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Abstract To what extent is incomputability relevant to the material Universe? We lookat ways in which this question might be answered, and the extent to which thetheory of computability, which grew out of the work of Gödel, Church, Kleeneand Turing, can contribute to a clear resolution of the current confusion. It ishoped that the presentation will be accessible to the non-specialist reader.
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1. An Historical Parallel

To the average scientist, incomputability in nature must appear as likely as‘action at a distance’ must have seemed before the appearance of Newton’sPrincipia. One might expect expertise in the theory of incomputability —paralleling that of alchemy in the seventeenth century — to predispose one toan acceptance of such radical new ideas. But specialist recursion theorists as
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138 COMPUTABILITY AND MODELS
a group have shown remarkably little interest in the more general implicationsof their work.1 Part of the reason for this is tricky technical obstacles to evenformulating appropriate notions and questions concerning computability in thereal world.However, at a purely intuitive level, one has a seemingly unproblematicmodel of a deterministic, even mechanical, Universe. Its scientific foundationswere Newtonian mechanics, and its philosophical basis most clearly tracedback to Laplace’s predictive demon.2 The model lives on in contemporaryscience surviving, at least in the recesses of the scientists mind, the proliferatingchallenges to old certainties. In particular, it has achieved an uneasy coexistencewith notions of randomness (a very special kind of incomputability) forced onus by greater knowledge of subatomic phenomena.And so, despite the development of the mathematical theory of computabilityinitiated by Gödel, Turing, Church, Post and Kleene in the 1930s, one is stillleft with uncertainty as to how it applies to the real world. One can get an ideaof the scope for quite contrasting, but arguably valid, approaches to quantifyingincomputability in natureincomputability, in Nature from the second author’sdiscussion of Church’s thesis and its extensions (in the first volume of hisbook on “Classical Recursion Theory”). So what is missing from the picturewe have? How could a belief (or otherwise) in incomputability in nature besubstantiated? And how can one enrich, improve, and make more explicit amathematical model for what is happening?One approach — the search for overt incomputability — is to take mathe-matical equations known to accurately describe some natural phenomenon, andto extract solutions exhibiting incomputability in some generally convincingform. Or, on the other hand, to argue that the persistent failure of this approachincreasingly confirms there to be no such incomputability to identify.What weakens this latter position is the obvious observation that efforts toconsolidate the Laplacian model, on a foundation of new science and an appro-priate model of the underlying mechanisms, seem even more hopeless. Whileone can point to quite plausible obstacles to overtness. There may, for instance,be mathematical constraints on what incomputabilities can be described, whichmake it hard to get to grips with the computability, or otherwise, of those naturalphenomena for which we do have correlative mathematics.

1Some have seen the developing terminology of the subject itself — the replacing of Turing’s ‘computable’by Kleene’s ‘recursive’ — as being intimately related to a turning away from its roots in real problems. Itmay be no coincidence that the recent reinstatement of Turing’s terminology has come at the same time as agrowing concern, both within and without the specialism, about whether classical recursion theory has anysignificant general implications.2Of course, Laplace himself did not set out to provide any such model, and it is only twentieth centuryscience which allows us to view the conceptual framework he helped establish in such terms.



       

Incomputability In Nature 139
For instance, we have in mind the failure to discover ‘natural’ examples ofincomputable sets of integers from amongst the rich variety of incomputable‘almost computable’ (i.e. computably enumerable) sets. This current lack ofmathematically natural examples of incomputable sets has been used as an ar-gument against being interested in such things. But naturalness in the rarifiedatmosphere of the university pure mathematics department is a very differentthing to that of everyday usage. That very mathematical unnaturalness of mostsets of numbers may be what presents an obstacle to overt incomputability of ob-jects ‘existing in or caused by nature’.3 It is well-known that one needs no morethan high school mathematics to describe incomputable sets (all computablyenumerable sets are diophantine, got by looking for solutions to appropriateequations from basic school arithmetic); but that those known to be incom-putable come with descriptions which can be tied in closely to diagonalisingtechniques in computability theory (definitely not part of the normal schoolsyllabus!).One can relax the overt approach by looking for incomputability whichemerges from mathematics which looks somewhat like the mathematics onesees applied scientifically. But despite various proposals4 in this direction,sceptics tend not to be impressed. They find plenty of scope for arguing thatthe mathematics involved is not typical, or for throwing doubt on the role ofincomputability in it.Finally one must admit that to those not involved, such detailed discus-sions seem fairly academic. Why should those without a direct career interestcare whether actual incomputability (suitably formalised) occurs in Nature?Even if it did occur, for all practical purposes, how would it be distinguishablefrom theoretically computable but very complex phenomena? Whether chaoticphenomena – such as turbulence – involve complexity or incomputability isinteresting, but does it really matter?Fortunately, there is another approach — let’s call it the mathematical ap-proach — which renews the link with Newton. This is a direction rooted in theold debate about whether computability theory has any useful consequences formathematics other than those whose statements depend on recursion theoreticterminology. Until recently the evidence was even less promising. RecentlySoare has sought to present some interesting mathematics originating with re-searchers from outside computability theory, which both depends on the theoryof incomputable sets, and at least looks like mathematics with real-world ex-

3From the definition of ‘natural’ given in The New Oxford Dictionary of English, 1998 edition.4Probably the best-known and most convincing of these is that of Pour-El and for non computable solutionsto the wave equation. In fact, some claim this does rather more than “look .. somewhat like the mathematicsone sees applied scientifically”.



     

140 COMPUTABILITY AND MODELS
planatory power. This gives an, admittedly very weak, parallel with Newtonand action at a distance.It is worth noting that action at a distance was not Newton’s direct concern, butwas an incidental, if remarkable, ingredient in a comprehensive mathematicaltheory with what was rapidly acknowledged to be invaluable explanatory power.Not even the inverse square law originated in isolation with Newton, but wasfamiliar to Robert Hooke and others. What Newton had done was to go farbeyond Hooke’s observation, and to develop a body of mathematics which,with the sort of difficulty one is familiar with in correlating mathematics withnature, was capable of explaining observations which had no other knownexplanation. He proved a striking parallel between mathematical theory andobserved physical phenomena, to the point where predictions could be madeand confirmed. And acceptance of action at a distance became, at that time, anunavoidable by-product of the theory.Of course there is no corresponding ‘big picture’ obviously emerging fromwhat Soare describes. But it does seem important as an indicator of how cer-tain aspects of the complicated mathematics needed to describe the materialuniverse may well be implicit in the richness of the theory of computability.This would not be surprising given that algorithms seem to underlie the gen-eration of structure in the classical universe. But before speculating on howmaterial phenomena can be located within a theoretical framework based onthis underlying algorithmic content, we should first ask: Is there anything veryimportant left for computability theory to explain? Instead of looking for a rolefor computability theory, let’s very briefly examine the nature of gaps in thescientific ‘big picture’, and the ways in which the content of proposed remediespoints to an added role for mathematical theory.
2. Matter and Mathematical Definability

There is no shortage of writings, both popular and specialist, looking at themany fundamental questions still facing science, and most of us have a fairlygood idea of what remains to be explained. Let us step back, and get an overviewof some of the more intractable questions puzzling workers in the sciences andhumanities, and ask: What is the missing mathematics (if any), and how can ithelp?A key element in very many controversies appears to be the interactionbetween the local and the global, and what appear to be breakdowns in thereductive structures commonly relied on in science and epistemology. Thedeterministic structures we rely on appear to be punctuated by what one can bestdescribe as phase transitions between different levels of familiar relationships.Apart from the obvious puzzle of quantum wave reductions and associated
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non-locality, there are debates concerning the reductive nature of evolution,and its relevance to social and psychological phenomena; about the origins andexact nature of consciousness, and of concepts and creative ideas; concerningthe origins of life on earth, and of the laws of nature themselves; and evenconcerning the nature of truth in mathematics. At the same time, new science isoften based on situations where the traditional reductions are no longer adequate(chaos theory being particularly relevant here). As one observes a rushingstream, one is aware that the dynamics of the individual units of flow are wellunderstood. But the relationship between this and the continually evolvingforms manifest in the streams surface is not just too complex to analyse —it seems to depend on globally emerging relationships not derivable from thelocal analysis. The form of the changing surface of the stream appears toconstrain the movements of the molecules of water, while at the same timebeing traceable back to those same movements. The mathematical counterpartis the relationship between familiar operations and relations on structures, andglobally arising new properties based on those locally encountered ones. Forexample (one relevant to new theories of the Universe), consistency is a propertyof theories based on the atomic proof theoretic features of the theory — namely,the assumptions and permitted deductions. Consistency in turn can be perceivedas a constraint on those same atomic elements, and on what the theory describes.The drive for a completely satisfactory interpretation of quantum theory hasled to theories, such as that of decoherence, which routinely have recourse tosuch global notions, notions which were until relatively recently of interestonly to those with a special interest in logic. Now even Gödel’s IncompletenessTheorem is cited (usually inappropriately!) in relation to quantum and episte-mological uncertainty. Unfortunately, the essential service logic has given tomathematics and other areas, such as computing, does not earn it remission fromits traditional marginalisation! New notions coming out of current research areabsorbed as slowly as ever. In this context, the little understood — even bymathematicians — notion of mathematical definability is the key mathematicalconcept, with the potential to clarify a broad range of fundamental problems.Many questions in quantum theory, proof theory, and epistemology, can be bestunderstood as a breakdown of definability in an appropriate underlying math-ematical model. At the same time, other mysteries, such as how the classicaluniverse escapes the underlying quantum ambiguity, and how natural laws arise,can be traced back to the right notion of definability in the right mathematicalstructure.Without going into mathematical detail, it is easy to give an intuitive idea ofwhat definability is, and how it relates to another useful notion, that of invari-ance.definability,and invariance This not necessarily because the notions arevery simple ones (they are not), but because they do correspond to phenomenain the real world which we already, at some level, are very familiar with. We have
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already had the example of the stream, with its micro- and macro-dynamics.The emergence (a vogue word) of form from chaos, of global relations withinturbulent environments, is a particularly vivid metaphor for the assertion ofdefinability, or invariance. Let us take a simple mathematical example fromarithmetic.Given the usual operation + of addition on the set � of integers, it is easy tosee that the set Ev of even integers is le from + within � via the formula

x ∈ Ev ⇐⇒ (∃y)(y + y = x).

So all we mean by a relation being definable from some other relations and/orfunctions on a given domain is that it can be described in terms of those re-lations and/or functions in some agreed standard language. Of course, thereare languages of varying power we can decide on, in which say one can allowsay different levels of quantification. In the above example, we have used verybasic first order language, with finitary quantification over individual elementsof the intended domain — we say thatEv is first order definable from + over � .What has happened is that we started off with just an arithmetical operation on
� , but have found it distinguishes certain subsets of � from all its other subsets.Intuitively, we first focused on a dynamic flow within the structure given locallyby applications of the form n+m to arbitrary integersm,n. But then, standingback from the structure, we observed something global — � seemed to fallinto two distinct parts, with flow relative to even integers constrained entirelywithin Ev, and flow from outside Ev being directed into Ev — with Ev beinga maximal such subset of � . From within the structure, + is observable andcan be algorithmically captured. Further than that, we are dealing with ‘laws’which cannot be related to the local without some higher analysis. This featureof the integers is not of course a deep one, but it does act as a basic metaphor forother ways in which more or less unexpected global characteristics of structuresemerge quite deterministically from local infrastructure.The notion of invariance gives a useful, if slightly more abstract, way oflooking at such phenomena. Being able to uniquely describe a feature ofa structure is a measure of its uniqueness. But some feature of a structuremay be quite unique, without one being able to describe that uniqueness ineveryday language. Mathematically, we use the notion of automorphism tocapture the idea of a reorganisation of a structure which does not change anyof its properties. A feature of that structure is invariant if it is left fixed by anyautomorphism of the structure. Obviously if one can uniquely describe such afeature, it must be invariant, but not necessarily conversely. On the other hand,any relation invariant in a structure can be defined in that structure, if one allowsa suitable strong (but no longer very natural maybe) language, so definabilitycan be thought of as providing a hierarchy of invariant relations.
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The main remaining question is: How can one turn a metaphor into amodel? In what sort of mathematical structure can we find definable rela-tions,definability and corresponding failures of definability, with real worldexplanatory power?

3. Finitism in a Universe with Algorithmic Content
One often hears the view put that considerations of computability must havelimited relevance to a clearly finite Universe. In outline, the argument is thatone can analyse the Universe in terms of its quantum structure. This entails adiscrete — and according to all the evidence — finite model. Since the modelis large, computability is relevant to the scientific project. But incomputabilityhas about as much significance for a complete description of the Universe as itdoes for any other finite relational structure, such as a graph — that is, none. Infact (see the discussion of Church’s thesis in volume I of Classical RecursionTheory) no discrete model — finite or otherwise — presents a likely host forincomputable phenomena.5Quantum indeterminacy presents little problem for such an outlook. Oneeither expects an improved scientific description of the Universe in more clas-sical terms, or, more commonly, one takes quantum randomness as a given, andsuperimposes more traditional certainties on top of that.The latter perspective is also common to world views that make no assump-tions about discreteness. It has the advantage (for the Laplacian in quantumclothing) of incorporating incomputability in the particular form of random-ness, without any need for any theory of incomputability. The origins of in-computability in mathematics may be theoretical, but not in the real world, theview is.Let us try to develop a more coherent alternative world view.We first look at how science is done, and what relevance this has to whatscientists are trying to describe. As Richard Feynman once pointed out6 “It isreally true, somehow, that the physical world is representable in a discretizedway, and ... we are going to have to change the laws of physics.” But it does notfollow that the mathematics needed is correspondingly discrete. There do existcertain arcane proposals in logic for reconstructing fragments of mathematics,but nothing of practical use to the working scientist can be claimed. Much ofapplied mathematics seems irrevocably dependent on limiting processes anddescriptions in terms of real numbers. Moreover, work on nonlinear phenom-ena have made us very aware of the fact that one cannot accurately describecomplex environments within a fixed level of approximation — one cannot

5On the other hand, if one limits oneself to the usual computability models, the notion of randomness offinite strings seems to provide a first step toward a much needed theory of incomputability of finite objects.6see [Fe82]
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avoid working within the full system of real numbers. In the broader context,there is widespread awareness of the inadequacy of finitary language — every-day sentences — for capturing truth of a more abstract nature than scientificfacts. Philosophy often seems an unending process of translation of intuitioninto words, while the reading of a philosophical text usually entails a creative,rather than formal, recreation of intuitive content. The epistemological role ofsentences in everyday language seems not unlike that of the rational numbersin science.We have to ask: Is it plausible that a Universe that compels us to use themathematics of the reals to describe it, actually derives its properties from amathematics qualitatively no different to that of a very big graph? One surelyfinds such a discontinuity between reality and description even less satisfac-tory than that between the mathematics of incomputability and an unexplainedquantum uncertainty. Better to put to one side for the moment the possibilityof a Universe based entirely on the mathematics of the discrete. It seems morelikely that the observed discreteness is something imposed by natural laws on anunderlying indiscrete mathematical model. And that these natural laws emergefrom the model itself much as does the surface form of our rushing streamenvisaged previously.There are also more mathematical reasons for looking for an indiscrete model.There may be little science can say about why things exist, but it is withmathematics that the scientific project begins. The way in which form developsin that which comes to exist is based on mathematical structure. Mathematicsseems to prefigure. But — like joining a club, or enlisting into a culture —the opportunities for development provided come with accompanying rules,pressures and responsibilities. And these may not be predictable — the ordinarycitizen of nineteen-thirties Germany had little idea that they were part of asocial formation that would build so monstrously on their individual aspirationsand ideals. From its origins (whatever that means!) the Universe relies on amathematical blueprint to narrow down its various potential incarnations. It‘signs up’ to an underlying mathematical model, not by choice, but just bythe act of coming into existence. Can we say anything about the mathematicsprefiguring the Universe?What transforms inchoate development and gives form to creation, is the wayin which change become process. Whatever takes place in the nascent Universeappears to be comprised of basic kinds of atomic acts of development, withrepetition forming the basis of further development. Processes are fundamentalto matter and the laws which govern its formations and development. Theydo not seem to be finitarily determined, for example by piecemeal dependencyon the members of their real world domain, but can be envisaged relative to awide range of extrapolations from what we actually observe. These processesare what we broadly describe as ‘the algorithmic content’ of the Universe.
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Most of these fundamental processes identified by science are characterised byenough predictability of immediate effect to be covered by the connotationsof such terminology. Science since the time of Newton, at least, has beenlargely based on the identification and mathematical description of algorithmiccontent in the Universe. We will look at phenomena — primarily subatomicphenomena — which appear to defy such description, in section 6 below. Itturns out that these exceptions can be understood as arising at the borderlinebetween invariance and noninvariance in an appropriate model. In this contextthey actually consolidate our view of the algorithmic nature of the fundamentalprocesses underlying material development.Anyway, the main observation here is that a finite structure with the sort ofalgorithmic content we find in the Universe is very different to, say, a graph, inthat it entails ‘uncompleted infinities’. A fragment of the natural numbers overwhich one allows the usual operations of arithmetic, is best understood in thecontext of the theory of the whole structure. In the same way, the algorithmiccontent of the Universe makes it subject to the principles governing the math-ematical whole of which it is a part. Finiteness of the collection of all atomicparticles (even assuming one can make sense of such a conception) cannot re-move the general algorithmic content, the accompanying limiting processes, orobviate the higher mathematical relations these entail.The admission of algorithmic content is what makes a nonsense of a strictlyfinitist view of the universe, and, as we will see in section 6, offers yet anotherexample of how particular explanations emerge from larger mathematical con-texts than have immediate counterparts in nature — such as with imaginarynumbers, or at a mathematical level, results in number theory coming fromnondiscrete mathematics.Moreover, the mathematical model emerging not only transcends finitism,but also discretism. One can envisage how real numbers in the form of un-completed infinities feed into physical reality, and determine a mathematicalmodel which is not discrete. For instance, people routinely attempt to mentallysimulate events in the interests of reconstructing history and predicting futurecircumstances, and modify their activity accordingly. In that this simulationcan involve sequences with no specific bound, as when one say tries to act to-wards a world without war and famine, one can say that there is an uncompletedinfinity which has a direct real world impact. One hesitates to admit cerebralphenomena which qualitatively transcend what goes on in other parts of thereal universe. In fact one can argue that such mental simulations derive fromthe brain’s capacity to physically simulate other complex material phenomena.And that the Universe is quite capable of accelerating uncompleted infinitiesinto the here and now via its own nonlinear, often turbulent activity, involving aglobally extending network of interactions relevant to a particular local descrip-tion. The limiting processes underlying local descriptions in terms of global
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phenomena, intrinsic to turbulent environments, can be better understood viathe standard hierarchies of real numbers found in computability theory, and wewill return to this in the next section.But to summarise, if the ingredients of a simple mathematical construction— such as that of the reals from the natural numbers — are materially manifest,then one should not expect the Universe to be excluded from that construction.Specifically, this leads to a convergence between the mathematics, and thescientific priority given to descriptions in terms of reals and relations betweenthem. We now take this a little further.
4. The Inseparability of Algorithmic Content, Complexityand Incomputability

Mathematically, algorithmic content and incomputability are inseparablylinked in sufficiently complex environments. An elementary construction (in-volving diagonalising through a list of all machine computable reals) givesan incomputable real. But for our purposes, we need to limit our attention tomathematical constructions for which the basic ingredients have an obviousphysical counterpart, and diagonalisation at first sight appears to be limited towhat mathematicians do. More relevantly, all real numbers are derivable asthe limit of a sequence of computable — in fact rational — numbers. Even ifone limits oneself to computable sequences of computable numbers — that isuniformly computable sequences of reals — one still gets limiting reals whichare not computable.However, one needs to look more closely at how incomputability arisesfrom the mathematics of algorithms to be sure that all the basic ingredientsare apparent in, say, the turbulent environments we have focused on previously.What is it makes it impossible to compute a given incomputable, but computablyenumerable set of natural numbers? The members of the set are of courseenumerated by some computable function from numbers to numbers — butnot in order of magnitude. The relation between the magnitude of input andthat of the output is broken. And since we are only interested in the output,we would need a possibly uncompletable search to computably discover if aparticular number was in the set or not. In the case of an incomputable realappearing as the limit of a uniformly computable sequence of reals, this appearsas an absence of a computable modulus of convergence of the sequence. Thebreaking of the link between input and output happens in the sense that onecannot be clear at any given point in the sequence how close an approximationto the limiting real is being currently provided. What is there in the case ofchaotic situations which corresponds?A well-known example of chaotic behaviour is that of a pile of sand beingaccumulated grain by grain. There is an unpredictable link between the order in
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which the grains of sand are deposited on the heap, and the consequent impacton the pile in terms of settlement of existing grains. This is just the sort of un-predictability of association between input and output that we seem to need. Infact, it has been said that the “Butterfly Effect”, or more technically the “sensi-tive dependence on initial conditions”, is the essence of chaos. So a sufficientlysensitive mathematical model for turbulent environments not only cannot bediscrete, but will involve limiting processes which have the sort of ingredientsneeded to generate incomputable elements. Mathematically, the need for an in-finitary sequence of approximations does not depend on what is conventionallyregarded as a chaotic — or turbulent — environment. Even apparently simplephenomena — such as a dripping tap — exhibit chaotic behaviour. The non-linearity of the mathematics can be approached via a superposition of infinitelymany linear factors, closely related to how one would naturally approximatethe event in question via individual computable interactions. The association ofincomputability with simple chaotic situations is not new. For instance, GeorgKreisel sketched in [Kr70] a collision problem related to the 3-body problemas a possible source of incomputability.At this point the reader might object that we are doing exactly what we earliersuggested was a pointless exercise, namely trying to provide direct argumen-tation in favour of incomputability in Nature. No, we are under no illusionthat what we have said so far provides any more than a preliminary basis for abelief that the universe is incomputable. What we are trying to do is convincethe reader that he or she should seriously consider taking the mathematicalmodel suggested by the above discussion ‘on approval’, as it were. Any goodsalesperson (and we hope to use the term without its usual pejorative associa-tions) would admit the prospective purchaser their doubts. The aim would beto provide sufficient technical background and informative argumentation to atleast justify the time and effort involved in getting a first-hand experience ofwhat the product can actually deliver. The salesperson may aver that there is nosubstitute for having the product in your hands, and trying it out in the privacyof your own home. But one must be persuaded that there is actually some pointin doing this, and for this reason we have hopefully presented the scenario inwhich one might want to at least consider what the model — the Turing model— potentially provides in the way of explanatory power.It is now time to must describe the model in more detail, and discuss certaintechnical questions concerning it which as yet remain unresolved.
5. A Closer Look at the Turing Model

In 1939 Alan Turing, puzzled by the role of incomputability in mathematicsand logic, introduced Turing machines with oracles, as a way of comparing the(in)computability of different reals. Essentially, oracle Turing machines were
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machines capable of working in the real world of information, in the form ofreal numbers. The result was a natural model for structures describable in termsof computable relations over real numbers. Our Universe would be an obviouscandidate for such a structure, were it not for the fact that certain basic naturalprocesses are not known to give rise to computable relations on reals. What wehave promised though is that such phenomena are modelled via an analysis ofinvariance and definability in the basic Turing model.Historically, the investigation of the properties of the Turing model wereinitiated by Emil Post in the early nineteen forties, and a seminal paper writtenlargely by Stephen Kleene, but co-authored with Post, appeared in 1954. Bythat time, the interest had become almost entirely mathematical, as reflected inthe name ‘recursive function theory’ given by Kleene to the new subject. Theoriginal motivations of Turing had been — necessarily it can be argued — side-lined in favour of an intensive technical development, just part of which involvedefforts to describe the Turing universe in more detail. It was not surprising thatreal world applications did not figure throughout the recursion theoretic period(roughly the sixty years starting with the discovery of incomputable objects byChurch and Turing in 1936). On the one hand one had the confusing way inwhich real world incomputability manifested itself, and on the other one had anas yet technically inadequate subject, quite insufficient to develop and explainany modelling process it might be part of.By the 1990s few could ignore the signs that not everything was going wellwith the subject. The long-term survival of a mathematical field with no real-world applications depends on what it delivers, year in, year out, to the widermathematical community. And in particular, what it offers to new students andprofessionals, to mathematicians working in other areas, and to the institutionswithin which they work. To outsiders classical computability had become adeep subject which was maybe too deep; in which core research had becomehazardous and, even by the standards of fundamental scientific research, lack-ing predictability of outcome; in which mathematical applications dependedon recursion theoretic terminology; and in which the undoubted contribution totheoretical computer science and constructive mathematics did not depend onthe sort of things that recursion theorists currently occupied themselves with.Even insiders who instinctively reacted against any consciously political re-sponse found problems in pursuing a purely mathematical agenda, and werethemselves often caught up in the drift away from core research.Things started to change in earnest around 1995–96. These changes wererooted in two seemingly unrelated developments, one philosophical and polit-ical in content, and the other technical. The first involved a deliberate attemptto reinstate Turing’s terminology in keeping with the subject’s origins in realworld questions — ‘computable’ in place of ‘recursive’ etc. — a project out-
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lined in Robert Soare’s 1996 paper on ‘Computability and recursion’. Theother originated in 1995 with the first serious challenge to the mathematicalperspective which had dictated the direction of core research for more than tenyears, and involved the discarding of mathematical certainties (in more waysthan one) in favour of complexities which startlingly seemed to parallel someof those apparent in the real world. We will say more about the specifics ofthis below. It is not clear to many what will be the eventual outcome to thistransitionary period, and so far the impact of the accompanying confusion onthe standing of computability theory has been largely negative.What lost its revered status around 1995 was the so-called ‘biinterpretabil-ity conjecture’, which it was hoped would lead to an extremal characterisationof the Turing definable relations, to the point where the Turing universe, as amathematical structure, would be rigidly pinned down by those relations. Theidea had been that one could avoid direct involvement with the multiplyingcomplexities of Turing’s structure, beyond what was needed to translate it intothe more familiar theory of (second order) arithmetic. This relationship woulddeprive the Turing universe of much of its potential to surprise, and make de-tailed investigation of Turing definability of little more mathematical interestthan the details of arithmetical calculations. And for a number of years thebi interpretability conjecture held a gorgon-like fascination for recursion the-orists,7 while offering a mathematically elegant but no less stony end to thesubject.Let us say a bit more about rigidity for the nonspecialist. When one says astructure is ‘rigid’ it means intuitively, that travellers within the structure canuniquely pin down their location by looking around them. Or more precisely,cartographically the traveller cannot mistake his or her position — for example itis clear if the map is being held the wrong way round! Every feature of the struc-ture has a uniquely determined global context. It is like a team in which everyplayer has a uniquely fulfillable role. If the players exchange jerseys amongstthemselves, the team is no longer what it was — the structure has been changedby this relabelling. A relabelling of a structure under which it is not changedis called an automorphism. A rigid structure is one which has no nontrivialautomorphisms. In computability theory a reducibility is an attempted orderingof mathematical objects according to a given level of perception of informationcontent. It consists of the collection of those specific reductions conforming tothe permitted level of perception. Turing reducibility is a particularly importantreducibility, comprised of reductions based on everyday algorithmic practice,

7At an international conference in Helsinki in 1990, the first author’s suggestion, in answer to a questionfrom the audience, that the Turing universe might not be rigid, attracted indulgent smiles. The next day, adistinguished special sessions speaker found Turing rigidity ‘almost certain’ in the light of so many knownTuring definable relations.
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whereby one computes relative to finite collections of data extracted from thereal world. Reducibilities can be limited as to the size of the collections of dataused, or as to the way they are presented, or as to the manner in which onecomputes on them. These are called strong reducibilities. There is an histori-cally important strong reducibility called many-one reducibility which can beregarded as an abstraction of translations between axiomatic theories, and thisgives rise to a structure which has few definable relations, and is very un-rigid.On the other hand there are reducibilities which are allowed a level of infinitaryinterrogation of a given real, or even of objects more complicated than reals(say infinite sets of reals, or sets of transfinite ordinals). Such reducibilities arethe domain of generalised recursion (or computability) theory, and althoughso far lacking obvious real-world counterparts, often have very strong intuitivecontent. An example of a structure arising from a more general reducibilityis that of the hyperdegrees, where algorithms relative to reals are replaced byvery general language-based reductions — and this structure does turn out tobe rigid.The intuition was that Turing reductions were mathematically the weakestadequate to extract enough information from a given real to uniquely fix itsrelationship to the universe of the reducibility. Of course, this is modulo theintercomputability of certain pairs of reals. To take account of this, it is usualto gather together into degrees collections of objects of the domain of thereducibility which are mathematically equivalent in this sense. So a Turingdegree is a maximal set of reals any two of which can be Turing computed fromeach other. These reals can be thought of as presentations of the same Turingaccessible information content. It was the frustration of this intuition that gaverise to what may seem in hindsight a bizarre response to Turing nonrigidity,that is a disappointment that the reducibility was, perhaps, not the ‘right’ onemathematically. One would now look for some recognition of the parallel withthe encountered inadequacies of scientific observation, and more generally, ofthe power of the Universe to uniquely determine its own structure.There are two other observations of a technical nature to be made. The firstis that Turing nonrigidity is not yet finally established according to the usualcriteria of the academic community. What has happened is that progress inthe other direction has all but halted, despite the most determined efforts ofleading researchers in the field. And no significant technical challenge, eitherin the form of counterexamples or technical queries, has been made to theincreasingly detailed proposal for a nontrivial automorphism. The latter hasbeen presented now at a number of international meetings, most convincinglyduring a six-hour invited talk at the AMS-IMS-SIAM Joint Summer ResearchConference in Computability Theory and Applications at the University ofColorado, Boulder, in June 1999. The fact that the issue remains unresolved ispartly a measure of the newness and initial complexity of the techniques, partly
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a manifestation of a severely under-resourced research area signally failing tokeep pace with its own technical development, and (perhaps most significantly!)due to the mathematical and presentational limitations of those few individualsdirectly responsible. Also — and this is the main reason for writing about theconsequences of work in progress — what is happening has every appearanceof a paradigm shift in progress. And not just a minor technical shift in anobscure area of pure mathematics, but one of very general importance. Achange as global in nature as the phenomena it concerns, which transcendsthe incremental processes of normal science, and in which an appreciation ofcontext may feed back into a deeper understanding of narrowly technical issues.The development of string theory is an example of the way in which the sheerexplanatory power of a theory can actually contribute to the mathematics.Secondly, one has to mention that just as important as nonrigidity is thecounterbalancing body of results establishing a high level of invariance in theTuring universe. One of these says that there are relatively few — at mostcountably many — Turing automorphisms. To understand some of the mostrelevant of these results one must have some appreciation of the close rela-tionship between the way one might describe a real in standard mathematicallanguage, and its location within the Turing universe. It turns out that if onehas such a description of a real, which one knows to be the simplest possible,then one can roughly locate its position in the Turing universe in a very naturalway. Important landmarks in this location are provided by naturally arisingreals whose descriptions involve a relatively small number of quantifiers. Mostimportantly, one has the Turing equivalent group of incomputable reals dis-covered by Church and Turing in the 1930s, degree theoretically denoted by0′. Occupying a position above 0′ similar to that of 0′ above 0 (the set of allcomputable reals) is a degree 0′′. What is remarkable is that above this level aTuring automorphism can do no more than move a given real to one which isTuring equivalent to it. That is, the Turing universe above 0′′ is rigid within thewhole structure.
6. Scientifically Presenting the Universe

We need to say a little more about what we mean by a mathematical modelfor the Universe. This has been left deliberately vague up until now, andas we shall see, a degree of vagueness is inherent in the nature of scientificknowledge itself. Flexibility is also a feature, and a strength, of scientificpractice as regards the details of mathematical modelling via assignments ofreals to parameters. What we are talking about is a scientific presentation ofthe Universe via some informative mathematical structure. The mathematicsneeds to reflect the ingredients of the current scientific picture we have of theUniverse. As we have tried to argue above, scientific descriptions are based
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on the real numbers. This is not because we necessarily believe that the realnumbers actually enable us to capture reality, but because they are what wehave found by experience to provide a practical scientific framework. The sortof scientific presentation we have in mind is not one currently used in practiceto deal with the sort of fragments of the Universe which science needs to focuson in isolation. We stayed close to such local presentations in our earlierdiscussion of turbulence and the generation of incomputability. A feature ofthat discussion was the way in which the new incomputable reals derived theirspecific properties from the algorithmic content of the chaotic environment.This is what is required in a comprehensive mathematical model which describesthe Universe in terms of ‘atomic’ information content, described via reals. Thatis, the algorithmic content of the Universe, as revealed to us by the scientificproject, needs to be reflected by the comprehensive presentation in terms ofreals. This will enable one to correlate the mathematical description with thephysical processes in an informative way.In summary, the model must reflect the picture which science in principleprovides of the way we experience the Universe, with a comprehensive struc-turing of the information content of that description in accordance with theobserved processes at work. Of course, without making any assumptions re-garding underlying reality — even to assert that a given object exists, usingsome agreed language, is to translate our experience into a scientific statement— all that is being sought is something which is in accordance with what weobserve. That is, we look for a mathematical structure within which we mayinformatively interpret the current state of the scientific enterprise. This presen-tation may be done in different ways, one must assume, but if differing modesof presentation yield results which build a cohesive description of the Universe,then we have an appropriate modelling strategy.Part of our experience of science is what seems an intrinsic fragmentation,in which the reductive structure of the Universe is not a good guide to whathappens at different levels of scientific application. In section 7 we will lookmore closely at how the proposed model explains this in terms of internalinvariance. All that needs to be observed for the moment is that just as differentfragments of the scientific enterprise are based on their own basic relations,whose complex reductive relationships to more basic fragments are suppressed,so it may turn out that our current method of presentation ignores other yet to bediscovered basic levels. What is important is that the scientific picture is nowsufficiently filled out for the Turing model to have something to tell us aboutthe way the world we live in is as we currently experience it. One may haveto make certain assumptions about how much of the Turing model is needed todescribe our Universe, but the mathematical indications are that a large amountof information content is needed for the emergence of anything like the classicaluniverse of well-defined individual objects we daily encounter.
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Anyway, a level of flexibility in the way one envisages using the Turinguniverse as a model is an advantage, allowing us to apply it with differingperspectives. In particular, it means we can envisage a modelling of the Universeas part of an extended epistemological structure, consisting of statements wecan make (in some language) about the Universe and its mathematics.

7. What the Turing Model Delivers
The claim is that many seeming anomalies in science, the humanities, andhuman affairs in general, stem from failures of reductive analyses which haveserved us too well in the past to be easily bypassed. Further, that what is lackingis not an attack on the validity of such widely applicable analyses, but a modelin which relevant global factors can be clarified. And crucially, that a key globalnotion is that of definability or more generally, mathematical invariance. Thatthere are sufficient indicators, of both a practical and theoretical nature, for usto look for a model for the Universe based on presentations in terms of reals.And that the appropriate abstraction of such a Universe and its processes is thatarising from Alan Turing’s work in the late 1930s.Let us assume for the moment that we are prepared to entertain such aperspective. It is then time to deliver — So what does computability theoryhave to offer? We revisit some of the themes touched on in the first author’s 1999paper. We have tried to make the comments independent of outside references,which might be thought of little help to the majority of readers, who will haveread many books and articles of course, but not necessarily those preferred bythe authors! We will also try to be concise, at the risk of oversimplification.What we hope will be striking is not the extent to which the model surprises, butthe way in which it supports and theoretically substantiates existing perceptionsand trends in science and beyond.Our model says nothing about the mystery of material existence. But it doesoffer a framework in which a breakdown in reductionism is a commonplace,certainly not inconsistent with the picture given of levels we do have somehope of understanding. It can tell us, in a characteristically schematic way, howthings come to exist. Our basic premise, nothing new philosophically, is thatexistence takes the most general form allowed by considerations of internalconsistency. Where that consistency is governed by the mathematics of theuniverse within which that existence has a meaning. Of course, within thatuniverse, not even the terms in which we seek to discuss it can be assumedto have any meaningful existence. But proceeding regardless, assuming ourintuitive concept of ‘creation’ to have some content, we assume, as before,our Universe to embody some process of development, in which processesare basic. We assume the appropriateness of presentations of the Universe interms of information content and algorithmic relationships on that information
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content. We can then appeal to the mathematics of the Turing model to tell ussomething about what we might expect concerning ‘thingness’ in our Universe.This will be a first step in filling in a picture of the Universe characterised bymore determinism, more immanence, and less dependence on metaphysicalspeculation.What would the model lead us to expect regarding the basic structure ofmatter and the laws governing it? The mathematical indications are that a lowlevel of information content goes with nonrigidity and a lack of Turing invariantindividuals. In other words, the structure of the Turing universe appears to beconsistent with the possibility that a given individuals information content maybe insufficient to guarantee it a unique relationship to the global structure.The corresponding prediction for a Universe in tune with that model would bethat its most basic components may materialise ambiguously8 — a predictionconfirmed by a number of classic experiments on subatomic particles. (Theassumption has been since at least the time of Leibniz, that reality takes allforms consistent the underlying laws of existence, which from a contemporarypoint of view tends to mean consistency with the mathematics pertaining.) Onthe other hand, mathematically entangling such low level information content,perhaps with content at levels of the Turing universe at which rigidity sets in,will inevitably produce new content corresponding to a Turing invariant real.The prediction is that there is a level of material existence which does not displaysuch ambiguity as seen at the quantum level, and whose interactions with thequantum level have the effect of removing such ambiguity — confirmed by oureveryday experience of a classical level of reality, and by the familiar ‘collapseof the wave function’ associated with observation of quantum phenomena.Since there is no obvious mathematical reason why quantum ambiguity shouldremain locally constrained, there may be an apparent non-locality attachedto the collapse. Such a non-locality was first suggested by the well-knownEinstein-Podolsky-Rosen thought experiment, and, again, has been confirmedby observation. The way in which definability asserts itself in the Turinguniverse is not known to be computable, which would explain the difficultiesin predicting exactly how such a collapse might materialise in practice, and theapparent randomness involved.One can only speculate about the origins of subatomic structure, particularlysince we do not seem to have a complete description of it as yet. One guessis that when one observes atomic structure, one is looking at relations definedon some lower level level of matter lacking any sort of observable form. Thiscould be envisaged as a kind of formless soup of information content out ofwhich arise peaks of definability observed by us as subatomic particles. Such
8But in keeping with the limitation on possibilities presented by the existence of only countably many Turingautomorphisms.
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an implementation of the model might be used to explain why the hypothesised‘dark matter’ in the Universe has not been observed. Until it is organised intorelations, of which particles are the instantiations, we have no structure capableof being interacted with. It would be as alien to the world of particle physicsas that world is to our classical level of human existence.9The mathematics leads to other scientifically appropriate predictions. Inparticular, there is the question of how the laws of nature immanently arise,how they collapse near the big bang ‘singularity’, and what the model saysabout the occurrence or otherwise of such a singularity.What we have in the Turing universe are not just invariant individuals, but arich infrastructure of more general Turing definable relations. These relationsgrow out of the structure, and constrain it, in much the same sort of organicway that the forms observable in our rushing stream appear to. These relationsoperate at a universal level. The prediction is that a Universe with sufficientlydeveloped information content to replicate the defining content of the Turinguniverse will manifest corresponding material relations. The existence of suchrelations one would expect to be susceptible to observation, these observationsin turn suggesting regularities capable of mathematical description. But thenthis is a prediction which adumbrates the familiar historical process of the sci-entific mapping of natural laws. The conjecture is that there is a correspondingparallel between natural laws and relations which are definable in an appropriatefragment of the Turing universe.The early Universe one would not expect to replicate such a fragment. Thehomogenisation and randomisation of information content consequent on theextreme interconnectivity of matter would militate against higher order struc-ture. The manifest fragment of the Turing universe, based on random reals,might still contain high information content, but content dispersed and madelargely inaccessible to the sort of Turing definitions predicted by the theory.Projected singularities, such as within black holes or associated with boundarystates of the Universe, depend on a constancy of the known laws of physics.But immanently originating laws must be of global extraction. This meansthat their detailed manifestations may vary with global change, and disappeareven. Scientific evidence for time-related variations in natural laws is at bestinconclusive, as is evidence for the collapse of the laws of physics near the

9On a technical note, one should mention that it is not known if the Turing universe is rigid above 0′ —only that 0′ it is definable, and so invariant. A material manifestation of a Turing defined relation will stillbe scientifically perceived as an entity describable by a real, despite the underlying mathematics by whichit is constrained. And the information content of that defined relation will correspond to an infinitary joinadumbrated by local information information content organised according to some corresponding description.In which case one can speculate that the level of elevation of information content implicit in a Turing definitionis due to some canonical form of description needed for persistence in time, or arises from the conjecturedsubsubatomic level of information content.
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putative singularities. But there are persuasive theoretical arguments for thelatter, associated with the standard model. And it is not unreasonable to expectsome continuity between the current Universe and one bereft of the familiar(and not so familiar!) laws of physics.The reader will already be aware of the many attempts to stretch the standardmodel to deal with unsatisfactory gaps and anomalies in the theory. The areaabounds with theoretical constructs — such as inflation, many worlds, decoher-ence, the pilot wave, gauge theory, superstring theory, M-theory — all intendedto extend the standard model in ways not yet justified by observation. Some ofthese are proposals of a limited technical nature designed to address particularproblems with the standard model in a relatively piecemeal way. Others areconceptually more radical, and can be located within the present schema. Thisapplies particularly to theories of decoherence, which in trying to reconcilequantum ambiguity with classical reality do seem to deal with, in a very basicway, the underlying mechanics of mathematical definability. However, withoutlocating this within the mathematical theory of definability, one is still left withhaving to resort to the metaphysics of parallel classical realities, with its un-satisfactory lack of economy, and accompanying problems with explaining ourown special relationship to the reality we see around us. Still other attempts tostretch the standard model — such as superstrings and M-theory — present thestandard model as a very small fragment of a mathematical theory which goesfar beyond that arising from empirical science. These represent an approachwhich, while not actually inconsistent with that described here, appears to sharevery little in the way of new thinking.Logically, it is well known that one can extend a given incomplete theory inmany different ways. And that, in general, such an incomplete theory will haveinfinitely many completions. In the real world one can justify any addition tothe standard model via suitably elaborated auxiliary hypotheses.10 So it is notvery surprising that a variety of such proposed extensions to the standard modelof the Universe have appeared. Or that more than one of these has achieved thestatus of a fully-fledged paradigm with its own committed group of supporters.Occam’s Razor, and the Principle of Parsimony, are what have been provided asa formal counterpart to our natural scepticism. These say, roughly speaking, thatone should not increase, beyond what is necessary, the number of extra factorsrequired to explain something. If one takes into account not just the numberof added factors, but also the likelihood of those factors being substantiated byobservation (either in a positive way or by expected negative data not beingfound), then the interpretation we have attempted based on physical entities asinformation is a clear winner. How can we put a computable Universe amongst

10This is roughly what the Duhem-Quine thesis says.
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many, top of our list? Especially since other assumptions must be added to thatof many worlds to deal with the still remaining anomalies and incompletenessof the theory. Superstring and M-theory make very different assumptions,which are however no more accessible to experimental verification. And thereis even less clarity about what the theory actually is. There are some verydetailed implications for the theoretical basis of the standard model, which theTuring model has as yet nothing to say about. In fact, superstring theory seemscapable of sitting quite comfortably within the Turing framework. The aimsand consequences of the two approaches are rather different, and potentiallycomplementary.We will look very briefly at the Turing interpretation of other areas. Leavingquantum theory, one can still find abundant evidence for both nonrigidity, andwhat appear to be new laws corresponding to invariant relations emerging athigher levels, and relating to new entities reducible to ones at previous levels.However, this evidence may be less scientific, and more subject to controversy.Firstly, the Turing model does tell us why there is this fragmentation of sci-ence, and human knowledge in general, and why we do not have computablereductions of one to another. As we have said previously, in general a Turingdefinition of a given relation does not necessarily yield a computable relation-ship with the defining factors. But working within the relations at a given level,there may well be computable relationships emerging, which may become thebasis for a new area of scientific investigation. For instance research concerningthe cells of a living organism may not be usefully reduced to atomic physics,but deals with a higher level of directly observed regularities. Sociologically,one studies the interactions governing groups of people with only an indirectreference to psychological or biological factors. Entire relations upon cells(humans) defined in some imperfectly understood way by the evolutionary pro-cess provide the raw material underlying the new discipline, which seeks toidentify a further level of algorithmic content. This algorithmic content maynot be directly expressed in terms of numbers. But inasmuch as the area inquestion does have basic notions, corresponding to the new emergent relations,shared by workers in the field, and descriptions of entities and regularities areformulated in a shared language, the algorithmic content is not dissimilar inkind to that at lower levels.The first author’s 1999 paper mentioned a number of areas in which onecan observe qualitatively similar problems, all connected with parallel issuesof definability and nonrigidity. We briefly review two of these, and leave thereader to look there for further comments.A particularly puzzling problem is that of the early origin of life on Earth.Wherever one encounters explanations in terms of ‘emergence’, one can expectan understanding of the notion of definability, relative to the basic relationsoperating, to reinforce the necessarily vague intuitions underlying such expla-
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nations. And at any level, there are initially no more basic relations than thosepresented by the fundamental processes pertaining. There are more specificcharacteristics established on this basis, and there is no intention to deny theimportance of the science based on such specificities. In any case, in this in-stance there is an undeniably close parallel between the intuitions underlyingdefinability and those feeding into more recent explanations of how life ap-peared on earth in the time available. And some theoretical breakthrough isneeded, given the confusion betrayed by such speculative explanations as thoseenlisting extraterrestrial intervention.An even more high profile debate concerns the exact nature of evolution,and again one can find on the side of those dissatisfied with mechanistic deter-minism appeals to notions of emergence and chaos theory. And again one canconsolidate these more global perspectives via the mathematics of definability.Determinism is defended, but not reduced to a clearly inadequate mechanism.And there are many other ways in which the perspective described herecan shed new light on thorny problems. For instance, there is the mysteriousemergence of large scale structure in the Universe, and on the other hand theremarkable fact that the Universe appears to present a very similar view fromwhatever observation point one chooses. Once one accepts the basic underlyingnature of process and its mathematical counterpart of algorithm, and admits thepossibility that the Universe is deeply imbued with incomputability and itsmathematics, then many troublesome problems can be placed within a helpfulexplanatory context.In the 1999 paper mentioned above, there is a section on epistemologicalrelativism. There is a basic intuition that an analysis of the epistemology de-rived from our Universe is potentially just as complex as that of the Universeitself. So it should not be surprising that the mathematics of definability shouldbe relevant here. And it is not surprising that without such a conceptual frame-work as proposed here, different epistemological approaches should give riseto such differing views of the world. And that such controversies as currentlycharacterise discussions between scientists and those engaged in the humanitiesshould thrive in the unfilled vacuum. For reasons of space, we limit ourselvesto a few comments extending the perspective.We do this via what at first sight seems a less promising example. Math-ematics, as we know it, is expressed via finitary statements, and has at best aproblematical relationship with the material world. The exact character of thisrelationship is still argued over, as is the extent to which mathematics owes itsexistence to mathematicians. A puzzling anomaly arises from the dominance ofthe axiomatic model for mathematical activity, and its incompatibility with ex-perience of creative mathematicians. It is quite true, one observes, that havingdiscovered some new and interesting mathematical theorem, one can usuallytranslate its proof into one in some standard axiomatic theory. The problem
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is that the discovery of the theorem was not obviously axiomatic, and the for-mal proof when assembled may do much to obscure the mathematical intuitiontelling us why the theorem is true. If we look more closely at how we derivethe theory itself, we may better understand how it is — in the context of ourmodel — that our discovery of the theorem comes via a route which apparentlybypasses the rules of that theory.One first makes the observation that if the formal theory does not explainthe emergence of the axioms, then what it contributes to our understandingof theorems derived from these axioms must be limited. The unconsciousassumption is that since an axiom seems simple, so must be the process ofits derivation. And that the formal connection between the axiom and thetheorem must be a good guide to why the theorem is ‘true’. But even thenatural numbers, before any statements are made about them, are complex inorigin. Historically their emergence is linked to that of language, and its usagein relation to recognition of patterns, or relations on matter. Numbers as suchrelations are already present in the material world, and on the other hand seemto emerge in ones consciousness independently of any such exterior source. Butwhat one can say is that there exists some process of definition of these basicrelations, which is manifest both in nature and within the human mind. Andthat this does not depend on the exact balance of defining factors in a particularcontext. It may well be that recognition of such relations on the real worlddepends on some sort of parallel definition within our consciousness, which onecan regard as a simulation within the mind of phenomena within the exteriorworld. Mental processes, while being a microcosm of the greater universe ofwhich they are a part, do appear to mirror some of its complexity and hence itscapacity for global definition. It is possible to regard the mind as a functionalUniverse in miniature. Anyway, what is important is that the emergence ofnumber does show the familiar irreducibility of phenomenon so characteristicof a phase transition, to which modelling in terms of definability is relevant.The natural conjecture is that the forgotten but complex process underlyingthe emergence of the axioms is what is being revisited via the discovery oftheorems, and that in both cases the basis is definability in terms of the atomicingredients that constitute our intuitive grasp of what happens in the real world.Horizontal connections between different mathematical statements may play arole, particularly in the translation of personal intuitions into a shared frameworkof proof, but that is not always the most natural route to new mathematics.What we have argued above is that it may be possible to reconstitute themathematical framework governing the scientific approach, in such a way as torevive the sense of universal relevance once associated with ‘natural science’.The state of human knowledge lends an inevitably speculative quality to whatwe have written, but we hope this article will be accepted with the openness andgenerosity of spirit in which it is offered. How appropriate that the concluding
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remarks above have the effect of giving theoretical support to those who viewcontemporary mathematical research as being very much a part of the scientificenterprise.
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