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Abstract—The problem of finding an optimal product sequence for sequential multiplication of a chain of matrices (the matrix chain

ordering problem, MCOP) is well-known and has been studied for a long time. In this paper, we consider the problem of finding an

optimal product schedule for evaluating a chain of matrix products on a parallel computer (the matrix chain scheduling problem,

MCSP). The difference between the MCSP and the MCOP is that the MCOP pertains to a product sequence for single processor

systems and the MCSP pertains to a sequence of concurrent matrix products for parallel systems. The approach of parallelizing each

matrix product after finding an optimal product sequence for single processor systems does not always guarantee the minimum

evaluation time on parallel systems since each parallelized matrix product may use processors inefficiently. We introduce a new

processor scheduling algorithm for the MCSP which reduces the evaluation time of a chain of matrix products on a parallel computer,

even at the expense of a slight increase in the total number of operations. Given a chain of n matrices and a matrix product utilizing at

most P=k processors in a P -processor system, the proposed algorithm approaches kðnÿ 1Þ=ðnþ k logðkÞ ÿ kÞ times the performance

of parallel evaluation using the optimal sequence found for the MCOP. Also, experiments performed on a Fujitsu AP1000

multicomputer show that the proposed algorithm significantly decreases the time required to evaluate a chain of matrix products in

parallel systems.

Index Terms—Matrix chain product, parallel matrix multiplication, matrix chain scheduling problem, processor allocation, task

scheduling.
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1 INTRODUCTION

1.1 Background

MATRIX multiplication is a computation intensive part of
many commonly used scientific computing applica-

tions. Many algorithms in numerical and nonnumerical
problems are solved efficiently using matrix-matrix multi-
plications [1]. Also, in the case of parallel algorithms, some
problems that are not solved efficiently using sequential
algorithms turn out to be solved efficiently using matrix-
matrix multiplications or variations of matrix-matrix multi-
plication [2]. Such an application uses matrix multiplication
as a basic computational kernel so that a chain of matrices is
frequently required and the matrices are multiplied
consecutively [2], [3], [4], [5].

In the evaluation of a chain of matrix products with
n matrices, M¼M1 �M2 � � � � �Mn, where Mi is an mi �
miþ1ðmi � 1Þ matrix, the product sequence greatly affects
the total number of operations required to evaluateM, even
though the final result is the same for all product sequences
due to the associative law of matrix multiplication. In the
worst case, an arbitrary product sequence of matrices is

ðT 3

optÞ, where Topt is the minimum number of operations

required to evaluate a chain of matrix products [6]. The
matrix chain ordering problem (MCOP) focuses on finding
a product sequence for a set of matrices such that the total
number of operations is minimized.

An exhaustive search to find an optimal solution for the
MCOP is not a good strategy since the number of possible
product sequences of a chain of matrix products with
n matrices is �ð4n=n3=2Þ, which is known as the Catalan
number [7]. Thus, determining the optimal sequence by this
method is very time consuming. There has been much work
reported for solving the MCOP. The MCOP was first
studied by Godbole [8] and solved using dynamic pro-
gramming in Oðn3Þ time. Chin [9] suggested an approxima-
tion algorithm, which runs in OðnÞ time and finds a near-
optimal sequence. An optimal sequential algorithm, which
runs in Oðn logðnÞÞ time, was given by Hu and Shing [10],
[11]. This algorithm solves the MCOP by solving the
equivalent problem of finding the optimal triangulation of
a convex polygon. Ramanan [12] presented a simpler
algorithm for the MCOP and obtained the tight lower
bound of 
ðn logðnÞÞ for a related problem.

1.2 Parallel Evaluation Time

Let us refer to the time required to find an optimal product
sequence for a chain of matrices as the ordering time and the
time required to execute the product sequence as the
evaluation time. Many parallel algorithms aimed at reducing
the ordering time have been studied using the dynamic
programming method [13], [14], [15], [16] and the convex
polygon triangulation method [17], [18], [19]. Bradford et al.
[16] proposed a parallel algorithm based on dynamic
programming, which runs in Oðlog3ðnÞÞ time with
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n= logðnÞ processors on the CRCW PRAM model. Czumaj

[17] proposed an Oðlog3ðnÞÞ time algorithm based on the

triangulation of a convex polygon, which runs with

n2= log3ðnÞ processors on the CREW PRAM. Also, in [18],

he proposed a faster approximation algorithm that finds a

near-optimal solution in OðlogðnÞÞ time on the CREW

PRAM and in Oðlog logðnÞÞ time on the CRCW PRAM.

Ramanan [19] gives an optimal algorithm that runs in

Oðlog4ðnÞÞ time using n processors on a CREW PRAM.
Now, let us consider the evaluation time of a chain of

matrix products. In a single processor system, the evalua-

tion of a chain of matrix products using the optimal product

sequence for the MCOP guarantees the minimum evalua-

tion time since the sequence guarantees the minimum

number of operations. However, in parallel systems,

parallel computation of each matrix product using the

product sequence found for the minimum number of

operations does not guarantee the minimum evaluation

time. This is because the evaluation time in parallel systems

is affected by various factors such as dependencies among

tasks, communication delays, and processor efficiency. To

this date, there has been no research reported in the open

literature on ways to reduce the matrix chain evaluation

time in a parallel system.

1.3 New Contributions

We introduce the problem of parallel evaluation of matrix

chain products. Our technical contributions are two-fold.

First, we formally present the problem of finding the matrix

product schedule for parallel systems (the matrix chain

scheduling problem, MCSP) in order to reduce the evalua-

tion time. The MCSP is proven to be an NP-complete

problem.
Second, we propose a novel scheduling algorithm which

finds a matrix product schedule that, while possibly

increasing the total number of required operations, de-

creases the evaluation time of a chain of matrix products by

finding sets of matrix products that can be executed

concurrently. We show that the proposed algorithm can

significantly reduce the time required to evaluate a chain of

matrix products in parallel systems.
This paper is organized as follows: Section 2 presents a

formal description of the processor scheduling problem for

a chain of matrix products and shows that the given

problem is NP-complete. In Section 3, we present a

processor allocation method for multiplying a number of

independent matrix products concurrently. In Section 4, we

propose a matrix chain scheduling algorithm that drama-

tically reduces the evaluation time of a chain of matrix

products by using processors efficiently in parallel systems.

In Section 5, we analyze the evaluation performance of

sequences found with the proposed method and sequences

found for the MCOP. We also compare the proposed

method with various other evaluation methods through

experiments on a Fujitsu AP1000 parallel system. In

Section 6, many practical issues and further extensions of

the MCSP are discussed. Finally, in Section 7, we summar-

ize and conclude the paper.

2 MATRIX CHAIN SCHEDULING PROBLEM

2.1 Notation

. P : the number of processors in a parallel system.

. M: a matrix chain product of n matrices, i.e.,
M¼M1 �M2 � � � � �Mn.

. Mi: an mi �miþ1 matrix (mi � 1, 1 � i � n).

. L: a product sequence tree for a matrix chain M.

. Li;j: the sequence subtree of L for ðMi � � � � �MjÞ.

. C: the minimum number of computations for
evaluating M.

. �C: the amount of increased computation incurred
by modifying the current sequence tree.

. pi;j: the number of processors assigned for evaluat-
ing ðMi � � � � �MjÞ.

. Ti;jðpi;jÞ: the execution time for evaluating ðMi �
� � � �MjÞ on pi;j processors.

. ðmi;mj;mkÞ: a single matrix product for multiplying
an mi �mj matrix by an mj �mk matrix.

. �ðmi;mj;mk; pÞ: the execution time of a single
matrix product ðmi;mj;mkÞ using p processors.

. DðxÞ: the set of divisors of x, i.e., DðxÞ =
fdjd divides xg.

. LDðx; yÞ: the largest divisor in DðxÞ that is not larger
than y.

. SDðx; yÞ: if x > y, then SDðx; yÞ is the smallest
divisor in DðxÞ that is larger than y. Otherwise,
SDðx; yÞ ¼ x.

. m: the largest dimension among all of the matrices,
i.e., m ¼ max1�i�nþ1ðmiÞ.

2.2 Problem Description

We consider the problem of finding the schedule with
minimum evaluation time for M on a P processor parallel
system. The number of operations needed to multiply a
matrix A of size mi �mj by a matrix B of size mj �mk is
mimjmk.

1 Many parallel algorithms for matrix multiplica-
tion have been developed for various parallel architectures
[23], [24], and the execution time of matrix multiplication
depends on the algorithm used and the architecture on
which the algorithm runs. However, for a broader discus-
sion, we assume that a simple parallel algorithm [24] is used
and the execution time of matrix multiplication is propor-
tional to the number of operations on a processor. There-
fore, for multiplying A by B using p processors, the
execution time, �ðmi;mj;mk; pÞ, can be approximated as
follows:

�ðmi;mj;mk; pÞ�
mimjmk

p if 1 � p � mimjmk

logðmjÞ ;
mimjmk

p logð p
mimk
Þ if

mimjmk

logðmjÞ < p � mimjmk:

(
When pij processors are allocated for evaluating

ðMi � � � � �MjÞ, the evaluation time consists of two parts:
the partial matrix chain evaluation time and the single matrix
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1. Even though Strassen’s algorithm [20], [21] and its variants perform
fewer than n3 operations for n� n matrix multiplication, these faster
algorithms are regarded as inappropriate methods for matrix chain
products due to more erroneous results caused by round-off errors and
larger storage requirements than the usual inner-product type algorithm
[22]. Therefore, we assume that a simple algorithm is used so that
n3 operations are required for n� n matrix multiplication. This is also the
assumption made in other research work on the MCOP.



product execution time. The two partial matrix chains are
ðMi � � �MkÞ and ðMkþ1 � � �MjÞ for any k ði � k < jÞ. The
evaluation time of the two matrix product chains is

dependent on the evaluation method. One method is to
evaluate sequentially ðMi � � �MkÞ and ðMkþ1 � � �MjÞ using all
available processors in pij. The other method is to evaluate
both ðMi � � �MkÞ and ðMkþ1 � � �MjÞ concurrently by partition-

ing pij into pi;k and pkþ1;j such that pi;k þ pkþ1;j � pij. The
minimum evaluation time Ti;jðpi;jÞ of ðMi � � �MjÞ on pi;j
processors is found from the following recurrence relation:

Ti;jðpi;jÞ � min
i�k<j

8:Ti;kðpi;jÞ þ Tkþ1;jðpi;jÞþ

�ðmi;mkþ1;mjþ1; pi;jÞ;

min
pi;kþpkþ1;j�pi;j

�
max

�
Ti;kðpi;kÞ; Tkþ1;jðpkþ1;jÞ

��
þ

�ðmi;mkþ1;mjþ1; pi;jÞ
9;:

The problem of finding the schedule that results in the
minimum evaluation time, T1;nðP Þ, is equivalent to finding

the best schedule, ki;j, for ðMi � � �MjÞ with the processor
allocation pij to Li;j. Therefore, the MCSP is defined as
follows:

MCSP: Given M and P , find the product sequence for

evaluating M and the processor schedule for the sequence such

that the evaluation time is minimized.

2.3 MCSP Complexity

The complexity of the MCSP depends on the number of

processors available for the MCSP. Consider the case in
which there are sufficient processors for multiplying any
number of matrices concurrently. For a matrix product

ðmi;mkþ1;mjÞ, we can allocate the number of processors
that guarantees the minimum execution time for the
product, i.e., logðmkþ1Þ. Then, using dynamic programming,
the problem can be solved in polynomial time according to

the following recurrence relation:

Ti;j ¼
mini�k<j

maxðTi;k; Tkþ1;jÞ þ logðmkþ1Þ
8: 9; if 1 � i < j � n;
0 if i ¼ j; 1 � i � n:

8>><>>:
Therefore, in the case of an unlimited number of processors,
the problem of finding the schedule for evaluating M with

the minimum time has a polynomial time algorithm.
However, in general, the number of available processors
is limited and not sufficient to allocate the maximum

number of processors for each product.
Now, we show that the MCSP is NP-complete using a

reduction from the processor partitioning problem which is
known to be NP-complete [25].

Theorem 1. The MCSP is NP-complete.

Proof. The decision version of the MCSP is obviously in NP.
There is a nondeterministic algorithm that generates a

processor schedule with a product sequence ofM. Given
the schedule, it can be decided in polynomial time

whether the schedule length is less than a certain value

by finding the longest path in a tree graph.
The processor partitioning problem [25], denoted by

PPP, is to find the schedule with the minimum completion
time of n tasks on a partitionable P processor system
ðn � P Þ. In the PPP, a task j is characterized as �j and tjðpjÞ,
where �j denotes the maximum number of allocable
processors for task j and tjðpjÞ denotes the execution time
of task jon pi processors ð1 � pi � �jÞ. The PPP of deciding
whether there exists a schedule whose completion time is
less than D is NP-complete [25].

An instance of the PPP can be transformed to an
instance of the MCSP. For the PPP, tjðpjÞ can be a linear
function of pj, i.e., tjðpjÞ ¼ tjð1Þ=pj. Let M2jÿ1 be a 1�
tjð1Þ matrix and M2j be a tjð1Þ � 1 matrix for 1 � j � n.
Now, define � for the MCSP as follows:

�ð1; tjð1Þ; 1; pjÞ ¼ tjðpjÞ for 1 � pj � �j:

Thus, the PPP with n tasks is transformed to an MCSP

with 2n matrices in polynomial time.
Next, let us show that, if there is a feasible solution for

the MCSP, there exists a solution for the PPP. In the
transformed MCSP, an optimal sequence for the MCSP
has the products ðM1 �M2Þ, ðM3 �M4Þ, � � � , ðM2nÿ1 �
M2nÞ because these n products satisfy the optimal
sequence property in Theorem 1 of [9] and because any
other sequence not only reduces the degree of concur-
rency, but also increases the computation. Therefore, an
optimal schedule for the transformed MCSP is found in a
product sequence tree having these independent n
products as leaves. Since execution of nÿ 1 nonleaf
products with single operations requires at least dlogðnÿ
1Þe time, finding a schedule of the transformed MCSP
whose completion time is less than Dþ dlogðnÿ 1Þe
solves the PPP whose schedule length is less than D.
Noting that the PPP is a special case of the MCSP
completes the proof. tu

Since the problem of finding an optimal schedule for the

MCSP is an NP-hard optimization problem, we propose a

heuristic algorithm in Section 4. The algorithm enhances the

evaluation performance of an n-matrix product chain on a

parallel system by partitioning the parallel system and

executing multiple matrix products simultaneously; this

also enhances the overall efficiency of the system. A

processor allocation method for executing multiple matrix

products is discussed in the next section.

3 PROCESSOR ALLOCATION FOR MATRIX

PRODUCTS

In order to devise an efficient matrix chain scheduling

algorithm, we need to study the characteristics of matrix

products. In this section, we discuss how many processors

should be allocated for a single matrix product and

determine the optimal processor allocation for executing

independent matrix products simultaneously.
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3.1 Processor Allocation for a Single Matrix Product

Many parallel matrix multiplication algorithms have been

developed with various parallel architectures [21], [24]. A

multiplication of two n� n matrices requires at most n3

processors. In the best case, it takes OðlogðnÞÞ time with n3

processors by using n processors to get one element of the

result matrix.2 Each set of n processors executes a multi-

plication in one step and sums n elements within OðlogðnÞÞ
steps. However, in this case, we expect low utilization of

processors. While summing n data for logðnÞ steps, some

processors stay idle. Moreover, these logðnÞ steps are

communication steps, not computation steps. Then, how

many processors should be allocated for multiplying two

matrices?
One distinctive feature of parallel matrix multiplication

is the jerky behavior affecting the execution time, speedup,

and efficiency of the computation. This is mainly due to the

load imbalance, which is referred to as the “integer effect”

in [27]. It is known that many parallel algorithms are based

on allocating processors for computing a part, especially as

a subblock, of the result matrix [5]. For executing a product

ðmi;mj;mkÞ on p processors, let us consider the case where

the operations for computing mimk elements are distributed

among p processors. Then, the execution time

�ðmi;mj;mk; pÞ, the speedup SðpÞ, and the efficiency EðpÞ
are estimated as follows:

�ðmi;mj;mk; pÞ ¼
mimk

p

� �
mj;

SðpÞ ¼ �ðmi;mj;mk; 1Þ
�ðmi;mj;mk; pÞ

¼ mimk=
mimk

p

� �
; and

EðpÞ ¼ SðpÞ
p
¼ mimk= p

mimk

p

� �� �
:

Ideally, the speedup is expected to be SðpÞ ¼ p so that

EðpÞ ¼ 1. However, in the worst case, the integer effect

causes a speedup SðpÞ close to p=2, which is a factor of 2

away from what we would normally hope for. This means

that half of the processors do not have any effect on the

execution time. Therefore, for efficient execution, the

number of processors allocated to a single matrix product

should not be an arbitrary number. When multiplying an

mi �mj matrix by an mj �mk matrix, the proper number of

processors is one of divisors of mimk. For multiplying a

2� 4 matrix by a 4� 3 matrix, the number of allocable

processors could be 1; 2; 3; or 6. In this case, the load of each

processor can be well balanced.
Let DðxÞ denote the set of divisors of x, i.e.,

DðxÞ ¼ fdjd divides xg. The number of processors allocated

to a given matrix product ðmi;mj;mkÞ should be an element

in DðmimkÞ. Thus,

�ðmi;mj;mk; pÞ ¼
mimjmk

p
for p 2 DðmimkÞ:

Even though there may exist an algorithm using mimjmk

processors, we allocate at most mimk processors for
processor efficiency.

3.2 Processor Allocation for the Concurrent
Computation of Multiple Matrix Products

In this section, we discuss a processor allocation method
for independently computing multiple matrix products.
When executing multiple parallel tasks concurrently, one
good heuristic for allocating processors to each task is
“proportional allocation” [28], [29]. The proportional
allocation algorithm allocates a number of processors
proportional to the computation amount of each task.
This algorithm tries to minimize the completion time of
all tasks by balancing the execution times of the tasks.
However, it assumes that the execution time of a task
decreases if more processors are allocated to it and that
any number of processors may be allocated. These
assumptions however, do not hold for the MCSP.

Applying proportional allocation to matrix products is
inappropriate. Let us consider the case of computing two
matrix products ð2; 3; 8Þ and ð4; 4; 3Þ on 20 processors.
Since both products involve the same amount of work,
i.e., 2� 3� 8 ¼ 4� 4� 3, 10 processors are allocated for
each product by proportional allocation. Then, the
completion time of the two matrix products is maxð2�
3� 8=8; 4� 4� 3=6Þ ¼ 8 units of time since LDð16; 10Þ ¼ 8
and LDð12; 10Þ ¼ 6. However, if we allocate eight
processors to the first product and 12 processors to the
second product, the completion time is only maxð6; 4Þ ¼ 6
units of time. From the fact that the completion time is
bounded by the longer execution time, we can reduce the
completion time by allocating unused processors to the
matrix product that requires a longer execution time.

The following algorithm describes the processor alloca-
tion algorithm for two independent matrix products. Given
two matrix products X = ðmx;mxþ1;mxþ2Þ and Y =
ðmy;myþ1;myþ2Þ, we let � ðX; pÞ and �ðY ; pÞ be shorthand
notation for �ðmx,mxþ1; mxþ2; pÞ and �ðmy;myþ1, myþ2; pÞ,
respectively.

Discrete Processor Allocation for Two Matrix

Products ðDPAÞ

Input: Two matrix products X ¼ ðmx;mxþ1;mxþ2Þ and
Y ¼ ðmy;myþ1;myþ2Þ and a set of P processors.

Output: The number of processors allocated to the matrix

products X and Y , denoted as Px and Py, which

satisfy 1 � Px; Py � P and Px þ Py � P .

1. Pprop ¼ P �mxmxþ1mxþ2=ðmxmxþ1mxþ2 þmymyþ1myþ2Þ
2. di = LDðmxmxþ2; PpropÞ
3. diþ1 = SDðmxmxþ2; PpropÞ
4. dj = LDðmymyþ2; P ÿ PpropÞ
5. djþ1 = SDðmymyþ2; P ÿ PpropÞ
6. if �ðX; diÞ � �ðY ; djÞ then

7. if maxð�ðX; diþ1Þ;�ðY ; LDðP ÿ diþ1ÞÞÞ < �ðX; diÞ
then

8. Px ¼ diþ1, Py ¼ LDðmymyþ2; P ÿ diþ1Þ

LEE ET AL.: PROCESSOR ALLOCATION AND TASK SCHEDULING OF MATRIX CHAIN PRODUCTS ON PARALLEL SYSTEMS 397

2. On a CRCW PRAM, the matrix multiplication runs in constant time
with the assumption that, when there are write conflicts by multiple
processors attempting to write numbers in the same location, the sum of the
numbers is written in that location [26]. Since the CRCW PRAM with an
arbitrary number of processors is not realistic in practice, we are not
considering that case.



9. else
10. Px ¼ di, Py ¼ LDðmymyþ2; P ÿ diÞ
11. endif

12. elseif maxð�ðX;LDðP ÿ djþ1ÞÞ;�ðY ; djþ1ÞÞ < �ðY ; djÞ
then

13. Px ¼ LDðmxmxþ2; P ÿ djþ1Þ, Py ¼ djþ1

14. else

15. Px ¼ LDðmxmxþ2; P ÿ djÞ, Py ¼ dj
16. endif
17. endif

Even if we use a naive search algorithm for finding
divisors, it will take Oðmaxðmi;mjÞÞ time for finding both
LDðmimj; pÞ and SDðmimj; pÞ. We let m denote the
largest dimension among all of the matrices, i.e.,
m ¼ max1�i�nþ1ðmiÞ. Then, the time complexity of the
discrete processor allocation (DPA) algorithm is OðmÞ.
The following lemma and theorem show that DPA
guarantees the minimum completion time for two matrix
products.

Lemma 1. Given two matrix products X ¼ ðmx;mxþ1;mxþ2Þ
and Y ¼ ðmy;myþ1;myþ2Þ on P processors, an optimal
processor allocation has at least one of four assignments:
Px ¼ di, Px ¼ diþ1, Py ¼ dj, or Py ¼ djþ1.

Proof. If an allocation does not have any of the above four
assignments, then Px < di or Px > diþ1, and Py < dj or
Py > djþ1. In this allocation, Px and Py are of the
following four cases: The first case is Px < di and
Py < dj, the second is Px < di and Py > djþ1, the third is
Px > diþ1 and Py < di, and the fourth is Px > diþ1 and
Py > djþ1. Without loss of generality, let us assume
�ðX; diÞ � �ðY ; djÞ.

Case 1. Px < di and Py < dj Since maxð�ðX;PxÞ,
�ðY ; PyÞÞ > �ðX; diÞ, the allocation of Px and Py does
not guarantee the minimum completion time of X and Y .
This means that the completion time by this allocation is
longer than that by the allocation of di and dj to X and Y .

Case 2. Px < di and Py > djþ1 As in Case 1, since
maxð�ðX;PxÞ;�ðY ; PyÞÞ = �ðX;PxÞ > �ðX; diÞ, the allo-
cation of Px and Py does not result in the minimum
completion time.

Case 3. Px > diþ1 and Py < di In this case, the comple-
tion time with the allocation of Px and Py is maxð�ðX;PxÞ,
�ðY ; PyÞÞ = �ðY ; PyÞ. Let us compare this allocation with
P 0x ¼ diþ1, P 0y = LDðY ; P ÿ P 0xÞ. In the allocation of P 0x and
P 0y, the completion time is maxð�ðX;P 0xÞ, �ðY ; P 0yÞÞ =
�ðY ; P 0yÞ. Also, since P 0x < Px, it is the case that P 0y � Py. In
the case of P 0y > Py, the completion time �ðY ; P 0yÞwith the
allocation of P 0x and P 0y is shorter than the completion time
�ðY ; PyÞ with the allocation of Px and Py so that the
allocation of Px and Py does not guarantee the minimum
completion time of X and Y . In the case of P 0y ¼ Py, the
allocation of Px and Py does not take less time than the
allocation ofP 0x andP 0y, and the optimal allocation with the
minimum completion time can be found with P 0x ¼ diþ1.

Case 4. Px > diþ1 and Py > djþ1 In this case, we cannot
allocate Px and Py since Px þ Py > P .

For all four cases, the allocation of Px and Py does not
take less time than allocation with one of the four
assignments. Therefore, the optimal allocation with the

minimum completion time is found with one of the four
assignments. tu

Theorem 2. DPA guarantees the minimum completion time for

two matrix products.

Proof. Since DPA finds the allocation with the minimum

completion time among the allocations having one of the

four assignments in Lemma 1, DPA guarantees the

minimum completion time for computing two matrix

products simultaneously. tu

In the next section, DPA is used for partitioning the

processors allocated to a leaf product into two groups to run

another candidate product simultaneously. Thus, we can

compute multiple matrix products independently with an

increased degree of concurrency.

4 MATRIX CHAIN SCHEDULING ALGORITHM

The proposed scheduling algorithm consists of three stages.

First, the algorithm finds the optimal product sequence for

the MCOP. Next is the top-down processor assignment

stage. In this stage, processors are partitioned and propor-

tionally assigned to each subtree according to their

computation amount in order to balance the evaluation

time of both the left and right partial matrix product chains.

The third stage is the bottom-up execution stage that

executes products independently from the leaf and tries to

modify the product sequence to enhance concurrency so as

to reduce the evaluation time ofM. This is done by finding

the points that change the product sequence but do not

excessively increase the total number of operations. After

changing the product sequence, the processors allocated to

the leaf product are relocated using the DPA.

4.1 Optimal Product Sequence by the MCOP

The product sequence of M determines the number of

operations to be executed in single processor systems. In

parallel systems, the number of operations is not the sole

factor determining the evaluation time, but it affects the

evaluation time greatly nonetheless. Hence, our scheduling

algorithm begins with the optimal product sequence found

for the MCOP. There have been many works reported for

finding the optimal product sequence that guarantees the

minimum number of operations for any chain of matrix

products. The optimal product sequence can be found in

Oðn logðnÞÞ time using a sequential algorithm [10], [11]. In

addition, many parallel algorithms that run in polylog time

have been studied [16], [17], [19]. Thus, by using these

parallel algorithms, it is possible to find the optimal product

sequence within polylog time on P processor systems.
Let us assume that the sequence and the number of

operations found for the MCOP is stored in two tables

named S½n; n� and W ½n; n�, respectively. W ½i; j� has the

minimum number of operations for evaluating Li;j and

S½i; j� has the matrix index for partitioning the matrix chain

ðMi � � � � �MjÞ. Note that the algorithm for the MCOP may

not have computed Li;j; S½i; j� or W ½i; j� for all i; j.
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4.2 Top-Down Processor Assignment

In the top-down processor assignment stage, the number of

processors assigned to two partial matrix chains is set to be

proportional to the computation amount of a subtree. If pi;j
processors have been assigned to Li;j, then pi;j �

W ½i;S½i;j��
ðW ½i;S½i;j��þW ½S½i;j�þ1;j�Þ processors are assigned to subtree

Li;S½i;j� and pi;j � W ½S½i;j�þ1;j�
ðW ½i;S½i;j��þW ½S½i;j�þ1;j�Þ processors are assigned

to subtree LS½i;j�þ1;j.
For example, given a chain of eight matrices with

dimensions f3; 8; 9; 5; 8; 3; 3; 3; 4g and a 64 processor system,
processors are assigned as in Fig. 1.

4.3 Bottom-Up Concurrent Execution

After assigning processors to each subtree, the matrix
products are executed concurrently and independently,
starting from the leaf products. However, there are cases in
which some processors stay idle. When there are idle
processors in the execution of Li;j, we try to modify the
product sequence to use these idle processors by tracing the
ancestors of the leaf node of Li;j in order to find a candidate
for concurrent execution.

This upward trace continues until a suitable candidate or
a sibling which is not a leaf node is found. For example, let
us consider executing the sequence tree L1;9, shown in Fig. 2,
which represents

ðððM1ðM2ðM3ðððM4M5ÞM6ÞM7ÞÞÞÞM8ÞM9Þ:

In the execution of ðM4M5Þ, the possible candidates for
concurrent execution are ðM1M2Þ; ðM2M3Þ; ðM6M7Þ, and
ðM8M9Þ. There are other types of candidate products, e.g.,
ðM7M8Þ, which are not considered in this paper because
such cases result in more modifications to the optimal
sequence with no obvious benefit over other candidates.

The matrix product ðMyMyþ1Þ is a candidate of the leaf
product ðMxMxþ1Þ if one of the following two conditions is
satisfied.

Condition-1: y > xþ 1 and the node associated with Myþ1 has
the left child node associated with My in the sequence tree;

Condition-2: y < xÿ 1 and the node associated with My has the
right child node associated with Myþ1 in the sequence tree.

When we modify the product sequence to execute
candidate products simultaneously in the current execution
phase, there is some loss due to an increase in the total
number of operations. Therefore, we have to check whether
the modification is beneficial or not.

In the case where the MCOP sequence ðððM1M2ÞM3ÞM4Þ
is changed to ððM1M2ÞðM3M4ÞÞ as shown in Fig. 3, the total
number of operations changes from C ¼ m1m2m3 þ
m1m3m4 þm1m4m5 to

C0 ¼ m1m2m3 þm3m4m5 þm1m3m5:

The amount of increased computation is

�C ¼ m3m4m5 þm1m3m5 ÿm1m3m4 ÿm1m4m5:

In general, when we have a product sequence, such as in
Fig. 4, the amount of increased computation for multiplying
My �Myþ1 concurrently with Mx �Mxþ1 is as follows:

�C ¼ myþ1myþ2ðmy ÿmzÞ þmzmyðmyþ2 ÿmyþ1Þ:

In this equation, mz represents the row of the intermediate
matrix (or matrix Mz itself) that is going to be multiplied
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Fig. 3. A sequence modification.
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with the result of My �Myþ1. In other words, there is a left

parenthesis to the left of matrix Mz that matches the right

parenthesis on the right side of matrix Myþ1. In the case of

y < z, i.e., ðMyðMyþ1ð� � � ðMxMxþ1Þ � � �MzÞÞÞ, the amount of

increased computation is

�C ¼ myþ1myþ2ðmy ÿmzþ1Þ þmzþ1myðmyþ2 ÿmyþ1Þ:

Finding mz (or mzþ1), which is very important for the

analysis of �C, can be done by traversing sequence tree

L. If both My and Myþ1 are right children, then Mz is

searched by traversing the left child recursively from the

parent node of My. Similarly, if both are left children,

then Mz is searched by traversing the right child from the

parent node of My.
In the case where pi;j processors are allocated to the

matrix product ðMxMxþ1Þ, but all pi;j processors cannot be

utilized by the matrix product (i.e., mxmxþ2 < pi;j), then we

try to modify the product sequence L. At that time, we can

decide to modify the current sequence by the following

lemma.

Lemma 2. If a leaf product ðMxMxþ1Þ has a candidate product

ðMyMyþ1Þ and the DPA algorithm will allocate px and py
processors to the two matrix products, respectively, then

evaluation using the modified sequence reduces the evaluation

time when �C < minð�ðmx;mxþ1;mxþ2; mxmxþ2Þ � ðpx þ
py ÿmxmxþ2Þ; mymyþ1myþ2Þ.

Proof. There are two necessary conditions for modifying a

product sequence to have better performance. The first

condition is that the utilization of idle processors (i.e.,

px þ py ÿmxmxþ2) should be greater than the computa-

tion increase resulting from modifying the product

sequence tree. The work of idle processors can be

estimated as the product of the number of utilized

processors and the available time for these processors.

Hence, the following condition should be satisfied:

�C < �ðmx;mxþ1;mxþ2;mxmxþ2Þ � ðpx þ py ÿmxmxþ2Þ:

Also, the amount of computation given to idle proces-

sors, which is the time for multiplying ðMyMyþ1Þ, should

be more than �C. Therefore, the other condition to be

satisfied is

�C < mymyþ1myþ2:

Thus, the lemma is satisfied. tu
If a candidate product ðMyMyþ1Þ satisfies Lemma 2, then it

would be better to change product sequence Li;j to multiply

the candidate product concurrently with ðMxMxþ1Þ. This

means that the unallocated idle processors can do more

work than the increased computation required by the

change in the product sequence.
When the candidate product is found, the subtree Li;j is

modified and the processors pi;j are redistributed among

the products in Li;j (including the candidate product). Also,

processors are allocated proportionally to each product.

This results in an enhancement of the overall system

performance due to an increase in processor efficiency.

4.4 The Proposed Scheduling Algorithm

The proposed scheduling algorithm for evaluating a matrix
chain product is formulated as follows:

Two-Pass Matrix Chain Scheduling Algorithm

Stage-1 MCOP

1. Find the optimal product sequence for the MCOP by
using a parallel algorithm.

2. Generate the sequence tree L.

Stage-2 Top-Down Processor Assignment

1. Initialize i ¼ 1, j ¼ n, pi;j ¼ P .
2. If i is not S½i; j�, then allocate pi;j �W ½i; S½i; j��/
ðW ½i; S½i; j�� þW ½S½i; j� þ 1; j�Þ processors to Li;S½i;j�.

3. If j is not S½i; j� þ 1, then allocate pi;j �W ½S½i; j� þ
1; j�=ðW ½i; S½i; j�� þW ½S½i; j� þ 1; j�Þ to LS½i;j�þ1;j.

4. If i is jþ 1 or j, then finish this stage; otherwise, call
this algorithm recursively, once with i ¼ i; j ¼ S½i; j�
and once with i ¼ S½i; j� þ 1; j ¼ j.

Stage-3 Bottom-Up Concurrent Execution
For all leaf products, execute the following steps until

there are no more unscheduled leaf products:

1. Let ðMkMkþ1Þ be a leaf product and pk;kþ1 be the
number of processors allocated to the leaf product. If
pk;kþ1 < mkmkþ2, then go to 5.

2. Find a candidate product by tracing ancestors of the
leaf product using postorder traversal. If there is no
such candidate product, go to 5.

3. Let the product ðMlMlþ1Þ be a candidate product
found by tracing ancestors of the leaf product
ðMkMkþ1Þ. Check whether the candidate product
satisfies Lemma 2. If not, go to 2.

4. Modify the sequence tree such that the candidate
product ðMlMlþ1Þ can be executed concurrently with
ðMkMkþ1Þ. Relocate pk;kþ1 processors using the DPA
algorithm and go to 1 for each leaf product of the
two split subtrees.

5. Schedule the leaf product on minðpi;j; mkmkþ2Þ
processors. Set the parent of the leaf product as a
new leaf product.

The scheduling algorithm starts from the sequence for
the MCOP and then tries to modify the sequence to increase
the degree of concurrency. The evaluation time of a matrix
chain product is affected by the amount of computation
required and the degree of concurrency. The amount of
computation required is minimized by using the MCOP
sequence and the degree of concurrency is maximized with
a complete binary tree. The optimal product sequence with
the minimum evaluation time has a form that is somewhere
in between that of the MCOP sequence and the complete
binary tree. The proposed scheduling algorithm moves
from the MCOP sequence to a near-optimal sequence.

For purposes of efficiency, the scheduling algorithm
modifies the current product sequence when the candidate
product satisfies Lemma 2. Even though we can select the
most suitable candidate among a number of candidates
satisfying Lemma 2 by traversing the sequence tree, the
scheduling algorithm uses the first candidate that satisfies
Lemma 2 in order to minimize the scheduling time.
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4.5 Algorithm Complexity

The time complexity of the proposed algorithm is analyzed
as follows: Stage-1 and Stage-2 can be done within OðnÞ
time. In Stage-3, to reduce the time for checking Lemma 2,
we pass the information of the skewed point (Mz for �C) to
the next parent product when we are tracing the ancestors
from a leaf product, as shown in Fig. 5.

Then, we do not need to traverse the children of a
candidate product to find Mz since Mz is passed from the
previously traced child. This allows Step 3 of Stage-3 to be
completed in constant time. The maximum number of
products traced to check concurrent execution is ðnÿ 3Þ.
The total number of products that may be traced in Stage-3 is
ðnÿ 3Þ þ ðnÿ 4Þ þ � � � þ 1 ¼ ðnÿ 2Þðnÿ 3Þ=2 ¼ Oðn2Þ. Also,
in Step 4 of Stage-3, the number of sequence modifications is
at most ðnÿ 4Þ. Since the DPA algorithm for two matrix
products takesOðmÞ, the time complexity for Step 4 of Stage-3
is Oððnÿ 4ÞmÞ. Therefore, the time complexity of the
proposed algorithm is Oðn2 þ nmÞ.

4.6 Scheduling Example

The following simple example illustrates the proposed
scheduling algorithm and compares the expected evalua-
tion time of the product sequence by the proposed
algorithm with that of the optimal product sequence for
the MCOP.

In a system with 50 processors, let us consider the case of
evaluating a chain of matrix products with five matrices.
Given five matrices,

M1: 6� 2;M2: 2� 7;M3: 7� 5;M4: 5� 7;M5: 7� 8;

Stage-1 finds the product sequence with the minimum
number of operations for the MCOP as

ðM1ðððM2M3ÞM4ÞM5ÞÞ:

The MCOP sequence tree is represented as the left tree of
Fig. 6. In Stage-2, we assign 50 processors to each matrix
product. In Stage-3, since the leaf product ðM2M3Þ cannot
utilize the 50 allocated processors, we try to modify the
product sequence. The product ðM4M5Þ is found to be a
candidate product. By checking Lemma 2, we get px ¼ 10,
py ¼ 40 using the DPA algorithm,

�C ¼ 7� 8ð5ÿ 2Þ þ 2� 5ð8ÿ 7Þ ¼ 178;

and �ð2; 7; 5; 10Þ ¼ 7. Since

�C ¼ 178 < minð7� ð10þ 40ÿ 10Þ; 5� 7� 8Þ ¼ 280;

the product sequence is modified to ðM1ððM2M3ÞðM4M5ÞÞÞ
as shown in the right tree of Fig. 6.

Let us compare the evaluation time of the optimal MCOP

sequence with that of the product sequence found by the

proposed scheduling algorithm. When we evaluate the

matrix chain by the optimal MCOP sequence, it takes

ð2� 7� 5Þ=minð50; 2� 5Þ þ ð2� 5� 7Þ=minð50; 2� 7Þþ
ð2� 7� 8Þ=minð50; 2� 8Þ þ ð6� 2� 8Þ=minð50; 6� 8Þ ¼ 21

units of time. The evaluation time of the product sequence

by the proposed scheduling algorithm is

maxð2� 7� 5=minð10; 2� 5Þ; 5� 7� 8=minð40; 5� 8ÞÞþ
2� 5� 8=minð50; 2� 8Þ þ 6� 2� 8=minð50; 6� 8Þ ¼
7þ 5þ 2 ¼ 14

units of time. The product sequence by the proposed

scheduling algorithm requires 526 operations, which is 178

operations more than the MCOP sequence having the

minimum number of operations (348). However, the

proposed algorithm requires less time than the MCOP

sequence. This is due to the concurrent execution of

multiple matrix products which increases system efficiency

and reduces the total evaluation time.

5 PERFORMANCE COMPARISON

5.1 Expected Performance

In this section, the performance of the evaluation sequence

found by the proposed algorithm is analyzed and compared

with the optimal sequence for the MCOP. Evaluation time,

speedup, and efficiency are used as the performance

metrics. The upper bound and the lower bound of

performance obtained by the proposed method are com-

pared with those by the MCOP sequence in terms of these

metrics.
If a schedule is given forM, the evaluation sequence ofM

can be represented as a tree with nÿ 1 tasks. Let us denote

task i as vi, the number of operations in vi as wi, and the
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maximum number of processors allocated to vi as pmaxi . We let
wi ¼ mi1mi2mi3 and pmaxi ¼ mi1mi3 for vi ¼ ðmi1 ;mi2 ;mi3Þ.

The evaluation time ofM in a single processor system is
the same as the number of operations. Therefore, the
evaluation time, represented as TSEQð1Þ, is bounded by the
minimum number of operations of a MCOP sequence. If the
number of operations of the MCOP sequence is W , TSEQð1Þ
is found as follows:

TSEQð1Þ ¼
Xnÿ1

i¼1

�ðmi1 ;mi2 ;mi3 ; 1Þ ¼
Xnÿ1

i¼1

wi ¼W:

On a P -processor parallel system, the evaluation time of
the MCOP sequence in which each matrix product is
parallelized one at a time, denoted by TMCOP ðP Þ, is
calculated as follows:

TMCOP ðP Þ ¼
Xnÿ1

i¼1

�ðmi1 ;mi2 ;mi3 ;minðP; pmaxi ÞÞ

¼
Xnÿ1

i¼1

wi
minðP; pmaxi Þ :

In the case ofpmaxi � P for all 1 � i � nÿ 1,TMCOP ðP Þ=W=P .
Under ordinary circumstances, pmaxi � P for some i and
TMCOP ðP Þ is larger than W=P .

The proposed two-pass scheduling method for the MCSP
allocates processors to the MCOP sequence tree by top-
down proportional assignment and modifies the MCOP
sequence when it results in a reduction of the evaluation
time. Therefore, the evaluation time of the proposed
method, represented as TMCSP ðP Þ, is not more than the
evaluation time of the MCOP sequence with the top-down
processor assignment. When pi;j processors are allocated to
an Li;j subtree in the MCOP sequence tree L, the evaluation
time TMCSP ðP Þ is found as T1;nðP Þ using the following
recurrence relation:

Ti;jðPi;jÞ ¼ max
Li;k2L

Ti;kðpi;kÞ; Tkþ1;jðpkþ1;jÞ
ÿ �

þ �ðmi;mkþ1; mjþ1; pi;jÞ:

Without loss of generality, pmaxi;j ¼ mimjþ1. Then,
TMCSP ðP Þ ¼ W

P for the case of pmaxi;j � pi;j for all Li;j in L.
Let the root node task of subtree Li;j be vr such that vr ¼
ðmi;mkþ1;mjþ1Þ and pmaxr ¼ pmaxi;j ¼ mimjþ1. The condition
pmaxi;j � pi;j is sufficient to make pmaxr � P valid. The upper
bound of TMCSP ðP Þ is TMCOP ðP Þ, thus

TMCSP ðP Þ � TMCOP ðP Þ:

Now, we measure the maximum performance gain of the
proposed method with respect to the MCOP sequence. In
the best case scenario, the MCOP sequence has no
concurrency (i.e., sequential evaluation), but the proposed
method changes it to a complete binary tree without
increased operations. One obvious case is “n” square matrix
chain products. When each task vi for 1 � i � nÿ 1 can
utilize P=k processors in a P -processor system, i.e.,
pmaxi ¼ P=k, the performance of the MCOP sequence is

TMCOP ðP Þ ¼
kW

P
; SMCOP ðP Þ ¼

P

k
; EMCOP ðP Þ ¼

1

k
:

For the complete binary tree with n nodes, the height is
logðnÞ. The tasks whose depths are not more than logðkÞwill
run on P=k processors. Other tasks with depth i ðlogðkÞ <
i � logðnÞÞ will run on ðP=kÞð1=2ÞiÿlogðkÞ processors. There-
fore, TMCSP ðP Þ is transformed as follows:

TMCSP ðP Þ ¼
XlogðkÞ

i¼1

wi
P=k
þ

XlogðnÞ

i¼logðkÞþ1

wi
ðP=kÞ � 1=2iÿlogðkÞ :

Let us denote the number of operations scheduled by the
proposed method as WMCSP . Since wi ¼WMCSP=ðnÿ 1Þ for
a task vi,

TMCSP ðP Þ ¼
k

P
� logðkÞWMCSPk

ðnÿ 1Þ þ WMCSP

ðnÿ 1ÞP 2logðnÞÿlogðkÞ ÿ 1
� �

¼ k logðkÞWMCSP

ðnÿ 1ÞP þ
kðnk ÿ 1ÞWMCSP

ðnÿ 1ÞP

¼ ðnþ k logðkÞ ÿ kÞWMCSP

ðnÿ 1ÞP :

Thus,

SMCSP ðP Þ ¼
ðnÿ 1ÞP

ðnþ k logðkÞ ÿ kÞ ;

EMCSP ðP Þ ¼
ðnÿ 1Þ

ðnþ k logðkÞ ÿ kÞ :

In the best case, WMCSP is equal to the minimum W since
�C ¼ 0. Thus, the performance gain of the MCSP sequence,
denoted by 	ðP Þ, becomes

	ðP Þ ¼ TMCOP ðP Þ
TMCSP ðP Þ

¼ kW=P

nþ k logðkÞ ÿ kð ÞW=ðnÿ 1ÞP

¼ kðnÿ 1Þ
nþ k logðkÞ ÿ k :

ð1Þ

When each task can only utilize 25 percent of the processors
in a system ðk ¼ 4Þ and the number of matrices in a chain is
100 ðn ¼ 100Þ, 	ðP Þ ¼ 3:8. The proposed method evaluates
matrix chain products 3.8 times faster than the method
obtained by parallelizing the MCOP sequence. When k ¼ 1,
the performance of the proposed method is bounded by the
evaluation of the MCOP sequence such that 	ðP Þ ¼ 1. As k
or n increases, 	ðP Þ increases. As n increases to infinity, the
proposed scheme can run almost k times faster than the
method using the MCOP sequence.

From the above discussion, when the number of matrices
becomes larger and larger and/or when the size of the
matrices becomes smaller and smaller so that only part of
the system is required to execute one product, the proposed
method outperforms the MCOP-based evaluation method.

5.2 Experiment Setup

5.2.1 Parallel System

To compare the performance of the proposed method with
those of other evaluation methods, we experimented on the
Fujitsu AP1000 parallel system, which is a distributed-
memory MIMD machine with 512 cells. Each cell is a
SPARC processor with 16MB of memory. The AP1000
system has three independent networks: the B-net for
broadcasting, the T-net for point-to-point communication,
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and the S-net for synchronization. The processors are
interconnected by the T-net, a two-dimensional torus
network with 25Mbytes/sec/port. The host computer and
the processors are connected by the B-net, a broadcasting
network with 50Mbytes/sec, and by the S-net for synchro-
nization.

5.2.2 Generating Matrix Chains

The evaluation times of randomly generated matrix product
chains are measured for each scheduling method. Since the
initial matrix loading times are highly dependent on system
characteristics such as the communication link speed and
the interconnection network, the loading times are excluded
in the statistics of the evaluation time. In fact, the proposed
algorithm can spend less time than the sequential evalua-
tion methods for distributing matrices to processors since
several matrices can be loaded at the same time.3 The
results shown in the following sections are the averages of
100 experiments.

5.2.3 Evaluation Methods

. Linear: evaluate by parallelizing each matrix pro-
duct from the first product ðM1M2Þ to the last one
sequentially.

. MCOP-Seq: evaluate by parallelizing each matrix
product using the MCOP sequence sequentially.

. MCOP-Con: evaluate by parallelizing each matrix
product using the MCOP sequence, but execute
independent matrix products concurrently by allo-
cating the maximum number of processors.

. MCSP-BT: evaluate by the MCOP-Con method, but,
when there are idle processors during execution, try
to modify the sequence using Lemma 2.

. MCSP-TP: evaluate by the proposed scheduling
algorithm.

5.3 Comparison of Theoretical Results with
Experimental Results

Experimental results are compared with the upper bound of

the performance computed by (1). In Figs. 7a and 7b, the

lower two lines show the speedups of MCSP-TP to MCOP-

Seq and the upper two lines show the upper bounds of

	ðP Þ with k ¼ P=m. The computed performance differs

from the measured 	ðP Þ due to a few reasons. The main

reason is that the analysis is done with the best case

scenario in estimating the upper bounds of 	ðP Þ, but the

cases used for experiments are not always the best case

since they are generated randomly. The others come from
the environmental variables simplified in the analysis.

Nevertheless, the upper bounds of 	ðP Þ shown in Fig. 7c
inform us about the trend of the performance gain. It

implies that we may gain more performance improvements

by the proposed method as the number of matrices

increases and the number of processors increases. The next

section supports such results.

5.4 Experimental Results

Fig. 8 shows the evaluation times T ðP Þ of the five

evaluation methods in milliseconds. In Fig. 8a, a chain of

matrix products is generated randomly for matrices varying

in size from 1 to 100 ðm ¼ 100Þ and executed on a system

with 512 processors ðP ¼ 512Þ. The upper two lines

represent the evaluation times of sequential evaluation

using Linear and MCOP-Seq and the lower three lines

represent the evaluation times of the schedule sequences

found by using MCOP-Con, MCSP-BT, and MCSP-TP. As

the number of matrices in a matrix chain increases, the
proposed MCSP-TP algorithm shows a greater performance

gain. From the comparison of T ðP Þ of MCOP-Seq with that

of Linear, it can be seen that reducing the amount of

computation can decrease T ðP Þ. However, when we allow

concurrent execution, we can further decrease T ðP Þ. There-

fore, we confirm that the evaluation time T ðP Þ of a chain of

matrix products is greatly affected by task scheduling.
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3. Since some parallel computers, such as the Fujitsu AP1000, support
collective communication schemes, including scatter and gather, we can
reduce the matrix loading time by using these schemes.

Fig. 7. Comparison of experimental results with analysis. (a) 	ðP Þ as a function of m with P ¼ 512 and n ¼ 100 or 200. (b) 	ðP Þ as a function of n

with P ¼ 512 and m ¼ 50 or 100. (c) Expected behavior of 	ðP Þ as a function of P and n.



The experimental results with varying distributions of
matrix sizes ðmÞ is shown in Fig. 8b. The evaluation times
are measured with P ¼ 512 for a chain of n ¼ 200. As
shown in the figure, as the variance in the matrix size gets
larger, MCOP-Seq has better performance than Linear. This
is caused by the fact that the amount of computation is
reduced greatly by the MCOP sequence and that there are
small numbers of idle processors during their execution
when evaluating a chain of large matrices. However, we
notice that the proposed MCSP-TP method still outperforms
all other methods. These experiments imply that the
proposed MCSP-TP method is still effective for larger
matrices due to performance improvement through con-
current execution (with more concurrency than the other
methods), even though there are rare exceptions.

In Fig. 8c, the evaluation time T ðP Þ between different
numbers of processors in a system is compared. T ðP Þ of
Linear is too high to be appeared in this figure. As the
number of processors increases, T ðP Þ of MCOP-Seq
becomes nondecreasing. This implies that the reduction of
computation has a limited effect on reducing T ðP Þ.
However, T ðP Þ’s of MCSP-BT and MCSP-TP decrease more
than that of MCOP-Con with larger P . This implies that
sequence modification to increase the degree of concur-
rency improves the performance by utilizing processors
efficiently. Another aspect we can see from this result is that
the number of processors does not affect the performance
significantly, but that the processor scheduling policy is
more important than computational reduction in improving
the performance of evaluating a chain of matrix products.

In Table 1, we measured the amount of computation W ,
evaluation time T ðP Þ, and efficiency EðP Þ for each
evaluation method and the performance improvement
	ðP Þ of MCSP-TP. Table 1 shows the results when
n ¼ 200, m ¼ 100, and P ¼ 512. Even though the amount
of computation using MCOP-Seq is 50 times less than that
of Linear, the evaluation time is reduced by only 4:4 times.
We observe that EðP Þ by MCOP-Seq ð0:12Þ is significantly
lower than that of Linear (0:76). Evaluation by MCSP-BT
and MCSP-TP requires more computation than that of

MCOP-Con, but T ðP Þ decreases due to the efficient use of
processors. Note that MCSP-BT utilizes even more proces-
sors than MCSP-TP and still has larger T ðP Þ than that of
MCSP-TP. This result implies that the proposed MCSP-TP
algorithm uses processors more efficiently and effectively
than MCSP-BT.

Fig. 9a shows EðP Þ as a function of P when n ¼ 200 and
m ¼ 100. We cannot induce any correlation between EðP Þ
and T ðP Þ from the above results. It is clear that high EðP Þ
does not have high performance. Hence, EðP Þ is not a good
performance metric for evaluating a chain of matrices. As P
increases, we can see that MCSP-BT and MCSP-TP sustain
higher EðP Þ than MCOP-Seq and MCOP-Con.

Fig. 9b shows 	ðP Þ as a function of P for the four cases
of n and m. As the number of processors increases, 	ðP Þ
increases. Also, we can see that as n increases and m

decreases, the proposed method outperforms the evaluation
by the optimal MCOP sequence.

5.5 Summary of Results

From the above performance evaluation, we can conclude
the following:

. When evaluating a chain of matrices on a parallel
system, simply reducing the number of required
operations does not greatly decrease the evaluation
time.
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Fig. 8. Evaluation time T ðP Þ comparison. (a) T ðP Þ as a function of n with m ¼ 100 and P ¼ 512. (b) T ðP Þ as a function of m with n ¼ 200 and

P ¼ 512. (c) T ðP Þ as a function of P with n ¼ 200 and m ¼ 100.

TABLE 1
Comparison with Respect to W , T ðP Þ, EðP Þ, 	ðP Þ

When n ¼ 200, m ¼ 100, and P ¼ 512



. Concurrent execution of independent multiple ma-
trix products compensates for inefficient processor
usage with parallel processing and increases the
system efficiency so that performance improves
greatly.

. When the number of processors becomes larger or
when the number of matrices in a matrix chain
increases, evaluation by the proposed scheduling
algorithm MCSP-TP progressively outperforms
other methods such as Linear, MCOP-Seq, MCOP-
Con, and MCSP-BT.

. Even when the size of the matrices is quite large so
that there are no idle processors during their
evaluation, MCSP-TP is still effective due to the
concurrent execution of independent matrix pro-
ducts with the top-down processor assignment.

. When evaluating a chain with small matrices on many
processors, sequence modification to increase system
efficiency greatly reduces the evaluation time.

. For matrix chain products, efficient scheduling is
more effective than only increasing the number of
processors.

6 EXTENSION OF THE MCSP

In this section, we discuss practical considerations for the

practical use of the MSCP method and extensions of the

MCSP approach..

6.1 Practical Considerations

Depending on the computing environment for evaluating
M, the parameters used in the proposed method are easily
adjustable. The parameters are the execution time function,
the maximum number of processors allocated to a product,
and the minimum number of processors allocated to a
product. For ease of discussion, let us denote these
parameters as �ðvi; piÞ, pmaxi , and pmini , respectively, for a
given product vi.

. Matrix multiplication algorithm: Many parallel
matrix multiplication algorithms have been sug-
gested for various architectures [24], [23]. Depending

on which algorithm is used for the MCSP, the
execution time function �ðvi; piÞ can be specified in
detail. Thus, �ðvi; piÞ can be changed for taking the
parallel processing overheads into account. The
parallel processing overheads include load imbal-
ance, communication cost, and synchronization.

. Parallel system architecture: The parallel system
used for evaluating M also affects the parameters.
For example, on a shared memory multiprocessor
system, the communication cost is negligible, but, on
a message-passing distributed system, the commu-
nication cost should be considered in �ðvi; piÞ.
Consequently, the parameter pmaxi will be more
restricted in a distributed system.

. Input matrix size: One limitation in using the
proposed algorithm is that the method is not very
effective with a chain of large matrices. However, a
more elaborate description of �ðvi; piÞ from the
above parallel algorithm-architecture parameters
will compensate for this limitation by using a
reduced value of pmaxi . Also, even in the case where
any one product is large enough to utilize the whole
system, the top-down processor assignment leads to
better performance than sequential evaluation.

Another parameter to be considered in the MCSP
is the minimum number of processors ðpmini Þ to be
allocated to a product vi. Basically, we assumed that
any product can be executable on one processor, i.e.,
pmini ¼ 1. However, depending on the size of the
matrices, the minimum number of processors to be
allocated to a product vi can be restricted to be
pmini > 1. This is mainly due to the memory capacity
of a single processor. We can consider the parameter
pmini in the top-down processor assignment stage.

. Matrix distribution cost: In the proposed method,
the cost for the initial distribution of matrices among
the processors was excluded, even though this cost is
not negligible in a distributed-memory system.4 Of
course, the cost of the proposed method is definitely
less than sequential evaluation by the MCOP
sequence. This is mainly due to the fact that the
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4. The cost is negligible in a shared-memory multiprocessor system.

Fig. 9. Efficiency and performance gain with respect to the number of processors P . (a) EðP Þ as a function of P . (b) 	ðP Þ as a function of P .



proposed method runs on fewer processors than
sequential evaluation. The effect of this cost for
scheduling the MCSP sequence is considered for
future work.

6.2 MCSP Extensions

We can extend the MCSP to a few sparse matrix problems.
The MCSP has characteristics such that it can be repre-
sented as a tree precedence task graph with many
equivalent tree graphs and the task graph determines the
number of required operations and the degree of con-
currency. The proposed method for the MCSP can be
applied to evaluate a chain of square matrices with sparsity
and to factorize a large sparse matrix in parallel systems.

. Sparse matrix chain products: Sparse matrix multi-
plications require a different number of operations
with respect to the sparsity structure. For multi-
plying an n� n matrix A with nonzero density d1 by
an n� n matrix B with nonzero density d2, the
number of required operations is d1d2n

3 [30]. Also,
for multiplying a tridiagonal matrix with any type of
matrix, the required operations vary depending on
the type of matrices [31]. Such a sparse matrix
multiplication has the same characteristics as the
MCSP. A different evaluation sequence results in a
different number of required operations. We can
extend the MCSP to the evaluation of a chain of
square matrices with sparsity.

. Sparse matrix factorization: Elimination trees are
used extensively in sparse matrix factorization
because they present the sequence of computation
and parallelism [32]. Since there are many equivalent
elimination trees with different parallelization struc-
tures [33], we can follow the MCSP approach for this
sparse factorization problem.

The above items have been studied extensively for a long
time and each problem can be approached as a separate
research subject.

7 SUMMARY AND CONCLUSION

In this paper, we introduced the matrix chain scheduling
problem (MCSP) and proposed a heuristic scheduling
algorithm for the MCSP. The proposed algorithm schedules
matrix products to processors with the objective of
enhancing concurrency at the expense of a slight increase
in the required number of operations when compared to the
optimal product sequence found for the matrix chain
ordering problem (MCOP). We have shown that perfor-
mance is significantly enhanced by the proposed algorithm
using experiments on the Fujitsu AP1000 parallel system.
As a result, we can confirm that efficient processor
scheduling is much more important than simply reducing
the total number of operations when evaluating a matrix
chain product in parallel systems. Given a parallel system
with a large number of processors or a matrix product chain
involving many matrices, evaluation by the proposed
method, greatly outperforms the parallel evaluation meth-
od which uses the optimal product sequence found for the
MCOP. The main contribution of this work is the

formalization of the MCSP and the introduction of a

processor allocation and task scheduling algorithm that

results in a significant performance improvement when

evaluating matrix chain products in parallel systems. We

are currently working on extending this algorithm to

evaluate a chain of square matrices in the form of sparse

matrices or band matrices and to scheduling of parallel

matrix factorization using elimination trees. Also, we plan

to study generalizing the MCSP to scalable task scheduling

on parallel systems.
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