
         SOME BACKGROUND ON WHY PEOPLE IN THE EMPIRICAL SCIENCES
                            MAY WANT TO BETTER UNDERSTAND THE
                                 INFORMATION-THEORETIC METHODS

Since the publication of the first edition of our book in late 1998, Ken Burnham and I have
given a number of 1-, or 2-, or 4-day shortcoursesor workshops on the "Information-
Theoretic" approaches to professional people with wide variety of science interests.  Often,
people are undecided as to whether they should take one of these shortcourses and how they
might expect to benefit if they did.  The purpose here is to introduce the subject in a non-
technical way.  This is written to allow people to gain some level of understanding as to what
these approaches do and why they might be generally useful.  This document is short and very
incomplete, but meant as a rough, general overview of the more technical material to be
covered in the short course.

The name stems from the fact that much of the deep theory underlying these approaches is
based on "Kullback-Leibler information" (Kullback and Leibler 1951).  This quantity is a part
of and , and has some interesting historical connections toinformation theory coding theory
Boltzmann's stunning scientific discoveries in the late 1800s concerning entropy and the
Second Law of Thermodynamics (i.e., K-L information = – entropy).

K-L information (written as the function ( )) is the information ( ) lost when a model ( )I f, g I g3 3

is used to approximate full reality ( ).  Clearly, if one has  hypotheses (H ), each representedf R 3

by a model ( ), then we would like to find the model that loses the least information aboutg3

full reality.  K-L information can also be viewed as a  in which case we can askdistance,
"Which hypothesis/model is  to truth?"  This is the so-called problem.closest model selection 

In the context of interest here (model selection for data analysis and inference), it is
impossible to compute K-L information directly, however, in 1973 Hirotugu Akaike derived a
simple, asymptotically unbiased estimator of K-L information.  This estimator has come to be
known as Akaike's Information Criterion, AIC.  One computes AIC for each of the R
hypotheses/models and the one with the smallest value is estimated to be the best.  This is a
simple and very compelling concept ("select the model that is closest to truth").

The Importance of the Science and Good Data

First, the science of the issue should be firmly in place; these are not methods that will salvage
poor work.  Akaike believed his primary contribution was to focus people's attention on
thinking, hypothesizing and modeling; if these issues are not done well, the total effort will
likely be severely compromised.  The objective must be clearly defined, hypotheses must be
worthy of study (many seem trivial or ambiguous), and the whole effort well grounded in the
science.  Mathematical models must be developed to portray the science hypotheses.  Good
data ( ) must be available, following an appropriate sampling or experimental design. [TheseX
methods are very useful for exploratory studies, but I will not make this point here.]



Multiple Working Hypotheses

Chamberlin's (1890) paper on  is a very effective strategy formultiple working hypotheses
advancing knowledge in the empirical sciences.  Here, one postulates several hypotheses
about a system or process of interest (call these hypotheses H  for  = 1, 2, ..., ).  Over 1003 i R
years ago, he did not understand  these hypotheses might be rigorously assessed – he onlyhow
put forward the that multiple hypotheses should be entertained.  The carefullphilosophy 
definition of the set of hypotheses is critical to the entire approach.  A recent examplea priori 
of science hypotheses might be of interest at this point.

Clark and McLachlan (2003) consider the issue of forest biodiversity and define two
hypotheses, each having ". . . different implications for the number and kinds of species that
can coexist and the potential loss of biodiversity in the absence of speciation."
ì  H  involves stabilizing mechanisms, which include tradeoffs between species in terms of"

their capacities to disperse to sites where competition is weak, to exploit abundant resources
effectively, and to compete for scarce resources.
  H  emphasizes equalizing mechanisms, because competitive exclusion of similar species isì #

slow.  Lack of ecologically relevant differences means that abundances experience random
"neutral drift", with slow extinction.
The authors acknowledge that the relative importance of these 2 hypotheses is unknown,
because the assumptions and predictions involve broad temporal and spatial scales.  They use
paleodata on more than 200 generations of 7 tree species at 8 sites in southern Ontario.  [I will
not go into the models they used to represent these hypotheses or the simulation approach they
chose as these issues take us too far from the points of interest here.  However, I might
mention that I would have preferred some more hypotheses, in addition to the two they
defined.]

Statistical Tests Side-Track Science for Much of the 20  Century>2

Chamberlin would have been disappointed by the many methods developed in the 20th
century to test .  That is  what he envisioned; the null is so often trivial ornull hypotheses not
obviously false on  grounds (e.g., the population correlation coefficient betweena priori
variables  and  is 0 or the experimental addition of aluminum to an aquarium containingX Y
small fish has no effect on growth or survival).  Over the past century, literally hundreds of
statistical "tests" have been developed to test null hypotheses.  Chamberlin envisioned ways to
evaluate or contrast the support for the multiple science hypotheses; instead, tests of a usually
sterile null became the unfortunate focus.  These tests are not wrong in any sense, but the
results from such tests seem of relatively little value (i.e., "We reject the null that was stupid
in the first place,  < 0.05").  There are a host of problems with this traditional approach,P
some of these are outlined in Anderson et. al. (2000) and there are extensive websites on this
old issue.  In fact, controversy over null hypothesis testing among statisticians had started by
the late 1930s.



A General Example

Here I generalize the example of tree diversity in southern Ontario.  Consider the general issue
where 3 carefully formulated science hypotheses have been proposed (H  H , and H ):" # $

hypothesis H  might be the dominate thinking in the field, hypothesis H  might be a shift in" #

thinking but not yet having much support, while hypothesis H  might be quite different and$

supported by only a single group.  Each of these science hypotheses have been modeled
(statistical expertise might be required for this important step); thus 3 models reflect the 3
hypotheses – call these models g , g , and g .  So, we assume that hypothesis H  and model g" # $ " "

are essentially interchangeable; they both try to mean the same thing (H   , H   ," " # #Í Íg g
H   ).$ Í g$

Now, based on the data set  and a rigorous analysis, using either least squares or maximumX
likelihood methods, we can ask questions such as:
     Which science hypothesis has the most empirical support? This is the same as "which isì
the best model?"
       What is a proper ranking of the 3 science hypotheses?  This is the same as a ranking ofì
the models from best to worst, based on the empirical data.
       Are the first 2 hypotheses nearly tied? or are all 3 hypotheses nearly tied in terms ofì
empirical support?  Is one hypothesis far better supported by the data than the others?
       Are any of the 3 hypotheses untenable relative to the others, based on the empiricalì
data?
       If prediction is the goal of hypothesizing and modeling, then should predictions beì
based on only the model estimated to be best? or should prediction be based on all the models
(perhaps weighted in some way)?

These are the types of questions provided by the careful use of the information-theoretic
approaches.  They are not intended as cookbook recipes; instead they encourage a science
focus as  hypotheses and modeling are so important.  Let us consider a tutoriala priori
example and introduce (without definition) 2 quantities that are computed using information-
theoretic methods (you learn this material in the first 2-3 hours of the short course).  First, ?3

is useful in ranking the hypotheses/models, whereby the best model always has   0.  The?3 ´
other models have  > 0; the larger the  value, the less plausible the model.  Second, the? ?3 3

w i3 are the probability that hypothesis/model  is, in fact, the best model of the 3 under
consideration.  The  and  are based on the data and simple AIC values and both can be?3 3w
easily computed.  Let the results be (for example):

           Hypothesis   Model             i w?3 3 
    1           H               g         3.1        0.08" "

    2           H               g         0.0        0.92# #

    3           H               g       16.9        0.00$ $

Several inferences can be made here.  First, the best hypothesis/model is 2, based on the data
available.  The full ranking (best to worst) is H , H , and H .  Knowing some theory about the# " $

? ?3 $ allows one to conclude that there is very little support for H  (models whose  values are
>10 have essentially no empirical support).  We can ask what are the odds of



hypothesis/model 3 actually being the best model; this is about 4,675 to 1 in this example.
Clearly, hypothesis/model 3 lacks empirical support.  How strong is the evidence that
hypothesis/model 1 is better than 2?  [Note, we are asking for a measure of evidence, rather
than the arbitrary "significantly better" or "not significantly better."]  Here, theory tells us that
?" = 3.1 makes this hypothesis a reasonable competitor.  An "evidence ratio" can be
computed; here it is 11.5.  This evidence ratio (about 11) is like you and a friend buying
lottery tickets: you buy 1 ticket and she buys 11 tickets.  Clearly, ,given that one of you wins
the odds of her winning exceed yours; however, there is still a decent change that you will win
(about 1/11).  She should not want to bet her used car that she will win, when the chance of
you winning is just below 10% (too risky for her).  However, she might bet the whole farm if
the evidence is 4,675 to 1 (as above), because her risk is very slight.  So, several forms of
quantitative evidence are provided by using the information-theoretic approach.

For each model, one must have either the residual sum of squares (least square analyses) or
the value of the maximized log-likelihood (maximum likelihood analyses), the sample size,
and the number of parameters.  For these quantities (printed by essentially all computer
routines for standard statistical analyses) one can easily compute the values needed for the
information-theoretic approaches.  Many of the examples in the book by Ken Burnham and I
were done by hand with only a calculator.  A spread sheet would be handy for problems with
many hypotheses/models.

So, to summarize so far, the information-theoretic approaches allow a quantitative strength of
evidence to be computed and interpreted with respect to the science hypotheses of interest.
This is a useful set of tools, whether one has only 2 hypotheses/models or 32 or more.
Chamberlin's concept was that the set of multiple working hypotheses would evolve over time.
As more experiments or sampling studies were conducted and the data analyzed, some
hypotheses would be dropped (e.g., >10 or 12) but others would be added and stand ready?3

for evaluation with new data.

Multimodel Inference – Model Averaging

There are a raft of theoretical advantages in basing formal statistical inference on more than
one model.  Nearly all of the statistical literature and thinking has been grounded on the idea
than you somehow get a model; inference is then based on this single model.  Rather than
sticking one's neck out and basing inference (e.g., predictions) on the model estimated to be
best; it is often better to make formal inference based on all the models.  This is done quite
simply by a weighted average, where the weights are the model probabilities ( ).  Considerw3

predicting the value of a response variable (  might be fish biomass) from each of the 3Y Y^
hypothesis/models in the example above.  The model averaged estimate of fish biomass is just
Y w Y i^_̂

 = , where  = 1, 2, 3 and indexes the 3 models.  In this example, the contribution of! 3 3

hypothesis/model 3 is essentially zero, with hypothesis/model 2 carrying 92% of the weight.



Multimodel Inference – Relative Importance of Predictor Variables

Often one has  predictor variables and would like a ranking of their relative importance.  Thisr
issue is complicated by the fact that measurements of the variables might in feet or inches, or
meters, or acres or square kilometers, or pounds or kilograms, etc.  Another complication is
that  and  might be highly correlated, often giving a false sense of importance to oneX X3 4

variable just because it happens to be correlated with another.  Simple information-theoretic
methods allow a ranking of the relative importance of predictor variables and this is often of
interest, particularly in exploratory studies.

Multimodel Inference – Honest Estimates of Precision

Many commonly used methods provide an estimate of the precision of some estimated
parameter (often the sampling variance or standard error, coefficient of variation, or a
confidence interval).  These are computed  a model; that is, they are conditional on aassuming
model.  In the real world, we do some analysis to select a model (e.g., stepwise regression –
however this is a surprisingly poor approach, although very commonly used) and have only an
estimate as to which model should be used.  There is uncertainty in the data-based selection of
a model, but this is not reflected in the usual estimates of standard error (Breimann called this
a quiet scandal).  Information-theoretic approaches allow estimates of precision to include a
variance component for "model selection uncertainty."  This is trivial to compute and
understand (with some background given during the short course).

Model averaging, relative importance of variables, and incorporating model selection
uncertainty into estimates of precision are forms of multimodel inference; the central theme of
these short courses.

Theory and Application

The theory underlying the information-theoretic methods is very deep (see Chapter 7 of our
second edition or the short paper by Kullback and Leibler), but the of the generalapplication 
approach is simple.  The main formulae are summarized on a single laminated reference sheet
that is distributed at short courses.  In addition, the approach applies to a very broad class of
science problems and model types.  A reading of Chapter 8 of the second edition of Burnham
and Anderson (2002) might be helpful to those wanting still more insights into this class of
methods.

In contrast, a biologist trying to test a statistical null hypothesis is faced with an array of
parametric and nonparametric tests; this may be some type of randomization procedure that is
quite computer intensive (several of these tests do not even give the estimated effect size as
part of the computer output).  Tests may be considered 1- or 2-tailed and computed test
statistics can be asymptotically distributed as , , etc., etc.  Little generality exists,;# z, t, F
forcing the scientist or manager to be familiar with dozens of different test procedures and
many of these cannot be computed by hand.



More on Null Hypothesis Testing

The most fundamental problem with null hypothesis testing is that nearly all nulls are
uninteresting or trivial (many are actually stupid); thus, the results do not allow increased
understanding or provide new insights.  An example is taken from a recent issue of Ecology
where the authors define the null hypothesis that species diversity (H ) is constant over time.w

To me, this null seems absurd; however, the authors propose a computer intensive test
procedure.  Finally, they illustrate the approach with data on 8 species of dinosaurs and their
species diversity over  time!  I must ask how science is advanced by rejecting this nullgeologic
hypothesis (i.e., as biologists, how can we consider this null to be at all plausible?).  Tests of
null hypotheses are usually fairly uninformative, but they have been nearly mandatory for
many journals and may sometimes give the false impression of "good" science.

Bayesian Methods

Methods based on Bayes' theorem are on the increase in recent years and these have merit for
biologists working closely with a good PhD-level statistician with a background in such
methods.  While I am not a Bayesian, I support the general approach (particularly with "non-
informative" priors).  However, I find that the technical level is beyond nearly all subject
matter scientists, the computational issues are still daunting, and they have not reached any
agreement on the model selection problem.  [Bayesians also have a low regard for null
hypothesis testing.]  Still, I have a positive attitude toward Bayesian methods; however, my
shortcourses focus on the information-theoretic approaches.

Go to  1.   for more technical information.  Several relatedhttp://aicanderson home.comcast.net
reprints can be found at  www.cnr.colostate.edu/~anderson.sel_reprints.html
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