is also one of
the primary goals for semi-Lagrangian schemes, since a scheme with an interpolator higher
than second order will produce spurious oscillations near large gradients or discontinuities.
Williamson and Rasch [51] discuss several shape-preserving interpolation schemes. The
monotonicity of a scheme is improved by imposing derivative constraints on a Hermite
cubic or a rational-cubic interpolation function. Bermejo and Staniforth [4] also reported
their work on overcoming the numerical oscillation for semi-Lagrangian schemes, where
a minimum/maximum limiter is imposed on the calculated results from any conventional
semi-Lagrangian scheme, based on the argument that no new extremum should be created
by an advection scheme.

The original CIP method, which uses a cubic polynomial interpolant, produces numerical
oscillations near the area where the dependent variable has a degree of smoothness no more
than 1, which is onlyC0 for a step or a triangle distribution. A numerical scheme to get a
shape-preserving scheme for a CIP-type method was developed from a rational interpolation
function over one mesh cell [54, 55]. This scheme, which we call the RCIP (rational-cubic
interpolation propagation) scheme, shows good properties in keeping the topological nature
of data, such as preserving convexity or concavity.

The 1D scheme is based on the rational function

R1D
i (x) =

∑
0≤l x≤3

 ∑
0≤p≤1

αpβpX p

−1

Clx Xlx , (12)

whereX = x − xi and

C0 = fi

C1 = gi + fiα1β1

C2 = Siα1β1+ (Si − di )1i
−1− C31i

C3 = [gi − Si + (giup− Si )(1+ α1β11i )]1i
−2

α0 = 1.0

β0 = 1.0

β1 = [|(Si − gi )/(giup− Si )| − 1]1i
−1;
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here 
1i = xiup− xi

Si = ( fiup− fi )1i
−1

gi = (d f/dx)i .

In deriving the above coefficients, we first determinedβ1 by settingC3 = 0, which means
a second-order polynomial is the numerator of Eq. (12) becauseβ1 should be effective at the
discontinuity where the scheme becomes lower order. Therefore four constraints fromf and
g at neighboring points are sufficient to determine these coefficients. After determiningβ1,
we use it as a fixed value and then recoverC3 and uniquely determine the cubic polynomial
by the same four constraints [55].

Then a solution to the advection equation can be written as

f n+1
i = R1D

i (xi − u1t) = C0+ C1ξ + C2ξ
2+ C3ξ

3

1+ α1β1ξ
, (13)

and the first-order derivative of the dependent variable is calculated by

gn+1
i = ∂x f n+1

i = ∂x R1D
i (xi − u1t) = (C1+ 2C2ξ + 3C3ξ

2)(1+ α1β1ξ)
−1

−α1β1(C0+ C1ξ + C2ξ
2+ C3ξ

3)(1+ α1β1ξ)
−2−

(
∂u

∂x

∂ f

∂x

)n

i

, (14)

whereξ = −u1t . All the coefficients in the above expressions can be computed from the
quantities off andg at stepn. It is interesting to see that the second term on the right-hand
side of Eq. (14) is proportional to−α1β1 and hence plays a role in reducing the contribution
from the highest order polynomial, theα1β1C3ξ

3 term, tog at the discontinuity.
The parameterα1 ∈ [0, 1] provides flexibility to choose between a rational function and

a cubic function for interpolation. In practical computations, we recommend the following
switching formulation to put the interpolatant “cubic” in the smooth region and the “rational”
near discontinuity:

α1 =
{

1, gi · giup < 0;
0, gi · giup ≥ 0.

(15)

The subscriptiup indicates an upwind grid point. The smoothness is detected by seeing
whether the first-order derivative, which is computed as a dependent variable in the CIP
method, has the same sign at neighboring grid points. When the switching parameterα1 is
set to zero, algorithm (13), (14) is identical to the original CIP method. Letα1 = 1; under the
CFL condition, scheme (13), (14) is convex–concave preserving and monotone preserving
if the given data are nonconcave or nonconvex, as proved in Ref. [54].

Numerical experiments, shown in Fig. 2b demonstrate that the scheme of Eqs. (13) and
(14) is capable of suppressing the spurious oscillation near discontinuities.

Fully two- and three-dimensional schemes can also be constructed by making use of the
following interpolation functions (see [55] for details).

R2D
i, j (x, y) =

 ∑
0≤p+q≤1

αp,qβp,q X pYq

−1 ∑
0≤l x+l y≤3

Clx,l y Xlx Yl y, (16)
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and

R3D
i, j,k(x, y, z) =

 ∑
0≤p+q+r≤1

αp,q,rβp,q,r X pYq Zr

−1 ∑
0≤l x+l y+l z≤3

Clx,l y,l z Xlx Yl y Zlz. (17)

Figure 5 includes the test run with this RCIP scheme.

2.5. Interface Tracking: A Sharpness-Preserving Method

Treatment of the interface that lies between materials of different properties remains a
formidable challenge to the computation of multiphase fluid dynamics. Eulerian methods
have proven robust in simulating flows with interfaces of complex topology. Generally,
Eulerian methods use color function to distinguish among regions containing different
materials. To accurately reproduce the physical processes that occur across the interface
transition region, maintaining the compact thickness of the interface is very important. The
finite-difference schemes constructed on a Eulerian grid, however, intrinsically produce
numerical diffusions to the solution of the advection equation by which the interface is
predicted temporally. Thus, the direct implementation of finite-difference schemes (even
those of high order) cannot maintain the compactness of the interface.

Various kinds of methods have been developed to achieve a compact and correctly defined
interface by introducing extra programming. Among the most common algorithms are the
level-set methods and the VOF (volume-of-fluid) methods for front capturing, and others
for front tracking [45]. The level set method that was first proposed by Osheret al. [24,
29, 38] gets around the computation of interfacial discontinuity by evaluating the field in
higher dimensions. The interface of interest is then recovered by taking a subset of the
field. Practically, the interface is defined as the zero-level set of a distance function from
the interface.

In VOF methods, on the other hand, the interface needs to be reconstructed based on the
volume fraction of fluid. VOF methods are mainly classified as SLIC (simple line inter-
face calculation) algorithms and PLIC (piecewise linear interface calculation) algorithms
according to the interpolation function used to represent the interface. The SLIC [11] algo-
rithm makes use of piecewise constant reconstruction, and the interfaces are approximated
by lines aligned with mesh coordinates. A significant improvement in the VOF method
was made by Youngs with the PLIC algorithm [71]. Since then, some improvements in the
reconstruction of the VOF interface have been reported [16, 32, 33]. The PLIC algorithm
estimates the interface with a truly piecewise linear approximation that greatly improves
the geometrical faithfulness of the method. A comparison of various methods for tracking
interfaces can be found in [35].

In [64] and [65], we devised an interface tracking technique that appears to be efficient,
geometrically faithful, and diffusionless. The method is a combination of the CIP advection
solver and a tangent function transformation.

ConsiderK kinds of impermeable materials occupying closed areas{Äk(t), k = 1, 2, . . . ,
K } in computational domainD ∈ R3(x, y, z). We identify them with color functions or den-
sity functions{φk(x, y, z, t), k = 1, 2, . . . , K } according to the following definition.

φk(x, y, z, t) =
{

1, (x, y, z) ∈ Äk(t),

0, otherwise.
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Suppose these materials move at the local speed; then the color functions evolve according
to the advection equation

∂φk

∂t
+ u · ∇φk = 0, k = 1, 2, . . . , K , (18)

whereu is the local velocity.
It is known that solving the above equation by finite-difference schemes in a Eulerian

representation will produce numerical diffusion and tend to smear the initial sharpness of
the interfaces. In our method, rather than the original variableφk itself, its transformation,
sayF(φk), is calculated by the CIP method. We specifyF(φk) to be a function ofφk only,
which means that the new functionF(φk) is also governed by the same equation as (18).
Hence, we have

∂F(φk)

∂t
+ u · ∇F(φk) = 0, (19)

and all the algorithms proposed forφk (schemes for advection equations) can be used for
F(φk). We hope the considerable simplicity of this kind of technique will make it very
attractive for practical implementation. Here we use a transformation of a tangent function
for F(φk); that is,

F(φk) = tan[(1− ε)π(φk − 1/2)], (20)

φk = tan−1F(φk)/[(1− ε)π ] + 1/2, (21)

whereε is a small positive constant. The factor(1− ε) enables us to get around−∞ for
φk = 0 and∞ for φk = 1 and to tune for desired steepness of the transition layer.

Remarks:

• Although φk undergoes a rapid change from 0 to 1 at the interface,F(φk) shows
regular behavior. Because most of the values ofF(φk) are concentrated nearφk = 0 and 1,
the function transformation improves locally the spatial resolution near the large gradients.
Thus, the sharp discontinuity can be described easily.
• A transformation of this kind is effective only for the case where the value ofφk is

limited to a definite range throughout the calculation, as is the color function defined above.
• An analysis (done by Brackbill in [5]) shows that transformingφk to F(φk) results in

a modification in the advection speed. The effective velocity guarantees the correctness of
the advection speed along theφk = 0.5 surface of the interface transition layer and tends
to produce a solution that counters the smearing across the transition layer with intrinsic
anti-diffusion.
• The tangent function transformation performs well with other third-order schemes such

as the PPM method [6], but it is not encouraging when incorporated with low-order schemes
or dispersion schemes, such as the first-order upwind scheme or the Lax–Wendroff scheme.
This can be explained by the fact thatφ = 0.5 is not the middle point of the transition layer
for an advection scheme with significant errors in dispersion or dissipation.
• This method does not involve any interface construction procedure and is economical

in computational complexity. One of the interesting examples is the shock-wave interaction
with a liquid drop, in which the deformable shape of the drop has been successfully captured
[64]. Note that the presented method is more attractive in 3D computation since the extension
of the scheme to three dimensions is straightforward.
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Figure 2c shows a 1D square wave propagation computed by the CIP method together with
the tangent transformation. The initial sharpness is well preserved and the discontinuities
are advected with a correct speed. A 3D rotating notched brick, which was also used in
[16, 33] to evaluate the performance of the VOF method, was calculated with the tangent
transformation as well. As displayed in Fig. 6, the geometry is satisfactorily preserved.

3. A SEMI-LAGRANGIAN APPROACH TO HYDRODYNAMIC EQUATIONS

3.1. Basic Equations

Before presenting a method to solve all the phases of materials, we must first construct
a unified equation to describe all the phases. For this purpose we use the following set of
hydrodynamic equations:

∂f
∂t
+ (u · ∇)f = S. (22)

Here,f = (ρ, u, T), S= (−ρ∇ · u+ Qm,−∇ p/ρ + Qu,−PTH∇ · u/ρCv + QE), where
ρ is the density,u the velocity,p the pressure, andT the temperature,Qm represents the
mass source term,Qu represents viscosity, elastic stress tensor, surface tension, etc., andQE

represents viscous heating, thermal conduction, and heat source.Cv is the specific heat for
constant volume and we definePTH = T(∂p/∂T)ρ , which is derived from the first principle
of thermodynamics and the Helmholtz free energy. Here,PTH is not merely the pressure. In
the special case of ideal fluid, however,PTH is exactly the pressurep because the pressure
linearly depends on temperature. The next simpler example is the two-phase flow described
by the Clausius–Clapeyron relation

p = p0 exp

(
− L

RT

)
, PTH = T

(
∂p

∂T

)
∝ L , (23)

whereR is the gas constant. In this case,PTH becomes proportional to the latent heatL.
Therefore,PTH describes the heat loss due to latent heat when the ratio of gas increases in
two-phase flow. A more general form ofCv andPTH is given by semi-analytical formula or
tabulated data.

3.2. The Fractional Step Approach

The underlying physics included in the above equations for continuum dynamics is com-
plex and may include processes that have different time scales of variation. It is expedient to
separate the solution procedure into several fractional steps. For example, for the advection
phase,

∂f
∂t
+ (u · ∇)f = 0, (24)

and for the non-advection phase,

∂f
∂t
= S. (25)
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FIG. 6. The 0.5 isosurface of the notched brick. Displayed are the initial shape (top) and the computed result
after one revolution computed by the interface-tracking method (bottom).
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For the advection phase, the procedure given in Section 2 is used. The time evolution of
the spatial gradient in the non-advection phase is again calculated according to Eq. (25) and
thus we have

∂(∂χ f )
∂t
= ∂χS. (26)

Usually it is not easy to get a finite-difference form of∂χS. One method for estimating this
term is [61]

(∂χ f )n+1− (∂χ f )∗

1t
= (δχ f )n+1− (δχ f )∗

1t
, (27)

whereδχ f represents a centered finite-difference form of∂χ f in theχ direction. Thus the
time evolution of∂χ f is estimated by the time evolution off already given by Eq. (25).

3.3. Application to Shock Waves

As is well known, in a primitive Euler scheme, as in Eq. (22), the equation of internal
energy is decoupled from kinetic energy. Therefore, in order to correctly transform dissi-
pated kinetic energy to internal energy, some real physical mechanism must be introduced.
In ordinary hydrodynamics, viscosity plays this role. In most cases of practical interest, the
shock width is smaller than the mesh size. However, since the dissipation scale is limited to
mesh size in computation, viscosity with this scale will be much smaller and hence will not
give the correct dissipation energy. Therefore von Neumann and Richtmyer [22] proposed
the use of an artificially large viscosity coefficient to achieve a sufficient viscosity effect
even with a shock width equal to the mesh size. The correct form of this artificial viscosity
is given by the Rankine–Hugoniot relation as shown by Wilkins [49], and its improved form
free from directional dependence in 3D was proposed by Ogata and Yabe [23].

The CIP method with this numerical viscosity has been tested by an example of two
interacting blast waves given by Woodward and Colella [52]. In this case, initial pressurep =
1000 forx < 0.1, p = 0.01 for 0.1< x < 0.9, and p = 100 for 0.9< x < 1. Although
Woodward and Colella used a minimum grid size of1x = 1/9600, we have succeeded in
reproducing the result even with a uniformly spaced grid of1x = 1/400 (Fig. 7b) and it
should be noted again that the present scheme used the primitive Euler representation to
capture these shock waves.

FIG. 7. Interacting shock waves. Density profile att = 0.038 with (a) 800 and (b) 400 equally spaced grids.



CIP METHOD FOR MULTIPHASE ANALYSIS 571

FIG. 8. Shock propagation in multiphase media.

The merit of primitive Euler representation of the CIP method can be demonstrated by
the example of shock propagation through multiphase media. Figure 8 shows the result of a
typical example, as discussed by Karni [15]. The specific heat ratio varies and is 1.4 on the
left and 1.2 on the right. The specific heat ratio propagates according to Eq. (18) together
with the contact discontinuity. At this point, fictitious pressure undulation appears when
conservative schemes are used. However, the CIP can correctly treat the problem without
any pressure undulation, as shown in Fig. 8. Note that in all the calculations shown in this
section, we used neither RCIP nor tangent transformation to demonstrate the performance of
the simple CIP. Small undulations of density at the contact discontinuity can be eliminated
by RCIP and the profile ofγ can be sharpened by tangent transformation. In addition, for
the pressure (temperature) solution, Eq. (22) is explicitly solved and the implicit technique
given in the following section is not used.

4. A PRESSURE-BASED ALGORITHM IN A PRIMITIVE EULER SCHEME

4.1. Pressure-Based Algorithm

The CIP method uses the primitive Euler method to solve Eq. (22); thus the formulation
into a simultaneous solution of incompressible and compressible fluid is readily obtained.
In order to understand this strategy, we first examine why it has been difficult to solve
these equations together. In ordinary compressible fluid, the densityρ is solved by the
mass conservation equation and then the temperatureT is obtained by the energy equation.
After that, from the equation of state (EOS), schematically shown in Fig. 9, the pressure
p = p(ρ, T) is calculated. At the low-density side,p ∝ ρT like ideal fluid and dependence
is relatively weak, but at solid or liquid densityp steeply rises as the density rises. This
means that extremely high pressure is need to compress solid or liquid even slightly. In
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FIG. 9. An example of an equation of state. Each line represents isotherms.

other words, for solid or liquid, the sound speedCs = (∂p/∂ρ)1/2 is very large. Therefore,
if we look at the process in which density is first calculated, we find that only a small
amount of density error—10%, for example—causes a large pressure pulse of 3–4 orders
of magnitude.

In such a situation, incompressible approximation is normally adopted; that is, the pres-
sure equation to ensure∇ · u = 0 is derived from the equation of motion and mass conser-
vation. This scheme is called a pressure-based scheme and MAC [10], SMAC [1], SIMPLE
[28], and SIMPLER [27] are typical examples.

In order to extend this idea to compressible fluid, we need to modify the EOS shown
in Fig. 9. If we rotate the figure by 90 degrees, then the steep pressure curve becomes
a flat density curve. This means that if we could first solve the pressure and then esti-
mate the density in terms ofρ(p, T) by using the EOS shown in Fig. 9, the problem
at liquid density would be eliminated. In addtion, since the EOS in lower density gas
depends linearly on other quantities, this reverse procedure creates no problems in that
case.

Then how do we realize this reverse procedure? For this purpose, we should predict
how the pressure reacts to changes in density and temperature. Such a unified procedure
to incorporate compressible fluid with incompressible fluid has been initiated by Harlow
and Amsden as the ICE (implicit continuous Eulerian) [9]. The ICE has been improved
by the PISO [12] (pressure implicit with splitting of operators). In both cases, however,
conservative equations are used as a starting point. The main difference between the ICE
and the PISO is in the treatment of the convection term.

On the other hand, the CCUP (CIP-combined and unified procedure) [63] uses primitive
Euler equations and splits the advection term from the other terms, related sound waves. This
simplification also simplifies the pressure equation and greatly improves our ability to attack
multiphase flow. One year after this proposal, Zienkiewicz [73] proposed a similar method
but applied it to the finite-element method. Unfortunately, however, with their scheme it is
not as easy to remove the difficulty stemming from a large-density ratio at the boundary
between liquid and gas, as discussed below.

We now present a condensed and generalized description of the ICE. In both the ICE and
the PISO, conservation equations of mass and momentum are used in a finite-difference
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form,

ρn+1− ρn

1t
= −∂(ρu)′

∂x
(28)

(ρu)′ − (ρu)n

1t
= −∂pn+1

∂x
+ H(u) (29)

H(u) ≡ −∂(ρu2)

∂x
. (30)

Substituting Eq. (29) into Eq. (28), we get

∂2 pn+1

∂x2
= ρn+1− ρn

1t2
+ 1

1t

(
∂ρu

∂x

)n

+ ∂H

∂x
. (31)

Next, if we assume that density changes in proportion to pressure change,

1p =
(
∂p

∂ρ

)
T

1ρ = C2
s1ρ, (32)

then density change on the right-hand side of Eq. (31) is replaced by pressure change,

∂2 pn+1

∂x2
= pn+1− pn

C2
s1t2

+ 1

1t

(
∂ρu

∂x

)n

+ ∂H

∂x
. (33)

In the ICE, the termH is estimated at the stepn, while in the PISOH is predicted by an
equation of motion,

ρnup− (ρu)n

1t
= −∂pn

∂x
+ H(up), (34)

and finally gives

∂2(pn+1− pn)

∂x2
= pn+1− pn

C2
s1t2

+ 1

1t

(
∂ρnup

∂x

)n

. (35)

The original PISO is more complicated because it repeats this predictor–corrector al-
gorithm a few times and some complication appears to diagonalize theH term to solve
Eq. (34) in terms ofup.

4.2. CCUP Method

Yabe and Wang [63] adopted the primitive Euler form instead of the conservative form
to construct the pressure equation. Furthermore, the advection part is separated from the
other terms, since the advection term can be processed free from the CFL condition in a
semi-Lagrangian procedure. Fortunately, this splitting led to an unexpected advantage to
the solution in multiphase flow, as shown below.

The original CCUP method [63] was proposed only for a special equation of state such
as Eq. (32), but here we rebuild it with a more general EOS [56]. That is, for small changes
of density and temperature, the pressure change can be linearly proportional to them as

1p =
(
∂p

∂ρ

)
T

1ρ +
(
∂p

∂T

)
ρ

1T, (36)

where1p means the pressure changepn+1− p∗ during one time step and∗ is the profile
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after advection. This also applies toρ, T . From this relation, once1ρ and1T are predicted,
1p is predicted based on Eq. (36);∂p/∂ρ, ∂p/∂T are given by the EOS.

Since the CIP separates the non-advection terms from the advection terms, we can con-
centrate on the non-advection terms related to sound waves, which are the primary cause of
the difficulty posed by the large sound speed of liquid, and henceρ, T are simply given by

1ρ = −ρ∗∇ · un+11t ρ∗Cv1T = −PTH∇ · un+11t, (37)

whereCv is the specific heat ratio at constant volume.un+1 in this equation is given by an
equation of motion as

1u = −∇ pn+1

ρ∗
1t. (38)

Since1u = un+1− u∗, Eqs. (36)–(38) lead to a pressure equation [56, 63]

∇
(

1

ρ∗
∇ pn+1

)
= pn+1− p∗

1t2
(
ρ∗C2

s + P2
TH

ρCvT

) + ∇ · u∗
1t

. (39)

Then substituting the givenpn+1 into Eq. (38), we obtain the velocityun+1 and then the
densityρn+1 from Eq. (37). From this procedure, density can be solved in terms of pressure,
which is analogous to rotating Fig. 9 by 90 degrees. Equation (39) has many important
features. This equation shows that, at sharp discontinuities,n · (∇ p/ρ) is continuous. Since
∇ p/ρ is the acceleration, it is essential that this term be continuous since the density
changes by several orders of magnitude at the boundary between liquid and gas. In this
case, the denominator of∇ p/ρ changes by several orders, and the pressure gradient must
be calculated accurately enough to ensure continuous change of acceleration. Equations
(33) and (35) derived by the ICE and the PISO seem to be similar to Eq. (39) but the
continuity of∇ p/ρ in the ICE and the PISO is not guaranteed. However, Eq. (39) works
robustly even with a density ratio larger than 1000 and enables us to treat both compressible
and incompressible fluids. Computationally, the solution of Eq. (39) provides a pressure
distribution that can be used to project the velocity field for variable density flow; i.e., the
resulting pressure field is weighted by the inverse density. Other projection methods with
variable density for incompressible fluid can be found in [3] and [32].

It is interesting to examine the meaning of this pressure equation. If the∇ · u term is
absent, this equation is merely the diffusion equation. The origin of this term is as follows.
During time step1t , the sound wave propagates for a distanceCs1t . In the next step, the
signal also propagates backward and forward since the sound wave should isotropically
propagate. Then statistically, 50% propagates backward and another 50% forward. This
process is similar to the random walk. The diffusion coefficient of the random walk is
given by the quivering distance1x = Cs1t as D = 1x2/1t . This leads to the diffusion
equation for pressure. From this consideration, we can see how the effect of sound waves
is implemented.

4.3. Two-Dimensional Driven Cavity Flow

As a model problem for verifying the numerical scheme, we first examine two-dimensional
incompressible flow in a square cavity with a top wall moving at a constant velocity. This
problem has been studied by many researchers as a benchmark problem. In order to sim-
ulate incompressible flow with compressible-type equations, the sound velocityCs is set
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FIG. 10. The velocity profiles in a two-dimensional driven cavity flow with 30× 30 and 60× 60 Cartesian
grids. For comparison, the result by Ghiaet al. [7] using 256× 256 multigrids is shown by circles.

to 1.0× 1010 instead of to∞. In this calculation, we need to include the viscosity term in
Eq. (38) but it is possible to treat it separately by a splitting procedure [63] or by a predictor–
corrector scheme [70]. The calculations are performed on a uniform grid structure for the
Reynolds number 10,000. The velocity profiles [70] in thex and y directions are shown
in Fig. 10. For comparison, the result of Ghiaet al. [7] from using 256× 256 multigrids
is shown by circles. As shown in the figure, the solution with 60× 60 meshes is accurate
enough to reproduce Ghia’s result near the wall as well as in the central region, although
the one with 30× 30 meshes failed near the wall.

4.4. Milk Crown Formation

The next example demonstrates the capturing of the liquid–gas interface. Simulation of
the coronet or “milk crown” has long been a dream in computational physics [8]. The authors
successfully simulated this problem [66, 67] and discussed the effect of surface tension com-
paring expected effects with experimental data [72]. The coronet is not only a consequence
of a free-surface problem; we must solve the problem of surrounding gas as well.

Figure 11 shows an iso-surface contour of density in which 100× 100 (horizontal)×34
(vertical) fixed equally spaced grids are used withD/16 grid spacing, whereD is the
diameter of the water drop. A thin water film with a thickness ofD/4 is placed on a solid
plate and a water drop impacts from the top at a speed ofU ; Re= U D/ν = 8000. We
solved for air as well as for water and the density ratio at the interface is almost 1000.

Surprisingly, as this three-dimensional simulation shows, the wavelength of the irregu-
larity or finger along the rim depends on the density of ambient gas and increases with the
density. Even for the highest ambient density, the density ratio of liquid and gas is still 33
and such a low-density gas has been believed not to cause such a significant change because
the growth rate of the Rayleigh–Taylor (R–T) instability is proportional to(ρLiq − ρgas)

1/2.
We proposed a stabilization mechanism by ambient gas [72]. Since the wind of ambient

gas blows toward the rim radially in the moving frame of the rim, it can act to stabilize the R–
T instability like a wall. If this wind velocity isU0, then the effect of the rim pressure should
be added in the perturbed form of∂ρgasU2

0/∂x, which is roughlyρgasU0∂(ξ/1t)/∂x ∼
ρgasU0kξγRT, whereξ is the amplitude of the perturbed surface,1t ∼ 1/γRT, andx is in
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FIG. 11. A water surface plot in the coronet-formation process. A 100× 100× 34 Cartesian grid is used.
The figure shows the plots att = 8.2D/U . Ambient gas density used in the simulation isρgas/ρLiq = 0.002 (top),
0.02 (middle), and 0.03 (bottom). The irregular structure disappears as the gas density increases.

the radial direction. Thus we obtain a model equation [72]:

ρLiq
∂2ξ

∂t2
= ρLiqγ

2
RTξ − ρgasU0kξγRT. (40)

Therefore the criteria for the growth of perturbations will be

γRT >
ρgas

ρLiq
kU0. (41)

Thus, the maximum wavenumber for instability is inversely proportional toρ2
gas, sinceγRT

is proportional tok1/2.
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In the simulation, we have included kinematic viscosity for water and air asU D/ν =
8400 and 560, respectively. Since the viscosity effect appears in a form of kinematic viscosity
in the R–T instability, the effect of the ambient density does not explicitly appear in the
result. The effect of surface tension has also been discussed in Ref. [72] and has been
compared to experimental results.

Since the wavelength of the fingers along the rim strongly depends on the density of
ambient gas, the finger formation observed here is not an artifact of finite grid size, although
it might have provided seeds of the instability. As is clear from this example, simulations can
provide important information about coronet-formation physics by modeling situations that
would be hard to create experimentally. The phenomena observed here also give valuable
information about GDI (gasoline direct injection) engines, in which the impact of splashing
fuel on the combustion chamber is the key issue for efficient combustion [47] because
of increasing surface area. Since ambient pressure in the chamber should be high, the
generation of droplets might be greatly reduced as indicated here.

4.5. Laser-Induced Evaporation

We now add further complication to this interaction, i.e., phase change. Figure 12 shows
melting and evaporation of aluminum under the illumination of laser light, where the density

FIG. 12. The density contour of aluminum (on the left) illuminated by laser light. The filamentary structure
explains the experimental results. The time sequence is (a) 40 ns, (b) 90 ns, and (c) 290 ns with an elastic–plastic
effect. The crater does not grow after this. However, if the elastic–plastic effect is switched off, it continues to
grow like the contour at (d) 500 ns.
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changes from 2.7 to 10−4 g/cm3. Aluminum solid is initially treated as an elastic material,
whose treatment is given in Section 5, and then as a liquid and vapor during phase transition.
This change is simple as realized by the equation of state shown in Fig. 9. This example
shows that the code has a strong ability to describe a sharp interface and is robust enough
to treat both compressible and incompressible fluid simultaneously. In this calculation, we
used two-dimensional cylindrical coordinates and a grid of 90 (axial)× 45 (radial). Laser
light is normally incident and is simply treated as a straight line depositing its energy at the
solid–gas interface with an absorption rate of 30%.

The experiment was performed at the Institute of Laser Engineering, Osaka University
[68]. A YAG laser of 650 mJ and an 8-ns pulse width are used to illuminate an aluminum-
slab target. Final crater depth and shape agree well with the simulation. It is interesting
to note that the crater is not formed during the laser pulse but develops gradually over a
time scale of several hundred nanoseconds well after the laser pulse has ended, as shown
in Fig. 12. The very high temperature plasma of more than a few tens of electronvolts are
produced by the 8-ns laser pulse, and most of them expand from the target. However, some
stay near the target for a long time after the laser pulse because of the recoil force from
expanded plasmas and act as a heat source to melt the aluminum over a time scale of several
hundred nanoseconds.

When the plasma temperature becomes less than the melting temperature—around 290 ns
(the time is measured from the laser peak)—aluminum with a strength of 0.248 Mbar and a
yield strength of 2.2976 kbar starts being affected from the stress and no distortion occurs
after that time. This yield stress plays an important role in determining the final crater size.
Without yield strength, the crater develops further even after 490 ns and becomes several
times larger, as shown in Fig. 12d, although less difference is seen at the beginning around
90 ns.

The plasma-heated crater formation leads to other interesting phenomena. Since the
plasma acts not only as a heat source but also as a pressure source, the dynamic expansion
of evaporated material at a later time is strongly modified. Since a high-pressure region is
just in front of the evaporation surface, the vapor is forced to bypass this region, flowing
through a narrow channel between the metal surface and this pressure source. Therefore, the
vapor preferentially flows toward a circumference with a large angle to the target normal.
This effect is the exactly the same as that obtained in the experiment [68].

The simulation predicts additional interesting behavior. The expansion att < 40 ns is
uniform because its temperature is high—a few tens of electronvolts. The experiment sup-
ports this result and the debris around 0 degrees is very fine and indistinguishable with
an optical microscope. On the other hand, the simulation result att = 290 ns shows some
filamentary streams flowing from the surface. The experiment also supports this result and
the debris at 75 degrees consists of particles of 1 to 20µm.

5. TREATMENT OF EMBEDDED BOUNDARIES IN CARTESIAN GRIDS

5.1. Fluid–Structure Interaction

Directly computing the interactions between solid bodies and suspended fluid is necessary
for suspension flows in which the suspended bodies interact with the surrounding fluid
and substantially influence the flow motion. An efficient computational model for flows
containing distortionless rigid bodies can be constructed by using the numerical procedures
introduced in Section 2.5.
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Using color functions, we can easily treat solid bodies or objects that have any complex
shape or heterogeneous density distributions.

The advection equation for the color functionφl ,

∂φl

∂t
+ ub(l ) · ∇φl = 0, l = 1, 2, . . . , L , (42)

is solved by the method in Section 2.5 to recognize all the solid bodies, whereub(l ) is the
velocity field for objectl . The motion of the objectl is determined by

ub(l ) = ūl + r × Ω̄l , (43)

whereūl is the translational speed of the mass center of objectl , Ω̄l is the angular speed, and
r is the distance to the mass center.r = x− X,X = ∫ xρφl dV/M , andM = ∫ ρφl dV.
These quantities are predicted by Newton’s laws of motion

dūl

dt
= 1

M

∫
du
dt
ρφl dV, (44)

and

d

dt
(Π̄(l )Ω̄l ) = Γ̄l ≡

∫
r × du

dt
ρφl dV, (45)

whereΓ̄l is the torque for objectl . Π̄(l ) is the tensor of inertia moment≡ ∫ rr ρφl dV.
All the forces (represented byρ du/dt, including both the body force and the fluid stress)

are calculated at all grids in a volume force form. It is convenient to compute the net force
on the mass center of objectl by summing up all the forces over the entire domain, but
only the region recognized byφl = 1 contributes to the integration in Eqs. (44) and (45).
Different from the so-called “surface force” formulation, the volume force–based schemes,
as we used here, do not need information about the body surface, such as orientations and
surface areas, which appears in other difficult problems in computation.

A non-slip condition is used to impose solid motion onto the velocity field of the fluid,
which in turn is driven through the velocity coupling as

du
dt
= −ν

∑
l

φl (u− ūb(l )). (46)

Ths slip boundary condition can be treated similarly but is slightly more complicated [69].
We computed a solid object undergoing steady translation at a low speedvs in Stokes

flows. Some similar examples can also be found in the works of Pan and Banerjee [25,
26]. The Reynolds number Re= 2avs/ν is 0.006, wherea is the radius being described by
two grids in Cartesian coordinates. Figure 13 shows the velocity component perpendicular
to the velocity of the particle and the analytical results at different levels apart from the
particle, and here we find agreement between the numerical results and the analytical
solutions.

As an example of treating complex geometry, we simulated a rotating spherical cage
rising from fluid under the force of floating. The cage is a hollow sphere with six holes on
the surface, and the thickness of the cage is described by seven grid sizes. This geometry is
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FIG. 13. A solid sphere moving at a constant speedvs in a viscous fluid produces steady flows in the
surrounding fluid. Displayed is the velocity distribution of the velocity component normal to the moving speed of
the particle,vs, at distances of(zp − z)/(2a) = 1.5 below the particle.zp is the particle location anda is the radius
of the particle. The solid line represents the analytical solution, and the circles denote our computational results.

too complex for many numerical methods to handle. The cage has a density 10% that of the
fluid and rotates initially along the gravity direction. Figure 14 shows the time development
of the process. The cage rose from under water and drove out the surrounding fluid. Part of
the fluid was carried upward by the cage and then leaked out through the holes. The cage
then approached its equilibrium state and stayed on the fluid’s surface.

FIG. 14. A spherical cage floating up from under water with an initial rotation along the gravitational direction.
A 150× 150× 150 Cartesian grid is used. Time increases from left to right and from top to bottom. This solid
cage is described by a color function with tangent transformation.
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5.2. Numerical Formulation for Surface Tension

The CSF (continuum surface force) formulation [5] is widely used in the CFD (com-
putational fluid dynamic) society. In the CSF computational model, the surface tension is
converted into a form of volume force and the resulting force is proportional to the product of
the interface gradient and the surface curvature. A similar expression can be easily obtained
using the solution of the variational problem for the total energy conservation [13]. The
effects of surface tension are consequently included in the computational model through an
external forcing term added to the momentum equation. Then, in theexternal-forcing–and
resource-terms–related phase, we must solve the equation

ρ
∂u
∂t
= −σκ(φ)∇φ, (47)

whereφ is the color function defined above. The local mean curvature is calculated as

κ(φ) = ∇ ∇φ|∇φ| . (48)

Computing the curvature requires the gradient field ofφ. The gradients can be directly
obtained from the distance function in a level set method in which the quantity∇φ always
indicates a slope of 1 but needs to be artificially smoothed in a VOF-type method in which
an interface is presented via a discontinuity in the VOF function.

Using a CIP-type scheme to calculate the color functionφ, one can simultaneously get
the solutions toφ and its first-order derivatives. This fact motivated us to make use of
the readily known values of∂xφ, ∂yφ, and∂zφ from the interface-tracking calculation. In
evaluating the curvatureκ(φ), we can directly manipulate the gradients of the color function
as dependent variables.

A 2D example of an equilibrium rod in [5] was used to validate the computational model.
The 2D RCIP scheme was used in the calculation of the color function.

When the viscosity effect is neglected and a constant surface-tension coefficient is as-
sumed, from Laplace’s formula we can obtain the theoretical prediction of the pressure-jump
inside an infinite cylinder as4ptheor. = σ/R, whereR is the cylinder radius. We computed
the equilibrium rod problem with the model introduced above. A Cartesian grid with uniform
mesh spacing (4x = 4y) was used and the background pressure is 1.0. Calculations were
carried out with drops with various radii and surface-tension coefficients. The numerical
error is measured with theL2 norm defined by

L2 =
√∑

i, j [(4pnumer.i, j −4ptheor.)2φi, j ]

4p2
theor.

∑
i, j φi, j

.

In all the cases, equilibrium pressure jumps were built up and underwent no noticeable
change after 500 calculation steps.

Results after 1500 time steps are displayed in Fig. 15 and Table I. Figure 15 exhibits
an oscillation-less plateau of a pressure field and a sharp transition region that covers less
than two grid points. As we evaluate the surface tension from a color function which has
a compact transition thickness, we see that the force is only imposed on a narrow region
along the interface. This looks different from the CSF method, which gives a smoothed
pressure jump across the interface due to the use of a smoothed color function. Table I
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FIG. 15. Pressure field of the 2D equilibrium rod (R/4 = 10, σ = 0.1).

shows agreement between the numerical and theoretical results. Compared with the case of
R/4x = 20, that ofR/4x = 5 also gives a competitive computational accuracy even with
such a low spatial resolution.

5.3. Computation of the Constitution Equation

Modeling of fluids which contain flexible bodies has been done so far with numerical
methods based on Eulerian representations [19, 30, 31]. In these methods, the rheological
effects are included by using either massless Lagrangian particles to evaluate the strain
or finite-element techniques on subdomains to treat the flexible bodies. McMaster [19]
discusses three computer codes to model fluid–structure interaction, where Eulerian finite
differencing is used to compute the fluid and a finite-element method is used to solve the
structure. The key strategy underlying those numerical models is to couple the fluid and the
structure by an iteration procedure that results in a continuous velocity boundary condition
on the interface between two material components. The advantage of the CIP method is
that it can be applied to all the materials including flexible bodies using a single algorithm
with no iterative procedure.

TABLE I

Comparison of the Computed Mean Drop Pressure Jump

4̂pnumer. =
∑

i, j4pnumer.i, jφi, j /
∑

i, j φi, j and the Theoretical

Pressure, and theL2 Errors for the Equilibrium Rod Problem

R/4x σ 4̂pnumer./4ptheor. L2

5 0.1 0.982 5.8× 10−2

5 0.2 0.951 6.2× 10−2

10 0.1 0.972 3.5× 10−2

10 0.2 0.965 3.9× 10−2

20 0.1 0.994 3.8× 10−2

20 0.2 0.992 3.1× 10−2
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Based on the fractional-step solution procedure mentioned in the previous sections, we can
construct a numerical treatment for the constitutive equation–related phase [58] separately
from other processes. The constitutive relation, which has a differential form and relates the
velocity to the stress or stress rate, is solved by the finite-difference method. The resulting
velocity is then used as a provisional value in the remaining computations.

Constitutive equations, which give prescribed relations between stress and strain, are
usually expressed in terms of stress or stress rate and strain or strain rate. Since velocity is
one of the dependent variables in the present computational model, a constitutive equation
in terms of strain rate is more convenient to formulate. Thus an equation such as

dsi j

dt
= 2G

(
1

2

dεi j

dt
− 1

3

dεkk

dt
δi j

)
dεi j

dt
≡ ∂ui

∂xj
+ ∂u j

∂xi

is used to obtain a stress tensorsi j from velocity fields with Young modulusG. By using
a staggered grid, the conventional central differencing results in a compact computational
formulation. The time integration of the “velocity–stress” relations can be computed by a
multistep explicit scheme based on the Taylor expansion [58] or by a semi-implicit scheme
using the ADI (alternative directional implicit) technique [53].

Figure 16 shows the sequence of two kinds of viscoelastic bodies sedimenting in fluid
under the force of gravity. The object is initially put in a direction oblique to gravity which
points downward. Once released, the object moves down and is imposed on by forces from
the surrounding fluid. As expected from the theoretical analysis [59], the net external force
along the body will bend the long axis into a curve. The bent object will then produce a
torque that tends to push it toward a horizontal position. Thus, the object vacillates while it
is sedimenting in the fluid. A constitutive equation for a Hook elastic solid is used for the
pure elastic body. As can be seen from Fig. 16 (top), the elastic force resists the forcing from
the fluid and prevents further deformation of the body. For the Maxwell body, a constitutive
equation for a Maxwell solid body is used, which includes both elastic and viscous effects,
and a relaxation on elastic stresses takes place. In the present calculation (Fig. 16, bottom),
the Deborah number (ND = τ/te with te being the total integration time) is about 2/3. The
stress is released significantly during the computation. The body is bent to a larger extent
and behaves more like fluid.

Figure 17 shows another example. An elastic ball collides with a plate which is fixed on
both sides. Both ball and plate move through a 100× 100 fixed Cartesian grid. Here only
10 grids are used to describe the thickness of the plate at its initial location. The black part
in the figure is filled with air and is also taken into account in the calculations. After the
collision, the ball again detached from the plate. Such behavior is difficult to simulate with
adapted grid methods.

6. CONSERVATIVE SEMI-LAGRANGIAN SCHEMES

It is useful to look for conservative semi-Lagrangian schemes because the semi-
Lagrangian method can be effective on parallel computers, is suitable for multiphase flow,
and enables the advection calculation to be made with a large time step free from the CFL
condition. Although the semi-Lagrangian scheme has been successfully used in short-term
atmospheric problems, the loss of exact conservation makes the scheme inappropriate for
long-term problems and oceanic problems.
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FIG. 16. Sedimentation of a pure elastic body (top) and a Maxwell body (bottom) in fluid. Time increases
from left to right and from top to bottom. The vorticity of the environmental flow is also plotted.

Furthermore, some subjects require exact conservation of mass. A typical example is
black-hole formation and emission of gravity waves [36]. In this case, a small fraction of
mass is converted into gravity waves and strict mass conservation is essential. Another
example is plasma simulation in which a Vlasov equation in six-dimensional phase space
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FIG. 17. Example of elastic–plastic flow. The system is described by a 100× 100 Cartesian fixed grid, and
only 10 grids are used for the width of the plate. The plate and ball are moving through a fixed-grid system. The
black part is filled with air and is also taken into account in the calculations.

must be solved and total particle density must be conserved or else a large electric field
appears. The CIP method can be constructed to exactly conserve the total mass in a Vlasov
system of equally spaced grids in phase space [21]. However, the use of non-equally spaced
grids or other general grids can save on computational cost and is worthy of investigation.

In this sense, establishing exact conservation in a semi-Lagrangian form would be a chal-
lenging task. In shall section, we propose a non-conservative or semi-Lagrangian scheme
that guarantees exact mass conservation.

6.1. CIP–CSL4 [43]

We first discuss the conservation law, which is computed as

∂ f

∂t
+ ∂(u f )

∂x
= 0. (49)

As already seen, the CIP adopts an additional constraint, i.e., the spatial gradient, to represent
the profile inside the grid cell. In order to ensure the conservative property, we here add
another constraint,

ρn
i+1/2 =

∫ xi+1

xi

f n dx. (50)
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Therefore the spatial profile must be constructed to satisfy this additional constraint as well.
If this is possible,f is advanced in the non-conservative form, but conservation is realized
by ρ which is advanced by remapping of the Lagrangian volume, as described below.

The i th function pieceFi (x) is determined so as to satisfy the continuity condition
Fi (xi−1) = f (xi−1), Fi (xi ) = f (xi )

∂Fi (xi−1)/∂x = g(xi−1), ∂Fi (xi )/∂x = g(xi )∫ xi

xi−1
Fi (x) dx = ρi−1/2.

(51)

In order to meet the above condition, a fourth-order polynomial can be chosen as an inter-
polation functionFi (x); the time development off andg is calculated simply by shifting
the interpolation functionFi (x) by u1t in the same way as Eq. (4) of the CIP method as

f ∗i = Fi
(
xi − un

i 1t
) = an

i ξ
4
i + bn

i ξ
3
i + cn

i ξ
2
i + gn

i ξi + f n
i , (52)

g∗i = ∂Fi
(
xi − un

i 1t
)/
∂x = 4an

i ξ
3
i + 3bn

i ξ
2
i + 2cn

i ξi + gn
i , (53)

whereξi = −un
i 1t and

an
i =
−5
(
6( fiup+ fi )1xi − (giup− gi )1x2

i + 12sgn
(
un

i

)
ρi−sgn(un

i )/2
)

21x5
i

,

bn
i =

4
(
7( fiup+ 8 fi )1xi − (giup− (3/2)gi )1x2

i + 15sgn
(
un

i

)
ρi−sgn(un

i )/2
)

1x4
i

, (54)

cn
i =
−3
(
4(2 fiup+ 3 fi )1xi − (giup− 3gi )1x2

i + 20sgn(un
i )ρi−sgn(un

i )/2
)

21x3
i

,

1xi = xiup− xi ,

iup =
{

i − 1 if un
i ≥ 0,

i + 1 if un
i < 0,

sgn
(
un

i

) = {+1 if un
i ≥ 0,

−1 if un
i < 0.

The problem left for us is to calculate the time development ofρ. If we define the upstream
departure point ofxi as

xp
i = xi −

∫ t+1t

t
ui dt, (55)

the density contained between [xp
i−1, xp

i ] is simply remapped into [xi−1, xi ] at t +1t .
Therefore in the simplest case ofu1t/1x < 1, the time development ofρ is calculated by
the following equation.

ρn+1
i−1/2 = ρn

i−1/2+1ρn
i−1−1ρn

i . (56)

With the aid of Fig. 18, it is clear that1ρn
i is defined by the equation

1ρn
i =

∫ xi

xi−un
i 1t

Fn
i (x) dx = −

(
an

i

5
ξ4

i +
bn

i

4
ξ3

i +
cn

i

3
ξ2

i +
gn

i

2
ξi + f n

i

)
ξi , (57)

whereξi = −un
i 1t, and each coefficient is equivalent to Eq. (54) at time stepn.
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FIG. 18. The inflow and outflow of flux during1t .

Therefore, the solution of Eq. (49) is given by Eqs. (52)–(57). Extension to more general
equations is similar to the CIP method.

6.2. Numerical Tests

We present some sample calculations to test the procedure given in the previous section.
The first example is an advection with variable velocity and Eq. (49) is solved under a given
velocity field,

u = 1+ 0.5 sin(2πx/100),

with the initial condition

f (0, x) =
{

1 if 40≤ x ≤ 60

0 otherwise,

where equally spaced grid points of1x = 100/(N − 1) and a time-step size of1t =
10/(N − 1) are used,N being the number of grid points.

We repeated the calculation by changing the total number of grid points to 101, 301, and
1001 to test grid dependence of the present scheme, the CIP scheme, the upwind scheme, and
TVD with a superbee limiter [39], as shown in Fig. 19. The result of the first-order upwind
scheme withN = 10,001 is also shown in Fig. 19. All profiles shown are after 10(N − 1)
time steps, which corresponds tot = 100. Since no analytical solution is available, the
result of the present scheme withN = 1001 is shown by the solid line in the figure.

We confirm that the accuracy has been improved at the discontinuity by the present
scheme. Note that the first-order upwind scheme needs 10,001 grid points to obtain the
same result as the present scheme or the CIP method using 101 grid points, which converges
to one solution regardless of grid size. Furthermore, it has already been shown that most
of the modern schemes such as TVD and ENO fail to reproduce the result with 101 grid
points [42], as shown in Fig. 19.

The following one-dimensional Burger’s equation is an interesting example of application
to a non-linear equation.

∂u

∂t
+ u

∂u

∂x
= λ∂

2u

∂x2
≡ S. (58)

The viscosity term is calculated with a finite-difference approach.
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FIG. 19. Propagation of a square wave with a given velocity field by the present scheme, the CIP method,
the upwind scheme, and the TVD scheme with a superbee limiter (SPB) at t= 100. The number of grids is 101
(circles), 301 (triangles), 1,001 (squares), and 10,001 (diamonds). For comparison, the result of the present scheme
with 1,001 grids is shown by the solid line.

In order to calculate the spatial derivative ofu, we differentiate Eq. (58); then

∂u′

∂t
+ u

∂u′

∂x
= −u′2+ S′. (59)

This equation is split into two phases:∂u′/∂t + u∂u′/∂x = 0 (advection) and∂u′/∂t =
−u′2+ S′ (non-advection). We calculate the advection phase with Eq. (4), and the non-
advection phase with the following equation, applying a finite-difference method.

u′n+1
i = u′∗i − (u′∗i )21t.

The SandS′ terms are treated by the method given in Section 3.2. In fact, first-order time
integration is not necessarily used here. A higher order integration along the trajectory can
be easily implemented.

For the calculation ofρ(≡∫ u dx), we transform Eq. (58) into the conservation form as
follows.

∂u

∂t
+ ∂(u

2/2)

∂x
= S. (60)
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FIG. 20. The result of Burger’s equation without viscosity with the present scheme with 101 grid points at
t = 100. For comparison, the result of the first-order upwind scheme with 1001 grid points att = 100 is shown
by the solid line.

Figure 20 shows the calculation result att = 100 withλ = 0 and the initial condition

u(0, x) = 0.5+ 0.4 cos(2πx/100), (61)

and equally spaced grid points of1x = 1.0, a time-step size of1t = 0.1, and mesh number
N = 101 are used.

In order to check the exact speed of a shock wave, we show the result of the calculation
with the conservative form of Burger’s equation using the first-order upwind scheme with
N = 1001.

FIG. 21. The result of Burger’s equation with viscosity with the present scheme att = 100. The exact solution
is shown by the solid line.
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FIG. 22. Bird’s-eye view of a gas–liquid turbulence mixing layer.

In this calculation, although the viscosity term is not considered, the speed of a shock
wave can be exactly reproduced by the present scheme.

Next we solve Eq. (58) with a viscosity term and condition as

u(0, x) =
{

0.9 if x ≤ 10

−0.1 if x > 10,

where equally spaced grid points of1x = 1, and a time-step size of1t = 0.1 are used.
The coefficient of the viscosity term is set toλ = 0.15.

Figure 21 shows the profile after 1000 time steps that corresponds tot = 10, and the
propagation speed agrees well with the exact solution.

7. SUMMARY

We have reviewed various families of the CIP method to address the problem of multi-
phase flow. Significant improvements are still being made but we cannot discuss all of those
efforts, such as, application to the finite-element method, extension to higher order polyno-
mials, application to other equations such as diffusion or the Poisson equation. Application
of the CIP method to various fields such as volcanic eruption, astrophysical jets [17], the
GDI engine, and combustion is also expanding. Some of these fields are discussed in the
special issue of the CFD Journal on the CIP method (vol. 8, No. 1, 1999). Before closing,
we introduce an interesting application done by Mutsuda and Yasuda [20]. Figure 22 shows
a bird’s-eye view of a gas–liquid turbulence mixing layer driven by jet ejection, in which
a three-dimensional domain of a solitary wave leads to very forceful wave-breaking on a
double reef with two steps, and the surface profiles and entrained air bubble motions develop
quickly into the turbulent mixing layer with strong three-dimensionality. This simulation
has been done with one CPU on an Intel-based personal computer (with a 300-MHz Pentium
II processor).
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