
E 384A r OS(0 +r

X fk db {H cos2b + 2 H ±cos(6 + 6) ±Hcos(6 +

+() DD

(B14)

Pi 768A r

d H'sin26n (Hsin(6+0)±pH)sin(6+0)0 )

+ [-() sin2O +(8 ()

where

A =6.88 ( p
\r0  D'I

and

Hn 8/3 , 2, 3.

In Eq. (B17) the quantity n'r has
lens diameter.

sin2ql H* ±I r H'sin(0+ k)'

(B1 5)

been normalized by the
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Bandwidth specification for adaptive optics systems*
Darryl P. Greenwood

Lincoln Laboratory, Massachusetts Institute of Technology, Lexington, Massachusetts 02173,
(Received 9 July 1976)

A simplified expression for the bandwidth of an adaptive optics system is found to depend on a weighted path
integral of the turbulence strength, where the weighting is transverse wind velocity to the 5/3 power. The
wave-front corrector is conservatively assumed to match the phase perfectly, at least spatially, if not
temporally. For the case of astronomical imaging from a mountaintop observatory, the necessary bandwidth is
found to be less than 200 Hz.

In an earlier paper, 1 the power spectra describing cor-
rector motion were considered as necessary elements
of a complete servo system design for an adaptive op-
tics system. However, for a preliminary design, a
more simplified handbook-type formula for bandwidth
is more desirable. This paper presents such a formula
for the servo cutoff frequency without making any sig-
nificantly limiting assumptions. Basically, the result
depends on a weighted integral of the turbulence strength
Cn, where the weighting is the transverse wind velocity
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to the S. power. Even that integral may be easily
evaluated analytically when C2 is a constant and the wind
speed is composed of a constant plus a pseudowind due
to slew. The resultof this final simplification may be
easily programmed on a hand-held scientific calculator.

Rather than investigate the way a wave-front corrector
would respond to a phase aberration, we have considered
the statistics of the phase itself, so the resultant band-
width is conservative in that we assume the corrector
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FIG. 1. Representative plots of the power spectra of segments
within a phase corrector, for pistons located at the center (I)
and at the edge (II and III). Curve II is for a gross piston re-
ference and curve m for a gross tilt reference. The type of
reference does not affect curve I. The high-frequency roll- off
is determined by the size of the corrector, with IV represent-
ing a finite corrector segment I the diameter of the aperture,
and V representing a segment of size zero. The entire dashed
line is the simple power spectrum given by Eq. (1).

perfectly matches the wave front, at least spatially, if
not temporally. This avoids making any assumption on
the nature of the corrector, and the corrector may be
modal or zonal, segmented or continuous. To amplify
the usefulness of the resultant formula, we carry out
integrations for two cases: one representing a near-
horizontal, moderately short range, and one consistent
with astronomical observation.

In the more detailed analysis, 1 we considered a seg-
mented corrector composed of any array of movable
pistons which could also be tilted in order to form a
least-squares fit to the wave front over the small circu-
lar region defined by the pistons. There was an option
of referencing the phase at a point in the aperture to
either the average phase across the aperture (gross pis-
ton reference) or the tilt across the aperture (gross tilt
reference). Examples of such spectra are shown in Fig.
1 for pistons at the center and the edge of the aperture.
These curves are diagrammatic in that they are not for
any specific atmospheric conditions. The low frequen-
cies in these curves are governed by the type of phase
reference chosen, whereas the high frequencies are af-
fected by the segment size. If we let the segment size
go to zero, then all the curves have a common high-fre-
quency asymptote given by a path integral of Eq. (72) in
the earlier paper. The result, which applies to either
plane or spherical waves, is

lim F (f) = 0. 0326 k2f-8/3 C2(z)V5 13 (Z)dz (1)
o

wheref is cyclic frequency, k = 27T/X is the wave number
(A is wavelength), L is the path length, v(z) the wind
speed transverse to the path, C2 (z) the refractive-index
structure parameter, and z is the incremental position
along the path from z =0 at the telescope (or receiver)
to z =L at the source. For astronomical seeing, the
upper limit L is replaced by -.

The asymptote given by Eq. (1) is simply the spectrum
of phase for Kolmogorov turbulence, where the phase is
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not referenced to either gross piston or gross tilt. The
phase spectrum is also given by Tatarskii,2 but only for
the special case where v(z) and C2 (z) are independent of
z. A tacit assumption in the derivation of Eq. (1) is
that the frequencies are small compared with the char-
acteristic frequency of amplitude scintillation, orf
<< v/(AXL)l'/2. Admittedly, v is actually a function of
path position z, and L may be only a scale height for
astronomical seeing; but rather than go into a more
rigorous analysis, we note that if the inequality is re-
versed, such thatf >>v/(XL)l/', then Eq. (1) is simply
multiplied by 2

Bandwidths are determined by integrating F, (f) as
filtered by a filter rejection response. Suppose the
closed-loop servo response, the Fourier transform of
the impulse response, is given by the complex function
H(f, fe), where f, represents a characteristic frequency
such as a 3 dB point. The rejection response, in terms
of power, is then I1 - H(f, f,) j2. Thus, the rejected,
or uncorrected, power is

OrIf 1l-H(f,f 0 )1 2Fo(f)df
0

(2)

Typically, it is cr2 which we will specify in order to de-
termine f, for a certain set of atmospheric conditions.

Since there are many types of servo closed-loop re-
sponses which might be implemented, we chose two ex-
treme forms for H(f, f,) which should represent the
range of possibilities. First, to represent a sharp cut-
off, we used a binary filter given by

H(ffc)={ 1 f: c:
0 f ><c

(3)

Secondly, we chose an RC filter to represent a slow
roll-off, and in fact, many adaptive optics servo sys-
tems have such a response in the neighborhood of the
3 dB point. (For higher frequencies, the actual re-
sponse may drop off more rapidly than 20 dB/decade,
but this will have little impact since the spectrum itself
has a rather steep f-8 1 3 dependence.) For the RC filter
we have

H(f, fc) = (1 +if /fc)' (4)

We will not concern ourselves with the phase lag
associated with such a filter.

If we assume the cutoff frequency which will be even-
tually derived is to the right of the low-frequency breaks
indicated in Fig. 1, then it is sufficient to use the
asymptotic form of F0 (f ) in the integration of Eq. (2).
This assumption may be alternatively stated as the re-
jected power r2u. From the parent paper, 1 we find that
the aperture-averaged variance of phase referenced to
gross tilt is

a'2= 0. 141 (Dlro)5 /3 (5)

where D is the telescope diameter and r. is Fried's co-
herence length. 3 For convenience, we repeat here the
definition of ro as

L

r-5/3 = 0.423 k2 C2(z) Q(z) dz ,
0

(6)
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where Q(z) =1 for plane waves, and Q(z) =[(L -z)1L] II
for spherical waves. A typical value of ar, might be 0.27r
rad (or 1 wave), which requires that the integrated
turbulence strength be such that Diro >> 0.74. Fortu-
nately, D/r0 should be much greater than 0.74 to war-
rant the use of an adaptive optic in the first place. So
we comfortably proceed with the integration of Eq. (2),
using the asymptotic spectrum, Eq. (1). After integrat-
ing Eq. (2) with a binary filter, we invert the result to
express f, in terms of or and find

L

fc=[0.0196 (ki/r)2f C2(Z) v 5 /3 (z)dz] 3 /5  (7)
n

For the RC-filter function, the constant 0.0196 becomes
0.102, and thus f, is 2.70 times larger.

There are two special cases of interest. The first
is consistent with many ground-based operations over
near-horizontal ranges, and the second is that of astro-
nomical observation. For the first case, we assume
Cn is a constant and the transverse wind speed is com-
posed of a constant va plus a pseudowind wz due to slew-
ing at an angular rate w. Then we find

103 k 2C2 V8/3 [( +L 8/3 3/5
7.34 10 3(8)

for a binary filter, andf, is 2.70 times higher for an
RC filter. As an example, suppose ur = 0 . 21T rad,

=10. 6 Aum, C2=10-13 m-2/3, va= 4 m/s, w=0.01 rad/s,
and L = 2000 m. For these conditions, we find f would
be in the range of 31 Hz for a binary filter to 84 Hz for
an RC filter.

For the astronomical case, the models for v and Cn
become more complicated. We have chosen to calculate
f, based on recently published data for an astronomical
site. Miller, Zieske, and Hanson4 report profiles of

n versus altitude for three nights at the ARPA Maui
Optical Station (AMOS). Our model of their data is

Cj(z) = [2. 2x 10-13 (z sine +10)-1-3 +4. 3x 10-'7]

x exp[- (z sine) /4000] , (9)

where 0 is the elevation angle and the units of Cn and z
are m 2/3 and m, respectively. For a wind velocity
model, we averaged rawinsonde data5 collected at Lihue
(island of Kauai), Hawaii, for the years 1950-1970 and
at Hilo, Hawaii, for the years 1950-1974. We modeled
wind speed as a constant, to represent the lower alti-
tudes, plus a Gaussian to represent the jet stream.
The model, consisting of the mean wind speed plus one
standard deviation, is

v(z) =8+30 ex {[ (z sine - 9400)]2 } (10)

where v and z are in MKS units. Implicit in Eq. (10) is
the knowledge that the site altitude corresponding to
z =0 is 3048 m above MSL. We have taken the conser-
vative assumption that the winds are entirely transverse
to the path; however, if the wind is blowing predominant-
ly downrange rather than cross-range, there would be
an additional sine multiplying all of Eq. (10).

For the conditions of turbulence and wind speed given

392 J. Opt. Soc. Am., Vol. 67, No. 3, March 1977

in Eqs. (9) and (10), as well as for ar=0.2vr rad, X=0. 5
jim, and 0 = 90°, the calculated cutoff frequencies are
ft(binary)=28 Hz andf,(RC)=75 Hz. For these same
conditions, we may calculate ro and verify the assump-
tion that D/ro >> 0 . 74. Using Eq. (6) we find ro = 0. 13 m,
and thus D >>0. 1 m, which is easily satisfied. This val-
ue of r. compares favorably with the median value of
0.10 m (at X = 0.5 Arm) reported by Fried3 for the U.S.
Naval Observatory at Flagstaff, Arizona, and the Kitt
Peak National Observatory.

These values of f, and ro can easily be scaled to other
elevation angles and wavelengths. The elevation angle
scalings are f, - (sinO)'31 5 assuming the winds are en-
tirely cross-range, fc -(sinO)2/s when the winds are
downrange, and ro- (sin)3 /5 independent of winds. The
wavelength (or actually wave number) scalings are
fc-k 6 1 ' and r 0 -k-6/ 5 . We also suppose the reader may
want to increase or decrease the entire Cn profile, for
which we point out that fC (C?-)3 /5 and r- (C")-3 / 5 . Over-
all wind-speed scaling affects onlyfc in thatfg-v. Let
us now consider what may be a near-worst case, of
0 = 300 (winds cross-range) and a C2 twice the values of
the model. We shall not scale v since the model already
consists of the mean plus one standard deviation. Also,
at least for the visible wavelengths, X = 0. 5 pum should
suffice. For these near-worst-case conditions, the
actual cutoff frequency may lie between f, (binary) = 64
Hz andf L(RC) =172 Hz.

In summary, we have provided simplified formulas
for the bandwidth of the phase corrector and servo con-
trol of an adaptive optics system. The formulas should
be used as good rules-of-thumb for perhaps all but the
very final stages of the servo design. At that point,
more precise power spectral should be consulted. If
we have used the more precise spectra with the high-
frequency roll-off which results from having a finite
actuator spacing, the calculated bandwidth would have
been slightly lower. The specification derived in this
paper is to be taken as a conservative estimate, based
on an infinite number of corrector actuators. To apply
our result, Eq. (7), requires knowledge of both wind
speed and turbulence profiles on the optical path. To
demonstrate the utility of the formula, we investigate
two cases of interest: one essentially a horizontal path
and one consistent with astronomical observation from
a mountaintop. In both cases we found the bandwidths
to be fairly low, less than 200 Hz, giving encourage-
ment that the control system and corrector mirror need
not be extremely complicated for many applications.

*This work was supported by the Advanced Research Projects
Agency of the Department of Defense.
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Wave-front compensation error due to finite corrector-element size
Richard Hudgin

Itek Corporation, Lexington, Massachusetts 02173
(Received 24 November 1975; revision received 23 August 1976)

A critical component of an active optical-compensation system is the formable mirror or other phase
corrector. Because the corrector will have a finite number of controllable elements, it cannot perfectly correct
a distorted wave front and the resulting error must be evaluated to model and design the system properly.
This paper presents the full theory of the phase corrector in two common situations: one, where a particular
known type of distortion such as focus or coma is to be corrected, and two, where the distortion is a random
function of position, such as might arise from atmospheric turbulence. Results for a typical corrector are
presented for both situations.

1. INTRODUCTION

Since 1973 there has been considerable effort to develop
practical hardware that can compensate for phase er-
rors in a wave front. 1-9 Such a system typically re-
quires a telescope, a wave-front sensor, an actively
deformable mirror or other phase corrector, and a set
of electronics that converts the output from the wave-
front sensor into control voltages for the active mirror.
One of the main design questions of such a system is
the number of independent actuators required to achieve
a certain accuracy of fit from the active mirror. This
number will depend on the response of the mirror as
well as the set of wave fronts being corrected. The
theory necessary to calculate this number is presented
here, both for an ensemble of random wave fronts and
a fixed type of distortion (i. e., focus or coma).

II. MODEL

It is assumed that the statistical structure function of
the phase functions are known, and we calculate from
these statistics the ensemble average error variance
of the fit. If ¢(x, t) is the phase function being fit, then
the structure function D is defined

D(x-x', t-t)(¢x )-¢xt]> 1

where the expectation value is taken over the ensemble
of phase functions. This and one other expectation val-
ue are the only statistical information required for the
calculation. The other information is

(¢(x, t)) = 0. (2)

The statistical assumptions in Eqs. (1) and (2) are
implied whenever the ensemble of phase functions in-
cludes all translations and rotations of each phase func-
tion with equal probability. This assumption is valid in
many applications such as turbulence compensation.
Sometimes a particular distortion such as a focus or
astigmatism correction is required instead of a more
general ensemble. In these cases, Eqs. (1) and (2) may
not be valid. Instead, the results of Sec. III may be
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applied directly for each degree of freedom and the re-
sulting rms fitting error will be proportional to the
magnitude of the corrections. The constant of propor-
tionality can be calculated using Eqs. (7)-(9) and Eq.
(11).

The active mirror or phase corrector is modeled
by N discrete actuators, the jth of which causes a
phase correction Rj(x) for a unit applied signal. If Sj(t)
is the signal applied to the jth actuator at time t, then
the total phase correction is

N

(tic (X, t ) =L Sj (t ) Rj (X) .

The error is then
N

((x, t) = ¢)(PX, ) - a Sj (t) Rj ,
i=l

(3)

(4)

and the ensemble average error variance E is

E=(E2 (X, 0) f dx (x, t) -a SjN(t)Rj(x)

(5)
where A =area of the aperture.

The calculation is to choose Sj(t) to give the minimum
value of E and to find E as a function of the number of
actuators and the response function, Rj(x).

Ill. OPTIMUM Sj(t )

The first question addressed is how well the mirror
can approximate a known function ¢(x). The error
variance is

e 1 dXE2 ( ) = ' fdx [¢(x) -Z SJRJ(x)]. (6)

The problem is to choose Sj to minimize e. The solu-
tion is standard variational analysis with the result
most easily presented by defining some new quantities.

Let
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