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Abstract

The stress-strain behavior of fractal networks possesses self-affine scaling associated with statistical scale invariance of
damage patterns. We found that the damage part of stress-strain curve of fractal network and the corresponding rupture line
are characterized by the same scaling (Hurst) exponent,H , which is not universal, rather it depends on the network fractal
dimension asH =DB − 1. Furthermore, the same exponent governs the changes in the stress-strain behavior as the strain rate
increases. These results were reproduced by Monte Carlo simulations using a fractal version of fiber bundle model. 2002
Published by Elsevier Science B.V.
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1. Introduction

Mechanical behaviour of heterogeneous materials
has attracted scientific and industrial interest for many
years [1–3]. An important class of heterogeneous
materials with complex mechanical behaviour is the
stochastic fiber networks. Instead of a single crack
growth, the failure of a fiber network often occurs
as the culmination of progressive damage, involving
complex interactions between multiple defects and
growing micro-cracks [1–8]. In such a case, the stress-
strain curve,σ(ε), displays a stochastic behavior,
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which is characteristic of many disordered fibrous
materials, such as fiber-reinforced composites and
various kinds of paper [1,8].

Most of the theoretical investigations in this field
rely on the computer simulation of lattice models,
where the fiber network is represented by an Euclidean
spring (beam) network, and disorder is captured either
by random dilution or by assigning uncorrelated (ran-
dom) failure thresholds to the springs [4–7]. In fact,
however, whether the material in question is a paper,
a glass fiber material, or a stochastically oriented fiber
composite, the structure of network is not random, but
it possess a long-range correlation associated with sta-
tistical scale invariance within a bounded interval of
length scale [9,10]. In this way, a stochastic fiber net-
work can be treated as a fractal (or, generally, multi-
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Fig. 1. (a) Black-and-white image of the toilet paper structure; (c), (d) the fractal graphs of image (a); and (b) statistical distributions of (1) the
box-counting (significance levelp = 0.6911) and (2) information (p= 0.584) dimensions (bins—experimental data, solid curves—fitting by a
normal distribution).

fractal), characterized by the fractional metric (fractal)
dimensionD, which governs the mass–density corre-
lations in the network [9] and its mechanical proper-
ties [2].

The interaction among multiple defects in a frac-
tal structure with several characteristic scales and its
effect on the mechanical behavior of composite mate-
rials present a considerable challenge in modeling and
prediction of material failure. Unfortunately, models
based on the Euclidean geometry of fiber network can-
not capture the effect of long-range correlations asso-
ciated with the fractal nature of a wide class of fiber
networks. In this Letter, we specifically study the ef-
fect of fractal structure on the mechanical behavior
and the scaling properties of damage patterns in fractal
fiber networks.

2. Experimental details

Classical example of fractal fiber network is a paper
[10,11]. The fiber distribution in a paper is not random,
but possesses long-range mass density correlations of

a power-law type [9]. The later indicates the (multi)-
fractal nature of the paper structure [12]. In this
way, different papers are characterized by diversity of
fractal dimensions of fiber network [9,12]. This makes
a paper an ideal model for purpose of present studies.

Different kinds of paper also possess diverse types
of stress-strain behavior and different failure features
[8,12–14]. Specifically, many papers exhibit elasto-
plastic behavior, where plastic deformations are asso-
ciated with the displacements between fibers [13]. For
the present study, we selected a toilet paper, which dis-
plays quasi-linear elastic behavior up to failure thresh-
old, with minimum inter-fiber displacements [8,13].
The thickness and areal density of this paper display
considerable variations in accordance with a normal
distribution and a mean ofh = 0.11± 0.06 mm and
ρ = 36.8± 0.3 g m−2, respectively.

To study the fractal characteristics of paper struc-
ture, the gray scale optic micrographs of paper were
scanned with 600× 600 pixel resolution. Then, the
gray scale photos were converted in black-and-white
images (see Fig. 1(a)), using the histogram median
(obtained with use the SCION IMAGE@ software [15])
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Fig. 2. (a) Engineering strain-stress curve of toilet paper and (b)–(d) damage patterns in paper sheets loaded: (b) parallel to the machine
direction, (c) perpendicular to the machine direction and (d) in the direction inclined 45◦ with respect to the machine direction of paper.

as a threshold value. The box-counting,DB, and the
information,DI , dimensions were determined by us-
ing the commercial software BENOIT 1.2 [16].

Several mechanical tests were carried out on a 4505
INSTRON testing machine. The tested paper sheets
of length L = 10 cm and widthW = 5 cm were
uniaxially loaded with deformation rate controlled by
the grip displacement speeds (du/dt) of 0.5, 1, 2.5, 5,
10, and 100 mm min−1. In all cases, the stress-strain
measurement rate was hold at 50 points s−1. At least,
30 paper sheets were tested for each displacement
speed (the deformation rateε̇ = L−1 du/dt was 0.005,
0.01, 0.025, 0.05, 0.1, and 1 min−1, respectively).
Some additional experiments were carried out with
paper sheets of lengthL = 20 cm and widthW =
10 cm. A characteristic engineer stress-strain curve of
toilet paper is shown in Fig. 2(a).

The scaling properties of each rupture line (see
Fig. 3(a)–(c)), as well as each stress-strain curve
(Fig. 3(d)), were studied by five different statistical

methods adopted in the BENOIT 1.2 software [16]:
the variogram, roughness-length, wavelets, power-
spectrum and rescaled-range (R/S) analysis. For this
purpose, the fractured sheets were scanned in black
and white in the BMP format (Fig. 3(b)) with a
600× 600 dpi2 resolution. Then, the rupture lines
were plotted using the SCION IMAGE software [15]
as single-valued functionsz(x) in the XLS format (see
Fig. 3(c)). All statistical data was handled with @RISK

software [17], thus was found the best statistical
fitting using chi-squared, Kolmogorov–Smirnov and
Anderson–Darling statistics.

3. Experimental results

First of all, we note that the box-counting (see
Fig. 1(c)) and information (see Fig. 1(d)) dimensions
of paper structure are not constants, rather they change
from sample to sample (30 micrographs of toilet
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Fig. 3. (a) Damage and (b) rupture line images, and graphsz(x) of: (c) rupture line and (d) damage part of stress-strain curve.

paper were analyzed) in accordance with a normal
distribution (see Fig. 1(b)). These variations are larger
than a statistical error of dimension estimation and can
be attributed to the variations in the paper structure
(associated also with the already mentioned above
variances in the paper thickness and areal density).
In all cases, we found that the general inequality for
multifractals,DB > DI , is hold (see Fig. 1(b)–(d)).
However, the differenceDB −DI is quite small, such
thatDB −DI < σ [0.5(DB +DI)], whereσ [· · ·] is the
standard deviation of data for a set of studied images.
Therefore, in accordance to the criterion [18], the
structure of toilet paper can be treated as a statistically
self-similar. At the same time, the slight changes in
the slopes of graphs in Fig. 1(c),(d) probably indicate
the self-affine nature of fiber network (see Ref. [19]),
caused by the fiber alignment in the machine direction.

Most papers possess anisotropic mechanical prop-
erties associated with a preferred fiber orientation in
the machine direction [11]. So, first, we have stud-
ied the mechanical behavior of paper under uniaxial

tension in different directions. Toilet paper displays a
linear elastic behavior up to the tensile stressσM (see
Fig. 2(a)) for any direction. This indicates that an indi-
vidual fiber is linearly elastic up to its rupture thresh-
old. We also found that the Young modulus, the ulti-
mate strength, and the maximum strain (see Fig. 2(a))
continuously decrease as the loading direction changes
from the paper machine direction to the transversal di-
rection. Specifically, in experiments with a deforma-
tion rate of 0.05 min−1, we find that in the machine
directionE = 166± 20 MPa,σmax = 2.7 ± 0.4 MPa
andεmax= 2.3± 0.3%, whereas in the transversal di-
rectionE = 101± 20 MPa,σmax = 1.5 ± 0.5 MPa,
andεmax= 2.0±0.3%. The anisotropy of paper struc-
ture is also reflected in the anisotropy of damage pat-
terns in paper sheets loaded in different directions (see
Fig. 2(b)–(d)).

The failure of toilet paper occurs as the culmination
of progressive damage, involving complex interactions
among multiple defects and growing micro-cracks
(see Figs. 2(b)–(d) and 3(a)). Different fibers achieve
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Fig. 4. Statistical distributions of (a) Young modulus (p = 0.9029), (b) ultimate tensile strength (p = 0.6356), (c) deformation threshold
(p = 0.6356) and (c) maximum strain (p= 0.8245) of toilet paper tested at a strain rate of 0.001 min−1.

rupture thresholds at different deformations,εi , be-
cause of the difference in the fiber tortuosity. When
one or more fibers fail, their loads are transferred
to other surviving fibers, which achieve thresholds at
larger deformations. As a result, the stress-strain curve
displays a stochastic behavior (see Figs. 2(a) and 3(d)).
We note that first fail fibers which are aligned in the
paper machine direction, independently on the direc-
tion of uniaxial tension (see Fig. 2(b)–(d)). However,
the characteristic form of the stress-strain curve (see
Fig. 2(a)) maintains the same for any direction of load-
ing. So, all results reported below correspond to the
uniaxial tension in the machine direction of toilet pa-
per.

Accordingly, we have observed that all the stress-
strain curve parameters (Young modulusE, ulti-
mate tensile stressσM, deformation thresholdεM,

maximum deformationεmax, fracture energyUF =∫ εmax
εM

σ dε, and deformation range of damage (δ =
εmax − εM) vary from sample to sample, following
a statistical distribution (see Figs. 4–6). Specifically,
we found thatδ (ε̇ = const) displays a normal dis-
tribution (Fig. 6(a)), while data at all deformation
rates are best fitted with an inverse-Gauss distribution
(Fig. 6(c)). Young modulus data conform a Raleigh
distribution;σM data is best fitted with a logistic dis-
tribution (Fig. 4(b));εM exhibit a beta-general dis-
tribution (Fig. 4(c)); whereasUF and εmax are best
fitted with a log-logistic distribution (see Figs. 4(d)
and 5(a)).

The means and standard deviations for these distri-
butions are functions of the strain deformation rate,ε

(see, for example, Figs. 5(b) and 6(a),(b). Specifically,
we found that
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Fig. 5. (a) Statistical distributions of fracture energy and (b) graphs
of UF ands(UF) versus strain rate.

E = 245̇ε0.087 MPa, σM = 2.89ε̇0.0085MPa,

εM = 0.0171̇ε−0.0661, εmax= 0.16ε̇0.17,

δ = 0.1454̇ε0.2321, s(δ)= 0.6852̇ε0.7242,

(1)UF = 121̇ε0.251, s(UF)= 252̇ε0.752,

in the range 0.005� ε̇ � 0.1 min−1 (s(· · ·) means
the standard deviation). These relations fail when the
strain rate iṡε = 1 min−1. The reason for this change
may be the change in the failure regime [20], which
will be studied in a future work.

Fig. 7(a)–(d) show the fractal graphs for the stress-
strain curve and corresponding rupture line in toilet
paper (see Fig. 3(c),(d)), obtained by four methods
mentioned above. From the experimental data, we
note that all methods lead to the same value of the
roughness exponentα = H for a given stress-strain
curve and the corresponding rupture line (see Fig. 8).
Test on the anomalous crack roughening (see [14,21])
has shown that the rupture lines in toilet paper (see
Fig. 3(b),(c)) are statistically auto-affine within a wide
but bounded range of length scale.

At the same time, we find that the scaling exponent
is not a universal one; rather it changes from sample

Fig. 6. (a) Statistical distributions ofδ for specimens tested with a
strain rate of (1) 0.0005 min−1 and (2) 0.1 min−1; (b) δ ands(δ)
versus strain rate graphs; and (c) statistical distribution ofδ for tests
with different stain rates (p = 0.8245).

to sample in accordance with a normal distribution
(Figs. 8 and 9). These variations are larger than
statistical errors within a sample and they might be
attributed to the sample-to-sample variation of the
network structure (see Fig. 1(b)). On the other hand,
we note that the mean value ofα =H is independent
on the strain rate (see Fig. 9(a)).
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Fig. 7. (a)–(d) Fractal graphs of (1) the stress-strain curve, and (2) the corresponding rupture line for toilet paper (see Fig. 3(c) and (d)) obtained
by (a) the variogram, (b) the roughness-length, (c) the rescaled range, and (d) the power-spectrum methods. Notice that in graphs (a) and (b)
curves have been shifted vertically.

The data in Figs. 6–9 suggest that the stress-strain
curve has a self-affine invariance, i.e.,

(2)σ(λε)= λ−ασ(ε), with α =H,
whereH is the rupture line roughness (Hurst) expo-
nent,λ > 0 is a constant,εM < ε, λε < εmax. Further-
more, we speculate that the experimental relations (1)
may be cast in the form

(3)δ ∝UF ∝ ε̇1−H , s(δ)∝ s(UF)ε̇ ∝ ε̇H ,
i.e., the failure dynamics is governed by the same
Hurst exponent, which depends on the network struc-
ture (see also [8,12,22]).

To verify this assumption, a set of experiments at
each deformation rate was divided in two subsets, as-
sociated with specimens with the lowest and the high-
est values ofH . So, we obtain two sets of data with
different meansH = α = 0.645 andH = α = 0.848
(see Fig. 10(a)). One may expect that these sets cor-
respond to different sets of networks with a differ-
ent fractal dimension (see Fig. 10(b)), which were

obtained by dividing the data shown in Fig. 1(b) in
two sets. For specimens selected accordingly to corre-
sponding values ofH (see Fig. 9(a)), the means and
the standard deviations ofδ scale asδ ∝ ε̇0.367, s(δ)∝
ε̇0.639 andδ ∝ ε̇0.157, s(δ)∝ ε̇0.841 (see Fig. 10(c),(d)).
The later is in good agreement with relations (3).

4. Fractal damage model

The observed failure behavior may be understood
on the basis of a fractal damage model. The system
under consideration is composed onN fibers, formed
a two-dimensional fractal (probably, self-affine) net-
work. The elastic energy function of the network
formed by N elastic fibers can be represented as
U = 0.5E(N)ε2, whereE(N)=E0N(ε) is the elastic
modulus of the network,E0 is the fiber elastic modu-
lus, andN(ε) is a strictly decreasing continuous func-
tion of strainε (N decreases every time as one or more
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Fig. 8. Statistical distributions of: (a), (c) crack roughness exponent and (b), (c) stress-strain scaling exponent (solid lines—fitting by normal
distribution); and (d)H versusα graph, for tests with a deformation rateε̇ = 0.01 min−1.

Fig. 9. (a) Graph of the mean value ofH versus strain rate, and statistical distributions of complete sets of data for (b) scaling exponent (H and
α) (p= 0.9673), (c)α (p= 0.9631) and (d)H (p= 0.7622) fitted by normal distribution (solid lines).
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Fig. 10. Statistical distributions of (a)H = α and (b)DF for two subsets of tested specimens; and graphs of (c)δ and (d)s(δ) versus strain rate
for these subsets.

fibers fails) obeying the following properties:

N(ε � ε1< εM)=N0,

(4)N(εmax)= 0 and
dN

dε
∼= 0,

where the symbol “∼=” denotes “equal with excep-
tion of a Lebesgue set of zero-measure”; furthermore
dN/dε = ∞, when ε = εi , i = 1,2, . . . ,N , where
εi is the failure strain of theith-fiber, which is a
function of the strain rate (see Eq. (1)). The sim-
plest steep-wise function which satisfies these condi-
tions isN(εi < ε < εi+1) = const,N(εi) = N0[1 −
(εi/εmax)

γ ], whereγ � 0 and 0 <ε1 � ε2 � · · · <
εN = εmax. Furthermore, one may expect that the set
of critical deformations{εi} is a Cantor-like set, its
fractal dimension is determined by the fractal dimen-
sion of the fiber structure, e.g.,DC =DB − 1 [10]. So,
N(εi) of an elastic fractal network can be modeled by
the Devil’s staircase [10] associated with the Cantor
set of fractal dimensionDC.

Under these assumptions,N(ε > ε1) exhibits a
statistical self-affine invariance, i.e.,

(5)N(λε)= λ−ηN(ε),

where λ > 0, ε1 < ε, λε < εmax, η = DB. Using
the properties (3) of the Devil’s staircase [10,23]
and conventional thermodynamic assumptions [24],
it is easy to derive the constitutive equation for an
elastic (multi)-fractal networkσ = ∂U

∂ε
∼=E(N(ε))ε =

E0N(ε)ε ∝ σ−α , which obeys a self-affine scaling (2)
with α = DB − 1 = DC, within the intervalε1 < ε,
λε < εmax.

On the other hand, under the assumption that the
rupture fractal dimensionDR is determined by the
fractal dimension of fiber network, i.e.,DR = 3 −
DB [12], we can expect that

(6)H = 2−DR =DB − 1 =DC = α,
in agreement with experimental observations (com-
pare data from Figs. 8, 10 and 1(b)). Accordingly, rela-
tions (3) may be represented in the form of uncertainty
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relations

s(τF)UF = C1 = 85± 35 mJ min,

(7)τFs(UF)= C2 = 38± 15 mJ min,

where τF = δ/ε̇ is the time-to-fracture. Notice that
these relations are similar to the energy-time uncer-
tainty relation in quantum mechanics.

5. Monte Carlo simulations

To get a better insight into the dynamic properties
of the fractal damage model, we explore the prob-
abilistic nature of fiber failures using a variation of
the well-known fiber bundle model, which was ad-
vanced in [5–7]. In fiber bundle models a set of fibers
is arranged in parallel, each one has a statistically dis-
tributed strength. The fiber network is loaded parallel
to the fibers direction, and the fibers fail if the load
on them exceeds their threshold value. Once the fibers
begin to fail, one can choose among several load trans-
fer rules. In the simplest case of global load transfer,
after fiber failure, the load is transferred equally to
all remaining intact fibers. At the other extreme, one
finds the local load sharing fiber bundle model [4–8],
where the load borne by failing elements is transferred
to their nearest neighbors. As it was pointed above, an
important fraction of stress is redistributed to other in-
tact fibers which are not localized in the neighborhood
to the failed ones, nevertheless maintaining stress con-
centration around the broken fibers. So, actual stress
redistribution in fiber network should be modeled by
somewhat between the global and local load sharing
models. One can expect that in a fractal network, the
stress redistribution is governed by a power law

(8)σadd∝ r−β,
whereσaddis the stress increase on a fiber at distancer

from the failed fiber.
The system under consideration is composed ofN

fibers, assembled in parallel on a two dimensional
square lattice of side lengthL= √

N . To model a frac-
tal structure of fiber network, we assume that the dis-
tribution of critical strains (εI ) satisfies relations (5),
whereDB is the fractal dimension of network, and
the local stresses follow constitutive relationσ =E0ε,
whereE0 conforms an inverse-Gauss distribution. To

capture the effect of stress-strain rate, we also assume
that the Young modulus and the threshold stress of
each fiber are power law functions (1) of strain rate.

A fiber fails when the load acting on it exceeds
a threshold value. When a fiber fails, its load is
transferred to other surviving fibers in the network,
according to a specific transfer rule (8). So, during the
simulation, the local stresses varied widely due to local
density variations and fluctuations in the local stress
transfer. As a result, instead of a single crack growth,
the failure occurs as the culmination of progressive
damage from multiple cracks.

Monte Carlo simulations also shown that the failure
process starts from the lowest (one-fiber) level, when
the network strain achieves a minimum critical value.
Afterwards, the damage propagates from level to
level due to failures of fiber groups (fibers with
the same threshold deformation) with the consequent
load redistribution (8). Accordingly, the cumulative
distribution function of braked fibers,F(ε1 < ε <

εM), is an increasing Devil’s staircase associated with
the Cantor set of dimensionDC = DB − 1, such that
F(ε < ε1) = 0 andF(ε � εM)= 1. The macroscopic
engineer stress behaves asσ = E0[1 − F(ε)]ε. The
network fails when the failure process envelops the
entire network. The time the time-to-failureτF is
defined as

(9)τF = ε̇

εM
= ε̇

δ
.

Results of Monte Carlo simulations with 0.5 � β � 2
reproduce relations (2), (3) and (6), (7), whereα =
DB − 1 and the constantsC1 andC2 are dependent on
the stress-transfer parameterβ , as well on theDB.

Detailed analysis of Monte Carlo simulations will
be published elsewhere.

6. Conclusions

The failure behavior of a fractal network is gov-
erned by its fractal dimension,DB. Damage is initiated
at the level of a single fiber and evolves to the upper
scale affecting the material stress-strain behavior. The
results shown that the rupture lines and stress-strain
curves are characterized by the same scaling (Hurst)
exponentH = α = DB − 1, which also governs the
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changes in the network stress-strain behavior, as the
strain rate increases.

The fractal damage model is employed to explain
experimental observations. Monte Carlo simulations
with a fractal version of fiber bundle model reproduce
the characteristic features observed in experiments. Of
course, further experiments on different materials are
needed in order to confirm the general character of
failure behavior (2), (7) of fractal networks, as well
as a detailed study of the transition between failure
mechanisms with an increase in the strain rate.
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